A Simple Parallel/Distributed Sampling Technique:
Local Glauber Dynamics

Manuela Fischer
ETH Zurich, Switzerland

joint work with
Mohsen Ghaffari
Sampling Proper Colorings
Sampling a Proper q-Coloring
Sampling a Proper q-Coloring
Sampling a Proper q-Coloring

Markov chain
- over set of proper colorings
- uniform distribution as unique stationary distribution
- rapidly mixing
Sampling a Proper q-Coloring

Markov chain
- over set of proper colorings
- uniform distribution as unique stationary distribution
- rapidly mixing
Sampling a Proper q-Coloring

Markov chain
- over set of proper colorings
- uniform distribution as unique stationary distribution
- rapidly mixing

$t = 1$
Sampling a Proper q-Coloring

Markov chain
- over set of proper colorings
- uniform distribution as unique stationary distribution
- rapidly mixing

$t = 2$
Sampling a Proper q-Coloring

Markov chain
- over set of proper colorings
- uniform distribution as unique stationary distribution
- rapidly mixing

$t = 3$
Sampling a Proper q-Coloring

Markov chain
- over set of proper colorings
- uniform distribution as unique stationary distribution
- rapidly mixing

$t = 4$
Sampling a Proper q-Coloring

Markov chain
- over set of proper colorings
- uniform distribution as unique stationary distribution
- rapidly mixing

$t \geq t_{mix}$
Single-Site Glauber Dynamics
Single-Site Glauber Dynamics

update color of a random node to a random color, if proper
Single-Site Glauber Dynamics

update color of a random node to a random color, if proper
Single-Site Glauber Dynamics

update color of a random node to a random color, if proper
pick node \(v \) uniformly at random
Single-Site Glauber Dynamics

update color of a random node to a random color, if proper
pick node v uniformly at random
pick color c uniformly at random
Single-Site Glauber Dynamics

update color of a random node to a random color, if proper
pick node v uniformly at random
pick color c uniformly at random
Single-Site Glauber Dynamics

update color of a random node to a random color, if proper
pick node v uniformly at random
pick color c uniformly at random
if none of v's neighbors has color c, update v's color to c
Single-Site Glauber Dynamics

update color of a random node to a random color, if proper
pick node v uniformly at random
pick color c uniformly at random
if none of v’s neighbors has color c, update v’s color to c

![Diagram showing node update from t to t+1]
Single-Site Glauber Dynamics

update color of a random node to a random color, if proper

pick node v uniformly at random
pick color c uniformly at random
if none of v’s neighbors has color c, update v’s color to c

t
$t + 1$
Single-Site Glauber Dynamics

update color of a random node to a random color, if proper
pick node v uniformly at random
pick color c uniformly at random
if none of v’s neighbors has color c, update v’s color to c
Single-Site Glauber Dynamics

update color of a random node to a random color, if proper
 pick node v uniformly at random
 pick color c uniformly at random
 if none of v’s neighbors has color c, update v’s color to c

t

$t + 1$

$t + 2$
Single-Site Glauber Dynamics

update color of a **random node** to a **random color**, if proper

pick node \(v \) uniformly at random
pick color \(c \) uniformly at random
if none of \(v \)'s neighbors has color \(c \), update \(v \)'s color to \(c \)
Single-Site Glauber Dynamics

update color of a random node to a random color, if proper
pick node v uniformly at random
pick color c uniformly at random
if none of v’s neighbors has color c, update v’s color to c
Single-Site Glauber Dynamics

update color of a random node to a random color, if proper

pick node \(v \) uniformly at random
pick color \(c \) uniformly at random
if none of \(v \)'s neighbors has color \(c \), update \(v \)'s color to \(c \)
Centralized

[Jerrum 1995]

Single-Site Glauber

\(O(n \log n) \) steps \(q \geq 2\Delta + 1 \)
Centralized

[Jerrum 1995]

Single-Site Glauber
\(O(n \log n) \) steps \(q \geq 2\Delta + 1 \)

Decentralized
Centralized

[Jerrum 1995]
Single-Site Glauber \(O(n \log n) \) steps \(q \geq 2\Delta + 1 \)

Decentralized

[Feng, Sun, Yi 2017]

What can be sampled locally?

local/decentralized sampling techniques?
local/decentralized transition rules for Markov chain?
Centralized

[Jerrum 1995]

Single-Site Glauber $O(n \log n)$ steps $q \geq 2\Delta + 1$

Decentralized

[Feng, Sun, Yi 2017]

LubyGlauber $O(\Delta \log n)$ steps $q \geq \alpha \Delta$ for $\alpha > 2$
Centralized

[Jerrum 1995]

update a single node

\(O(n \log n)\) steps \(q \geq 2\Delta + 1\)

Decentralized

[Feng, Sun, Yi 2017]

LubyGlauber

\(O(\Delta \log n)\) steps \(q \geq \alpha\Delta\) for \(\alpha > 2\)
Centralized

[Jerrum 1995]

update a single node

$O(n \log n)$ steps

$q \geq 2\Delta + 1$

Decentralized

[Feng, Sun, Yi 2017]

update an independent set

$O(\Delta \log n)$ steps

$q \geq \alpha \Delta$ for $\alpha > 2$
Centralized

[Jerrum 1995]
update a single node \(O(n \log n) \) steps \(q \geq 2\Delta + 1 \)

Decentralized

[Feng, Sun, Yi 2017]
update an independent set \(O(\Delta \log n) \) steps \(q \geq \alpha\Delta \) for \(\alpha > 2 \)

[Feng, Sun, Yi 2017]
LocalMetropolis \(O(\log n) \) steps \(q \geq \alpha\Delta \) for \(\alpha > 2 + \sqrt{2} \)
Centralized

[Jerrum 1995]

update a single node

$O(n \log n)$ steps $q \geq 2\Delta + 1$

Decentralized

[Feng, Sun, Yi 2017]

update an independent set

$O(\Delta \log n)$ steps $q \geq \alpha \Delta$ for $\alpha > 2$

[Feng, Sun, Yi 2017]

update all nodes

$O(\log n)$ steps $q \geq \alpha \Delta$ for $\alpha > 2 + \sqrt{2}$
Centralized

[Jerrum 1995]
update a single node \(O(n \log n) \) steps \(q \geq 2\Delta + 1 \)

Decentralized

[Feng, Sun, Yi 2017]
update an independent set \(O(\Delta \log n) \) steps \(q \geq \alpha\Delta \) for \(\alpha > 2 \)

[Feng, Sun, Yi 2017]
update all nodes \(O(\log n) \) steps \(q \geq \alpha\Delta \) for \(\alpha > 2 + \sqrt{2} \)

[F., Ghaffari 2018]
Local Glauber \(O(\log n) \) steps \(q \geq \alpha\Delta \) for \(\alpha > 2 \)
Centralized

[Jerrum 1995]

update a single node \(O(n \log n) \) steps \(q \geq 2\Delta + 1 \)

Decentralized

[Feng, Sun, Yi 2017]

update an independent set \(O(\Delta \log n) \) steps \(q \geq \alpha\Delta \) for \(\alpha > 2 \)

[Feng, Sun, Yi 2017]

update all nodes \(O(\log n) \) steps \(q \geq \alpha\Delta \) for \(\alpha > 2 + \sqrt{2} \)

[F., Ghaffari 2018]

update an almost independent set \(O(\log n) \) steps \(q \geq \alpha\Delta \) for \(\alpha > 2 \)
Local Glauber Dynamics
Local Glauber Dynamics
Local Glauber Dynamics

update colors of a small-degree node set to random colors, if still proper
Local Glauber Dynamics

update colors of a small-degree node set to random colors, if still proper
Local Glauber Dynamics

update colors of a small-degree node set to random colors, if still proper

each node v

independently marks itself with probability $\gamma \in (0,1)$
Local Glauber Dynamics

update colors of a **small-degree node set** to **random colors**, if still proper

each node \(v\)

independently marks itself with probability \(\gamma \in (0,1)\)
Local Glauber Dynamics

update colors of a small-degree node set to random colors, if still proper

each node v
 independently marks itself with probability $\gamma \in (0,1)$
 if marked, picks a proposal c_v uniformly at random
Local Glauber Dynamics

update colors of a small-degree node set to random colors, if still proper

each node v

independently marks itself with probability $\gamma \in (0,1)$

if marked, picks a proposal c_v uniformly at random
Local Glauber Dynamics

update colors of a **small-degree node set** to **random colors**, if still proper

each node v
- independently marks itself with probability $\gamma \in (0,1)$
- if marked, picks a proposal c_v uniformly at random
- if c_v does not lead to (potential) conflicts, updates color
Local Glauber Dynamics

update colors of a small-degree node set to random colors, if still proper each node v

- independently marks itself with probability $\gamma \in (0,1)$
- if marked, picks a proposal c_v uniformly at random
- if c_v does not lead to (potential) conflicts, updates color

t $t+1$
Local Glauber Dynamics

update colors of a **small-degree node set** to **random colors**, if still proper

each node v

independently marks itself with probability $\gamma \in (0,1)$

if marked, picks a proposal c_v uniformly at random

if c_v does not lead to (potential) conflicts, updates color
Local Glauber Dynamics

update colors of a **small-degree node set** to **random colors**, if still proper

each node v
 independently marks itself with probability $\gamma \in (0,1)$
if marked, picks a proposal c_v uniformly at random
if c_v does not lead to (potential) conflicts, updates color

t

$t + 1$
Local Glauber Dynamics

update colors of a **small-degree node set** to **random colors**, if still proper

each node v

independently marks itself with probability $\gamma \in (0,1)$

if marked, picks a proposal c_v uniformly at random

if c_v does not lead to (potential) conflicts, updates color
Local Glauber Dynamics

update colors of a small-degree node set to random colors, if still proper

each node v
 independently marks itself with probability $\gamma \in (0,1)$
 if marked, picks a proposal c_v uniformly at random
 if c_v does not lead to (potential) conflicts, updates color
Local Glauber Dynamics

update colors of a **small-degree node set** to **random colors**, if still proper

each node v
 independently marks itself with probability $\gamma \in (0,1)$
 if marked, picks a proposal c_v uniformly at random
 if c_v does not lead to (potential) conflicts, updates color
Local Glauber Dynamics

update colors of a small-degree node set to random colors, if still proper

each node v
 independently marks itself with probability $\gamma \in (0,1)$
 if marked, picks a proposal c_v uniformly at random
 if c_v does not lead to (potential) conflicts, updates color
Local Glauber Dynamics

update colors of a *small-degree node set* to *random colors*, if still proper

- each node v
 - independently marks itself with probability $\gamma \in (0, 1)$
 - if marked, picks a proposal c_v uniformly at random
 - if c_v does not lead to (potential) conflicts, updates color

[F., Ghaffari 2018]

Theorem

Local Glauber converges to uniform distribution over proper q-colorings in $O(\log n)$ steps if $q \geq \alpha \Delta$ for $\alpha > 2$.
Proof Sketch
Path Coupling Lemma (simplified & informal)
If there is a coupling so that for all pairs of adjacent states the two Markov chains started in those two states come closer together in expectation, then the Markov chain is rapidly mixing.
Path Coupling Lemma (simplified & informal)

If there is a coupling so that for all pairs of adjacent states
the two Markov chains started in those two states come closer together in expectation,
then the Markov chain is rapidly mixing.
Path Coupling Lemma (simplified & informal)

If there is a coupling so that for all pairs of adjacent states the two Markov chains started in those two states come closer together in expectation, then the Markov chain is rapidly mixing.
Path Coupling Lemma (simplified & informal)

If there is a coupling so that for all pairs of adjacent states the two Markov chains started in those two states come closer together in expectation, then the Markov chain is rapidly mixing.
Reviewing
Path Coupling for
Single-Site Glauber Dynamics
Reviewing Path Coupling for Single-Site Glauber Dynamics

update color of a random node to a random color, if proper
Reviewing Path Coupling for Single-Site Glauber Dynamics

update color of a random node to a random color, if proper
pick node v uniformly at random
pick color c uniformly at random
if none of v’s neighbors has color c, update v’s color to c
Naïve Path Coupling for Single-Site Glauber Dynamics
Naïve Path Coupling for Single-Site Glauber Dynamics

\[v_0 \]
Naïve Path Coupling for Single-Site Glauber Dynamics
Naïve Path Coupling for Single-Site Glauber Dynamics

naïve coupling:
- same vertex
- same color
Naïve Path Coupling for Single-Site Glauber Dynamics

naïve coupling:
- same vertex
- same color

expected number of differing nodes:
Naïve Path Coupling for Single-Site Glauber Dynamics

naïve coupling:
- same vertex
- same color

expected number of differing nodes:
Naïve Path Coupling for Single-Site Glauber Dynamics

naïve coupling:
- same vertex
- same color

expected number of differing nodes:
Naïve Path Coupling for Single-Site Glauber Dynamics

naïve coupling:
- same vertex
- same color

expected number of differing nodes:
Naïve Path Coupling for Single-Site Glauber Dynamics

naïve coupling:
- same vertex
- same color

expected number of differing nodes:

\[1 - \frac{1}{n} \left(1 - \frac{\Delta}{q} \right) \]

[node \(v_0 \)]
Naïve Path Coupling for Single-Site Glauber Dynamics

naïve coupling:
- same vertex
- same color

expected number of differing nodes:

$$1 - \frac{1}{n} \left(1 - \frac{\Delta}{q} \right)$$

[node v_0]
Naïve Path Coupling for Single-Site Glauber Dynamics

naïve coupling:
- same vertex
- same color

expected number of differing nodes:

$$1 - \frac{1}{n} \left(1 - \frac{\Delta}{q}\right) \quad [node \, v_0]$$
Naïve Path Coupling for Single-Site Glauber Dynamics

naïve coupling:
- same vertex
- same color

expected number of differing nodes:

\[1 - \frac{1}{n} \left(1 - \frac{\Delta}{q}\right)\]

[node \(v_0\)]
Naïve Path Coupling for Single-Site Glauber Dynamics

naïve coupling:
- same vertex
- same color

expected number of differing nodes:

\[1 - \frac{1}{n} \left(1 - \frac{\Delta}{q}\right) \quad [\text{node } v_0] \]
Naïve Path Coupling for Single-Site Glauber Dynamics

naïve coupling:
- same vertex
- same color

expected number of differing nodes:

\[1 - \frac{1}{n} \left(1 - \frac{\Delta}{q} \right) \]

[node \(v_0 \)]
Naïve Path Coupling for Single-Site Glauber Dynamics

naïve coupling:
- same vertex
- same color

expected number of differing nodes:

\[1 - \frac{1}{n} \left(1 - \frac{\Delta}{q} \right) \]

[node \(v_0 \)]
Naïve Path Coupling for Single-Site Glauber Dynamics

naïve coupling:
- same vertex
- same color

expected number of differing nodes:

\[1 - \frac{1}{n} \left(1 - \frac{A}{q} \right) \]

[node v_0]
Naïve Path Coupling for Single-Site Glauber Dynamics

naïve coupling:
- same vertex
- same color

expected number of differing nodes:

\[
1 - \frac{1}{n} \left(1 - \frac{\Delta}{q} \right) + \Delta \cdot \frac{1}{n} \cdot \frac{2}{q}
\]

[node \(v_0\)]

[neighbors of \(v_0\)]
Naïve Path Coupling for Single-Site Glauber Dynamics

naïve coupling:
- same vertex
- same color

expected number of differing nodes:

\[
1 - \frac{1}{n} \left(1 - \frac{\Delta}{q} \right) + \Delta \cdot \frac{1}{n} \cdot \frac{2}{q}
\]

[node \(v_0\)]

[neighbors of \(v_0\)]
Naïve Path Coupling for Single-Site Glauber Dynamics

naïve coupling:
- same vertex
- same color

expected number of differing nodes:

\[
1 - \frac{1}{n} \left(1 - \frac{\Delta}{q}\right) + \Delta \cdot \frac{1}{n} \cdot \frac{2}{q}
\]

[node v_0]

[neighbors of v_0]
Naïve Path Coupling for Single-Site Glauber Dynamics

naïve coupling:
- same vertex
- same color

expected number of differing nodes:

\[
1 - \frac{1}{n} \left(1 - \frac{\Delta}{q}\right) + \Delta \cdot \frac{1}{n} \cdot \frac{2}{q}
\]

[node v_0]

[neighbors of v_0]
Naïve Path Coupling for Single-Site Glauber Dynamics

naïve coupling:
- same vertex
- same color

expected number of differing nodes:

\[
1 - \frac{1}{n} \left(1 - \frac{\Delta}{q} \right) + \Delta \cdot \frac{1}{n} \cdot \frac{2}{q}
\]

[node v_0]

[neighbors of v_0]
Naïve Path Coupling for Single-Site Glauber Dynamics

naïve coupling:
- same vertex
- same color

expected number of differing nodes:

\[1 - \frac{1}{n} \left(1 - \Delta \frac{\Delta}{q} \right) + \Delta \cdot \frac{1}{n} \cdot \frac{2}{q} \]

[node \(v_0 \)]

[neighbors of \(v_0 \)]
Naïve Path Coupling for Single-Site Glauber Dynamics

naïve coupling:
- same vertex
- same color

expected number of differing nodes:

\[
1 - \frac{1}{n} \left(1 - \frac{\Delta}{q} \right) + \Delta \cdot \frac{1}{n} \cdot \frac{2}{q}
\]

[node \(v_0 \)]
[neighbors of \(v_0 \)]
Naïve Path Coupling for Single-Site Glauber Dynamics

naïve coupling:
- same vertex
- same color

expected number of differing nodes:

$$1 - \frac{1}{n} \left(1 - \frac{\Delta}{q} \right)$$

[node v_0]

$$+ \Delta \cdot \frac{1}{n} \cdot \frac{2}{q}$$

[neighbors of v_0]
Naïve Path Coupling for Single-Site Glauber Dynamics

naïve coupling:
- same vertex
- same color

expected number of differing nodes:

\[1 - \frac{1}{n} \left(1 - \frac{\Delta}{q} \right) \]

\[+ \Delta \cdot \frac{1}{n} \cdot \frac{2}{q} \]

[node \(v_0 \)]

[neighbors of \(v_0 \)]
Naïve Path Coupling for Single-Site Glauber Dynamics

naïve coupling:
- same vertex
- same color

expected number of differing nodes:

\[
1 - \frac{1}{n} \left(1 - \frac{\Delta}{q}\right) + \Delta \cdot \frac{1}{n} \cdot \frac{2}{q}
\]

[node \(v_0\)]

[neighbors of \(v_0\)]
Naïve Path Coupling for Single-Site Glauber Dynamics

naïve coupling:
- same vertex
- same color

expected number of differing nodes:

\[1 - \frac{1}{n} \left(1 - \frac{\Delta}{q}\right) \]

\[+ \Delta \cdot \frac{1}{n} \cdot \frac{2}{q} \]

[node \(v_0 \)]

[neighbors of \(v_0 \)]
Naïve Path Coupling for Single-Site Glauber Dynamics

naïve coupling:
- same vertex
- same color

expected number of differing nodes:

\[
1 - \frac{1}{n} \left(1 - \frac{\Delta}{q} \right) + \Delta \cdot \frac{1}{n} \cdot \frac{2}{q} = 1 - \frac{1}{n} \left(1 - \frac{3\Delta}{q} \right)
\]
Improved Path Coupling for Single-Site Glauber Dynamics
Improved Path Coupling for Single-Site Glauber Dynamics
Improved Path Coupling for Single-Site Glauber Dynamics

\[v_0 \]
Improved Path Coupling for Single-Site Glauber Dynamics

\[v_0 \]
Improved Path Coupling for Single-Site Glauber Dynamics

flipped coupling:
- same node v
- same color for $v \notin N(v_0)$
- flipped color for $v \in N(v_0)$
Improved Path Coupling for Single-Site Glauber Dynamics

flipped coupling:
- same node \(v \)
- same color for \(v \notin N(v_0) \)
- flipped color for \(v \in N(v_0) \)
Improved Path Coupling for Single-Site Glauber Dynamics

flipped coupling:
- same node v
- same color for $v \notin N(v_0)$
- flipped color for $v \in N(v_0)$
Improved Path Coupling for Single-Site Glauber Dynamics

flipped coupling:
- same node \(v \)
- same color for \(v \notin N(v_0) \)
- flipped color for \(v \in N(v_0) \)

expected number of differing nodes:

\[
1 - 1^n - 2\Delta q\]

\[
+ \Delta q \cdot 1^n \cdot 1^q \text{ neighbors of } v_0\]
Improved Path Coupling for Single-Site Glauber Dynamics

flipped coupling:
- same node v
- same color for $v \notin N(v_0)$
- flipped color for $v \in N(v_0)$

expected number of differing nodes:
Improved Path Coupling for Single-Site Glauber Dynamics

flipped coupling:
- same node v
- same color for $v \notin N(v_0)$
- flipped color for $v \in N(v_0)$

expected number of differing nodes:
Improved Path Coupling for Single-Site Glauber Dynamics

flipped coupling:

- same node v
- same color for $v \notin N(v_0)$
- flipped color for $v \in N(v_0)$

expected number of differing nodes:
Improved Path Coupling for Single-Site Glauber Dynamics

flipped coupling:
- same node v
- same color for $v \notin N(v_0)$
- flipped color for $v \in N(v_0)$

expected number of differing nodes:

$$1 - \frac{1}{n} \left(1 - \frac{\Delta}{q}\right)$$ \hspace{1cm} [node v_0]
Improved Path Coupling for Single-Site Glauber Dynamics

flipped coupling:
- same node v
- same color for $v \notin N(v_0)$
- flipped color for $v \in N(v_0)$

expected number of differing nodes:

$$1 - \frac{1}{n} \left(1 - \frac{\Delta}{q} \right)$$

[node v_0]
Improved Path Coupling for Single-Site Glauber Dynamics

flipped coupling:
- same node v
- same color for $v \notin N(v_0)$
- flipped color for $v \in N(v_0)$

expected number of differing nodes:

$$1 - \frac{1}{n} \left(1 - \frac{\Delta}{q}\right) \quad [\text{node } v_0]$$
Improved Path Coupling for Single-Site Glauber Dynamics

flipped coupling:
- same node v
- same color for $v \notin N(v_0)$
- flipped color for $v \in N(v_0)$

expected number of differing nodes:

$$1 - \frac{1}{n} \left(1 - \frac{\Delta}{q} \right)$$

[node v_0]
Improved Path Coupling for Single-Site Glauber Dynamics

flipped coupling:
- same node v
- same color for $v \notin N(v_0)$
- flipped color for $v \in N(v_0)$

expected number of differing nodes:

$$1 - \frac{1}{n} \left(1 - \frac{\Delta}{q}\right)$$

[node v_0]
Improved Path Coupling for Single-Site Glauber Dynamics

flipped coupling:
- same node \(v \)
- same color for \(v \notin N(v_0) \)
- flipped color for \(v \in N(v_0) \)

expected number of differing nodes:

\[
1 - \frac{1}{n} \left(1 - \frac{\Delta}{q} \right) + \Delta \cdot \frac{1}{n} \cdot \frac{1}{q}
\]

[node \(v_0 \)]

[neighbors of \(v_0 \)]
Improved Path Coupling for Single-Site Glauber Dynamics

flipped coupling:
- same node v
- same color for $v \notin N(v_0)$
- flipped color for $v \in N(v_0)$

expected number of differing nodes:

$$1 - \frac{1}{n} \left(1 - \frac{\Delta}{q} \right)$$ [node v_0]

$$+ \Delta \cdot \frac{1}{n} \cdot \frac{1}{q}$$ [neighbors of v_0]
Improved Path Coupling for Single-Site Glauber Dynamics

flipped coupling:
- same node \(v \)
- same color for \(v \notin N(v_0) \)
- flipped color for \(v \in N(v_0) \)

expected number of differing nodes:

\[
1 - \frac{1}{n} \left(1 - \frac{\Delta}{q} \right) + \Delta \cdot \frac{1}{n} \cdot \frac{1}{q}
\]

[node \(v_0 \)]

[neighbors of \(v_0 \)]
Improved Path Coupling for Single-Site Glauber Dynamics

flipped coupling:
- same node \(v \)
- same color for \(v \notin N(v_0) \)
- flipped color for \(v \in N(v_0) \)

expected number of differing nodes:

\[
1 - \frac{1}{n} \left(1 - \frac{\Delta}{q} \right) + \Delta \cdot \frac{1}{n} \cdot \frac{1}{q}
\]

[node \(v_0 \)]

[neighbors of \(v_0 \)]
Improved Path Coupling for Single-Site Glauber Dynamics

flipped coupling:
- same node \(v \)
- same color for \(v \notin N(v_0) \)
- flipped color for \(v \in N(v_0) \)

expected number of differing nodes:

\[
1 - \frac{1}{n} \left(1 - \frac{\Delta}{q} \right) + \Delta \cdot \frac{1}{n} \cdot \frac{1}{q}
\]

[node \(v_0 \)]

[neighbors of \(v_0 \)]
Sketch of Path Coupling for Local Glauber Dynamics
Sketch of Path Coupling for Local Glauber Dynamics

update colors of a small-degree node set to random colors, if still proper
Sketch of Path Coupling for Local Glauber Dynamics

update colors of a small-degree node set to random colors, if still proper
 each node v
 independently marks itself with probability $\gamma \in (0,1)$
 if marked, picks a proposal c_v uniformly at random
 if c_v does not lead to (potential) conflicts, updates color
Path Coupling for Local Glauber Dynamics
Path Coupling for Local Glauber Dynamics
Path Coupling for Local Glauber Dynamics

flipped coupling:
- mark same nodes
- flipped colors iff there is a neighbor with flipped colors
Path Coupling for Local Glauber Dynamics

flipped coupling:
- mark same nodes
- flipped colors iff there is a neighbor with flipped colors
Path Coupling for Local Glauber Dynamics

flipped coupling:
- mark same nodes
- flipped colors iff there is a neighbor with flipped colors
Path Coupling for Local Glauber Dynamics

flipped coupling:
- mark same nodes
- flipped colors iff there is a neighbor with flipped colors
Path Coupling for Local Glauber Dynamics

flipped coupling:
- mark same nodes
- flipped colors iff there is a neighbor with flipped colors
Path Coupling for Local Glauber Dynamics

flipped coupling:
- mark same nodes
- flipped colors iff there is a neighbor with flipped colors
Path Coupling for Local Glauber Dynamics

flipped coupling:
- mark same nodes
- flipped colors iff there is a neighbor with flipped colors
Path Coupling for Local Glauber Dynamics

flipped coupling:
- mark same nodes
- flipped colors iff there is a neighbor with flipped colors
Path Coupling for Local Glauber Dynamics

flipped coupling:
- mark same nodes
- flipped colors iff there is a neighbor with flipped colors
Path Coupling for Local Glauber Dynamics

flipped coupling:
- mark same nodes
- flipped colors iff there is a neighbor with flipped colors
Path Coupling for Local Glauber Dynamics

flipped coupling:
- mark same nodes
- flipped colors iff there is a neighbor with flipped colors
Path Coupling for Local Glauber Dynamics

flipped coupling:
- mark same nodes
- flipped colors iff there is a neighbor with flipped colors
Path Coupling for Local Glauber Dynamics

flipped coupling:
- mark same nodes
- flipped colors iff there is a neighbor with flipped colors
Path Coupling for Local Glauber Dynamics

flipped coupling:
- mark same nodes
- flipped colors iff there is a neighbor with flipped colors
Path Coupling for Local Glauber Dynamics

flipped coupling:
- mark same nodes
- flipped colors iff there is a neighbor with flipped colors
Path Coupling for Local Glauber Dynamics

flipped coupling:
- mark same nodes
- flipped colors iff there is a neighbor with flipped colors

[Bubley, Dyer 1997]
Path Coupling for Local Glauber Dynamics
Path Coupling for Local Glauber Dynamics

flipped coupling:
- mark same nodes
- flipped colors iff there is a neighbor with flipped colors
Path Coupling for Local Glauber Dynamics

flipped coupling:
- mark same nodes
- flipped colors iff there is a neighbor with flipped colors
Path Coupling for Local Glauber Dynamics

flipped coupling:
- mark same nodes
- flipped colors iff there is a neighbor with flipped colors

expected number of differing nodes:
Path Coupling for Local Glauber Dynamics

flipped coupling:
- mark same nodes
- flipped colors iff there is a neighbor with flipped colors

expected number of differing nodes:

\[1 - \gamma \left(1 - \frac{\Delta}{q} \right) \left(1 - \frac{3\gamma}{q} \right)^\Delta \]

[node \(v_0 \)]
Path Coupling for Local Glauber Dynamics

flipped coupling:
- mark same nodes
- flipped colors iff there is a neighbor with flipped colors

expected number of differing nodes:

$$1 - \gamma \left(1 - \frac{\Delta}{q} \right) \left(1 - \frac{3\gamma}{q} \right)^\Delta$$

[node v_0]
Path Coupling for Local Glauber Dynamics

flipped coupling:
- mark same nodes
- flipped colors iff there is a neighbor with flipped colors

expected number of differing nodes:

\[1 - \gamma \left(1 - \frac{\Delta}{q} \right) \left(1 - \frac{3\gamma}{q} \right)^\Delta \quad [\text{node } v_0] \]
Path Coupling for Local Glauber Dynamics

flipped coupling:
- mark same nodes
- flipped colors iff there is a neighbor with flipped colors

expected number of differing nodes:

$$1 - \gamma \left(1 - \frac{\Delta}{q}\right) \left(1 - \frac{3\gamma}{q}\right)^\Delta$$ [node v_0]
Path Coupling for Local Glauber Dynamics

flipped coupling:
- mark same nodes
- flipped colors iff there is a neighbor with flipped colors

expected number of differing nodes:

\[1 - \gamma \left(1 - \frac{\Delta}{q} \right) \left(1 - \frac{3\gamma}{q} \right)^\Delta \]

[node \(v_0 \)]
Path Coupling for Local Glauber Dynamics

flipped coupling:
- mark same nodes
- flipped colors iff there is a neighbor with flipped colors

expected number of differing nodes:

\[1 - \gamma \left(1 - \frac{\Delta}{q} \right) \left(1 - \frac{3\gamma}{q} \right)^\Delta \quad [\text{node } v_0] \]
Path Coupling for Local Glauber Dynamics

flipped coupling:
- mark same nodes
- flipped colors iff there is a neighbor with flipped colors

expected number of differing nodes:

$$1 - \gamma \left(1 - \frac{\Delta}{q} \right) \left(1 - \frac{3\gamma}{q} \right)^{\Delta} \quad [\text{node } v_0]$$
Path Coupling for Local Glauber Dynamics

flipped coupling:
- mark same nodes
- flipped colors iff there is a neighbor with flipped colors

expected number of differing nodes:

\[1 - \gamma \left(1 - \frac{\Delta}{q}\right) \left(1 - \frac{3\gamma}{q}\right)^\Delta \]

[node \(v_0 \)]
Path Coupling for Local Glauber Dynamics

flipped coupling:
- mark same nodes
- flipped colors iff there is a neighbor with flipped colors

expected number of differing nodes:

\[
1 - \gamma \left(1 - \frac{\Delta}{q}\right)\left(1 - \frac{3\gamma}{q}\right)^\Delta \quad [\text{node } v_0]
\]

Main Observation:
to have different colors, node needs to be on a red-blue-path starting from \(v_0\)
Path Coupling for Local Glauber Dynamics

flipped coupling:
- mark same nodes
- flipped colors iff there is a neighbor with flipped colors

expected number of differing nodes:

$$1 - \gamma \left(1 - \frac{\Delta}{q}\right) \left(1 - \frac{3\gamma}{q}\right)^\Delta$$

[node v_0]

Main Observation:
to have different colors, node needs to be on a red-blue-path starting from v_0
Path Coupling for Local Glauber Dynamics

flipped coupling:
- mark same nodes
- flipped colors iff there is a neighbor with flipped colors

expected number of differing nodes:

\[1 - \gamma \left(1 - \frac{\Delta}{q} \right) \left(1 - \frac{3\gamma}{q} \right)^\Delta \]

[node \(v_0 \)]

Main Observation:
to have different colors, node needs to be on a **red-blue-path** starting from \(v_0 \)
Path Coupling for Local Glauber Dynamics

flipped coupling:
- mark same nodes
- flipped colors iff there is a neighbor with flipped colors

expected number of differing nodes:

\[1 - \gamma \left(1 - \frac{\Delta}{q}\right) \left(1 - \frac{3\gamma}{q}\right)^\Delta \]

[node \(v_0 \)]

Main Observation:
to have different colors, node needs to be on a red-blue-path starting from \(v_0 \)
Path Coupling for Local Glauber Dynamics

flipped coupling:
- mark same nodes
- flipped colors iff there is a neighbor with flipped colors

expected number of differing nodes:

\[1 - \gamma \left(1 - \frac{\Delta}{q} \right) \left(1 - \frac{3\gamma}{q} \right)^\Delta \]

[node \(v_0 \)]

Main Observation:
to have different colors, node needs to be on a red-blue-path starting from \(v_0 \)
Path Coupling for Local Glauber Dynamics

flipped coupling:
- mark same nodes
- flipped colors iff there is a neighbor with flipped colors

expected number of differing nodes:
\[1 - \gamma \left(1 - \frac{\Delta}{q} \right) \left(1 - \frac{3\gamma}{q} \right)^\Delta \]
[node \(v_0 \)]

Main Observation:
to have different colors, node needs to be on a red-blue-path starting from \(v_0 \)
Path Coupling for Local Glauber Dynamics

flipped coupling:
- mark same nodes
- flipped colors iff there is a neighbor with flipped colors

expected number of differing nodes:

\[
1 - \gamma \left(1 - \frac{\Delta}{q}\right) \left(1 - \frac{3\gamma}{q}\right)^\Delta \\
+ \sum_{l=1}^{n} \Delta^l \left(\frac{2\gamma}{q}\right)^{l-1} \cdot \frac{\gamma}{q}
\]

[node v_0]
Path Coupling for Local Glauber Dynamics

flipped coupling:
- mark same nodes
- flipped colors iff there is a neighbor with flipped colors

expected number of differing nodes:

$$1 - \gamma \left(1 - \frac{\Delta}{q} \right) \left(1 - \frac{3\gamma}{q} \right)^\Delta$$

[node v_0]

$$+ \sum_{l=1}^{n} \Delta^l \left(\frac{2\gamma}{q} \right)^{l-1} \cdot \frac{\gamma}{q}$$

< 1
Centralized

[Jerrum 1995]

Single-Site Glauber

\[O(n \log n) \text{ steps} \quad q \geq 2\Delta + 1 \]

Decentralized

[Feng, Sun, Yi 2017]

LubyGlauber

\[O(\Delta \log n) \text{ steps} \quad q \geq \alpha\Delta \text{ for } \alpha > 2 \]

[Feng, Sun, Yi 2017]

LocalMetropolis

\[O(\log n) \text{ steps} \quad q \geq \alpha\Delta \text{ for } \alpha > 2 + \sqrt{2} \]

[F., Ghaffari 2018]

Local Glauber

\[O(\log n) \text{ steps} \quad q \geq \alpha\Delta \text{ for } \alpha > 2 \]
Centralized

[Jerrum 1995]
Single-Site Glauber

$O(n \log n)$ steps $q \geq 2\Delta + 1$

Decentralized

[Feng, Sun, Yi 2017]
LubyGlauber

$O(\Delta \log n)$ steps $q \geq \alpha\Delta$ for $\alpha > 2$

[Feng, Sun, Yi 2017]
LocalMetropolis

$O(\log n)$ steps $q \geq \alpha\Delta$ for $\alpha > 2 + \sqrt{2}$

[F., Ghaffari 2018]
Local Glauber

almost independent set suffices

$O(\log n)$ steps $q \geq \alpha\Delta$ for $\alpha > 2$
Centralized

Jerrum 1995	Single-Site Glauber	$O(n \log n)$ steps	$q \geq 2\Delta + 1$
Vigoda 2000			
Chen, Moitra 2018		poly(n) steps	$q \geq \alpha\Delta$ for $\alpha > \frac{11}{6}$
Delcourt, Perarnau, Postle 2018			

Decentralized

Feng, Sun, Yi 2017	Luby Glauber	$O(\Delta \log n)$ steps	$q \geq \alpha\Delta$ for $\alpha > 2$
Feng, Sun, Yi 2017	Local Metropolis	$O(\log n)$ steps	$q \geq \alpha\Delta$ for $\alpha > 2 + \sqrt{2}$
F., Ghaffari 2018	Local Glauber	almost independent set suffices	$q \geq \alpha\Delta$ for $\alpha > 2$
Centralized

<table>
<thead>
<tr>
<th>Single-Site Glauber</th>
<th>$O(n \log n)$ steps</th>
<th>$q \geq 2\Delta + 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vigoda 2000,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chen, Moitra 2018,</td>
<td>poly(n) steps</td>
<td>$q \geq \alpha\Delta$ for $\alpha > \frac{11}{6}$</td>
</tr>
<tr>
<td>Delcourt, Perarnau, Postle 2018</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Decentralized

<table>
<thead>
<tr>
<th>LubyGlauber</th>
<th>$O(\Delta \log n)$ steps</th>
<th>$q \geq \alpha\Delta$ for $\alpha > 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feng, Sun, Yi 2017</td>
<td></td>
<td>fewer colors?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LocalMetropolis</th>
<th>$O(\log n)$ steps</th>
<th>$q \geq \alpha\Delta$ for $\alpha > 2 + \sqrt{2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feng, Sun, Yi 2017</td>
<td></td>
<td>almost independent set suffices</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Local Glauber</th>
<th>$O(\log n)$ steps</th>
<th>$q \geq \alpha\Delta$ for $\alpha > 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F., Ghaffari 2018</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thank you!