
Lecture Notes
“Discrete Optimization”

Bernd Gärtner
ETH Zürich

(Figures and Proofreading by Hiroyuki Miyazawa)

1



Contents

1 Introduction 4
1.1 The Warehouse Problem – From an Ancient Competition . . . . . . . . . . 4

1.1.1 Upper and Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.2 A Concrete Lower Bound . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.3 A Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 The Oracle of Bacon, or How Connected is the World? . . . . . . . . . . . 10
1.3 The Perfect Team – Planning for SOLA 2001 . . . . . . . . . . . . . . . . . 11
1.4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Shortest Paths in Graphs 15
2.1 Breadth-First Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Dijkstra’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Linear Programming 22
3.1 The SOLA problem revisited . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Integer linear programming formulation . . . . . . . . . . . . . . . . 22
3.1.2 LP relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.3 ILP versus LP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.4 ILP versus LP in other cases . . . . . . . . . . . . . . . . . . . . . . 25

3.2 The Simplex Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.1 Tableaus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Pivoting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.3 Geometric Interpretation . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.4 Exception Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.5 Tableaus from bases . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.6 Pivot Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Complexity of the Simplex Method 45
4.1 An expected linear-time algorithm . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 LP-type problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2



5 The Primal-Dual Method 56
5.1 Description of the Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 The SOLA problem revisited again . . . . . . . . . . . . . . . . . . . . . . 60

6 Complexity 66
6.1 The classes P and NP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.2 Polynomial-time reductions . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.3 NP-completeness and NP-hardness . . . . . . . . . . . . . . . . . . . . . . 70
6.4 Integer Linear Programming is NP-hard . . . . . . . . . . . . . . . . . . . 71
6.5 How to deal with NP-hard problems . . . . . . . . . . . . . . . . . . . . . 71
6.6 Approximation algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7 Integer Polyhedra 76
7.1 Maximum weighted matching . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.2 Total dual integrality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.3 The matching system is TDI . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.4 The integer hull of a polyhedron . . . . . . . . . . . . . . . . . . . . . . . . 87

8 Cutting Planes 89
8.1 Outline of the Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
8.2 Gomory Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.3 Separation Oracles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

9 The Travelling Salesperson Problem 97
9.1 Christofides’ Approximation Algorithm . . . . . . . . . . . . . . . . . . . . 97
9.2 Beyond Gomory Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
9.3 Branch & Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
9.4 Branch & Bound for the TSP . . . . . . . . . . . . . . . . . . . . . . . . . 101
9.5 Branch & Cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3



Chapter 1

Introduction

This chapter is intended to give you an idea what discrete optimization is, by showing you
three problems from the area. You won’t see any solutions here, only discussions of various
aspects of the problems under consideration. This is quite natural, because a thorough
understanding of a problem is a prerequisite for a solution. Also, I want to give you a
chance to think about how you would solve the problems, before you learn how all the
wise people in history have done it.

1.1 The Warehouse Problem – From an Ancient Com-

petition

The following problem does not quite go back to the Greeks or the Romans, but in computer
science categories, it is almost as old: it comes from the 5. Bundeswettbewerb Informatik - 2.
Runde (Germany, 1987). We are given a rectangular warehouse of dimensions 50m×80m,
partitioned into squares of 1m2 each (see Figure 1.1 for a small illustrating example of size
9m× 9m).

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����	�	�	�	

	�	�	�	
	�	�	�	
	�	�	�	


�
�
�


�
�
�


�
�
�


�
�
�
�����

�����
�����

�����
�����
�����

���
���
���

�������
�������
�������

�������
�������
�������

�����
�����
�����

�������
�������
�������

�������
�������
������������

�����
�����
�����

�����
�����
�����
�����

Figure 1.1: Warehouse with obstacles, initial robot position and goal position

4



Each square is either empty or completely occupied by an obstacle (walls, palettes,
etc.). In the warehouse, we have a cylindrical robot, able to move along guide rails that
separate the squares in a grid-like fashion. What we would like to have is a program that
is able to compute a fastest robot trip from any given start position (intersection of guide
rails) to any given goal position (small circle in Figure 1.1), along the guide rails. Because
of the size of the robot, guide rails incident to an obstacle cannot be used. Also, there are
no guide rails along the boundary of the warehouse.

In addition to its current position, the robot has a forward direction (N(orth), S(outh),
E(ast), or W(est)) in which it can travel. At intersections, it may turn and continue in
a different direction. Here is the exact list of control commands the robot understands,
where it needs exactly one second to execute a single command (in brackets you find the
distance the robot travels during execution of each command).

Command START MOVE(x)

Action
Start moving in
forward direction

(0.5m)

Continue to move
in forward direction
(x = 1, 2, or 3m)

Precondition standstill moving
Postcondition moving moving

Command STOP TURN(dir)

Action
Slow down

until standstill
(0.5m)

Turn by 900 in direction dir
(+ = counterclockwise, − = clockwise)

(0m)
Precondition moving standstill
Postcondition standstill standstill

As an example for a robot trip, consider the one drawn in Figure 1.2. It takes 23
seconds, after processing the following (boring) list of commands. Note that we require
the robot to be in standstill at the goal position.

1. START 7. STOP 13. STOP 19. START
2. STOP 8. TURN(+) 14. TURN(+) 20. STOP
3. TURN(+) 9. START 15. START 21. TURN(−)
4. START 10. STOP 16. MOVE(3) 22. START
5. MOVE(2) 11. TURN(−) 17. STOP 23. STOP
6. MOVE(2) 12. START 18. TURN(+)

5



�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

�����
�����
�����

�����
�����
�����

�������
�������
�������

�������
�������
�������

	�	�	
	�	�	
	�	�	
	�	�	


�
�


�
�


�
�


�
�


�������
�������
�������
�������

�������
�������
�������
�������

���
���
���

�����
�����
�����

�����
�����
�����

�����
�����
�����

�������
�������
�������
�������

�������
�������
�������
������������

�����
�����

�����
�����
�����

Figure 1.2: Robot trip of 23 seconds

1.1.1 Upper and Lower Bounds

What is the fastest possible robot trip from start to goal position in the warehouse of
Figure 1.1? We don’t know yet. What we know, however, is that the fastest trip will take
at most 23 seconds. This is obvious, because we have already found a trip of that duration,
so the fastest trip cannot take longer. We have found an upper bound for the duration of
the fastest trip, simply by exhibiting a trip.

Of course, this was just some trip and we have no reason to believe that it is the optimal
one. Staring at the warehouse somewhat longer, we indeed find a faster trip, taking only 19
seconds (see Figure 1.3; to find the corresponding command sequence is straightforward).

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

�����
�����
�����
�����

�����
�����
�����
�����

�������
�������
�������

�������
�������
������������

�����
�����

�����
�����
�����

�������
�������
�������

 � � � 
 � � � 
 � � � 

!�!�!�!
!�!�!�!
!�!�!�!

"�"�"
"�"�"
"�"�"

#�#�#
#�#�#
#�#�#

$�$�$
$�$�$
$�$�$

%�%�%�%
%�%�%�%
%�%�%�%
%�%�%�%

&�&�&�&
&�&�&�&
&�&�&�&
&�&�&�&'�'�'

'�'�'
'�'�'

(�(�(
(�(�(
(�(�(

Figure 1.3: Robot trip of 19 seconds

Is this an optimal trip already? At least it seems difficult to improve it on the spot, so
we get stuck with an upper bound of 19 for the moment. Already in the original problem
statement, this trip was given as an example, together with the claim that this is indeed
a fastest possible trip. In other words, the claim is that 19 is also a lower bound for the
duration of the fastest trip – no trip can be faster. Are we going to believe this claim?

6



In trying to prove it, we are in a much more difficult situation than we were with the
upper bound. For the latter, it was sufficient to exhibit some trip of duration 19. Now we
need to argue that there exists no trip of duration smaller than 19. How can you do this,
except by going through all possible trips? The situation is familiar in daily life: assume
you have used somebody else’s key but subsequently lost it in the building; now you are
asked to find it. If you succeed, you simply give it back, but if you fail, you must argue
that you have searched the whole building without any success.

Thus, proving existence (of the key in the building, or a trip that takes 19 seconds) is
easy (once you have it), while proving non-existence (of the key in the building, or a trip
that takes less than 19 seconds) can be quite difficult.

This of course, does not mean that finding the key (or a reasonably fast trip) is easy.
For example, if the trip of Figure 1.3 indeed turns out to be optimal, we were simply lucky
in finding it, but so far we have no systematic way of doing this in all cases.

Finding and proving upper and lower bounds is the key issue in discrete optimization,
and there is a host of techniques to do this. Luckily, we don’t need to go through all
possible solutions in many cases. It turns out that most optimization algorithms find
optimal solutions by going through an iterative process in which better and better upper
and lower bounds are proved ; as soon as the bounds coincide, an optimal solution has been
discovered.

1.1.2 A Concrete Lower Bound

Unless we have an algorithm to solve the warehouse problem, we are forced to find a lower
bound ‘by hand’, if we want to say something about how good our upper bound is. Recall
that we are still not sure how far the 19-seconds-trip is from the truly fastest trip (unless
we believe the unsubstantiated optimality claim by the designers of the problem). If for
example, we could easily show that every trip takes at least 10 seconds, we would know
that the trip we have found is at most twice as long as the optimal one. This might not
sound like a great achievement in this case, but often reasonably good approximations of
the optimal solution are sufficient in practice. However, the point is that we can only be
sure to have such a reasonably good approximation, if we have a lower bound.

Here is such a hand-made lower bound for the warehouse problem.

Theorem 1.1 If the start position has coordinates (i, j), with the robot pointing in direc-
tion South, the fastest trip to the goal position (k, `) with k > i, ` > j, takes at least

6 +

⌈
k − i− 1

3

⌉

+

⌈
`− j − 1

3

⌉

seconds.

Applied to Figure 1.1 with (i, j) = (2, 2) and (k, `) = (7, 7), we get a lower bound of 10
for the duration of the fastest trip. Thus we know that the fastest trip must take between

7



10 and 19 seconds. To verify the lower bound of 19, we will use the techniques of the next
chapter.

Proof. The robot spends at least two seconds to START at (i, j) and to STOP at (k, `).
In addition, it needs to TURN at least once after it has left the start position and before it
reaches the goal position (otherwise, it could only go along a straight line, never reaching
the goal). This requires additional STOP and START commands, because turning requires
a standstill. At least one more TURN is necessary, because the robot cannot reach direction
North without turning at least twice. This already makes for 6 seconds in total. In order
to travel the horizontal distance of k− i, the robot may use a START and STOP command
already counted to go 1m. The remaining (k − i− 1)m cannot be traveled faster than in
d(k − i− 1)/3e seconds, because the robot’s speed per second is limited to 3m. The same
applies to the vertical distance.

In our example, the lower bound seems to be quite weak. However, there are scenarios
in which this bound actually gives the exact duration of the fastest trip. Namely, in case
there are no obstacles blocking the L-shaped path between start and goal position drawn
in Figure 1.4), it is not hard to see that the commands shown to be necessary in the
lower bound proof are also sufficient to carry out the trip. We say that the lower bound is
worst-case optimal, because there are scenarios in which it cannot be improved.

�������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

�����
�����
�����

�����
�����
�����

�������
�������
�������

�������
�������
�������

	�	�	
	�	�	
	�	�	


�
�


�
�


�
�


�������
�������
�������

�����
�����
�����

��
��
��

�����
�����
�����

�������
�������
�������

�������
�������
��������������

�������
�������

�������
�������
�������

Figure 1.4: Robot trip whose duration matches the lower bound

1.1.3 A Mathematical Model

In order to solve a general instance of the warehouse problem (of size 50 × 80), we don’t
want to resort to guessing trips – we need an algorithm. The input to the algorithm must
be a formal description of the warehouse, complete with obstacles, start and goal positions
and the initial orientation of the robot. Moreover, the algorithm needs to know what the
allowed moves of the robot are in any given position.

Such a formal description is also called a mathematical model. A suitable model in
this case is a directed graph: the vertices are the possible states of the robot, given by

8



its coordinates and direction. Note that the information whether the robot is moving or
in standstill can be deduced from its coordinates: we have standstill if and only if both
coordinates are integer. The directed edges leaving a state correspond to the commands
that are allowed in this state. What we need then is to find a shortest directed path in
this graph between the start state s and some goal state t (there are four possible goal
states, differing in the direction the robot has), see Figure 1.5.

s

t

s

t

Figure 1.5: Directed graph and shortest directed path between s and t

Here is a more formal description of the graph G = (V,E). The set of vertices (possible
states of the robot) is given by

V = {(i, j, dir) | 1 ≤ i ≤ 49, 1 ≤ j ≤ 79, dir ∈ {N,S,E,W}}.

Here, the meaningful values of i and j are half-integral, i.e. of the form t/2 for some
integer t. The edges are straightforward to find from the description of the commands. Let
us just consider what happens in case of START and TURN(+). The START command
gives rise to the edges

(i, j, N) → (i, j + 1/2, N), j ∈ {1, . . . , 78},
(i, j, S) → (i, j − 1/2, S), j ∈ {2, . . . , 79},
(i, j, E) → (i + 1/2, j, E), i ∈ {1, . . . , 48},
(i, j,W ) → (i− 1/2, j,W ), i ∈ {2, . . . , 49},

while TURN(+) induces

(i, j, N) → (i, j,W ), j ∈ {1, . . . , 79},
(i, j, S) → (i, j, O), j ∈ {1, . . . , 79},
(i, j, E) → (i, j, N), i ∈ {1, . . . , 49},
(i, j,W ) → (i, j, S), i ∈ {1, . . . , 49}.

9



1.2 The Oracle of Bacon, or How Connected is the

World?

Here, we consider another scenario which gives rise to the problem of finding shortest paths
in a graph.

You may have heard claims of the form “Any two persons in the world are connected via
at most 5 other people”. What this means is that you know someone, who knows someone,
who knows someone, who knows someone, who knows someone, who knows Ms. N. Obody
from Grand Rapids, Michigan. Mathematically, we are talking about the structure of the
graph G whose vertices are all the persons in the world, and there is an undirected edge
between two persons if they know each other. (Of course, what it means to know each
other has to be defined; it could mean, for example, that there has been a handshake, or
eye contact, or some conversation,. . . ) The above claim can then be rephrased as follows:
in G, the shortest path between any two persons has length at most 6.

In practice, the claim cannot be verified, because the graph G is not known. But there is
an interesting subgraph Gmovies of G which is well understood: the vertices are movie actors
and actresses, and there is an edge between two of them if they have appeared in a common
movie. The Oracle of Bacon (http://www.cs.virginia.edu/oracle/) determines the
shortest path in this graph between Kevin Bacon and any given actor or actress. The
length of this path is the so-called Bacon number of the actor or actress. As it turns out,
Bacon numbers greater than 4 are rare, meaning that Gmovies is very well-connected.

It is important to note that a Bacon number output by the oracle is in general only
an upper bound for the real Bacon number, because it is unlikely that the movie database
the oracle is based on is complete. Lower bounds are harder (if not impossible) to prove,
but for a different reason than in the warehouse problem. In the warehouse problem, we
have complete information, and I have already indicated that there are efficient algorithms
to compute true shortest paths (and therefore best possible lower bounds). Therefore, we
have failed to come up with good lower bounds, just because we don’t know the algorithms
yet. The Oracle of Bacon, of course, knows and uses these algorithms, but still it subject
to failure because of incomplete information.

For example, the oracle claims that Liselotte Pulver has Bacon number 2. The ‘proof’
is that she appeared with George Petrie in Swiss Tour (1949), while George Petrie ap-
peared with Kevin Bacon in Planes, Trains and Automobiles (1987). Still, it is conceivable
(although unlikely) that Liselotte Pulver has Bacon number 1, because the database does
not contain that forgotten B-movie from 1960 in which 2-year old Kevin Bacon plays the
bewitched son of Liselotte Pulver.

Still, the fact in common to the warehouse problem and the Bacon oracle is that upper
bounds can simply be proved by example.

10



1.3 The Perfect Team – Planning for SOLA 2001

Suppose you have registered a team of 14 people for the SOLA-Stafette, the biggest annual
running event in the Zurich area. What you still need to do is to assign each member of
your team to one of the 14 courses. As you have plenty of time left, you decide to let
everybody run all courses once, and note the respective runtimes. You end up with a table
like 1.1.

Assuming that the runtimes are reproducible during the day the SOLA-Stafette takes
place, you are looking for an assignment of people to courses that minimizes the total
runtime.

As before, an upper bound is easily obtained from any assignment. For example, if
you assign the members in the order of the table (Clara is running first, followed by Peter,
then Heidi etc.), you get a total runtime of 9 : 57 : 10, slightly below 10 hours. Again, a
lower bound requires some arguing. Here is an argument: no matter how the assignment
looks like, a course cannot be run faster than it would be run by the team member which
is fastest on that particular course. This means, if we sum up the best runtimes for all 14
courses, we get a lower bound for the total runtime.

From the table we see that Heidi is the best runner on course 1, Barbara is the best
on course 2, etc. Summing up all 14 best runtimes gives a lower bound of 8 : 26 : 11. Why
isn’t this exactly the minimal total runtime that your team can achieve? It seems to make
perfect sense to give every course to the team member that runs it fastest. The catch is
that you would have to assign several courses to the same person: for example, Johanna
is fastest on courses 8, 10 and 14, and also Ueli and Brunhilde are the fastest runners on
more than one course. So your simple strategy does not work.

There are several mathematical models that would make sense in this situation, but as
we have talked about graphs before, let us try to model this as a graph problem as well:
the vertices are the team members and courses, and an edge connects any member with
any course. This gives a complete bipartite graph. The additional feature is that each
edge is labeled with a cost value, which is the runtime achieved by the member in running
the course, see Figure 1.6

An assignment is any set of 14 edges which do not share a common endpoint. Such
a set is also called a matching, and because all vertices participate in the matching, it
is called a perfect matching in this case. The best assignment is then the cost-minimal
perfect matching, where the cost of a matching is the sum of its edge costs.

1.4 Outlook

Already in the three problems we have discussed above, we have seen some crucial features
of discrete optimization that we will discover again and again throughout the course.

• Discrete optimization deals with problems in which we have a finite (or at least
countable) set of possible solutions, along with an objective function that assigns

11



1 2 3 4 5 6 7 8 9 10 11 12 13 14

Clara 0:25:42 0:58:53 0:46:27 0:31:31 1:03:53 0:59:18 0:19:33 0:36:27 0:55:07 0:47:16 1:03:12 0:35:06 0:24:04 0:32:04

Peter 0:25:10 1:02:46 0:53:06 0:30:15 1:22:11 0:53:41 0:24:38 0:35:07 0:55:44 0:47:10 1:20:16 0:39:19 0:20:23 0:32:16

Heidi 0:19:20 1:05:01 0:35:00 0:25:45 1:14:44 0:55:26 0:22:35 0:30:24 0:51:28 0:42:43 1:00:27 0:36:37 0:22:34 0:28:09

Ueli 0:20:03 1:07:29 0:38:15 0:26:26 0:59:16 1:06:49 0:18:30 0:38:02 1:06:30 0:44:52 1:02:31 0:39:59 0:28:11 0:29:46

Barbara 0:23:46 0:52:43 0:37:22 0:27:39 1:16:57 0:54:00 0:28:32 0:33:07 1:00:37 0:50:37 1:14:31 0:36:06 0:22:36 0:31:18

Hans 0:19:32 1:05:12 0:32:31 0:24:29 1:11:12 0:53:59 0:25:46 0:32:04 0:59:20 0:41:53 1:18:14 0:35:27 0:32:31 0:28:13

Claudia 0:27:27 1:04:49 0:34:57 0:27:26 1:02:29 1:00:56 0:19:10 0:32:37 0:56:13 0:44:38 1:01:51 0:29:48 0:21:19 0:29:12

Ludovico 0:20:19 1:02:34 0:39:08 0:28:06 1:11:37 1:01:17 0:22:44 0:33:15 1:08:58 0:48:08 1:00:43 0:33:13 0:24:41 0:31:20

Brunhilde 0:27:17 1:04:55 0:36:05 0:26:15 1:15:12 1:05:03 0:24:59 0:32:15 0:46:00 0:52:31 0:52:42 0:38:26 0:24:53 0:28:30

Siegfried 0:23:11 1:06:32 0:32:22 0:30:46 1:14:10 0:53:31 0:27:06 0:32:32 0:58:15 0:49:11 1:15:41 0:33:34 0:27:19 0:32:12

Bernadette 0:21:22 1:11:32 0:50:48 0:34:34 1:14:18 0:57:40 0:21:40 0:32:32 0:58:15 0:49:11 1:15:41 0:33:34 0:27:19 0:32:12

Friedrich 0:26:38 1:02:01 0:40:57 0:31:20 1:07:53 0:52:44 0:30:29 0:32:32 0:58:15 0:49:11 1:15:41 0:33:34 0:27:19 0:32:12

Johanna 0:23:04 1:09:02 0:40:47 0:30:58 1:12:47 0:53:09 0:29:34 0:28:19 0:50:40 0:41:39 1:05:11 0:36:43 0:23:53 0:27:56

Wilhelm 0:24:34 1:03:35 0:36:54 0:33:17 1:15:15 0:53:22 0:22:32 0:32:22 0:54:34 0:41:42 1:25:38 0:39:55 0:29:27 0:35:36

T
ab

le
1.1:

S
O

L
A

ru
n
tim

es
for

all
team

m
em

b
ers

on
all

cou
rses

12



1 : 02 : 46

0 : 58 : 53

Clara

Peter

Wilhelm

1

2

14

· · ·

0 : 25 : 10

0 : 25 : 42

0 : 35 : 36

Figure 1.6: The SOLA graph

some value to every solution. The goal is to find the solution with smallest (or
largest) objective function value.

In the warehouse problem, the possible solutions are all obstacle-avoiding trips of the
robot from the start to the goal position, and the objective function is the duration
of the trip. In case of the Oracle of Bacon, the solutions are all paths between Kevin
bacon and a given actor/actress in the graph Gmovies, and the objective function is
the length of the path.

In the SOLA problem, the solutions are the perfect matchings, and the objective
function is the sum of edge costs in the matching.

• For a theoretical understanding of a discrete optimization problem, but also for an
algorithmic solution, bounds play an important role. For a minimization problem,
upper bounds can easily be proved by exhibiting solutions, while lower bounds require
more work in general. For maximization problems, it’s just the other way around.

In the warehouse problem (a minimization problem), we were able to prove an upper
bound of 19 seconds for the duration of the fastest trip, by simply drawing a trip
with this duration. We were not able to prove that 19 seconds is also a lower bound,
and even the weaker lower bound of 10 seconds required some work. In the other two
problems, upper bounds could be proved by example as well; lower bounds required
more (and in each case different) insights into the problem. A major goal of the
theory of discrete optimization is to develop techniques that are able to find or prove
lower bounds for a large class of problems in the same unified way.

Often, discrete optimization techniques can be interpreted as iterative methods that
go through a sequence of solutions, and at the same time obtain better and better
upper and lower bounds for the optimal solution. Once these bounds coincide, an
optimal solution has been found.

13



• In order to attack any discrete optimization problem, either theoretically or algorith-
mically, an exact mathematical model is needed. Preferably, the problem should be
reduced to a standard problem, for which solution methods are known.

In the warehouse problem and for the Oracle of Bacon, the mathematical model is
that of a directed (respectively undirected) graph, and the problem of finding the
fastest trip (respectively, the shortest sequence of connecting movies) is reduced to
the problem of finding a shortest path between two vertices in a graph. This is indeed
a well-known (and well-solved) problem, as we will see in the next chapter.

The problem of finding the cost-minimal perfect matching in a bipartite graph is a
classic as well, and we will get to it in some later chapter.

14



Chapter 2

Shortest Paths in Graphs

In the introductory chapter, we have discussed the warehouse problem, and we have seen
that it can be formulated as the problem of finding a shortest path from a start vertex to
a set of goal vertices in a directed graph. Here, the length of a path is its number of edges.

This chapter discusses two algorithms, breadth-first-search and Dijkstra’s algorithm, to
find shortest paths in directed and undirected graphs. Dijkstra’s algorithm actually solves
the more

general problem of finding paths of minimum total weight in an edge-weighted graph.

2.1 Breadth-First Search

We are given a graph G = (V,E). The breadth-first search algorithm (BFS) needs one
data structure: a queue Q which maintains at each time a sequence

(v1, . . . , vr)

of vertices. The queue can be initialized by entering a single vertex (we write Q := {s}
for this), and we can test it for emptyness. Moreover, it supports the following three
operations.

head (Q) : returns the first element of Q
enqueue (Q, v) : makes v the new last element of Q
dequeue (Q) : removes the first element from Q

The algorithm BFS computes shortest paths from a source vertex s to all vertices that
are reachable from s by some path. (In the directed case, reachability is defined via directed
paths, of course.) For this, it performs a systematic graph search with the property that
for any k, all vertices of distance k from s are found before any vertex of distance k + 1 is
seen. This explains the term breadth-first search.

Upon termination, the entry d[v] contains the length of a shortest path from s to v,
and for all v 6= s, π[v] contains the predecessor of v on some shortest path from s to v (or
NIL, if no path exists).

The procedure BFS also marks a vertex when it is discovered first.

15



BFS(G, s):
FOR u ∈ V \ {s} DO

d[u] :=∞
π(u) := NIL

END

mark s
d[s] := 0
Q := {s}
WHILE Q 6= ∅ DO

u := head(Q)
FOR all v adjacent to u DO

IF v not marked THEN

mark v
d[v] := d[u] + 1
π(v) := u
enqueue(Q, v)

END

END

dequeue(Q)
END

������������������������������������������������������������������������

������������������������������������������������������������������������

��������������������������������������������������������

��������������������������������������������������������

��������������������������������������������������������

��������������������������������������������������������

��������������������������������������������������������

��������������������������������������������������������

	�	�	�		�	�	�		�	�	�		�	�	�		�	�	�		�	�	�		�	�	�		�	�	�	


�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�


��������������������������������������������������������

��������������������������������������������������������

������������������������

��������������������������������������������������������

��������������������������������������������������������

��������������������������������������������������������

��������������������������������������������������������

��������������������������������������������������������

��������������������������������������������������������

��������������������������������������������������������

��������������������������������������������������������

��������������������������������������������������������

��������������������������������������������������������

��������������������������������������������������������

��������������������������������������������������������

��������������������������������������������������������

��������������������������������������������������������

��������������������������������������������������������

��������������������������������������������������������

��������������������������������������������������������

��������������������������������������������������������

 � � �  � � �  � � �  � � �  � � �  � � �  � � �  � � � 

!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!

"�"�"�""�"�"�""�"�"�""�"�"�""�"�"�""�"�"�""�"�"�""�"�"�"

#�#�#$�$ %�%�%%�%�%%�%�%%�%�%%�%�%%�%�%%�%�%

&�&&�&
&�&&�&
&�&&�&
&�&

d[1]=0

2 3

4

1

Q : 1

1

2 3

4

1

2 3

4

1

2 3

4

1

2 3

4

1

2 3

4

d[3]=1

d[4]=2

d[2]=1

Q : 1,2 Q : 1,2,3      2,3

Q : 2,3      3 Q : 3,4      4 Q : 

Figure 2.1: An easy example of BFS

Before we dive into the correctness proof, let us analyze the runtime of BFS. Every

16



vertex is enqueued at most once (directly after it has been marked), so there are at most
|V | iterations through the WHILE loop. Because the queue operations can be implemented
in constant time per operation (we may maintain Q as a linked list, for example), we get
O(|V |) runtime in total for all operations outside the FOR loop. In th FOR loop, we process
each pair (u, v) with v adjacent to u at most once. This means, we consider at most |E|
such pairs in the directed and 2|E| such pairs in the undirected case. The time spent per
pair is constant, so we get O(|E|) time for all operations in the FOR loop.

Lemma 2.1 BFS takes O(|V |+ |E|) time.

Now we want to prove that d[v] = δ(s, v) upon termination of the algorithm, where
δ(s, v) denotes the length of the shortest path from s to v.

Fact 2.2 For all v, d[v] ≥ δ(s, v).

The procedure BFS computes some path of length d[v] from s to v, in reverse order given
by the vertices

v, π(v), π(π(v)), . . . , s.

This means, d[v] is an upper bound for the length of the shortest possible path. You are of
course right when you suspect that the path the algorithm computes is actually a shortest
path. To prove this, we need to understand how the queue Q can look like at any point
during the algorithm.

Lemma 2.3 Assume that at some point, Q holds vertices v1, . . . , vr in this order. Then
the following holds.

(i) there is a value ` ≥ 0(` ∈) such that d[vi] ∈ {`, ` + 1}, for i = 1, . . . , r.

(ii) d[vi] ≤ d[vi+1], i = 1 . . . , r − 1.

This means, the queue looks like I have drawn it in Figure 2.2.

1 2 i i+1

d  :       l     l           l    l+1           l+1

Q :       v    v          v    v               vr

Figure 2.2: The queue

Proof. By induction over the number of enqueue and dequeue operations. Initially, we
have Q = {s}, and the claims obviously holds. Now assume we are at some later stage
in the algorithm, and Q satisfies the claims (i) and (ii), prior to an enqueue or dequeue
operation. We distinguish the case where Q contains vertices with two distinct d-values
from the case where only one value occurs. The effects of the queue operations in both
cases are summarized in Figure 2.3, and this concludes the proof.

Now we can prove the correctness of BFS.

17



1 2 rQ :       v    v                               v

d  :       l     l                               l

1 2Q :       v    v                              v    vr r+1

d  :       l     l                               l    l+1

1 2 i i+1 rQ :       v    v          v    v               v      v

d  :       l     l           l    l+1          l+1  l+1
r+1

1 2 i i+1

d  :       l     l           l    l+1           l+1

Q :       v    v          v    v               vr

Case 2:

Case 1:

enqueue dequeue

2 rQ :            v                              v 

d  :             l                               l 

enqueue dequeue

2 i i+1 rQ :            v          v    v               v  

d  :             l           l    l+1          l+1

Figure 2.3: The effects of the queue operations

Theorem 2.4 Upon termination of BFS, d[v] = δ(s, v) for all v ∈ V .

Proof. We proceed by induction over δ(s, v). If δ(s, v) = 0, then v = s and d[s] := 0.
Because the d-value of a vertex remains fixed once it is set, we also have d[s] = 0 at the
end.

Now assume δ(s, v) = k < ∞, and suppose the claim of the theorem holds for all
vertices of smaller distance from s. There must be a vertex u such that (u, v) is an edge
and δ(s, u) = k− 1. (Any predecessor of v on a shortest path from s to v would qualify as
the vertex u.) Let u0 be the first such vertex which appears in Q. This must happen for
any u under consideration, because we know by the inductive hypothesis that d[u] = k−1,
so its value has been set at some point, after which u was enqueued.

If v was not marked at the time where u0 became head of Q, we are done, because then
d[v] = d[u0] + 1 = k. But is it possible that v is already marked? If so, v has been marked
in processing some vertex u1 such that (u1, v) is an edge, and u1 was head of Q earlier than
u0. From the lemma above about the structure of the queue it follows that d[u1] ≤ d[u0];
in fact, we must have d[u1] = δ(s, u1) < δ(s, u0) = k − 1, because u0 was chosen to be the
first neighbor of v with distance k − 1 to s that appeared in Q. Then, however, we get
d[v] = d[u1] + 1 < k, a contradiction to the fact that d[v] is an upper bound for δ(s, k).

What if δ(s, v) =∞? Then there is no path from s to v, and the initial value d[v] =∞
never changes.

When we apply the BFS algorithm to find fastest robot tours in warehouse problem of
the introductory chapter, we indeed obtain an efficient algorithm. For the sake of generality,
let us assume the warehouse dimensions are n × k (we actually had n = 50, k = 80).
The resulting graph model has O(nk) vertices. Namely, we have assigned four states
to every possible position of the robot, which is a pair (x, y) of coordinates such that

18



2x ∈ {2, . . . , 2(n − 1)} and 2y ∈ {2, . . . , 2(k − 1)}. Furthermore, there are also O(nk)
edges, because there is only a constant number of legal commands in a given state. This
means, the resulting graph is sparse: asymptotically (in the O-notation), it has no more
edges than vertices.

From our runtime analysis above, we conclude that BFS solves the warehouse problem
in O(nk) time. This is in a certain sense best possible, because the input description
already has size Θ(nk) in the worst case. This means, we may need Θ(nk) time simply
to read the input. As we have shown, we can solve the whole problem with the same
asymptotic time bound.

2.2 Dijkstra’s Algorithm

In general, shortest paths problems are defined over edge-weighted graphs, and we measure
path lengths not in terms of the number of edges, but in terms of the sum of edge weights
along the path (which we also call the weight of the path). In this case, BFS will obviously
not work, see Figure ??. We would have obtained such an edge-weighted graph from the
warehouse problem if the robot commands would have had different execution times.

So let G = (V,E) be a graph and consider a weight function w : E 7→ R
+
0 that assigns

nonnegative weights to the edges. We could also allow negative weights, but then the
simple algorithm we are going to present below does not work.

Just like BFS, the algorithm computes values d[v] and vertices π[v]. Upon termination,
d[v] is the weight of the shortest path from the source vertex s to v, and π(v) is a predecessor
of v on some shortest path. Unlike in BFS, however, these values can change several times
throughout the algorithm for a single vertex v. However, d[v] will always be an upper
bound for the weight of the shortest path.

Again, the algorithm requires an extra data structure, this time a priority queue Q,
which maintains a set of vertices, sorted by their current d-values. It can be initialized by
a set with their d-values (Q := (V, d)), and it can be tested for emptiness. In addition, it
supports the following operations.

extract min (Q) : removes the element with smallest d-value from Q and
returns it

decrease key (Q, v, ρ) : sets the d-value of v to ρ. Precondition: ρ < d[v]

Dijkstra’s algorithm builds up a set S of vertices (initially empty), for which the shortest
paths have already been found. This set grows by one vertex in each iteration.

Dijkstra(G, s)
FOR all u ∈ V \ S DO

d[u] :=∞
π(u) := NIL

END

d[s] := 0
S := 0
Q := V

19



WHILE Q 6= ∅ DO
u :=extract min(Q)
S := S ∪ {u}
FOR all v adjacent to u DO

IF d[v] > d[u] + w(u, v) THEN
d[v] := d[u] + w(u, v)
π[v] := u
decrease key(Q, v, d[v])

END

END

END

As before, let us do some runtime considerations. If we implement the priority queue
simply as an array which we search and rearrange each time we extract the minimum, we
have runtime O(|V |) in each iteration, for all operations outside the FOR loop. This gives
O(|V |2) in total. In the FOR loop, we process each pair (u, v) with v adjacent to u at most
once. As in BFS, we therefore get O(|E|) time for all operations in the FOR loop. For
this, note that the decrease key operation can be done in constant time with our array
representation of Q.

We obtain an overall runtime of O(|V |2 + |E|). Using a more fancy priority queue, this
can be reduced to O(|V | log |V | + |E|), still slower than BFS. This means, if we have an
unweighted graph, BFS is the smarter algorithm, although we could of course use Dijkstra’s
algorithm after introducing artificial edge weights equal to one for all edges.

In particular, if the graph is sparse (like in the warehouse problem), BFS is a real saving;
it runs in O(|V |) times in this case, while Dijkstra’s algorithm needs Θ(|V | log |V |), even
with the best priority queue.

Now we can prove the correctness of Dijkstra’s algorithm.

Theorem 2.5 At the time a vertex u is included in S, d[u] = δ(s, u), where δ(s, u) now
denotes the weight of the shortest path from s to u.

It follows that upon termination, all vertices have the correct d-values, because all vertices
end up in S at some point, and d never changes for vertices in S.
Proof. By contradiction. Assume there exists some u with d[u] 6= δ(s, u) when u is added
to S. Choose u0 as the first vertex of this type to be included in S.

We have two easy facts.

(i) u0 6= s

(ii) there exists a path from s to u0

(i) follows, because by construction, s is the first vertex to appear in S, at which point
d[s] = δ(s, s) = 0. The path claimed in (ii) must exist, because otherwise δ(s, u0) =∞ =
d[u0] at the time u0v is added.

20



Now consider the shortest path from s to u0. Because s ∈ S and u0 6∈ S yet, this path
must have a first vertex y with y 6∈ S. Consider its predecessor x ∈ S. We must have

d[x] = δ(s, x),

because u0 was the first vertex for which we have a contradiction when it gets added to S.
Moreover,

d[y] = δ(s, y).

To see this observe first that some shortest path from s to y goes through x (otherwise the
path to u0 through x could be shortened). This means that

δ(s, y) = δ(s, x) + w(x, y) = d[x] + w(x, y).

Moreover, in the course of adding x to s, d[y] has been updated to d[x] + w(x, y) = δ(s, y)
if it did not already have this value.

This implies that
d[y] = δ(s, y) ≤ δ(s, u0) ≤ d[u0], (2.1)

because we have nonnegative weights, and because d[u0] is always an upper bound for
δ(s, u0) (using the same argument as in case of BFS). On the other hand, we have

d[u0] ≤ d[y], (2.2)

because both y and u0 are currently not in S, but u0 was chosen from Q as the element
with smallest d-value.

(2.1) and (2.2) together imply that

d[u0] = δ(s, u0)

must hold, a contradiction to our assumption.

21



Chapter 3

Linear Programming

3.1 The SOLA problem revisited

After we have seen in the last chapter how to solve the warehouse problem (and how to
implement the Oracle of Bacon, if we have to), there is still one unsolved problem from
the introduction: the SOLA problem.

Recall that in this problem, we have 14 runners and 14 courses, and we know the
runtime of each runner on each course. The goal is to find an assignment of runners to
courses which minimizes the total runtime.

We have modeled this problem as a minimum-weight perfect matching problem on a
weighted complete bipartite graph G = (V,E). In the general version of this problem, we
have 2n vertices V = L∪R, where |L| = |R| = n and n2 edges E = {{v, w} | v ∈ L,w ∈ R}.
In addition, there is a weight function

ω : E 7→ R.

where we abbreviate ω(e) by ωe.
An optimal assignment, or a weight-minimal perfect matching, is a set of n edges M

such that

• no two edges in M have a common vertex, and

• the sum of weights
∑

e∈M ωe is minimized.

3.1.1 Integer linear programming formulation

In order to attack the problem, we reformulate in a seemingly more complicated way. For
each edge e, we introduce a numerical variable xe which can take on values 0 or 1.

Then we can encode the problem using these variables.

• A set of edges F corresponds to a 0/1-vector x̃ of length n2, indexed with the edges,
with the intepretation that

e ∈ F ⇔ x̃e = 1.

22



• F corresponds to an assignment, if the following constraints are satisfied:

∑

e3v

x̃e = 1, ∀v ∈ V.

This means, that for every vertex, exactly one incident edge is chosen.

• The weight of the assignment is given by

∑

e∈E

ωex̃e.

This means, the problem of finding the optimal assignment can be written as a mathemat-
ical program in n2 variables, 2n equality constraints, and n2 integrality constraints:

(ILPMatching(G)) minimize
∑

e∈E ωexe

subject to
∑

e3v xe = 1, ∀v ∈ V,
xe ∈ {0, 1}, ∀e ∈ E.

This mathematical program is actually an integer linear program (ILP). Linear, because
both the objective function

∑

e∈E ωexe as well as the left-hand sides of all constraints are
linear functions in the variables. Integer, because there is an additional requirement that
the variables only take on integer values. Let opt(ILPMatching(G)) denote the minimum
value of the objective function, hence the weight of the best assignment.

3.1.2 LP relaxation

What does this reformulation as in ILP buy us? A lower bound! Recall that for a mini-
mization problem, an upper bound is easily proved by just presenting some solution, while
lower bounds always require some work. For an ILP in minimization form, a lower bound
is obtained from the solution of the so-called LP relaxation, given as

(LPMatching(G)) minimize
∑

e∈E ωexe

subject to
∑

e3v xe = 1, ∀v ∈ V,
0 ≤ xe ≤ 1, ∀e ∈ E.

This is a linear program (LP), because the integrality constraints have been relaxed to
plain linear inequality constraints. Because all the vectors that satisfy the constraints of
the ILP also satisfy the constraints of the LP, we get

opt(LPMatching(G)) ≤ opt(ILPMatching(G)).

The nice thing about an LP is that it is easy to solve, as we will see in the next section.
This is not true for a general ILP – the integrality constraints usually make the problem
difficult. Still, the lower bound given by the LP can easily be computed, and in quite a
number of cases, this lower bound is a good approximation of the true optimal ILP value.

23



3.1.3 ILP versus LP

In the bipartite matching case, the situation is even nicer, and that’s what makes the LP
technique really useful here.

Theorem 3.1
opt(LPMatching(G)) = opt(ILPMatching(G)).

In other words, the LP does not only give us a lower bound, it gives us the optimum
value of the assignment (and the proof below will show that we can also get the optimal
assignment itself).
Proof. We will show that there is an optimal solution x̃ to the LP which has integer
entries. This does it, because this solution must then also be an optimal solution to the
ILP, and both optima coincide. To formulate it differently: the LP can have a better
optimum value than the ILP only if all its optimal solutions x̃ have at least one fractional
entry; and we are going to exclude this situation.

Let x̃ be some optimal solution to the LP with associated objective function value
copt =

∑

e∈E ωex̃e. If all entries of x̃ are integer, we are done. Otherwise, there must be
some x̃e1

strictly between 0 and 1. This entry corresponds to some edge e1 = {v1, v2}.
Because we have the property that

∑

e3v2

x̃e = 1,

there must be another edge e2 = {v2, v3}, v3 6= v1 such that 0 < x̃e2
< 1. Because of the

same reason, we find a third edge e3 = {v3, v4}, v4 6= v2 such that 0 < x̃e3
< 1.

This continues, as we find fractional values of x̃ corresponding to edges on a longer and
longer path v1, v2, v3, v4, . . .. Because there are only finitely many vertices, we must finally
reach a vertex we have already seen before. Without loss of generality, assume that this
vertex is v1. This means, we have found a cycle of edges

e1 = {v1, v2}, e2 = {v2, v3}, . . . , et = {vt, v1},

such that 0 < x̃e < 1 for all e ∈ {e1, . . . , et}, see Figure 3.1.

Figure 3.1: Cycle of edges with noninteger entries in x̃

24



Because we have a bipartite graph, the cycle has even length t. Let us for some small
ε > 0 define

x̃′
e =







x̃e − ε, if e ∈ {e1, e3, . . . , et−1}
x̃e + ε, if e ∈ {e2, e4, . . . , et}
x̃e, otherwise.

For vertices vi in this cycle, we have

∑

e3vi

x̃′
e =

∑

e3vi

x̃e + ε− ε = 1, ∀i ∈ {1, . . . , t}.

For vertices v not in the cycle, x̃′
e = x̃e for all incident edges, so

∑

e3v

x̃′
e = 1

holds for all vertices v ∈ V . Moreover, if ε is small enough, x̃′ still respects the constraints
0 ≤ x̃′

e ≤ 1, because we have only changed values strictly between 0 and 1. This shows
that x̃′ is a solution to the LP (a vector which satisfies all the constraints) again.

Moreover,
∑

e∈E

ωex̃
′
e = copt + ε

t∑

i=1

(−1)tωei
.

Because copt was the smallest obtainable objective function value, we must have ∆ :=
∑t

i=1(−1)tωei
= 0, otherwise we would get a smaller value by chosing ε < 0 if ∆ > 0, or

ε > 0 if ∆ < 0. This means, x̃′ is still an optimal solution to the LP, for all ε that lead to
a solution at all.

If we now choose ε to be the largest value such that x̃′ is still a solution, we get
x̃′

e ∈ {0, 1} for some e ∈ {e1, . . . , et}. This means, x̃′ has less fractional entries than x̃.
Continuing in this way with x̃′, we finally obtain an optimal solution where all fractional
entries have been eliminated. This solution is then also a solution to the ILP.

3.1.4 ILP versus LP in other cases

We note that also the problem of finding shortest paths in weighted graphs can be formu-
lated as an ILP whose LP-relaxation has an optimal solution with integer entries (exercise).
However, this nice behavior is the exception, not the rule. Just to demonstrate that the
ILP and the LP can have radically different optimal solutions, we consider the problem of
finding a largest independent set in an undirected graph G = (V,E). An independent set
is a subset I of V with the property that I contains no edge; in other words, no edge of E
has both endpoints in I.

Introducing 0/1-variables xv for all v ∈ V , every subset W of vertices can be encoded
by a vector x̃, with the interpretation that

v ∈W ⇔ x̃v = 1.

25



The condition that W is an independent set can be enforced by the constraints xv +xw ≤ 1
for all edges {v, w} ∈ E. Thus, the problem of finding a largest independent set can be
formulated as an ILP as follows.

(ILPIndepSet(G)) maximize
∑

v∈V xv

subject to xv + xw ≤ 1, ∀{v, w} ∈ E,
xv ∈ {0, 1}, ∀v ∈ V.

Here is its LP relaxation.

(LPIndepSet(G)) maximize
∑

v∈V xv

subject to xv + xw ≤ 1, ∀{v, w} ∈ E,
0 ≤ xv ≤ 1, ∀v ∈ V.

Let G be the complete graph on n vertices. We have

opt(ILPIndepSet(G)) = 1,

because the complete graph has only independent sets of size at most 1. On the other
hand, we get

opt(LPIndepSet(G)) ≥ n
2
,

because the vector

x̃ =

(
1

2
,
1

2
, . . . ,

1

2

)

is obviously a solution of the LP. We see that the optimal values of LP and ILP are far
apart; moreover, the solution x̃ is always a solution, no matter how G looks like. This
means that the LP captures too little of the structure of G to be of any interest in solving
the independent set problem over G.

3.2 The Simplex Method

Linear Programming (LP) in a quite general form is the problem of maximizing a linear
function in n variables subject to m linear inequalities. If, in addition, we require all
variables to be nonnegative, we have an LP in standard form. which can be written as
follows.

(LP) maximize
∑n

j=1 cjxj

subject to
∑n

j=1 aijxj ≤ bi (i = 1, . . . ,m),

xj ≥ 0 (j = 1, . . . , n),

(3.1)

26



where the cj, bi and aij are real numbers. By defining

x := (x1, . . . , xn)T ,

c := (c1, . . . , cn)T ,

b := (b1, . . . , bm)T ,

A :=






a11 · · · a1n

...
...

am1 · · · amn






this can be written in more compact form as

(LP) maximize cT x
subject to Ax ≤ b,

x ≥ 0,
(3.2)

where the relations ≤ and ≥ hold for vectors of the same length if and only if they hold
componentwise.

The vector c is called the cost vector of the LP, and the linear function z : x 7→ cT x is
called the objective function. The vector b is referred to as the right-hand side of the LP.
The inequalities

∑n

j=1 aijxj ≤ bi, for i = 1, . . . . ,m and xj ≥ 0, for j = 1, . . . , n are the
constraints of the linear program. (Due to their special nature, the constraints xj ≥ 0 are
sometimes called nonnegativity constraints or restrictions).

The LP is called feasible if there exists a nonnegative vector x̃ satisfying Ax̃ ≤ b (such
an x̃ is called a feasible solution); otherwise the program is called infeasible. If there are
feasible solutions with arbitrarily large objective function value, the LP is called unbounded;
otherwise it is bounded. A linear program which is both feasible and bounded has a unique
maximum value cT x̃ attained at a (not necessarily unique) optimal feasible solution x̃.
Solving the LP means finding such an optimal solution x̃ (if it exists).

3.2.1 Tableaus

When confronted with an LP in standard form, the simplex algorithm starts off by in-
troducing slack variables xn+1, . . . , xn+m to transform the inequality system Ax ≤ b into
an equivalent system of equalities and additional nonnegativity constraints on the slack
variables. The slack variable xn+i closes the gap between the left-hand side and right-hand
side of the i-th constraint, i.e.

xn+i := bi −
n∑

j=1

aijxj,

for all i = 1, . . . ,m. The i-th constraint is then equivalent to

xn+i ≥ 0,

27



and the linear program can be written as

(LP) maximize
∑n

j=1 cjxj

subject to xn+i = bi −
∑n

j=1 aijxj (i = 1, . . . ,m),

xj ≥ 0 (j = 1, . . . , n + m),

(3.3)

or in a more compact form as

(LP) maximize cT x
subject to Ax = b,

x ≥ 0,
(3.4)

where A is the m× (n + m)-matrix

A := (A|E), (3.5)

c is the (n + m)-vector

c :=








c
0
...
0








(3.6)

and x is the (n + m)-vector

x =

(
xO

xS

)

,

where xO is the vector of original variables, xS the vector of slack variables.
Together with the objective function, the m equations for the xn+i in (3.3) contain all

the information about the LP. Following tradition, we will represent this information in
tableau form where the objective function – denoted by z – is written last and separated
from the other equations by a solid line. (The restrictions xj ≥ 0 do not show up in the
tableau but represent implicit knowledge.) In this way we obtain the initial tableau for the
LP.

xn+1 = b1 −a11x1 − · · · −a1nxn

...
xn+m = bm −am1x1 − · · · −amnxn

z = c1x1 + · · · +cnxn

(3.7)

The compact form here is
xS = b − AxO

z = cT xO
(3.8)

An example illustrates the process of getting the initial tableau from an LP in standard
form.

28



Example 3.2 Consider the problem

maximize x1 + x2

subject to −x1 + x2 ≤ 1,
x1 ≤ 3,

x2 ≤ 2,
x1, x2 ≥ 0.

(3.9)

After introducing slack variables x3, x4, x5, the LP in equality form is

maximize x1 + x2

subject to x3 = 1 + x1 − x2,
x4 = 3 − x1,
x5 = 2 − x2,

x1, . . . , x5 ≥ 0.

(3.10)

From this we obtain the initial tableau

x3 = 1 + x1 − x2

x4 = 3 − x1

x5 = 2 − x2

z = x1 + x2

(3.11)

Abstracting from the initial tableau (3.7), a general tableau for the LP is any system
T of m + 1 linear equations in the variables x1, . . . , xn+m and z, with the properties that

(i) T expresses m left-hand side variables xB and z in terms of the remaining d right-hand
side variables xN , i.e. there is an m-vector β, a n-vector γ, an m× n-matrix Λ and
a real number z0 such that T (written in compact form) is the system

xB = β − ΛxN

z = z0 + γT xN
(3.12)

(ii) Any solution of (3.12) is a solution of (3.8) and vice versa.

By property (ii), any tableau contains the same information about the LP but rep-
resented in a different way. All that the simplex algorithm is about is constructing a
sequence of tableaus by gradually rewriting them, finally leading to a tableau in which the
information is represented in such a way that the desired optimal solution can be read off
directly. We will immediately show how this works in our example.

3.2.2 Pivoting

Here is the initial tableau (3.11) to Example 3.2 again.

x3 = 1 + x1 − x2

x4 = 3 − x1

x5 = 2 − x2

z = x1 + x2

29



By setting the right-hand side variables x1, x2 to zero, we find that the left-hand side
variables x3, x4, x5 assume nonnegative values x3 = 1, x4 = 3, x5 = 2. This means, the
vector x = (0, 0, 1, 3, 2) is a feasible solution of (3.10) (and the vector x′ = (0, 0) is a
feasible solution of (3.9)). The objective function value z = 0 associated with this feasible
solution is computed from the last row of the tableau. In general, any feasible solution
that can be obtained by setting the right-hand side variables of a tableau to zero is called a
basic feasible solution (BFS). In this case we also refer to the tableau as a feasible tableau.
The left-hand side variables of a feasible tableau are called basic and are said to constitute
a basis, the right-hand side ones are nonbasic. The goal of the simplex algorithm is now
either to construct a new feasible tableau with a corresponding BFS of higher z-value, or
to prove that there exists no feasible solution at all with higher z-value. In the latter case
the BFS obtained from the tableau is reported as an optimal solution to the LP; in the
former case, the process is repeated, starting from the new tableau.

In the above tableau we observe that increasing the value of x1 (i.e. making x1 positive)
will increase the z-value. The same is true for x2, and this is due to the fact that both
variables have positive coefficients in the z-row of the tableau. Let us arbitrarily choose x2.
By how much can we increase x2? If we want to maintain feasibility, we have to be careful
not to let any of the basic variables go below zero. This means, the equations determining
the values of the basic variables may limit x2’s increment. Consider the first equation

x3 = 1 + x1 − x2. (3.13)

Together with the implicit constraint x3 ≥ 0, this equation lets us increase x2 up to the
value x2 = 1 (the other nonbasic variable x1 keeps its zero value). The second equation

x4 = 3− x1

does not limit the increment of x2 at all, and the third equation

x5 = 2− x2

allows for an increase up to the value x2 = 2 before x5 gets negative. The most stringent
restriction therefore is x3 ≥ 0, imposed by (3.13), and we will increase x2 just as much as
we can, so we get x2 = 1 and x3=0. From the remaining tableau equations, the values of
the other variables are obtained as

x4 = 3− x1 = 3,

x5 = 2− x2 = 1.

To establish this as a BFS, we would like to have a tableau with the new zero variable
x3 replacing x2 as a nonbasic variable. This is easy – the equation (3.13) which determined
the new value of x2 relates both variables. This equation can be rewritten as

x2 = 1 + x1 − x3,

30



and substituting the right-hand side for x2 into the remaining equations gives the new
tableau

x2 = 1 + x1 − x3

x4 = 3 − x1

x5 = 1 − x1 + x3

z = 1 + 2x1 − x3

with corresponding BFS x = (0, 1, 0, 3, 1) and objective function value z = 1. This process
of rewriting a tableau into another one is called a pivot step, and it is clear by construction
that both systems have the same set of solutions. The effect of a pivot step is that a
nonbasic variable (in this case x2) enters the basis, while a basic one (in this case x3)
leaves it. Let us call x2 the entering variable and x3 the leaving variable.

In the new tableau, we can still increase x1 and obtain a larger z-value. x3 cannot be
increased since this would lead to smaller z-value. The first equation puts no restriction
on the increment, from the second one we get x1 ≤ 3 and from the third one x1 ≤ 1. So
the third one is the most stringent, will be rewritten and substituted into the remaining
equations as above. This means, x1 enters the basis, x5 leaves it, and the tableau we obtain
is

x2 = 2 − x5

x4 = 2 − x3 + x5

x1 = 1 + x3 − x5

z = 3 + x3 − 2x5

with BFS x = (1, 2, 0, 2, 0) and z = 3. Performing one more pivot step (this time with x3

the entering and x4 the leaving variable), we arrive at the tableau

x2 = 2 − x5

x3 = 2 − x4 + x5

x1 = 3 − x4

z = 5 − x4 − x5

(3.14)

with BFS x = (3, 2, 2, 0, 0) and z = 5. In this tableau, no nonbasic variable can increase
without making the objective function value smaller, so we are stuck. Luckily, this means
that we have already found an optimal solution. Why? Consider any feasible solution
x̃ = (x̃1, . . . , x̃5) for (3.10), with objective function value z0. This is a solution to (3.11)
and therefore a solution to (3.14). Thus,

z0 = 5− x̃4 − x̃5

must hold, and together with the implicit restrictions x4, x5 ≥ 0 this implies z0 ≤ 5.
The tableau even delivers a proof that the BFS we have computed is the unique optimal
solution to the problem: z = 5 implies x4 = x5 = 0, and this determines the values of
the other variables. Ambiguities occur only if some of the nonbasic variables have zero
coefficients in the z-row of the final tableau. Unless a specific optimal solution is required,
the simplex algorithm in this case just reports the optimal BFS it has at hand.

31



3.2.3 Geometric Interpretation

Consider the standard form LP (3.1). For each constraint

n∑

j=1

aijxj ≤ bi or

xj ≥ 0,

the points x̃ ∈ R
n satisfying the constraint form a closed halfspace in R

n. The points for
which equality holds form the boundary of this halfspace, the constraint hyperplane.

The set of feasible solutions of the LP is therefore an intersection of halfspaces, which
is by definition a (possibly empty) polyhedron P . The facets of P are induced by (not
necessarily all) constraint hyperplanes. The nonnegativity constraints xj ≥ 0 restrict P to
lie inside the positive orthant of R

n. The following correspondence between basic feasible
solutions of the LP and vertices of P justifies the geometric interpretation of the simplex
method as an algorithm that traverses a sequence of vertices of P until an optimal vertex
is found.

Fact 3.3 Consider a standard form LP with feasible polyhedron P . The point x̃′ =
(x̃1, . . . , x̃n) is a vertex of P if and only if the vector x̃ = (x̃1, . . . , x̃n+m) with

x̃n+i := bi −
n∑

j=1

aijx̃j, i = 1, . . . ,m

is a basic feasible solution of the LP.

Two consecutive tableaus constructed by the simplex method have n − 1 nonbasic
variables in common. Their BFS thus share n− 1 zero variables. Equivalently, the corre-
sponding vertices lie on n − 1 common constraint hyperplanes, and this means that they
are adjacent in P . The feasible solutions obtained in the process of continuously increasing
the value of a nonbasic variable until it becomes basic correspond to the points on the edge
of P connecting the two vertices.

Here we are content with checking the correlations in case of Example 3.2. The LP
consists of five constraints over two variables, therefore the feasible region is a polygon in
R

2. Every constraint hyperplane defines a facet, so we get a polygon with five edges and
five vertices. In the previous subsection we were going through a sequence of four tableaus
until we discovered an optimal BFS. The picture below shows how this corresponds to a
sequence of adjacent vertices. The optimization direction c is drawn as a fat arrow. Since
the objective function value gets higher in every iteration, the path of vertices is monotone
in direction c (Figure 3.2).

32



BFS vertex z = x1 + x2

(0, 0, 1, 3, 4) (0, 0) 0
(0, 1, 0, 3, 1) (0, 1) 1
(1, 2, 0, 2, 0) (1, 2) 3
(3, 2, 2, 0, 0) (3, 2) 5

PSfrag replacements

x2 ≥ 0

x2 ≤ 2

x1 ≤ 3x1 ≥ 0 −x1 + x2 ≤ 1

(0, 0)

(0, 1)

(1, 2)

(3, 2)

Figure 3.2: Geometric interpretation of the simplex method

3.2.4 Exception Handling

So far our outline of the simplex method went pretty smooth. This is in part due to the
fact that we have only seen one very small and trivial example of the way it works. On the
other hand, the method is simple, and we will just incorporate some ‘exception handling’
and do a little fine tuning, again basically by example.

Unboundedness

During a pivot step, we make the value of a nonbasic variable just large enough to get the
value of a basic variable down to zero. This, however, might never happen. Consider the
example

maximize x1

subject to x1 − x2 ≤ 1,
−x1 + x2 ≤ 2,

x1, x2 ≥ 0.

with initial tableau

x3 = 1 − x1 + x2

x4 = 2 + x1 − x2

z = x1

PSfrag replacements

x1 − x2 ≤ 1
x2 ≥ 0

x1 ≥ 0

−x1 + x2 ≤ 2

After one pivot step with x1 entering the basis we get the tableau

x1 = 1 + x2 − x3

x4 = 3 − x3

z = 1 + x2 − x3

If we now try to bring x2 into the basis by increasing its value, we notice that none of
the tableau equations puts a limit on the increment. We can make x2 and z arbitrarily
large – the problem is unbounded. By letting x2 go to infinity we get a feasible halfline –
starting from the current BFS – as a witness for the unboundedness. In our case this is

33



the set of feasible solutions

{(1, 0, 0, 3) + x2(1, 1, 0, 0) | x2 ≥ 0}.

Such a halfline will typically be the output of the algorithm in the unbounded case. Thus,
unboundedness can quite naturally be handled with the existing machinery. In the geo-
metric interpretation it just means that the feasible polyhedron P is unbounded in the
optimization direction.

Degeneracy

While we can make some nonbasic variable arbitrarily large in the unbounded case, just the
other extreme happens in the degenerate case: some tableau equation limits the increment
to zero so that no progress in z is possible. Consider the LP

PSfrag replacements

x2 ≥ 0

−x1 + x2 ≤ 0
x1 ≤ 1

x1 ≥ 0
maximize x2

subject to −x1 + x2 ≤ 0,
x1 ≤ 2,

x1, x2 ≥ 0,

(3.15)

with initial feasible tableau

x3 = x1 − x2

x4 = 2 − x1

z = x2

The only candidate for entering the basis is x2, but the first tableau equation shows
that its value cannot be increased without making x3 negative. This may happen whenever
in a BFS some basic variables assume zero value, and such a situation is called degenerate.
Unfortunately, the impossibility of making progress in this case does not imply optimality,
so we have to perform a ‘zero progress’ pivot step. In our example, bringing x2 into the
basis results in another degenerate tableau with the same BFS.

x2 = x1 − x3

x4 = 2 − x1

z = x1 − x3

Nevertheless, the situation has improved. The nonbasic variable x1 can be increased
now, and by entering it into the basis (replacing x4) we already obtain the final tableau

x1 = 2 − x4

x2 = 2 − x3 − x4

z = 2 − x3 − x4

with optimal BFS x = (x1, . . . , x4) = (2, 2, 0, 0).
In this example, after one degenerate pivot we were able to make progress again. In

general, there might be longer runs of degenerate pivots. Even worse, it may happen that

34



a tableau repeats itself during a sequence of degenerate pivots, so the algorithm can go
through an infinite sequence of tableaus without ever making progress. This phenomenon
is known as cycling. If the algorithm does not terminate, it must cycle. This follows from
the fact that there are only finitely many different tableaus.

Fact 3.4 The LP (3.1) has at most
(

m+n

m

)
tableaus.

To prove this, we show that any tableau T is already determined by its basis variables.
Write T as

xB = β − ΛxN

z = z0 + γT xN ,

and assume there is another tableau T ′ with the same basic and nonbasic variables, i.e.
T ′ is the system

xB = β′ − Λ′xN

z = z′
0 + γ′T xN ,

By the tableau properties, both systems have the same set of solutions. Therefore

(β − β ′)− (Λ− Λ′)xN = 0 and

(z0 − z′0) + (γT − γ′T )xN = 0

must hold for all n-vectors xN , and this implies β = β ′, Λ = Λ′, γ = γ′ and z0 = z′
0. Hence

T = T ′.
There is a standard way to avoid cycling, by using symbolic perturbation. One perturbs

the right-hand side vector b of the LP by adding powers of a symbolic constant ε (assumed
to be infinitesimally small). The LP then becomes

maximize
∑n

j=1 cjxj

subject to
∑n

j=1 aijxj ≤ bi + εi (i = 1, . . . ,m),

xj ≥ 0 (j = 1, . . . , n),

(3.16)

and if the original LP (3.1) is feasible, so is (3.16). A solution to (3.1) can be obtained from
a solution to (3.16) by ignoring the contribution of ε, i.e. by setting ε to zero. Moreover,
any valid tableau for (3.16) reduces to a valid tableau for (3.1) when the terms involving
powers of ε are disregarded.

In case of (3.15), the initial tableau of the perturbed problem is

x3 = ε + x1 − x2

x4 = 2 + ε2 − x1

z = x2

Pivoting with x2 entering the basis gives the tableau

x2 = ε + x1 − x3

x4 = 2 + ε2 − x1

z = ε + x1 − x3

(3.17)

35



This is no longer a degenerate pivot, since x2 (and z) increased by ε. Finally, bringing
x1 into the basis gives the tableau

x1 = 2 + ε2 − x4

x2 = 2 + ε + ε2 − x3 − x4

z = 2 + ε + ε2 − x3 − x4

(3.18)

with optimal BFS x = (2 + ε2, 2 + ε + ε2, 0, 0). The optimal BFS for (3.15) is recovered
from this by ignoring the additive terms in ε. In general, the following holds, which proves
nondegeneracy of the perturbed problem.

Fact 3.5 In any BFS of (3.16), the values of the basic variables are nonzero polynomials
in ε, of degree at most m. The tableau coefficients at the nonbasic variables are unaffected
by the perturbation.

To find the leaving variable, polynomials in ε have to be compared. This is done lexico-
graphically, i.e.

m∑

k=1

λkε
k <

m∑

k=1

λ′
kε

k

if and only if (λ1, . . . , λm) is lexicographically smaller than (λ′
1, . . . , λ

′
m). The justification

for this is that one could actually assign a very small numerical value to ε (depending
on the input numbers of the LP), such that comparing lexicographically is equivalent to
comparing numerically, for all polynomials that turn up in the algorithm.

In the perturbed problem, progress is made in every pivot step. Cycling cannot occur
and the algorithm terminates after at most

(
m+n

m

)
pivots.In the associated feasible poly-

hedron, degeneracies correspond to ‘overcrowded vertices’, which are vertices where more
than n of the constraint hyperplanes meet. There are several ways to represent the same
vertex as an intersection of exactly n hyperplanes, and a degenerate pivot switches between
two such representations. The perturbation slightly moves the hyperplanes relative to each
other in such a way that any degenerate vertex is split into a collection of nondegenerate
ones very close together.

Infeasibility

To start off, the simplex method needs some feasible tableau. In all examples considered
so far such a tableau was readily available since the initial tableau was feasible. We say
that the problem has a feasible origin. This is equivalently expressed by the fact that the
right-hand side vector b of the LP is nonnegative. If this is not the case, we first solve an
auxiliary problem that either constructs a BFS to the original problem or proves that the
original problem is infeasible. The auxiliary problem has an additional variable x0 and is
defined as

minimize x0

subject to
∑n

j=1 aijxj − x0 ≤ bi (i = 1, . . . ,m),

xj ≥ 0 (j = 0, . . . , n).

36



This problem is feasible (choose x0 big enough), and it is clear that the original problem
is feasible if and only if the optimum value of the auxiliary LP is zero. Let us do an example
and consider the problem

maximize −x2

subject to −x1 − x2 ≤ −2,
x1 − x2 ≤ −1,

x1, x2 ≥ 0.

with initial tableau

x3 = −2 + x1 + x2

x4 = −1 − x1 + x2

z = − x2

PSfrag replacements
x2 ≥ 0

−x1 − x2 ≤ −2x1 ≥ 0

x1 − x2 ≤ −1

This problem has an infeasible origin, because setting the right-hand side variables to
zero gives x3 = −2, x4 = −1. The auxiliary problem (written in maximization form to
avoid confusion and with the objective function called w in the tableau) is

maximize −x0

subject to −x1 − x2 − x0 ≤ −2,
x1 − x2 − x0 ≤ −1,

x0, x1, x2 ≥ 0.

with initial tableau
x3 = −2 + x1 + x2 + x0

x4 = −1 − x1 + x2 + x0

w = − x0

The auxiliary problem has an infeasible initial tableau, too, but we can easily construct
a feasible tableau by performing one pivot step. We start increasing the value of x0, this
time not with the goal of maintaining feasibility but with the goal of reaching feasibility.
To get x3 ≥ 0, x0 has to increase by at least 2, and this also makes x4 positive. By setting
x0 := 2 we get x3 = 0 and x4 = 1. Solving the first tableau equation for x0 and substituting
from this into the remaining equations as usual gives a new feasible tableau with x0 basic
and x3 nonbasic.

x0 = 2 − x1 − x2 + x3

x4 = 1 − 2x1 + x3

w = −2 + x1 + x2 − x3

The simplex method can now be used to solve the auxiliary problem. In our case, by
choosing x2 as the entering variable, we accomplish this in one step. The resulting tableau
is

37



x2 = 2 − x1 + x3 − x0

x4 = 1 − 2x1 + x3

w = − x0

Since all coefficients of nonbasic variables in the w-row are nonpositive, this is an
optimal tableau with BFS x = (x0, . . . , x4) = (0, 0, 2, 0, 1). The associated zero w-value
asserts that the LP we originally wanted to solve is actually feasible, and we can even
construct a feasible tableau for it from the final tableau of the auxiliary problem by ignoring
x0 and expressing the original objective function z in terms of the nonbasic variables; from
the first tableau equation we get in our case z = −x2 = −2 + x1 − x3, and this gives a
valid feasible tableau

x2 = 2 − x1 + x3

x4 = 1 − 2x1 + x3

z = −2 + x1 − x3

with corresponding BFS x = (x1, . . . , x4) = (0, 2, 0, 1) for the original LP. For this to work,
x0 should be nonbasic in the final tableau of the auxiliary problem which is automatically
the case if the problem is nondegenerate. (To guarantee this in the general situation,
choose x0 as the leaving variable whenever this is a possible choice.)

If the optimum value of the auxiliary problem is nonzero, we can conclude that the
original LP is infeasible and simply report this fact.

3.2.5 Tableaus from bases

We have argued earlier that a tableau is uniquely determined by the set of basic variables.
But how do we compute the corresponding tableau? It will have the form

xB = β − ΛxN

z = z0 + γT xN .
(3.19)

Formally, if G is some subset

G = {j1, . . . , jk} ⊆ [n + m]

of variable subscripts, then
xG := (xj1 , . . . xjk

)T (3.20)

is the vector of all the variables with subscripts in G. Any tableau is therefore uniquely
specified by its basic subscript set B. We will make this specification explicit, i.e. we show
how the entries β, γ, Λ and z0 relate to B.

Consider the LP in compact equality form (3.4), which is

(LP) maximize cT x
subject to Ax = b,

x ≥ 0,
(3.21)

38



with A and c defined according to (3.5) resp. (3.6).
Let Aj denote the j-th column of A. For subscript set G = {j1, . . . , jk} let

AG := (Aj1
, . . . , Ajk

) (3.22)

collect the k columns corresponding to the variables with subscripts in G. Then the
equations of (3.21) read as

ABxB + ANxN = b. (3.23)

Since (3.19) has by definition of a tableau the same set of solutions as (3.23), the former
is obtained by simply solving (3.23) for xB, which gives

xB = A−1
B b− A−1

B ANxN , (3.24)

and therefore
β = A−1

B b,
Λ = A−1

B AN .
(3.25)

By similar reasoning we compute γ and z0. For G = {j1, . . . , jk} let

cG := (cj1
, . . . , cjk

)T (3.26)

collect the entries corresponding to variables with subscripts in G. Then the equation for
z in (3.4) reads as

z = cT
BxB + cT

NxN . (3.27)

Again by the tableau property, the last row of (3.19) is equivalent to (3.27), and the
former is obtained by simply substituting from (3.24) into (3.27), which gives

z = cT
BA−1

B b + (cT
N − cT

BA−1
B AN)xN , (3.28)

and therefore
z0 = cT

BA−1
B b,

γT = cT
N − cT

BA−1
B AN .

(3.29)

These formulas show that it is not necessary to rewrite the whole tableau in every
pivot step (this affects Θ(nm) entries). Rather, it is sufficient to maintain and update
the current BFS, the basic subscript set B as well as the inverse of the matrix AB . All
necessary information can be retrived directly from this. Note that before the first iteration,
AB = A−1

B = E. Because this matrix has only m2 entries, this is a saving for large values
of n.

3.2.6 Pivot Rules

A pivot rule is any scheme for choosing the entering variable in case there is more than
one candidate for it (which is the typical situation). The number of pivot steps that are
necessary to solve the LP cruciallty depend on the pivot rule (this can already be verified

39



in our running example; depending on whether we choose x1 or x2 in the first step, we
need 2 or 3 steps). The problem is of course that we don’t know beforehand which choice
will turn out most profitable in the end. Therefore, a pivot rule is always a heuristic.

Here are some classical rules. The term ‘improving variable’ refers to any nonbasic
variable with positive coefficient in the z-row.

Largest coefficient. Enter the improving variable with largest coefficient in the z-
row. This is the rule originally proposed by Dantzig, the inventor of the simplex method.

Largest increase. Enter the improving variable which leads to the largest absolute
improvement in z. This rule is computationally more expensive than the largest coef-

ficient rule but locally maximizes the progress.

Steepest edge. Enter the improving variable which maximizes the z-improvement per
normalized unit increase of the entering variable (this is the increase necessary to translate
the current feasible solution by a vector of unit length). Geometrically, this corresponds
to choosing the steepest upward edge starting at the current vertex of the feasible polyhe-
dron.

Smallest subscript. Enter the improving variable with smallest subscript. This is
Bland’s rule, and it is of theoretical interest because it avoids cycling, as mentioned in
Subsection 3.2.4.

Random edge. Enter an improving variable, chosen uniformly at random from all can-
didates. This rule (and randomized rules in general) are of quite some relevance, when it
comes to the worst-case complexity of the simplex method. We will come back to this in
a later section.

3.3 Duality

Assume the discotheque Kaufleuten in Zürich wants to organize a party, for which it has
2000 units of champagne, 5000 units of beer, and 6000 units of mineral water in stock.

There are two categories of guests, VIPs and fillers, with different drinking demands.
Each VIP drinks 3 units of champagne, 3 units of beer, and 2 unit of mineral water; each
filler consumes one unit of champagne, 4 units of beer, and 5 units of mineral water.

Moreover, the Kaufleuten charges entrance fees of CHF 20 per VIP and CHF 10 per
filler, but the drinks are free.1

Of course, the Kaufleuten wants to maximize its profit; so it asks for the number v of
VIPs and the number f of fillers that must be admitted such that the entrance fees are
maximized under the conditions that the drinks are sufficient.

1Knowing Zürich prices, these entrance fees are slightly unrealistic, but this is a theory lecture anyway.

40



This can be formulated as a linear program in 2 nonnegative variables v and f , and
three inequality constraints, see Figure 3.3.

(LP ) maximize 20v + 10f (entrance fee)
subject to 3v + f ≤ 2000 (enough champagne)

3v + 4f ≤ 5000 (enough beer)
2v + 5f ≤ 6000 (enough mineral water)
v ≥ 0 (nonnegative VIP number)

f ≥ 0 (nonnegative filler number)

Figure 3.3: The Kaufleuten LP

Strictly speaking, we have an ILP here, because both v and f must be integer, but let’s
ignore this issue for now.

There is another way, the Kaufleuten could make its money, namely if it does not charge
entrance fees but sells the drinks instead. Let C,B and M be the prices the Kaufleuten
charges per unit of champagne, beer and mineral water. As long as

3C + 3B + 2M ≥ 20 (3.30)

and
C + 4B + 5C ≥ 10, (3.31)

the profit made from selling drinks to VIPs and fillers compensates the loss in entrance
fees. It follows that under these constraints, the Kaufleuten will not make less money by
selling drinks than it will make by charging entrance fees. In particular, as it cannot sell
more drinks than it has, the value

2000C + 5000B + 6000M

is an upper bound for the profit that is made by selling drinks at prices C,B,M ; this
again is an upper bound for the profit that is made by charging entrance fees, provided
the constraints (3.30) and (3.31) hold. If we want to have a good upper bound for the
profit we can make from charging entrance fees, we should try to make the value 2000C +
5000B + 6000M as small as the constraints (3.30) and (3.31) allow it.

The best upper bound we can obtain with these considerations is therefore given by
the optimal value of the LP in Figure (3.4).

What we have just derived is the statement

opt(LP) ≤ opt(LP∆). (3.32)

(LP∆) is called the dual of (LP). In general, if we have a problem

(LP) maximize cT x
subject to Ax ≤ b,

x ≥ 0

41



(LP∆) minimize 2000C + 5000B + 6000M
subject to 3C + 3B + 2M ≥ 20

C + 4B + 5M ≥ 10
C ≥ 0

B ≥ 0
M ≥ 0

Figure 3.4: The dual of the Kaufleuten LP

in n nonnegative variables and m additional inequality constraints, its dual is the problem

(LP∆) minimize bT y
subject to AT y ≥ c,

y ≥ 0

in m nonnegative variables and n additional inequality constraints. In the Kaufleuten case,
we have

A =





3 1
3 4
2 5



 , b =





2000
5000
6000



 , c =

(
20
10

)

, x =

(
v
f

)

, y =





C
B
M



 .

Let’s prove the statement (3.32) in the general case. The proof also shows that nothing
really magic happens here.

Theorem 3.6 Consider a linear program

(LP) maximize cT x
subject to Ax ≤ b,

x ≥ 0

and its dual
(LP∆) minimize bT y

subject to AT y ≥ c,
y ≥ 0.

For all feasible solutions x̃ of (LP) and all feasible solutions ỹ of (LP∆),

cT x̃ ≤ bT ỹ

holds.

Proof. Let ỹ ≥ 0 and assume x̃ feasible for (LP). Then we have

ỹT Ax̃ ≤ ỹT b,

42



because inequalities are preserved under multiplication with nonnegative numbers. If in
addition ỹT A ≥ cT holds (i.e. ỹ is feasible for (LP∆)), then we get

ỹT b ≥ ỹT Ax̃ ≥ cT x̃,

as claimed.
The amazing fact is that a statement stronger than (3.32) holds, namely that (under

suitable conditions)
opt(LP) = opt(LP∆).

This means, the original (primal) LP has the same optimal value as the dual LP. You
might want to check this in case of the Kaufleuten LP.

Theorem 3.7 Consider a feasible and bounded linear program

(LP) maximize cT x
subject to Ax ≤ b,

x ≥ 0.

Then its dual
(LP∆) minimize bT y

subject to AT y ≥ c,
y ≥ 0

is feasible and bounded, and there are feasible solutions x̃ of (LP) and ỹ of (LP∆) such
that

cT x̃ = bT ỹ

holds. In particular, x̃ is optimal for (LP) and ỹ is optimal for (LP∆).

Proof. If cT x̃ = bT ỹ holds, then x̃ and ỹ must be optimal, because cT x̃ ≤ bT y holds for
all feasible solutions y of (LP∆) and cT x ≤ bT ỹ holds for all feasible solutions x of (LP) by
Theorem 3.6. It remains to prove the existence of suitable x̃ and ỹ.

For this, consider (LP) after introducing slack variables, where it appears in the form

(LP) maximize cT x
subject to Ax = b,

x ≥ 0,

and let x̃ be an optimal BFS computed by the simplex method, B the corresponding set
of basic indices, z0 = cT x̃ the optimal objective function value of (LP). We claim that the
vector ỹ defined by

ỹT := cT
BA−1

B

is feasible for (LP∆) and satisfies bT ỹ = z0 – this proves the Theorem. As we know by
(3.29) that

z0 = cT
BA−1

B b = ỹT b,

43



the last part is easy. For feasibility, we must show that

ỹT A ≥ cT (⇔ ỹT Aj ≥ cj, j ∈ {1, . . . , n}), (3.33)

and that
ỹ ≥ 0 (⇔ ỹTej ≥ 0, j ∈ {1, . . . ,m}). (3.34)

Here, ej is the j-th unit vector. After writing (3.34) in this strange way, it becomes clear
that (3.33) and (3.34) together are equivalent to

ỹT A ≥ cT (⇔ ỹT Aj ≥ cj, j ∈ {1, . . . , n + m}).

Assume B = {j1, . . . , jm}. If j = j` ∈ B, then

ỹT Aj = cT
BA−1

B Aj = cT
Be` = cj`

= cj .

Here we have used A−1
B AB = Em, the unit matrix of dimensions (m×m). If j ∈ N , we get

ỹT Aj = cT
BA−1

B Aj = cj − γj ≥ cj

by (3.29) and because γj ≤ 0 (recall that γj is the coefficient of the variable xj in the z-row
of the final, optimal tableau). This completes the proof of the duality theorem.

44



Chapter 4

Complexity of the Simplex Method

In the exercise we have seen that an LP with n variables and m inequality constraints
might have up to (

n + m

m

)

basic feasible solutions (BFS). Namely, each choice of m variables out of the n+m (original
plus slack) variables might give us a basis. This can indeed happen in the degenerate case,
otherwise this bound is not attainable.

In this chapter we will be concerned with the case m ¿ n; you can actually imagine
m to be a constant, say 5. In this case,

(
n + m

m

)

= Θ(nm),

and there are indeed LPs with this many BFS. (As an exercise, you might try to find an
LP with 2 inequality constraints which has Θ(n2) BFS; if you fail, try to find an LP with
1 inequality constraint that has Θ(n) BFS.)

For m = 5, for example, this means that the simplex method cannot take more than
O(n5) pivot steps to solve the LP. Although this is a polynomial bound, it is far from
satisfactory. Unfortunately, for most pivot rules (schemes to choose the entering variable
in case there are several choices, cf. previous chapter), nothing better can be proved; the
situation is even worse: for some pivot rules, there are linear programs for which this
number of steps is actually needed.

Luckily, there is randomization. In this chapter we will discuss a randomized pivot rule
which solves an LP with constantly many constraints in expected time O(n), which is best
possible. Actually, the runtime is of the form O(f(m) · n), where f is a function which
grows exponentially with m. For any fixed m, however, f(m) is fixed as well, and we get
a linear-time solution.

45



4.1 An expected linear-time algorithm

Consider an LP in standard form; after introducing slack variables, it assumes the form

(LP) maximize cT x
subject to Ax = b,

x ≥ 0,
(4.1)

where we have n + m variables indexed with Q = {1, . . . , n + m} and m equality
constraints. To solve the problem means to find an optimal basis B(Q) ⊆ Q, given some
basis B ⊆ Q. The simplex method does this by going through a sequence of bases, starting
with B, until some basis is found which cannot be improved anymore – this basis will be
output as B(Q). For the complete chpater, we assume that LP is nondegenerate, cf.
previous chapter. Below we will see why this assumption is necessary.

We will do this in a randomized fashion now, using a recursive algorithm. This algo-
rithm will solve subproblems of (4.1). Namely, for R ⊆ Q, consider the restricted problem

(LP(R)) maximize cT
RxR

subject to ARxR = b,
xR ≥ 0,

(4.2)

which arises from (4.1) by removing all variables with indices not in R. We get that
LP=LP(Q); moreover, (4.2) can equivalently be written as

(LP(R)) maximize cT x
subject to Ax = b,

xQ\R = 0,
x ≥ 0.

(4.3)

How can we solve the restricted problem? In the formulation (4.3) it becomes clear
that we can do this with the simplex method again, provided we have a basis B ⊆ R. The
corresponding BFS is feasible for LP(R), because all variables with subscripts not in B
have value zero – in particular the ones that are not in R. Moreover, we can do pivot steps
as we used to do them, as long as we never let any variable with index not in R become
nonzero. But this is easy: we never admit such variables as candidates for the entering
variable. Then, all variables in Q \ R will stay nonbasic throughout and thus will have
value zero. Therefore, any BFS we go through is feasible for LP(R).

Doing this, we will reach at some point a basis B ′ with tableau

xB′ = β′ − Λ′x′
N

z = z′
0 + γ′T x′

N ,
(4.4)

where we get stuck, because we have

γ′
j ≤ 0 ∀j ∈ R \B′.

46



This means, there is no candidate for an entering variable, because we excluded Q \ R
from consideration. Of course, we might have γ ′

j > 0 for some j ∈ Q \ R, but as we are
not allowed to make that variable basic, we cannot proceed.

Luckily, this means that we have solved LP(R) to optimality:

Claim 4.1 B′ = B(R), an optimal basis for LP(R). In other words, z ′
0 is the optimal

objective function value for LP(R).

Proof. Let x̃ = (x̃B′ , x̃N ′) be any feasible solution to LP(R). The associated objective
function value z = cT x̃ satisfies

z = z′
0 + γ′T x̃N ′ (4.5)

by definition of a tableau. Moreover,

γ′
jx̃j =

{
0, if j ∈ Q \R,

≤ 0, if j ∈ R \B (because γ ′
j ≤ 0, x̃j ≥ 0).

(4.6)

(4.5) and (4.6) together imply
z ≤ z′

0,

and it follows that z′
0 is the optimal objective function value. As it is attained by the BFS

corresponding to B ′, the claim follows.
The implication of this is that if we have a basis B ⊆ R, we can solve the restricted

LP(R) just as easily as we would have solved LP = LP(Q). The following algorithm
solves LP(R), by employing a special pivot rule which restricts the problem to a still more
restricted, randomly chosen, subproblem in a first step. solve(R,B) outputs an optimal
basis B(R) of R, given some basis B ⊆ R.

Algorithm 4.2

solve(R,B): (* R ⊆ Q, B ⊆ R some basis *)
IF R = B THEN

RETURN B
ELSE

choose j ∈ R \B at random
B′ := solve(R \ {j}, B)
IF B′ = B(R) THEN ← γ ′

j ≤ 0
RETURN B′

ELSE

B′′ :=pivot(B′, j)
RETURN solve(R,B ′′)

END

END

47



Some comments are in order: if R = B, we need to solve the restricted problem LP(B),
where B is the current basis. But then, no variable is allowed to enter the basis, and we
are done – B is the optimal basis of this subproblem. Otherwise, we mark another variable
(index) j as “forbidden” and recursively solve the subproblem LP(R \ {j}). This gives us
B′ = B(R\{j}), an optimal basis for LP(R\{j}). If B ′ turns out to be optimal for LP(R)
as well, we are done and can return B ′. How can we test this? We need to check whether
the previously forbidden variable j can still lead to an improvement, i.e. whether it is a
candidate for the entering variable now. In any case, it is the only candidate, because
γ′

k ≤ 0 for all k ∈ R \ (B ∪ {j}) with the notation of (4.4). So, the test ‘B ′ = B(R)?’
amounts to the test ‘γ ′

j ≤ 0?’
In case of γ′

j > 0, we can still improve our solution, and we do so by entering j into the
basis. This is indicated by the statement ‘B ′′ :=pivot(B′, j)’, which returns the new and
improved basis. With this basis, we simply continue.

From this description, it should be clear, that solve is a plain simplex algorithm, with
a special rule to choose the candidate for the entering variable that is considered next in
any given situation.

It is also clear that solve terminates, because in the first recursive call, the problem
gets smaller, and in the second one, we have an improved basis. Note, however, that this
requires nondegeneracy, otherwise we cannot argue that we make progress in the objective
function during the pivot step.

For the analysis of the algorithm solve we need some definitions.

Definition 4.3

(i) z(B) is the objective function value associated with the basis B. opt(R) := z(B(R))
is the optimal objective function value of LP(R).

(ii) j ∈ R is enforced in (R,B) if z(B) > opt(R \ {j}).

(iii) dim(R,B) := m− |{j ∈ R | j is enforced in (R,B)}| is called the hidden dimension
of (R,B).

(iv) tk(r) is the maximal expected number of optimality tests ‘B ′ = B(∗)’ that occur in
solve(R,B) (and all its recursive calls), over all sets R and bases B ⊆ R such that
|R| = r and dim(R,B) ≤ k.

What does it mean that an element is enforced? Assume R is a set of people, and the
B’s are possible parties of m people. As you want to find the party which provides the
most fun, you rank all B’s by some fun value z(B). Assume j = Franz. Then the condition

z(B) > opt(R \ {j})

means that B is a party which guarantees more fun than the best party to which Franz is
not invited. This can only mean that Franz ∈ B. But more is true: as you find still better
and better parties, Franz must always be on the guest list; in particular, Franz must be

48



invited to the optimal party. Franz is enforced in (R,B), because you must invite Franz
to every party which is at least as good as B.

Then, dim(R,B) is simply the number of free slots you still have on your guest list:
m − dim(R,B) guests are already enforced, i.e. they must be invited. From this it is
intuitive that the problem is easier to solve if dim(R,B) is small, and that’s the reason
why we want to analyze a call to solve(R,B) in terms of its size r and its hidden dimension
k, by finding good bounds for tk(r).

Lemma 4.4

tk(m) = 0,

t0(r) ≤ t0(r − 1) + 1,

tk(r) ≤ tk(r − 1) + 1 +
k

r −m
tk−1(r), r > m, k > 0.

Proof. If |R| = m, we have R = B, so no optimality tests occur at all. If dim(R,B) = 0,
you already have found the optimal basis, because all elements in it are enforced. This
means, there can never be another pivot step, equivalently, there cannot be a second
recursive call in solve. This means, there are just the tests in the first recursive call
(where we have hidden dimension 0 again), plus the one test we do to find out that B is
indeed optimal. This explains the second inequality of the lemma.

At this point it should be pointed out why the parameter k is called hidden dimen-
sion: namely, the algorithm does not know it. In particular, it does not know that the
first recursive call and also the subsequent optimality test are not necessary in case of
dim(R,B) = 0.

If r > m and k > 0, the first recursive call solves a problem of size r − 1 and hidden
dimension at most k again. This follows from the fact that if i ∈ R \ {j} is enforced in
(R,B), it is also enforced in (R \ {j}, B), because

z(B) > opt(R \ {i}) ≥ opt(R \ {i, j}).

Put another way, if B is better than the best party without i = Susan, then B is of course
better than the best party without Susan and j = Franz. When we come back from the
first recursive call, we perform one optimality test.

In case we actually get into the second recursive call, we know that j is enforced now,
because

z(B′′) > z(B′) = opt(R \ {j}).

This is obvious: we have just computed (recursively) the best party B ′ without j = Franz,
and B′′ is better. On the other hand, all elements enforced in (R,B) are still enforced in
(R,B′′), because z(B′′) > z(B) – enforeced elements can never leave the basis again. This
means, the second recursive call has size r again, but hidden dimension at most k − 1.

Moreover, the second recursive call happens only with probability at most k/(r −m),
and that’s the punchline of the whole randomized approach here. Why? Let B(R) be the

49



optimal basis (which the algorithm doesn’t know, of course). If the index j chosen in the
first recursive call is not in B(R), then B(R) = B(R \ {j}), because then B(R) ⊆ R \ {j}
implies

z(B(R)) = opt(R) ≥ opt(R \ {j}) ≥ z(B(R)) ⇒ z(B(R)) = opt(R \ {j}).

This means, the second recursive call can only happen if j ∈ B(R). Because j was chosen
randomly from r −m elements, this probability is at most m/(r −m). But more is true:
as we only have at most k free slots left in B(R) (m − k elements of B(R) are already
enforced, i.e. they are in B and do not qualify as the index j), the probabilty is actually
at most k/(r −m), and this explains the third inequality of the lemma.

In this lemma, we have silently used some easy probability theory. The quantity tk(r)
is actually the expectation of a random variable. In expressing it as a combination of
other expectations, we have used the linearity of expectation. Moreover, the value tk−1(r)
is actually a bound for the expected performance of the second recursive call, conditioned
on the event that a j causing such a call was chosen. Thus, it is a conditional expectation,
and to get the true expectation, we have multiplied it with the probabilty that this event
occurs.

Theorem 4.5

tk(r) ≤
k∑

i=0

1

i!
k!(r −m) ≤ ek!(r −m),

where e is Euler’s constant e = 2.71828 . . ..

Thus, solve only needs an expected linear number of optimality tests to solve an LP
with a constant number m of constraints.
Proof. By induction, where the bound obviously holds for r = m (where we get 0) and
k = 0 (where we get r −m). For r > m, k > 0 we inductively get

tk(r) ≤ tk(r − 1) + 1 +
k

r −m
tk−1(r)

≤
k∑

i=0

1

i!
k!(r − 1−m) + 1 +

k

r −m

k−1∑

i=0

1

i!
(k − 1)!(r −m)

=
k∑

i=0

1

i!
k!(r − 1−m) + 1 +

k−1∑

i=0

1

i!
k!

=
k∑

i=0

1

i!
k!(r − 1−m) +

k∑

i=0

1

i!
k!

=
k∑

i=0

1

i!
k!(r −m).

50



This bound can still be improved, by the following idea: so far we have used only that
j is enforced in the second recursive call, but on average, much more new elements get
enforced. To see this, consider the (at most k, as we know) elements j1, . . . , jk whose choice
as j would lead to a second recursive call. Assume we have ordered them such that

opt(R \ {j1}) ≤ opt(R \ {j2}) ≤ · · · ≤ opt(R \ {jk}).

If j = j` is chosen, we get that not only j`, but also j1, . . . , j`−1 are enforced in (R,B ′′),
because

z(B′′) > z(B′) = opt(R \ {j`}) ≥ opt(R \ {jt}),

for all t = 1, . . . , `. In this case, dim(R,B ′′) ≤ dim(R,B) − ` ≤ k − `. This means, the
third inequality in Lemma 4.4 can be replaced by the inequality

tk(r) ≤ tk(r − 1) + 1 +
1

r −m

k∑

`=1

tk−`)(r),

and one can prove (again by an easy induction) that this leads to an improved bound of

tk(r) ≤ 2k(r −m).

Summarizing this section, we get the following

Theorem 4.6 Any linear program LP = LP(Q) with n+m variables and constantly many
inequalities can be solved in expected time O(n), by a call to the algorithm solve(Q,B).

Proof. Convince yourself that the overall number of steps done by the algorithm is
proportional to the number of optimality tests. This holds for constant m, because then
also a pivot step can be implemented in constant time (O(m3), actually, or even O(m2)
if one does it slighly more cleverly and just updates the basis inverse A−1

B upon a pivot
step). Then the runtime is bounded by O(tm(n + m)) = O(n).

This result is remarkable, because only in the eighties, an O(n) algorithm for LP was
first discovered. This was a determinstic (and actually quite complicated) algorithm whose
runtime is of the order

22m

n,

which is really slow, even for small m. Only using randomization, it was possible to find
an easier and also faster algorithm.

As m grows, even the algorithm we have developed here becomes slow, as we have an
exponential factor of 2m in the runtime. This is a general problem: no simplex variant
is known whose runtime is polynomial in both parameters n and m. To find such an
algorithm is a major open problem in the theory of linear programming.

51



4.2 LP-type problems

Reconsidering Algorithm 4.2, we find that not much of the linear programming structure
was used. The party example we have been pulling out of the hat didn’t have much to
do with LP, and yet we were able to explain some principles with it. What we actually
used was that we have a ground set Q, subsets R of which have optimal values opt(R).
We also have bases B, which were small subsets, and we have bases of sets R, which were
small subsets B of R such that opt(B) = opt(R). Then we have an optimality test which
certifies whether a basis is the basis of some set, and a pivot step to find an improved
basis, in case the basis was not optimal yet. In fact, there are problems more general than
LP, for which all these notions make sense, and for which the algorithm solve will work.

Definition 4.7 Let Q be a finite set, w : 2Q 7→ R ∪ {−∞} a function that assigns values
to subsets of Q. The pair (Q,w) is called an LP-type problem if the following axioms are
satisfied.

(i) Monotonicity: w(R) ≤ w(S) for all R ⊆ S ⊆ Q

(ii) Locality: if we have B ⊆ R \ {j} ⊆ Q such that w(B) = w(R \ {j}) 6= −∞, and
w(R) > w(R \ {j}), then also w(B ∪ {j}) > w(B).

If we have an LP over variables with indices in Q, and we set w(R) = opt(R) for all R
such that |R| ≥ m and LP(R) has a solution (w(R) = −∞ otherwise), we get an LP-type
problem. The monotonicity property is quite obvious: LP(S) has less restrictions than
LP(R), so its maximum objective function value can only be higher.

Locality is more subtle. As its name indicates, this property guarantees that we can
check optimality locally. To understand what this means, look at the algorithm solve

again. When we come back from the first recursive call, we have opt(B ′) = opt(R \ {j}),
and we want to know whether opt(R) > opt(R \ {j}). Locality tells us that this can only
be the case if also opt(B ′ ∪ {j}) > opt(B ′). In fact, this is exactly what we exploited in
the algorithm: If B ′ is not optimal for R, we find a new and improved basis B ′′ ⊆ B′∪{j},
so B′ was not even optimal for B ′ ∪ {j}. Equivalently, opt(B ′ ∪ {j}) > opt(B).

This means, we check whether B ′ is optimal for R by checking whether it is optimal
for B′ ∪ {j}. It might be obvious to you that this is the same thing – after all, that’s how
the simplex algorithm is designed. However, if the LP is degenerate, locality might fail!
Namely, if entering j into the basis after the first recursive call does not lead to progress in
the objective function, we get opt(B ′′) = opt(B′ ∪ {j}) = opt(B ′), even though we might
have opt(R) > opt(R \ {j}). In order to make progress again, we need to consider more
elements than just the ones in B ′ ∪ {j}.

Therefore, only a nondegnerate LP gives rise to an LP-type problem. What are other
LP-type problems? I promised that it does not stop with LP. Here are a few examples.

Smallest enclosing ball. Given n points in R
d, find the ball of smallest volume covering

all the points.

52



δ ≤ d + 1

Smallest enclosing ellipsoid. Given n points in R
d, find the ellipsoid of smallest volume

covering all the points.

δ ≤ d(d + 3)/2

Smallest enclosing annulus Given n points in the plane, find the annulus of smallest
area covering all the points.

δ = 4

Largest disk in kernel. Given a starshaped polygon with n edges, find the largest disk
in the kernel of the polygon.

δ = 3

53



Distance of polytopes. Given two polytopes defined by overall n halfspaces (or n
points), find the shortest distance between them.

δ ≤ d + 2

Angle-optimal placement. Given a starshaped polygon with n edges, find the point p
in its kernel such that the smallest angle in the graph consisting of the polygon edges and
the connections between p and the vertices is maximized.

p

α

α

δ = 3
To explain what the δ-value in these figures mean, here is some more notation, moti-

vated by the LP case.

Definition 4.8 Let (Q,w) be an LP-type problem.

(i) B ⊆ Q is a basis if w(B) > w(B \ {j}) for all j ∈ B. Thus, a basis is an inclusion-
minimal set which defines some value.

(ii) B ⊆ R is basis of R if B is a basis and w(B) = w(R).

(iii) δ := maxB Basis |B| is called the combinatorial dimension of (Q,w).

The combinatorial dimension of an LP with m constraints is therefore m, because all
bases have size m. In other LP-type problems, bases can have different sizes. If you look
at the smallest enclosing ball problem, a basis of a set is (in case of general position of
the points) exactly the set of points on the boundary of the smallest enclosing ball. In
the picture above, this number is three, but it can as well be two, if the two boundary

54



points form the diameter of the smallest enclosing ball. In arbitrary dimension d, the
combinatorial dimension is at most d + 1, because this many points determine a unique
ball.

For the other LP-type problems I have listed, we also have bounds for δ which are
related to the dimension of the space the problem ‘lives’ in. The crucial insight here is
that usually, this dimension is constant. After all, we are dealing with geometric problems
here which mostly live in 2 or 3 dimensions. However, if the combinatorial dimension
is constant, we may use the algorithm solve for our LP-type problem, and we will get
expected O(n) runtime.

This presumes that we know how to perform the optimality test and the pivot step,
which are the only problem-specific primitives that remain. For most problems mentioned
above, this is not difficult, and even if it is, we can still afford a brute-force solution. The
primitive operations only involve constant-size problems, so they can be implemented in
constant time.

Luckily, there are usually even efficient solutions. Let me discuss just one example.
How do we perform the optimality test in case of smallest enclosing balls? The situation is
that we have recursively found the smallest enclosing ball of the set R \ {j}, and we want
to know whether the ball will get larger when we add j. It is intuitively clear (but must
be proved, of course), that this is the case if and only if point j lies outside the smallest
enclosing ball determined by R \{j}. This test is very simple to execute in all dimensions.

Summarizing the discussion here, we obtain the following

Theorem 4.9 An LP-type problem of constant combinatorial dimension δ over an n-
element set Q can be solved in expected time O(n) using the algorithm solve. In particular,
we obtain O(n) algorithms for all the problems mentioned above.

A little care is in order: while the fact that bases may have different sizes does not
affect the correctness of the algorithm solve it affects the runtime (Why? Exercise!). We
still get a linear bound, though, only the dependence of the bound on the combinatorial
dimension δ changes. If δ is constant, this makes no difference.

Theorem 4.9 is even more remarkable than the corresponding Theorem 4.6 for LP.
Namely, for many LP-type problems (including smallest enclosing ellipsoids, for example),
the algorithm solve was the first algorithm to achieve linear runtime. Given the fact
that this algorithm uses hardly any problem-specific structure, this becomes even more
amazing. The crucial insight here is that randomization really helps.

55



Chapter 5

The Primal-Dual Method

When we started out with Linear Programming, this was motivated by the SOLA problem;
in fact, we had observed (or, rather, proved) that the problem of finding a weight-minimal
perfect matching in a weighted complete bipartite graph over 2n vertices can be formulated
as a linear program in n2 variables (one for each edge) and 2n equality constraints (one
for each vertex). Solving this problem using the simplex method will give us a solution,
but the runtime is not satisfactory, at least from a theoretical point of view. The results
of the previous chapter don’t help much, because the number m of equality constraints is
not constant. Using the procedure solve, we could compute an optimal asignment with
an expected exponential number of roughly

22nn2

steps. This is not what we were looking for.
This chapter introduces a method, the primal-dual method, which is capable of solving

the assignment problem (and many other problems which can be formulated as LP) effi-
ciently. Just like simplex, the primal-dual method is a general method for solving LP, but
certain substeps may become much easier when the LP has some structure we understand
well.

Assume we have a minimization LP in equality form, with n variables and m equality
constraints, given as

(LP) minimize cT x
subject to Ax = b,

x ≥ 0.
(5.1)

The primal-dual method can actually be described for LP in any form, but this form is
practical, because it is the one assumed by the assignment problem. Its dual is given by

(LP∆) maximize bT y
subject to AT y ≤ c.

(5.2)

This is not the standard form duality we have derived earlier, but it can easily be proved
from it (as we have done in an exercise already).

56



The primal-dual method is based on the complementary slackness theorem, which we
have also addressed in an exercise already, for the case of standard form LP. Let us redo
it here for our formulations of (LP) and (LP∆).

Theorem 5.1 Let x̃, ỹ be feasible solutions to (LP) and (LP∆). x̃ and ỹ are optimal
solutions to (LP) and (LP∆), respectively, if and only if the following complementary
slackness condition holds:

x̃j = 0 or (AT ỹ)j = cj, ∀j = 1, . . . , n.

This means, if the j-th variable in the primal problem “has slack” (meaning that x̃j > 0),
then the j-th inequality in the dual must not have slack ((AT ỹ)j > cj), and vice versa.
This explains the name of the Theorem.
Proof. If x̃ and ỹ are feasible, it follows that

cT x̃ ≥ ỹT Ax̃ = ỹT b. (5.3)

Moreover, the inequality holds componentwise, i.e.

cjx̃j ≥ ỹT Ajx̃j = (AT ỹ)jx̃j. (5.4)

Now it is easy to see that we have equality in (5.4) for all j (equivalently, equality in (5.3))
if and only if the complementary slackness condition holds. But cT x̃ = ỹT b is equivalent
to simultaneous optimality of x̃ and ỹ. It is necessary, because the optimal solutions of
primal and dual must be equal, but it is also sufficient: cT x ≥ ỹT b and cT x̃ ≥ yT b holds
for all feasible solutions x and y to the primal and dual, respectively, so x̃ and ỹ are best
possible solutions in both cases.

5.1 Description of the Method

Assume we have some feasible solution ỹ(0) to (LP∆). Then define

J := {j | (AT ỹ(0))j = cj}.

J contains the inidices of the dual inequalities which have no slack at ỹ. By the comple-
mentary slackness theorem, if we find a feasible solution x̃ to the primal such that x̃j = 0
for all j 6∈ J , then both x̃ and ỹ are optimal for their respective problems. Such an x̃ exists
if and only if the system

AJxJ = b,
xJ ≥ 0

(5.5)

has a solution, where AJ contains the columns of A (and xJ the entries of x) corresponding
to the variables xj, j ∈ J . To test this, we solve the restricted primal

(RP) minimize
∑m

i=1 λi

subject to AJxJ + Eλ = b,
xJ ≥ 0,
λ ≥ 0.

(5.6)

57



Here, λ = (λ1, . . . , λm)T is an auxiliary vector of m variables, one of which appears in
every equality constraint (E is the (m × m) unit matrix). Assuming that b ≥ 0 (which
we can achieve by multiplying equalities in (LP) by −1 if necessary), we see that (RP) is
feasible. Moreover, it has optimal solution 0 if and only if the system (5.5) has a feasible
solution.

This means, if we solve (RP) and find that its optimal value is 0, our original problems
(LP) and (LP∆) are solved. If opt(RP ) > 0, we have failed. Then, however, we can
improve our original dual solution ỹ(0) and repeat. To see this, consider the dual of (RP),

(RP∆) maximize bT y
subject to (AT y)j ≤ 0, j ∈ J

yi ≤ 1, i = 1, . . . ,m
(5.7)

We have
opt(RP ) > 0⇔ opt(RP ∆) > 0.

Let ỹ be an optimal solution to (RP∆) such that bT ỹ > 0, and let us define an updated
dual solution ỹ(1) by

ỹ(1) = ỹ(0) + Θỹ, Θ > 0.

We get
bT ỹ(1) = bT ỹ(0) + ΘbT ỹ > bT ỹ(0),

so ỹ(1) has indeed a better objective function value in (LP∆) than ỹ(0). It remains to show
that ỹ(1) is feasible for (LP∆), and this holds at least for small values of Θ. Namely,

(AT ỹ(1))j = (AT ỹ(0))j + Θ(AT ỹ)j

{
= cj + Θ(AT ỹ)j ≤ cj, j ∈ J, by (RP∆),

≤ cj j 6∈ J, Θ small enough.
(5.8)

The second inequality holds for Θ small enough because (AT ỹ(0))j < cj for j /∈ J .
The value Θ is chosen as large as possible subject to the requirement that ỹ(1) is feasible
for (LP∆). It may happen that there is no upper bound for Θ, in which case (LP) must
be infeasible: if there is no upper bound for the objective function value in (LP∆), (LP)
can have no feasible solution x̃, because then cT x̃ would be an upper bound for the dual
objective function value.

If there is a bound for Θ, we get at least one index j = jnew /∈ J such that AT ỹ
(1)
j = cj,

so we have a new dual inequality without slack. We repeat the above steps (which we call
an iteration of the method), this time starting with

J := {j | (AT ỹ(1))j = cj}.

Theorem 5.2 The primal-dual method terminates in a finite number of iterations, if some
care is taken.

“Some care” means that we cannot just take any optimal solution ỹ of (RP∆) to perform
the update, in case this optimal solution is not unique. The fact that the dual objective

58



funtion value strictly increases in every iteration does not mean that we are done after
finitely many iterations. For example, if (LP∆) is unbounded, it is conceivable that we are
able to increase the value infinitely often. But even if (LP∆) is bounded, it may happen
that the dual solution converges to a value strictly smaller than the true optimal value.
Although such pathological examples require irrational coordinates, we cannot ignore them
in theoretical considerations. After these words of warning, the reader may appreciate the
care we are going to take to make Theorem 5.2 true.
Proof. We will argue that we can always choose an optimal solution ỹ to (RP∆) in such
a way that no set J appears twice during the algorithm. Because there are only finitely
many sets J , this proves the Theorem.

For this, consider the unique lexicographically largest optimal solution ỹ to (5.7).1

Because all variables yi are bounded by 1, ỹ exists. Equivalently, ỹ is the unique optimal
solution to the perturbed problem where we replace b with

b̂ = b + (ε, ε2, . . . , εm)T ,

ε standing for an arbitrarily small positive constant. Recall that in the description of the
simplex method, we have used the same manouvre to get rid of degeneracies in the primal
problem (RP).

Now define
B := {j | (AT ỹ)j = 0}.

Then ỹ is also the lexicographically largest optimal solution to the problem

(RP∆(B)) maximize bT y
subject to (AT y)j ≤ 0, j ∈ B

yi ≤ 1, i = 1, . . . ,m,
(5.9)

because inequalities with slack at the optimal solution can be removed without affecting
the optimum. (Equivalently, if x̃j = 0 at an optimal solution in (RP), the variable can be
removed from the problem without affecting the optimum.)

Now consider the next set J ′ we get after the dual solution update ỹ(0) → ỹ(1). We
have J ′ ⊃ B, as we easily deduce from (5.8). This implies bT ỹ′ ≤ bT ỹ, for ỹ′ the optimal
solution of (RP∆) in the next iteration, because we will have at least the constraints of
(5.9). But J ′ also contains the new index jnew /∈ J . By construction of jnew, we have

(AT ỹ)jnew
> 0,

which means that ỹ is not feasible for (RP∆) in the next iteration. This again implies
b̂T ỹ′ < b̂T ỹ, because either bT ỹ′ < bT ỹ already holds, or ỹ′ is lexicographically smaller than
ỹ.

The conclusion is that b̂T ỹ strictly decreases in every iteration, which means that no
set J can appear twice.

A couple of questions remain:

1ỹ is lexicographically larger than ỹ′ if the first index i where they differ satisfies ỹi > ỹ′

i
.

59



1. How do we solve (RP), or (RP∆)? It seems that we have reduced (LP) to another
linear program, so where is the gain? The gain is that (RP) is substantially simpler:
it usually has less variables, and it does no longer depend on the original objective
function vector c. In the applications, (RP) typically has a nice interpretation as a
problem we already know how to solve without using LP techniques.

2. How many iterations does the method take? We have only shown that these are
finitely many. Again, in the concrete applications we ususally get a quite good
bound on the number of iterations. The next section will show the method in action
and answer these questions at least for the (by now notorious) SOLA problem.

Also, there is another important observation: In certain types of problems, in order to
update the dual solution, we may not necessarily need an optimal solution to (RP∆) – a
suitable solution with objective function value larger than 0 will do. Such a solution might
be much easier to find than the actual optimal one.

5.2 The SOLA problem revisited again

Let us apply the primal-dual method to the assignment problem now and see what happens.
We have the following primal and dual linear programs, given the complete bipartite graph
G = (V,E).

(LP) minimize
∑

e∈E ωexe

subject to
∑

e3v xe = 1, ∀v ∈ V,
xe ≥ 0, ∀e ∈ E.

The constraints xe ≤ 1 we originally had are redundant because of
∑

e3v xe = 1. Recall
that ωe is the weight of the edge e, and that an optimal (0/1)-solution to the problem is
a weight-minimal perfect matching (assignment).

(LP∆) maximize
∑

v∈V yv

subject to yv + yw ≤ ωe, ∀{v, w} = e ∈ E.

For a feasible solution ỹ to (LP∆), we define

J := {{v, w} ∈ E | ỹv + ỹw = ωe},

labeling the inequalities directly with their defining edges. We then get

(RP) minimize
∑

v∈V λv

subject to
∑

J3e3v xe + λv = 1, ∀v ∈ V,
xe ≥ 0, ∀e ∈ J.

and the dual problem

(RP∆) maximize
∑

v∈V yv

subject to yv + yw ≤ 0, ∀{v, w} ∈ J,
yv ≤ 1, ∀v ∈ V.

60



Now we already see an important feature of the primal-dual method: when we apply
it to a concrete problem, we often have a nice interpretation of (RP) or (RP∆). This is
also the case here.

Lemma 5.3

(i) Both (RP) and (RP∆) have integer optimal solutions.

(ii) opt(RP ) = opt(RP ∆) is the number of free (unmatched) nodes in a matching of
largest cardinality in (V, J).

This means, the primal-dual method in this case reduces a weighted matching problem to
a series of unweighted ones.
Proof. The fact that we have optimal integer solutions can again be proved ‘manually’,
as we first did it for (LP) back in Chapter 3. However, this time we simply invoke the fact
that the constraint matrices of both problems are TUM (totally unimodular), see exercises
and solutions to them. This guarantees the integer solutions. As the matrices are in both
cases vertex-edge incidence matrices of a bipartite graph (with some extra columns or rows
which contain only one entry), the TUM property is particularly easy to check.

An optimal solution (x̃, λ̃) to (RP) is then obviously a 0/1-vector. The edges M with
x̃e = 1 define a matching, because every vertex is incident to at most one of them by the
constraint ∑

J3e3v

x̃e ≤
∑

J3e3v

x̃e + λ̃v = 1.

Moreover, exactly the vertices with λ̃v = 1 are free; there is no matching with less free
vertices, because

∑

v∈V

λ̃v

is minimal under the given restrictions. Therefore, M is a largest matching, and the
objective function value is the number of free vertices with respect to M .

We see that if M is a perfect matching, our problem is solved. In this case, M is a
weight-minimal perfect matching. Otherwise, we have to update our dual solution.

In the proof of Theorem 5.2, we have seen that it matters which optimal solution ỹ to
(RP∆) we will use in the update. We will use a special one which we can directly read off,
once we know the largest matching M . For this, we need some more terminology.

Definition 5.4 Let M ⊆ J ⊆ E be a matching.

(i) A path P ⊆ J is called alternating with respect to M , if it alternates between edges
in M and in J \M (or vice versa), and if one of its endpoints is a free vertex.

(ii) An alternating path P is called augmenting if both its endpoints are free vertices.

Then we have the following

61



Lemma 5.5 Let M be a largest matching with edges in J and v a matched vertex. Either
all alternating paths starting at v have even length, or all these paths have odd length.

Proof. Assume that for some vertex, we have paths P1 of even and P2 of odd length. P1

starts with a matching edge, while P2 does not. Moreover, the paths share no vertex w
other than v, because such a common w would have two edges of M incident to it, unless
it is the last (free) vertex on one of the paths. Then, w must also be the last vertex on the
other path, because it has no edge of M incident to it. Then, however, P1 and P2 would
have the same length modulo two, because we have a bipartite graph.

Now, combining P1 and P2 gives an augmenting path P . This path has one more
edge in J \ M than in M , and by “inverting” the path (interchanging matching- and
non-matching-edges), we obtain a larger matching than M , a contradiction.

Now we can define our special optimal solution ỹ to (RP∆).

Lemma 5.6 Let M be a largest matching with edges in J and define `(v) as the length
of a shortest (or of some) alternating path starting at v (`(v) := ∞ in case no such path
exists). Then the vector ỹ defined by

ỹv =

{
0, if `(v) =∞
(−1)`(v), otherwise

(5.10)

is an optimal solution to (RP∆).

Remark: Here `(v) = 0 is also allowed. Therefore a free vertex v always has ỹv = 1.
Because even if it is isolated in J , it has an alternating path of length 0 to itself.
Proof. From Lemma 5.5, we know that ỹ is well-defined. To prove that ỹ is feasible,
consider an edge e = {v, w} ∈ J . If ỹv, ỹw ≤ 0, the inequality for e is satisfied, so assume
without loss of generality that ỹv = 1. This means, from v, there is an alternating path P
of even length, starting with a matching edge (or v is a free vertex).

Case (a) e ∈ M . Then P \ {e} is an alternating path of odd length, starting at w, so
we get ỹw = −1, and the inequality for e holds.

Case (b) e 6∈ M . Then P ∪ {e} is an alternating path of odd length, starting at w, so
again we get ỹw = −1.

Optimality of ỹ is easy now: for every free vertex v, we get ỹv = 1. For every matching-
edge {v, w}, we either have no alternating paths from both vertices, or alternating paths
of even length from one of them and odd length from the other. In any case, we get
ỹv + ỹw = 0. Let F be the set of free vertices. Because every vertex is either free or
matched exactly once, we obtain

∑

v∈V

ỹv =
∑

v∈F

ỹv +
∑

{v,w}∈M

(ỹv + ỹw) =
∑

v∈F

ỹv = |F | = opt(RP ) = opt(RP ∆).

62



Now consider the update ỹ(0) → ỹ(1), and let e = {v, w} 6∈ J be some edge such that

ỹ(1)
v + ỹ(1)

w = we = (ỹ(0)
v + ỹ(0)

w )
︸ ︷︷ ︸

<we

+Θ (ỹv + ỹw)
︸ ︷︷ ︸

≥1

.

There are two cases:

Case (a) ỹv = 1, ỹw = 1. Then, alternating paths P1 and P2 of even length start at
both v and w. As above, these paths can be combined to an augmenting path P using the
new edge {v, w}. Moreover, all edges e = {t, u} 6= {v, w} on P satisfy ỹt + ỹu = 0 (the
signs alternate along P1 and P2), which means that P ⊆ J ′, J ′ the edge set of the next
iteration. This follows from (5.8). Also, M , the currently largest matching is contained in
J ′, because we have derived ỹv + ỹw = 0 for all matching-edges. In other words, the next
set J ′ contains M and an augmenting path P for M , so the largest matching M ′ in the
next iteration will have one more edge. This means, the optimal objective function values
of (RP) and (RP∆) will decrease by two in the next iteration.

Case (b) ỹv = 1, ỹw = 0 (or vice versa). In this case, the new edge joins some vertex
with a vertex that was not connected to any free vertex along an alternating path. In
particular, the new edge cannot be part of any augmenting path. This, however, means
that the largest matching will not change in the next iteration (exercise). This is the
case that we have found to be potentially dangerous in the previous section. Namely,
if opt(RP∆) does not decrease throughout the iterations, the whole method might not
terminate. In this case, however, there is no danger of cycling, because the number of
zeroes in the solution vector ỹ will strictly go down (by two at least), so that we must be
in case (a) after at most n iterations.

It may happen that more than one new edge will appear in J ′. Then we can process
them one at a time in any order.

It follows that the method will take at most n2 iterations: the matching can get
larger only n times, and between two such augmentation steps, we can have up to n
non-augmenting iterations. To analyze the cost of a single iteration, let us summarize the
steps we have to do. We may assume that all weights ωe are positive and that our initial
dual solution is ỹ(0) = 0 which entails J = ∅,M = ∅ and ỹv = 1, v ∈ V , for the solution
ỹ to (RP∆) in the first iteration. Then we have to perform the following computations in
each step.

(i) Compute Θ, update the dual variables, and compute the set J ′ of edges for the next
iteration. If J ′ contains an augmenting path for M , augment M along this path.

(ii) Compute the solution to (RP∆) according to (5.10).

Figure 5.1 shows how the primal-dual method works for a small example. To the left, we
see the input graph. The left column of the table shows the varying optimal solutions to

63



(RP∆) throughout the iterationss, also indicating the edges of the current set J (edges in
the matching M appear in bold).

1

4 5

6

9

7 8

32

-0.5

-1

-1-1

0

0

0 0

0

0

3

7

9

13

14

Θ=0.5

Θ=1

Θ=0.5

Θ=2

Θ=0.5
+1

+4

+2

+4

+3

4.54.5

2.5 2.5

0.5

44

22

10

2

2 2

2

10

1.51.5

1.5 1.5

0.50.5

11

11

0

11

0

0

0

1

0.5

0.5

0.5 0.5

0.5

0.51

1

1 1

1

1

1 1

11

1

0

LP

0

0

0

1

0

0

RP ∆ ∆

00

1

1

Figure 5.1: The primal-dual method for the assignment problem

On the right, we always see the updated dual solution, along with the next set of
edges J ′ (new edges dashed), and its objective function value (strictly increasing in every
iteration). The value Θ used for the update, along with the resulting increase in the dual
objective function value is indicated for all iterations. The top entry in the right column
shows the initial dual solution ỹ(0), while the bottom entry in the left column corresponds
to the final instance of (RP∆) with objective function value 0 (all vertices are matched).

Step (i) above can be obviosuly performed in O(n2) time, by going through all edges
(for finding Θ and J ′) and all vertices (for updating the dual solution). Augmenting the
matching M , if possible, can also be done within these time bounds, because we can easily
find the augmenting path, by tracing it to both its ends from v and w, the two vertices
such that x̃v = x̃w = 1.

64



To implement step (ii), we must compute ỹ according to (5.10), given the (possibly
updated) matching M . This means, for every vertex we need the shortest (or any, in
fact) alternating path starting at that vertex. This can be found by a graph search in an
auxiliary graph. To find the shortest alternarting paths to free vertices on the left, we
introduce a new vertex s, which is connected by directed edges to all free vertices on the
left. Every edge in J ′ also receives a direction: it points to the right for non-matching
edges, and to the left for matching edges. Then all directed paths in this directed graph
that start at s correspond to alternating paths with respect to M . Using breadth-first
search (BFS), we can find the shortest alternating paths (and in particular their lengths)
to all vertices in O(n2) time. Repeating the same procedure with an additional vertex t
connected to all free vertices on the right, we find the overall shortest augmenting paths
for all vertices. This gives us the desired solution ỹ in time O(n2).

This means, we have at most n2 iterations, each of which can be performed in O(n2)
time, so that we get

Theorem 5.7 The primal-dual method can be used to solve the assignment problem over
a complete weighted bipartite graph with 2n vertices in time O(n4).

An improvement to O(n3) is possible, by observing that a non-augmenting iteration
can actually be implemented in O(n) time, using some data structures to find Θ faster,
and showing that the next ỹ can be obtained in amortized time O(n), because coordinates
of value zero that have been processed in a non-augmenting step disappear afterwards.
The resulting method is known as the Hungarian Method for the assignment problem.

65



Chapter 6

Complexity

Throughout this lecture, we have been talking about “efficient” algorithms, and about
“inefficient” ones, where we have never formally defined what we mean by this. For
example, the first algorithm we had for the SOLA (assignment) problem was just the
simplex algorithm applied to the LP formulation of the problem, which has n2 variables
and 2n constraints. Unfortunately, the complexity result we have proved for simplex is
only good if there are few constraints; in this case, we get a runtime of at least

22nn2

steps, which is not efficient. On the other hand, the primal-dual method of the previous
chapter allows us to solve the problem in time

O(n4),

which might not be utterly efficient, either, but much better than the exponential bound.
In this chapter, we want to give a definition of efficiency; we will call an algorithm

efficient, if its runtime is bounded by a polynomial function in the input size. Whether
this agrees with the concept of practical efficiency that you may have in mind, is another
issue we are not going to discuss here. Under this definition, the primal-dual method for
solving the assignment problem is efficient, and we would also call an O(n1000) algorithm
efficient. Luckily, typical efficient algorithms we encounter in practice have small exponents
in their runtime bound (see for example breadth-first search or Dijkstra’s algorithm, and
even the improvement to O(n3) that is possible in case of the assignment problem).

We also want to consider the question which problems allow efficient algorithms and
which don’t.

6.1 The classes P and NP

Every optimization problem has an associated decision problem. For example, the problem
of finding a largest independent set in a graph has the following decision variant.

66



(IS) Given a graph G = (V,E) and a number k, does G have an independent
set of size k?

The significance of decision problems lies in the fact that they can be written as formal lan-
guages ; this allows us to consider a decision problem as a rigorously defined mathematical
object.

For us, a formal language will be a set of finite bitstrings. Let {0, 1}∗ denote the set of
all bitstrings of finite length. Then any L ⊆ {0, 1}∗ is a language. To define the language
associated with (IS), we agree on some encoding of graph-number pairs (G, k) in form of
bitstrings. Then LIS is the set of syntactically correct encodings of pairs (G, k) with the
property that G has an independent set of size k. In view of this, we can also refer to
languages as decision problems.

An algorithm A for a decision problem L is then a Turing machine (or a C++ program,
Oberon program, assembler code, . . . ) with the following input/output behavior:

A :
Input: w ∈ {0, 1}∗

Output “yes”, if w ∈ L, “no” otherwise.

Definition 6.1 P is the class of all languages L for which a Turing machine A and a
constant c exist such that the runtime of A is of the order O(|w|c) for all w ∈ {0, 1}∗.
Here, |w| is the length of w, and an O(|w|c) Turing machine is said to run in polynomial
time.

If you don’t know what a Turing machine is, you may replace the term with C++ program,
Oberon program, assembler code, or any other concrete code, and you will get the same
class P. This is because a Turing machine can simulate any program of any programming
language, and to simulate a single step of the program, the Turing machine only needs
polynomial time. In the following, we will simply refer to Turing machines as algorithms.

For us, P is the class of efficiently solvable decision problems. Is (IS) in P? Until today,
nobody knows the answer, but there is a strong suspicion that this is not the case.

At least, (IS) is in a larger class of problems which are the ones that have efficient
verifiers.

Definition 6.2 A verifier for a language L is an algorithm

V
Input: w ∈ {0, 1}∗ and b ∈ {0, 1}∗ (a “proof” for w ∈ L)
Output: V (w, b) ∈ {“yes”, “no”},

with the following two properties:

(a) for all w ∈ L, there exists a proof b such that V (w, b) =“yes”,

(b) for all w /∈ L, V (w, b) =“no”, for all b.

67



A verifier can therefore certify w ∈ L, provided an appropriate proof b is available, but
no proof can fool V into accepting a word w /∈ L.

This leads us to the class NP.

Definition 6.3 NP is the class of all languages L for which a verifier V and a constant
c exist such that V (w, b) is computed in time O(|w|c), for all w, b ∈ {0, 1}∗.

In particular, such a verifier can only look at polynomially many bits of the proof b.

Theorem 6.4 (IS)∈ NP.

Proof. We need to establish a polynomial-time verifier. On input w, b, the verifier first
checks whether w is a syntactically correct encoding of a graph-number pair (G, k), and
whether b is a syntactically correct encoding of a vertex set U of size k. Finally, it checks
whether U is an independent set and delivers the answer. If w ∈ LIS, such an independent
set U exists, and its encoding is a proof b which leads to a “yes” answer. If w /∈ L, b can
never be the encoding of an independent set of size k, and the answer will always be “no”.

The largest open question in theoretical computer science is whether P = NP. We
obviously have P ⊆ NP, because a polynomial-time algorithm to solve a problem can be
considered as a polynomial-time verifier which simply ignores b.

6.2 Polynomial-time reductions

Here we want to develop statements of the form: problem X is at least as hard as problem
Y . The tool is the following

Definition 6.5 Let L1, L2 ⊆ {0, 1}
∗ be languages and R an algorithm which for every in-

put bitstring w produces an output bitstring R(w). R is called a polynomial-time reduction
from L1 to L2 if the following two properties hold.

(a) w ∈ L1 ⇔ R(w) ∈ L2, and

(b) R runs in polynomial time.

If a polynomial-time reduction from L1 to L2 exists, we write L1 ≤P L2.

The significance of this definition is expressed by the following

Lemma 6.6 If L2 ∈ P and L1 ≤P L2, then L1 ∈ P.

Proof. Given some w for which we want to decide membership in L1, we compute R(w)
in polynomial-time, and then decide membership of R(w) in L2, which we can also do in
polynomial-time since L2 ∈ P. By property (a) above, we then have the desired answer for
w. Since the composition of polynomial-time algorithms is a polynomial-time algorithm,
it follows that L1 ∈ P.

As an example for polynomial-time reducibility, we show that (3-SAT)≤P (IS), where
(3-SAT) is the following problem.

68



(3-SAT) Given a boolean formula φ in conjunctive normal form, where every
clause has exactly three literals coming from distinct variables, decide whether
φ has a satsifying truth assignment.

Such a formula could look like this:

φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x4 ∨ x2) ∧ (x1 ∨ x4 ∨ x2).

In this case, a satisfying truth assignment can be obtained for example by setting x1 =
x2 = true and the other two variables in an arbitrary way.

Lemma 6.7 (3-SAT)≤P (IS).

Proof. We need to construct a polynomial-time reduction from (3-SAT) to (IS). This
means, given a formula φ, we need to construct a graph-number pair (G, k) such that φ
has a satisfying truth assignment if and only if G has an independent set of size k.

G consists of triples of vertices, one triple for each clause of φ. The vertices within
one triple are pairwise connected and labeled by the literals in the corresponding clause.
Between vertices in different triples, we have an edge if and only if the vertex labels are
opposite literals coming from the same variable. Figure 6.1 shows how G looks like for our
example formula φ.

x x

x

x x

x

x x

x

1 2

3

1 4

2

1 4

2

Figure 6.1: Reduction from (3-SAT) to (IS)

Finally, the number k will be the number of clauses of φ; in our example we get k = 3.
Now assume φ is satisfiable. Then there is one literal in every clause which is set to

true in some satisfying assignment. The corresponding vertices in G (one from each triple)
form an independent set of size k: no edge can connect two of them, because we cannot
have both xi and xi equal to true for some i. On the other hand, if G has an independent
set U of size k, this set must have exactly one vertex from every triple: there are only k
triples, and no two vertices can be in the same triple, because then there would be an edge
between them. Each vertex in U has an associated literal in φ, and when we set all of

69



them to true, we obtain a satisfying assignment. Namely, the assignment is well-defined,
because we will never try to set both xi and xi to true, and it will have one satisfied literal
in every clause.

The consequence of this reduction is that if we could prove (IS)∈ P, we would auto-
matically get (3-SAT)∈ P . For both problems, no polynomial-time algorithms have ever
been found.

6.3 NP-completeness and NP-hardness

The most difficult problems in NP are those to which all other problems in NP are
polynomial-time reducible.

Definition 6.8 A language L ∈ NP is called NP-complete if L′ ≤P L for all languages
L′ ∈ NP.

Assuming that there exists some NP-complete problems L at all (which is not obvious),
it has the property that if somebody finds a polynomial-time algorithm for L (i.e. proves
L ∈ P), then we get P = NP, i.e. all problems in NP are solvable in polynomial-time
then. This follows directly from Lemma 6.6. In this sense, the NP-complete problems are
indeed the most difficult ones in NP.

It has been shown by Cook and Levin in the seventies that there are NP-complete
problems.

Theorem 6.9 (3-SAT) is NP-complete.

The proof is not too difficult (once you have the idea), but quite technical. It employs
an alternative (actually, the original) definition of NP as the class of problems that can be
solved in polynomial time using a nondeterministic turing machine. Then it proves that
any such machine can be “implemented” as a boolean formula.

To show that other languages are NP-complete is now much easier. In fact, we have
already proved the following

Corollary 6.10 (IS) is NP-complete.

Namely, we know that (IS) ∈ NP. Moreover, every language L ∈ NP satisfies L ≤P (IS),
because L ≤P (3 − SAT ) by Cook and Levin’s Theorem, and (3 − SAT ) ≤P (IS) by
Lemma 6.7. Moreover, the polynomial-time reducibility relation is transitive (as before:
composition of polynomial-time algorithms is polynomial-time), so we get L ≤P (IS) for
all L ∈ NP, as desired.

This means, to prove that a problem is NP-complete, you have to show that it is in
NP, and that there is some NP-complete problem which is polynomial-time reducible to
it.

70



This has in fact been done for a host of problems (a few thousands, if you want a
non-educated guess). For none of these problems, a polynomial-time algorithm could be
found. The general belief is that no such algorithms exist and that P 6= NP.

So far, we have been talking about decision problems, but this course deals with op-
timization problems. How can we classify these with respect to P and NP? There is a
couple definitions, differing in details. For our purposes, the following will do:

Definition 6.11 An optimization problem is NP-hard if all problems in NP are polynomial-
time reducible to the corresponding decision problem, and this decision problem is called
NP-hard, too.

Note that this does not require the corresponding decision problem to be NP-complete.
There are some subtleties here which we might address later in the course. In any case,
by this definition, the problem of finding the largest independent set in a graph is NP-
hard, because its corresponding decision problem (IS) is NP-complete; in particular, the
required polynomial-time reductions from all problems in NP exist.

6.4 Integer Linear Programming is NP-hard

Much of discrete optimization (in particular later parts of this course) are concerned with
integer linear programs (ILP). ILP is NP-hard, so we cannot expect to find a polynomial-
time algorithm that can solve any ILP instance.

Theorem 6.12 (ILP) is NP-hard.

Proof. We need to find a polynomial-time reduction from some NP-complete problem
to the decision variant of (ILP). But we have already done this in Section 3.1.4.

Namely, any instance (G, k) of (IS) can be mapped to an (ILP) instance (I, k) such
that G has an independent set of size k if and only if the ILP I has a feasible solution of
value k. For G = (V,E), we have used the following ILP:

(ILPIndepSet(G)) maximize
∑

v∈V xv

subject to xv + xw ≤ 1, ∀{v, w} ∈ E,
xv ∈ {0, 1}, ∀v ∈ V.

6.5 How to deal with NP-hard problems

The fact that an optimization problem is NP-hard is no reason to give up, and in practice,
one simply cannot afford to give up. The world of today demands solutions to many
challenging NP-hard problems. They arise in the design of flight schedules, in microchip
layouts, factory design, route planning, etc. So what can we do? There are basically two
lines of attack:

71



(1) Approximation algorithms. These are efficient algorithms that do not necessarily
find the optimal solution for all problem instances, but in any case a solution that
has some provable quality. Below we will see such an algorithm for a special class of
ILPs. This means, in order to gain efficiency, one is willing to sacrifice optimality.
Often, the quality gurantees achieved by approximation algorithms are not good
enough for practical applications.

(2) Heuristics. These are algorithms that try to find a (near) optimal solution, knowing
that this might take long (or even too long). The art here is to carefully analyse
the problem and the concrete instances at hand, and to find ways to exploit their
structure in such a way that the solution is obtained fast. After all, the fact that a
problem is NP-hard does not mean that every instance of it is hard. Heuristics try
to make the class of instances that can be handled efficiently in practice as large as
possible. Heuristics don’t come with an a priori quality guarantee, but they typically
deliver upper and lower bounds for the optimal solution that are very close together
or even equal. We will discuss heuristics later in the course.

6.6 Approximation algorithms

Let us consider the hitting set (HS) problem: we are given a ground set H and a set T
of subsets T1, . . . , Tm ⊆ H. The elements of H have positive weights wa, a ∈ H. We are
looking for a subset A ⊆ H such that

- A ∩ Ti 6= ∅, i = 1, . . . ,m, and

-
∑

a∈A wa is minimal

Such a set A is a weight-minimal hitting set, because it “hits” all subsets Ti.
This problem is a generalization of many known problems. Let us just give two exam-

ples:

1. Vertex cover. Given a graph G = (V,E), find a smallest subset C ⊆ V such that each
edge e ∈ E has one of its vertices in C. To formulate this a a hitting set instance,
we set H := V , T := E and all weights equal to one.

2. Minimum spanning tree. Given a connected graph G = (V,E) with positive edge
weights we, e ∈ E, find a spanning tree with minimal sum of edge weights. In hitting
set language, we are looking for a weight-minimal subset of H := E which hits all
cuts in the graph. A cut is defined by a subset S ⊆ V of vertices, and consists of
all the edges that connect elements of S with elements of V \ S. If a set of edges
hits all cuts, it defines a connected, spanning subgraph. Minimizing the sum of edge
weights ensures that we actually get a tree – the minnimum spanning tree.

72



Here is an ILP formulation of (HS). We have xa = 1 if a appears in the hitting set,
xa = 0 otherwise.

(ILPHS) minimize
∑

a∈H waxa

subject to
∑

a∈Ti
xa ≥ 1 i = 1, . . . ,m,

xa ∈ {0, 1}, ∀a ∈ H.

It can be shown that (HS) is NP-hard. We can even sketch the proof here. Let (VC)
be the vertex cover problem (decisision version) as defined above. Obviously, we have
(VC)≤P (HS), because (VC) is a special case of (HS). Moreover, (IS)≤P (VC), because in
any graph, the complement of an independent set is a vertex cover, and vice versa. Because
(IS) is NP-complete, it follows that (HS) is NP-hard.

We will develop an approximation algorithm for (HS) now. It will run in polynomial
time, but will not necessarily deliver a weight-optimal hitting set. The algorithm is a
variant of the primal-dual method that we already know. The primal-dual method is quite
useful in approximation algorithms in general, and this is the reason why we discuss this
application here. Specifically for the vertex cover problem, there are simpler approximation
algorithms with the same provable quality.

Let us consider the LP-relaxation of the ILP above.

(LPHS) minimize
∑

a∈H waxa

subject to
∑

a∈Ti
xa ≥ 1 i = 1, . . . ,m,

xa ≥ 0, ∀a ∈ H.

The constraints xa ≤ 1 are redundant: if we want to minimize
∑

a∈H waxa, it makes
no sense to have xa > 1 for some element. Now consider the dual of this LP.

(LP∆
HS) maximize

∑m

i=1 yi

subject to
∑

i:Ti3a yi ≤ wa a ∈ H,
yi ≥ 0, i = 1, . . . ,m.

Assume ỹ is a feasible solution for this dual. Primal-dual-like, we then consider the set
of constraints which are satisfied with equality at ỹ. These are constraints corresponding
to elements a ∈ J with

J := {a ∈ H |
∑

i:Ti3a

ỹi = wa}

and constraints corresponding to indices

I := {i ∈ {1, . . . ,m} | ỹi = 0}.

In the “classical” primal-dual method, we would now search for a feasible solution x̃ to the
primal problem such that

x̃a = 0, a /∈ J, (primal slackness conditions)
∑

a∈Ti

x̃a = 1, i /∈ I, (dual slackness conditions)

73



If such a vector x̃ exists, x̃ and ỹ are both optimal in their respective problems, by comple-
mentary slackness. Unlike in our previous description of the primal-dual method, primal
and dual LP are in standard form here, so we need to apply the complementary slackness
theorem for standard-form LP (see exercise 5-2).

The problem is that we are not looking for a solution x̃ to (LPHS) but to (ILPHS). In
an attempt to satisfy at least the primal slackness conditions, we define a 0/1-vector x̃ by

x̃a :=

{
0, if a /∈ J
1, if a ∈ J.

Lemma 6.13 If x̃ is not feasible for (ILPHS), then no feasible solution x̃′ to (LPHS)
satisfies the primal slackness conditions.

The test whether x̃ is feasible for (ILPHS) plays the role of the restricted primal here. If
x̃ is not feasible, we know that the restricted primal has nonzero optimum (by the Lemma),
and therefore we can improve the dual solution ỹ. On the other hand, if x̃ is feasible, we
have no information about the solution of the restricted primal. However, it turns out
that we can still stop in this case (like we would have done it in case the restricted primal
solves to 0), and x̃ will be an approximation of the true optimal solution to (ILPHS). But
let us prove the lemma first.
Proof. If x̃ is not feasible for (ILPHS), there exists a set Tk which is not hit, i.e.

∑

a∈Tk

x̃a = 0.

We must have Tk ∩ J = ∅, because x̃a = 1 for a ∈ J . Now let x̃′ be any feasible solution
for (LPHS). Then

∑

a∈Tk

x̃′
a ≥ 1

holds, which implies x̃′
a > 0 for some a ∈ Tk ⊆ H \ J , so the primal slackness conditions

do not hold.
To improve the dual solution, we proceed as follows: we only change (increase) the

entry ỹk corresponding to the set Tk which was not hit:

ỹ
(1)
k := ỹ

(0)
k + Θ.

We need to argue that this is still dual feasible for Θ small enough. For a ∈ J we have
∑

i:Ti3a

ỹ
(1)
i =

∑

i:Ti3a

ỹ
(0)
i = wa,

because a 6∈ Tk, so the entry that changed does not appear. In particular, the set J will
not get smaller in the next iteration. For a 6∈ J , we get

∑

i:Ti3a

ỹ
(1)
i ≤ wa

74



for Θ small enough, because the inequality was strict before. If we choose Θ as large as
possible without violating any dual constraints, we will end up with a set J ′ := J ∪ F in
the next iteration, where F is the new set of elements whose dual constraints are satisfied
with equality at ỹ(1).

After at most |H| iterations, x̃ must be feasible, because eventually, all elements will
appear in J . The first J which leads to a feasible solution will be output as the set A. Let
ỹ(`) be the dual solution at that time. We know that

w(A) :=
∑

a∈A

wa =
∑

a∈A

∑

i:Ti3a

ỹ(`) =
m∑

i=1

|A ∩ Ti|ỹ
(`)
i ≤M

m∑

i=1

ỹ
(`)
i , (6.1)

where M := maxi |Ti| is the largest set that appears. On the other hand,

m∑

i=1

ỹ
(`)
i ≤ opt(LP∆

HS) = opt(LPHS) ≤ opt(ILPHS). (6.2)

(6.1) and (6.2) together imply

w(A) ≤Mopt(ILPHS).

This means, the algorithm computes a hitting set A whose weight is at most M times the
weight of an optimal hitting-set. This is the kind of quality guarantee that approximation
algorithms usually deliver: the solution is worse than the optimal solution only by a
constant factor. In case of the vertex cover problem, we get M = 2, because all sets to hit
are edges of a graph. This implies the following theorem which concludes this chapter.

Theorem 6.14 For any graph G, the primal-dual method as described above computes a
vertex cover whose size is at most twice the size of a smallest vertex cover.

75



Chapter 7

Integer Polyhedra

In the last chapter, we have shown that the ILP problem is NP-hard, i.e. there is probably
no polynomial-time algorithm that is able to solve any ILP instance. Still, there are easy
instances, and we have already come across them. Namely, if the LP relaxation has an
optimal integral solution x̃, this solution x̃ is at the same time an optimal ILP solution,
and in this case, the solution is obtained in polynomial time. An example was the ILP
for the assigment problem, where we have seen that for any objective function, there is an
optimal integral solution.

In this chapter, we want to investigate this issue in some more depth and develop
conditions under which a system of linear inequalities has integral optimal solutions for
every objective function. One such condition has already been given (and proved) in the
exercises.

Fact 7.1 Consider the system {Ax ≤ b, x ≥ 0}, where A and b are integral, and A is
totally unimodular (TUM). Then every basic feasible solution x̃ of

(LP) maximize cT x
subject to Ax ≤ b,

x ≥ 0,

has integral coordinates.

It follows that the simplex algorithm will return an integral solution x̃ wheh applied to
(LP).

However, the TUM property is only sufficient for integrality, but not necessary. In
the sequel we will discuss another sufficient condition (total dual integrality (TDI)), under
which we get integral solutions. To motivate this notion, let us consider the problem of
maximum weighted matchings in general graphs, which we will not be able to handle using
the TUM property.

76



7.1 Maximum weighted matching

Let G = (V,E) be a graph with nonnegative edge weights we, e ∈ E. The goal is to find
a matching M in G (set of edges with no common vertices) such that the sum of edge
weights in M is as large as possible. This is one of the hardest easy problems, meaning
that there exists a polynomial-time algorithm (which is not obvious), and that already
slight generalizations of the problem become NP-hard

Introducing 0/1-variables xe for the edges, the matching problem can be formulated as
an ILP as follows.

(ILP) maximize
∑

e∈E wexe

subject to
∑

e3v xe ≤ 1, v ∈ V
xe ∈ {0, 1}, e ∈ E.

In this formulation (and also in the following) we will regard an edge as a set of two
vertices. We already know this system from the bipartite case. Here, however, the LP
relaxation

(ILP) maximize
∑

e∈E wexe

subject to
∑

e3v xe ≤ 1, v ∈ V
xe ≥ 0, e ∈ E

may have fractional optimal solutions, and opt(LP ) 6= opt(ILP ) in general. This is due
to the fact that the graph is not necessarily bipartite and therefore contains cycles of
odd length. For example, if the graph is a triangle (all three edge weights being 1), the
maximum matching has weight 1, because only one of the three edges can be in any
matching. The LP relaxation, however, has optimum value 3/2, because we may set all
variable values to 1/2.

To fix this problem, we will add a family of inequalities to the system which are re-
dundant in the ILP formulation (meaning that they are automatically satisfied by all
matchings), but make a difference in the relaxation.

Observation 7.2 Let A ⊆ V be a set of odd size and consider the set EA ⊆ E of edges
with both vertices in A (equivalently, the set of edges e such that e ⊆ A). Then every
matching contains at most (|A| − 1)/2 edges of EA.

This is clear: if the matching would contain more than (|A| − 1)/2 edges of EA, it would
match more than |A| − 1 vertices of A; this means, restricted to the graph induced by
A, it would be a perfect matching covering all |A| vertices. This is impossible if A has
odd size. This means, we can add the following “odd-set inequalities” to the ILP above
without affecting its solution, obtaining

(ILP’) maximize
∑

e∈E wexe

subject to
∑

e3v xe ≤ 1, v ∈ V
∑

e⊆A xe ≤
|A|−1

2
, A ⊆ V, |A| odd

xe ∈ {0, 1}, e ∈ E.

77



With the LP relaxation

(LP’) maximize
∑

e∈E wexe

subject to
∑

e3v xe ≤ 1, v ∈ V
∑

e⊆A xe ≤
|A|−1

2
, A ⊆ V, |A| odd

xe ≥ 0, e ∈ E,

one can prove the following Theorem, due to Edmonds.

Theorem 7.3 opt(ILP ′) = opt(LP ′). In particular, (LP’) has an integral optimal solu-
tion for all weight values we, e ∈ E.

Before we do this, using the notion of TDI-systems, let us remark that this does not lead
to a polynomial-time matching algorithm right away. It is true that the matching problem
can be written as an LP, but the price to pay is an exponential number of constraints, one
for every odd set. In this situation, even a polynomial-time method for LP will only give
us an exponential-time algorithm for the matching problem. At the end of this chapter,
we will come back to this issue.

7.2 Total dual integrality

This concept has been introduced to prove integrality of LP solutions, and it is motivated
by the matching application.

Definition 7.4 The inequality system {Ax ≤ b} is called TDI (total dual integral), if the
linear program

(LP∆) minimize bT y
subject to AT y = c,

y ≥ 0

has an integral optimal solution ỹ for all integral vectors c for which (LP ∆) is bounded and
feasible.

Before we dive into the discussion of the significance of this definition, let us add a word
of warning: the TDI property is not very robust. This means, if we for example scale
every coordinate in the original system {Ax ≤ b} by the same value λ ≥ 0, we obtain an
equivalent system but it might no longer be TDI. For example, the system {x ≤ 1} is TDI
because

minimize y
subject to y = c,

y ≥ 0

has optimal solution ỹ = c for all c such that the problem is feasible. On the other hand,
the equivalent system {2x ≤ 2} is not TDI because

minimize 2y
subject to 2y = c,

y ≥ 0

78



has no integral optimal solution ỹ if c is odd. Another pitfall is the following: assume you
want to know whether a system in standard form {Ax ≤ b, x ≥ 0} is TDI. It might be
tempting to apply standard form duality and check whether the LP

minimize bT y
subject to AT y ≥ c,

y ≥ 0

has integral solutions ỹ for all integral c. However, if you apply the original definition of
TDI, you see that you must also require that the values of the slack variables are integral,
i.e. that ỹ is integral and AT ỹ − c is integral. If A happens to be integral, this extra
condition is not needed, but in general, it is. Consider the system {x1+

1
2
x2 ≤ 1, x1, x2 ≥ 0}.

Although the linear program

minimize y
subject to y ≥ c1,

1
2
y ≥ c2,

y ≥ 0

always has an integral solution ỹ = max(c1, 2c2, 0) for integral c1, c2, the system {x1+
1
2
x2 ≤

1, x1, x2 ≥ 0} is not TDI. For example, if c1 = 3, c2 = 1, the optimal solution is ỹ = 3, but
1
2
ỹ − 1 = 1

2
6∈ Z.

The conclusion is that if you want to prove a system to be TDI, it is quite important in
which way it is represented. In the exercises, you are asked to prove that even the removal
of redundant inequalities might destroy the TDI property (or, to formulate it positively,
the addition of redundant inequalities might give you a TDI system).

Here is the main result of this section.

Theorem 7.5 If {Ax ≤ b} is TDI, where A is rational and b is integral, then the linear
program

(LP) maximize cT x
subject to Ax ≤ b

has an integral optimal solution x̃ for all (not necessarily integral or rational) objective
function vectors c which define a bounded and feasible problem.

To simplify the presentation, we only state the following lemma (which we will need
below), and postpone its proof to the end of the section.

Lemma 7.6 Let A, b be rational. The system {Ax = b} has an integral solution x̃ if and
only if for all rational y, the following implication holds:

yT A integral ⇒ yT b integral.

79



This lemma can be seen as an integer version of Farkas’ Lemma (see exercices).
Proof. (of Theorem 7.5.) Assume there exists some vector c such that (LP) has no
integral optimal solutions. From this we will deduce that the system is not TDI.

Let x̃ be a basic optimal solution, meaning an optimal solution which satisfies a maximal
number of inequalities of {Ax ≤ b} with equality. Let {A′x ≤ b′} be this maximal
subsystem such that A′x̃ = b′. We have the following two properties.

(a) all solutions to A′x = b′ satisfy cT x = cT x̃. Namely, all solutions to A′x = b in some
small neighbourhood of x̃ are feasible for the (LP), which means that cT x ≤ cT x̃ for
all solutions in that neighborhood, because x̃ was optimal. This implies that cT x
must be constant over the system {A′x = b′}. (Why? Work it out, using the fact
that cT x is a linear function.)

(b) all solutions to A′x = b′ are feasible for Ax ≤ b. Assume there is some x̃′ such
that A′x̃′ = b and x̃′ is infeasible. Going along a straight line from x̃ to x̃′, we
encounter another optimal solution (by (a)) which satisfies one more inequality of
{Ax ≤ b} with equality, which is a contradiction to the maximality of the susbsystem
{A′x ≤ b′}.

In case of systems {Ax ≤ b, x ≥ 0}, a basic optimal solution is the unique solution to
its subsystem {A′x = b′, xi = 0 (i ∈ I)} in which case (a) and (b) are obvious.

Using these two properties, we can conclude the proof as follows. As we have assumed
that (LP) has no integral optimal solution, the whole system {A′x = b′} has no integral
solution (because such a solution would be optimal by (a) and (b)). Using the lemma
above, we conclude that in this case, there must exist some vector ỹ such that

dT := ỹT A′ integral, ỹT b′ not integral.

Without loss of generality, we may even assume that ỹ ≥ 0; for this, let κ be the least
common multiple of all denominators of the entries in A (recall that A is a rational matrix).
By adding mutliples of κ to the entries of ỹ, we don’t change the fact that ỹT A is integral
(κA is an integer matrix), but we also don’t change the property that ỹT b is not integral
(because we add integers to the original non-integer value of ỹT b). Choosing suitable
multiples, we can then achieve ỹ ≥ 0.

Now we claim that x̃ is an optimal solution to the linear program

(LP’) maximize dT x
subject to Ax ≤ b.

Feasibility is obvious, and to argue that x̃ is optimal, we first compute

dT x̃ = ỹT A′x̃ = ỹT b′.

Moreover, all feasible solutions satisfy A′x ≤ b′ and therefore

dT x = ỹT A′x ≤ ỹT b′,

80



where we have used ỹ ≥ 0. Since ỹT b′ 6∈ Z is the optimal value of (LP’), it is also the
optimal (nonintegral) value of its dual,

(LP’∆) minimize bT y
subject to AT y = d,

y ≥ 0.

This means, we have found an integral vector d such that (LP’∆) has no integral optimal
solution ỹ (because otherwise the optimal objective function value would have to be integral
as well, recalling that b was assumed to be integral). In other words, the system {Ax ≤ b}
is not TDI.

We still need to show Lemma 7.6.
Proof. If {Ax = b} has an integral solution x̃, then yT A integral implies that yT b = yT Ax̃
is integral, so one direction is easy. Now assume that yT A integral implies yT b integral for
all y. Because this property also holds for all subsystems {A′x = b′} (set the variables in y
corresponding to the removed equalities to zero), we may assume that {Ax = b} contains
no redundant equalities. This means, whenever yT A = 0 for some y 6= 0, then yT b 6= 0.
First we show that the rows of A must be linearly independent. Assume, this does not
hold; then there is some ỹ 6= 0 such that ỹT A = 0. This implies

ỹ′
T
A = 0, ỹ′

T
b =

1

2
, for ỹ′ := ỹ

2ỹT b
,

a contradiction to the requirement that ỹ′
T
b must be integral.

Given that A has full row rank, we can use elementary column operations to get A into
the form

(B 0),

where B is an invertible lower-triangular matrix. This can even be done using so-called
unimodular transformations, which are

• swapping of two columns

• multiplication of columns with −1,

• subtraction of one column from another.

This is an exercise. It is easy to see that a unimodular transformation applied to A
corresponds to a multiplication with a square matrix U (from the right), where U arises
from the unit matrix by

• swapping of two columns, or

• replacement of a 1 by a −1, or

• insertion of a single −1 somewhere.

81



In all three cases, U is integral and det(U) ∈ {1,−1}, so U is a unimodular matrix. It is
clear that the product of unimodular matrices is again unimodular, and the same is true
for the inverse of a unimodular matrix. Now, let W be the unimodular matrix such that

(B 0) = AW

and let yT be any row of B−1. Because of

B−1AW = B−1(B 0) = (E 0),

E the unit matrix, the vector yT AW is a unit vector. Moreover, W−1 is unimodular
(in particular, W−1 is integral), so the vector yT AWW−1 = yT A is integral, too. By
assumption, yT b must then also be integral. Doing this for all rows of B−1, we get that
the vector B−1b is integral. Define

x̃ := W

(
B−1b

0

)

.

x̃ is an integral vector, because it is a product of an integral matrix and an integral vector.
The claim is that x̃ is a solution to Ax = b which completes the proof. To show this, we
compute

Ax̃ = AW

(
B−1b

0

)

= (B 0)

(
B−1b

0

)

= BB−1b = b.

7.3 The matching system is TDI

Let’s come back to matchings. If we can prove that the inequality system

∑

e3v

xe ≤ 1, v ∈ V

∑

e⊆A

xe ≤
|A| − 1

2
, A ⊆ V, |A| odd

xe ≥ 0, e ∈ E

is TDI, we have proved Edmond’s Theorem 7.3, using Theorem 7.5 from the previous
section. The proof I will give below is not the one I presented in the lecture; the proof
from the lecture (actually the one from the book Combinatorial Optimization by Bernhard
Korte and Jens Vygen, Theorem 11.15) suffers from the problem that it already uses the
fact that the matching polytope is integral. Because we want to derive this integrality from
the TDI property, this proof is pointless in our context. The proof below is an alternative
version which (hopefully) makes no further assumptions.

To start, let us develop the following equivalent formulation of the TDI property.

82



Lemma 7.7 The system {Ax ≤ b} (A rational, b integral) is TDI if and only if

max{cT x | Ax ≤ b, x ∈ Z
n} = min{bT y | AT y = c, y ≥ 0, y ∈ Z

m} (7.1)

holds for all integral c for which the minimum exists.

Proof. Assume {Ax ≤ b} is TDI, c integral Then we know by definition that

min{bT y | AT y = c, y ≥ 0, y ∈ Z
m} = min{bT y | AT y = c, y ≥ 0},

and by Theorem 7.5 that

max{cT x | Ax ≤ b, x ∈ Z
n} = max{cT x | Ax ≤ b}.

Then (7.1) follows by LP duality.
For the other diretion, assume (7.1) holds. Using weak duality, we get

max{cT x | Ax ≤ b, x ∈ Z
n} ≤ max{cT x | Ax ≤ b}

≤ min{bT y | AT y = c, y ≥ 0}

≤ min{bT y | AT y = c, y ≥ 0, y ∈ Z
m}.

By (7.1), equality must hold, which proves the TDI property.
The plan now is to show that (7.1) holds for the matching system. For this, let us

consider the dual problem; it has a variable yv for each vertex v (corresponding to the vertex
constraints of the matching system), and a variable zA for every odd set (corresponding to
the odd set inequalities). If A denotes the set of subsets of V of odd size, the dual problem
can be written as

(LP∆) minimize
∑

v∈V yv +
∑

A⊆A
|A|−1

2
zA

subject to
∑

v∈e yv +
∑

A⊇e zA ≥ ce, e ∈ E,

yv, zA ≥ 0, v ∈ V,A ∈ A.

We have written the dual in standard (inequality) form, although the definition of TDI
requires a dual problem in equality form (which we would get after adding slack variables);
however, in this case it holds that if we find an integral solution ỹ, z̃ to the standard form
dual, we have verified the TDI property. Namely, the constraint matrix and right-hand
side are both integral, in which case the values of the slack variables at an optimal integral
solution will be integral, too. This has already been observed in the discussion following
Definition 7.4.

This means, in order to verify (7.1) we need to prove that for every integral c, the
optimum value of

(ILP) maximize
∑

e∈E cexe

subject to
∑

e3v xe ≤ 1, v ∈ V
∑

e⊆A xe ≤
|A|−1

2
, A ⊆ V, |A| odd

xe ∈ {0, 1} e ∈ E

(7.2)

83



equals the optimum value of

(ILP∆) minimize
∑

v∈V yv +
∑

A⊆A
|A|−1

2
zA

subject to
∑

v∈e yv +
∑

A⊇e zA ≥ ce, e ∈ E,
yv, zA ≥ 0, yv, zA ∈ Z, v ∈ V,A ∈ A.

(7.3)

In other words, opt(ILP∆) must be equal to the weight of an optimal matching. Some
notation: treating c as a paremeter, ILP(c) and ILP∆(c) denote the problems (7.2) and
(7.3). w(c) denotes the weight of an optimal matching with respect to the weight function
c, i.e. w(c) = opt(ILP (c)). For any given matching M , wc(M) is the weight of M with
respecto to c. Finally, ∆(c) := opt(ILP ∆(c)). By weak duality, w(c) ≤ ∆(c) always holds,
and we need to prove w(c) = ∆(c).

To streamline the presentation, we will make some claims in the following which we
will prove only later.

Now assume (7.1) does not always hold. From this, we are going to derive a con-
tradiction. Let (G = (V,E), c) be a graph-weights pair such that w(c) < ∆(c), and
|V | + |E| +

∑

e∈E |ce| is as small as possible. We refer to (G, c) as a minimal counterex-
ample. The minimality implies ce ≥ 1 for all e ∈ E, because if ce ≤ 0, the corresponding
dual constraint is redundant; this means, e can be removed from G without changing w(c)
and ∆(c). Because (G, c) was a minimal counterexample, this is impossible. Moreover,
we can assume that G is connected, otherwise some connected component of G defines a
smaller counterexample. For this, one has to observe that w(c) and ∆(c) are the sum of
the corresponding optimal values of the subgraph ILPs and ILP∆(c)s, respectively. Now
there are two cases.

(a) G contains a vertex v which is matched in every optimal matching. Let c′ arise from
c by decreasing the weights of all edges e 3 v by one.

Claim 7.8 w(c′) = w(c)− 1.

Because (G, c) was a minimal counterexample, (7.1) must hold for (G, c′), so w(c′) =
∆(c′) holds, where ∆(c′) is assumed by an integral solution ỹ, z̃ to ILP∆(c′). Increas-
ing ỹv by one gives an integral feasible solution to ILP∆(c), of value w(c′)+1 = w(c).
But this means, w(c) ≥ ∆(c), a contradiction to the assumption w(c) < ∆(c). Hence,
this case cannot occur.

(b) No vertex of G is matched in every optimal matching. Then let c′ arise from c by
decreasing all weights by one.

Claim 7.9 w(c′) ≤ w(c)−
⌊
|V |
2

⌋

.

84



Again, (G, c′) cannot be a counterexample, so w(c′) = ∆(c′), with an optimal solution
ỹ, z̃ to ILP∆(c′). If |V | is odd, we can increase the value of z̃V by one, giving us a
feasible solution to ILP∆(c), of value

w(c′) +
|V | − 1

2
= w(c′) +

⌊
|V |

2

⌋

≤ w(c),

showing that w(c) ≥ ∆(c), a contradiction. If |V | is even, consider some subset
A := V \ {v} of odd size. Increasing z̃A and ỹv by one gives a feasible solution to
ILP∆(c), of value

w(c′) + 1 +
|V | − 2

2
= w(c′) +

|V |

2
=

⌊
|V |

2

⌋

≤ w(c),

leading to a contradiction again. This means, case (b) cannot occur either, so the
original assumption that a counterexample (G, c) exists leads to a contradiction.
Therefore, (7.1) must hold for all pairs (G, c).

It remains to prove the two claims.
Proof. (Claim 7.8) Every optimal matching with respect to c has weight w(c) − 1 in
ILP(c′), because it contains an edge incident to v. This shows w(c′) ≥ w(c) − 1. On the
other hand, if w(c′) > w(c)−1 would hold, this would already imply w(c′) ≥ w(c) (because
all the weights are integral).

Let M be an optimal matching with respect to c′. We have

wc(M) ≥ wc′(M) = w(c′) ≥ w(c) ≥ wc(M),

and wc(M) = wc′(M) = w(c) follows. This means, M is optimal for ILP(c); this is a
contradiction to the fact observed above, namely that wc′(M) = w(c) − 1 must hold for
every optimal matching with respect to c.
Proof. (Claim 7.9) Assume that w(c′) > w(c)−b|V |/2c and let M be an optimal matching
with respect to c′, chosen in such a way that wc(M) is as large as possible. M must have
less than b|V |/2c edges, otherwise

w(c) ≥ wc(M) ≥ wc′(M) +

⌊
|V |

2

⌋

,

where we have just assumed the contrary. It follows that M matches less than |V | vertices
if |V | is even, and less than |V | − 1 if |V | is odd. In both cases, there are two unmatched
vertices, say u and v. Assume M,u, v have been chosen such that the length δ(u, v) of a
shortest path between u and v is as small as possible (such a shortest path exists in all
cases, because we have shown above that G can be assumed to be connected). Because
{u, v} cannot be an edge (otherwise this edge could be added to M , improving wc(M)),
we have δ(u, v) > 1, and there is some vertex t 6= u, v on the shortest path.

85



Because we are in case (b) of the main proof, there is an optimal matching M ′ with
respect to c such that M ′ does not match t. Now let us consider the symmetric difference
M4M ′ (the set of edges which are in exactly one of M and M ′). Because every vertex is
incident to at most one edge from each M and M ′, M4M ′ defines a graph where every
vertex has degree at most two. Such a graph consists of a collection of paths and cycles
(isolated vertices, i.e. paths of length zero, may occur). Let P be the component that
contains t. P must be a path (starting at v), because t has at most one incident edge
(from M) in M4M ′. Moreover, u and v have also degree at most one in M4M ′, with a
possible incident edge coming from M ′. Then P cannot contain both u and v, because it
can have only one more degree-one vertex, at its other end. Say P does not contain u.

u v

t

u v

t

M    M’

P

M
M’

the shortest path from u to v

Figure 7.1: Sketch of the proof

Now consider the symmetric difference M4P . We have the following two properties.

(i) M4P is a matching. Namely, if some vertex w is incident to two edges in M4P ,
one from M and one from P , then the P -edge must come from M ′. But then the
M -edge must also be in P (P is a connected component of M4M ′), so the M -edge
is not in M4P , a contradiction.

(ii) |M4P | ≤ |M |. This holds because |M4P | > |M | can only hold if P is an augment-
ing path. If P is empty, this surely is not the case; if P is nonempty, it starts with t
and an incident edge from M . This means, t is not a free vertex with respect to M ,
so P cannot define an augmenting path. In particular, M4P does not cover t.

We are close to the end now. Because c′ has been obtained from c by decreasing all
weights by one, we have

wc′(M4P )− wc′(M) = (wc(M4P )− |M4P |)− (wc(M)− |M |)

= (wc(M4P )− wc(M)) + (|M | − |M4P |)

≥ wc(M4P )− wc(M) ,by property (ii).

86



To continue, observe that

wc(M) + wc(M
′) = wc(M4P ) + wc(M

′4P ). (7.4)

This holds, because on the left-hand side of the equation, the weight of every edge in
M4M ′ is counted exactly once, while all edges in M ∩M ′ contribute twice their weight.
The same is true on the right-hand side: an edge e ∈ M \M ′ is in M4P if e 6∈ P and in
M ′4P if e ∈ P , but not in both. The same holds for edges in M ′ \M . Edges in M ∩M ′

are not in P and therefore in both M4P and M ′4P .
Plugging (7.4) into the previous derivation, we can conclude that

wc′(M4P )− wc′(M) ≥ wc(M4P )− wc(M) = wc(M
′)− wc(M

′4P ) ≥ 0,

because M ′ was an optimal matching with respect to c. It follows that M4P must be
optimal with respect to c′ (because it is no worse than M). However, M4P does not cover
u (because neither M nor P cover u), and it also does not cover t (because either both M
and P or none of them cover t; see the argument for property (ii) above). This means,
we have found an optimal matching with respect to c′ which does not cover u and t and
has wc(M4P ) ≥ wc(P ). Because the shortest-path distance between u and t is strictly
smaller than between u and v, this is a contradiction to our original choice of M,u, v.

7.4 The integer hull of a polyhedron

The notions of TUM and TDI establish sufficient conditions for a system {Ax ≤ b} to
have integral optimal solutions for all linear objective functions. However, they are not
necessary. In this section, we want to characterize the class of systems {Ax ≤ b} for which
integral solutions always exist.

Definition 7.10

(i) Let {Ax ≤ b} be a system of linear inequalities in n variables. The set {x ∈ R
n |

Ax ≤ b} is called a polyhedron.

(ii) Let V ⊆ R
n be a finite set. The convex hull of V , defined as

conv(V ) := {
∑

v∈V

λvv | λv ≥ 0 ∀v,
∑

v∈V

λv = 1},

is called a polytope.

Here is the main theorem of polytope theory.

Theorem 7.11 Every bounded polyhedron is a polytope and vice versa.

87



This means, every bounded polyhedron has two descriptions, one in terms of halfspaces
(linear inequalities), and one in terms of vertices. This is not unfamiliar to us. For example,
a cube is the convex hull of its eight vertices, but at the same time the intersection of the
halfspaces bounded by its six facets.

Definition 7.12 Let P be a polyhedron in R
n. The set

PI := conv(P ∩ Z
n)

is called the integer hull of P .

In this definition, we might have to take the convex hull of an infite set of points. Like
for linear combinations, this is defined exactly as above, where every sum ranging over
infinitely many terms is restricted to a finite number of nonzero terms. If P is bounded,
it contains only finitely many points from Z

n, and then PI is a polytope. If P is rational,
then PI will always be at least a polyhedron.

Theorem 7.13 If A, b consists of rational entries and P is the polyhedron defined by
{Ax ≤ b}, then PI is a polyhedron, too.

This becomes false if irrational entries are allowed (exercise).
Here comes the main definition of this section.

Definition 7.14 A polyhedron such that P = PI is called an integral polyhedron.

As it turns out, integral polyhedra are exactly the polyhedra over which any linear function
assumes its maximum at an integral solution (provided an optimal solution exists at all).
We will not prove this here (although it would not be too difficult with the machinery we
have developed). Therefore, we just conclude with the formal statement.

Theorem 7.15 P = {x | Ax ≤ b} 6= ∅ is an integral polyhedron if and only if the linear
program

(LP) maximize cT x
subject to Ax ≤ b

has an integral optimal solution x̃ for all c for which the maximum exists.

For example, given a graph G = (V,E), the bounded set of solutions satisfying

∑

e3v

xe ≤ 1, v ∈ V

∑

e⊆A

xe ≤
|A| − 1

2
, A ⊆ V, |A| odd

xe ≥ 0, e ∈ E,

is an integral polytope by this Theorem, the so-called matching polytope.

88



Chapter 8

Cutting Planes

We have seen in the last chapter that the matching system

(LP’) maximize
∑

e∈E wexe

subject to
∑

e3v xe ≤ 1, v ∈ V
∑

e⊆A xe ≤
|A|−1

2
, A ⊆ V, |A| odd

xe ≥ 0, e ∈ E,

has the TDI property. This implies that the polyehedron P of feasible solutions to this
sytem equals its integer hull PI . The vertices of the latter polyhedron correspond to the
(chracteristic vectors of) matchings. In other words, we have an explicit description of PI

in terms of a set of linear inequalities. Although this set is exponentially large in the size
of the graph, the fact that an explicit description can be given at all is quite strong. In
fact, an optimal matching can be found efficiently, as first shown by Edmonds.

Theorem 8.1 The matching of maximum weight in a weighted graph can be found in
polynomial time.

The algorithm follows the primal-dual method; below we will encounter a powerful
general method to derive results of this type.

In other cases, an explicit description is not known. An example is the travelling sales-
person problem (TSP): we are given the complete graph Kn on n vertices, with nonnegative
edge weights. The goal is to find a tour which minimizes the total weight of the edges that
are used. Here, a tour is a cycle which goes through every vertex excatly once.

As an ILP, we can formulate the problem as follows. We introduce variables xe for
every edge, with the meaning that

xe =

{
1, if e is in the tour,
0, otherwise

Then the problem is

(TSP) minimize
∑

e∈E wexe

subject to
∑

e3v xe = 2, v ∈ V
∑

e⊆A xe ≤ |A| − 1, A ⊆ V,A 6= ∅, V
xe ∈ {0, 1}, e ∈ E.

89



The constraints
∑

e∈v xe = 2 ensure that exactly two edges go through every vertex, which
is obviously needed to get a tour. However, this would still allow subtours, i.e. a set of
several disjoint cycles. To rule out these subtours, we need to add the subtour inequalities
∑

e⊆A xe ≤ |A| − 1 for A 6= ∅, V . For a fixed A, the inequality just says that no subtour
can be formed by the vertices in A, because such a subtour would have |A| edges.

Replacing the constraints xe ∈ {0, 1} by 0 ≤ xe ≤ 1, we get the canonical LP-relaxation.
However, although the TSP system looks similar to the matching system, the situation is
quite different here: the LP relaxation does have fractional optimal solution in general, so
the subtour polytope

P :=






x

∣
∣
∣
∣
∣
∣

∑

e3v xe = 2, v ∈ V
∑

e⊆A xe ≤ |A| − 1, A ⊆ V,
0 ≤ xe ≤ 1, e ∈ E






(8.1)

is not integral, meaning that P 6= PI (PI is called the TSP-polytope). Even worse, TSP
is one of the problems for which no explicit description of PI is known. To be precise:
for any fixed n, one can of course compute the finite inequality description of PI . The
statement is that no class of inequalities (parameterized with n) exists such that this class
yields a description for all n. It is even NP-hard to decide whether a given inequality is
nonredundant for PI .

In order to optimize a linear function over PI (and that’s what needs to be done to solve
TSP), we can therefore not rely on PI directly. The method of cutting planes described in
this chapter provides a way around this.

8.1 Outline of the Method

We are given a general ILP of the form

(ILP) maxmize cT x
x ∈ PI ,

(8.2)

where
P = {x | Ax ≤ b}.

Then we perform the following steps.

1. Set Q := P ;

2. Compute an optimal solution x̃ to

(ILP) maxmize cT x
x ∈ Q.

3. If x̃ is integral, we are done;

90



4. If x̃ has fractional coordinates, then x /∈ PI (why?). In this case, there exists an
inequality which is satisfied by all x ∈ PI but not by x̃. This means, there are d, f
such that

dT x ≤ f, x ∈ PI ,

dT x̃ > f.

Set
Q := Q ∩ {x | dT x ≤ f}

and repeat with step 2.

Some comments are in order. Q is described by a finite set of inequalities throughout the
algorithm. This is true in the beginning (where Q corresponds to the system {Ax ≤ b}),
and each round adds one more inequality. Thus, we can in principle optimize over Q
by known methods; keep in mind, however, that Q might have a very large inequality
description even in the beginning, so that it is not clear whether step 2 can be performed
efficiently. We will come back to this below.

The existence of a separating hyperplane dT x = f in case x̃ 6∈ PI follows from convexity
theory. In general, if C is some convex set and p a point not in C, then there exists a
hyperplane which separates C from p, see Figure 8.1.)

p

C

Figure 8.1: A separating hyperplane

Because PI is a polyhedron, it is in particular convex, so we can apply the general
statement.

Thus, what happens in the outline above can be described as “cutting off” fractional op-
timal solutions by adding another inequality which prevents this solution from reappearing
in the next iteration, see Figure 8.2.

Two questions remain:

• How do we find the separating inequality dT x ≤ f (a cut), and

• does this method ever terminate?

We will answer these questions by providing a concrete implementation of the outline above
in the next section.

91



Figure 8.2: Cutting off fractional solution

8.2 Gomory Cuts

Let us address ILP of the general form (8.2), with the additional assumption that the
polyhedron {Ax ≤ b} is bounded, i.e. it is actually a polytope. Moreover, we assume that
the system is in standard form, i.e. that it includes the constraints x ≥ 0, so that we can
directly apply the simplex method to it. All this can be done without loss of generality, see
the exercises. In addition, we can assume that A, b, c all have integer entries (by scaling
them with suitable multiples, if they have rational entries at all).

Then we perform the following procedure, which explains how cuts are found; termi-
nation will be adressed later. The cuts used by the method below are called Gomory cuts.
The method maintains the invariant that Q contains all integral solutions of the system
{Ax ≤ b}.

1. Q := {x | Ax ≤ b}.

2. find the lexicographically largest basic feasible solution x̃ to

(LP) maxmize cT x
x ∈ Q.

This can be done by the simplex method, after symbolically perturbing the objective
function: instead of cT x, maximize

cT x +
n∑

i=1

εixi,

where ε > 0 is a symbolic constant. This results in the lexicographically largest
optimal solution x̃, meaning that among all optimal solutions, x̃ has maximal x1-
coordinate, and among those, x̃ has maximal x2-coordinate, etc.

3. If the basic part x̃B is integral, we are done (because the nonbasic part satisfies
x̃N = 0, which is integral in all cases).

4. If x̃B has fractional coordinates, we distinguish between two cases.

92



(a) z0 /∈ Z, where z0 is the optimal objective function value z0 = cT x̃ of the LP
solved in step 2. Then we consider the z-row of the optimal tableau, which
reads as

z = cT x = z0 − γT xN , γ ≥ 0.

This implies
z ≤ z0 − bγ

T cxN ,

where bγT c arises from γT by rounding down each coordinate to the nearest
integer. Moreover, if x is any integral solution, then the associated objective
function value z is integral. Therefore,

z + bγT cxN ≤ z0

⇒ z + bγT cxN ≤ bz0c

⇔ z ≤ bz0c − bγ
T cxN

holds for all x ∈ Q ∩ Z
n. This means, the inequality

z0 − γT xN ≤ bz0c − bγ
T cxN ⇔

(
γT − bγT c

)
xN ≥ z0 − bz0c

holds for all integral solutions in Q, but not (and this is the point!) for the
solution x̃ we have computed in step 2. Namely, for that solution, x̃N = 0,
hence

(
γT − bγT c

)
x̃N = 0 < z0 − bz0c,

because z0 was not integer. This means, we have found an inequality which
separates QI from x̃. Adding this inequality to Q (“cutting off” x̃) makes Q
smaller, without cutting off any point from QI . Thus, we set

Q := Q ∩ {x |
(
γT − bγT c

)
xN ≥ z0 − bz0c}

and go back to step 2.

(b) z0 ∈ Z. Then let j be the smallest index such that x̃j 6∈ Z. Such an index must
exist because we have assumed that x̃ is not integral. Moreover, j ∈ B, the set
of basic indices, because x̃N = 0. Then we can consider the tableau equation
for xj which reads as

xj = βj − λT xN ,

and as before we see that all integral solutions satsify

xj ≤ bβjc − bλ
T cxN .

In this case, we set

Q := Q ∩ {x | xj ≤ bβjc − bλ
T cxN}

and return to step 2.

93



The termination of this method is summarized by the following

Theorem 8.2 The above algorithm terminates within a finite number of iterations with
an optimal solution x̃ to the system {Ax ≤ b, x ∈ Z

n}, or it asserts that no such solution
exists.

Proof. The non-existence of an integral solution is noticed when the LP that is solved
in step 2 becomes infeasible, meaning that Q = ∅. Because we always guarantee that
Q ⊇ {Ax ≤ b, x ∈ Z

n}, this means that there are no integral solutions.
Now assume that infeasibility does not occur. We will first show that after finitely

many iterations, z0 reaches a fixed integral value. This shows the main idea of the proof,
and the fact that also the coordinates of the solution “stabilize” after finitely many steps
is easy to derive then.

Consider the sequence (z
(k)
0 ), k ∈ N, of the z0-values that are generated in the main

loop. The sequence is monotone decreasing (we add a constraint to the LP each time, so
the optimum value cannot get larger) and bounded from below, because we have assumed
the system {Ax ≤ b} to be bounded. It follows that the sequence converges to a value w.
Because w < bwc+ 1, there is a value ` such that

z
(`)
0 < bwc+ 1.

If z
(`)
0 = bwc = w, we are done, because then z0 must be integral and remains fixed.

Otherwise, we have z
(`)
0 /∈ Z, and in this iteration we add the inequality

z ≤ bz
(`)
0 c − bγ

T cxN , γT ≥ 0.

It follows that in the next iteration, this inequality is satisfied, so that we get

z = z
(`+1)
0 ≤ bz

(`)
0 c = bwc,

because of bγT c ≥ 0, xN ≥ 0. This means, z0 is a fixed integer from that iteration on.
Now we prove by induction that also the coordinates x1, . . . , xn stabilize, one after

another. Assume that after iteration `d−1, z, x̃1, . . . , x̃d−1 are already fixed integers that
do not change anymore (the case d = 1 has just been handled with iteration `0 = `).

Then, the sequence (x̃
(k)
d ), k > `d is monotone decreasing, because the solutions only get

lexicographically smaller throughout the iterations. Because x̃1, . . . , x̃d−1 are already fixed,
this means that x̃d can only decrease. Because x̃d is bounded from below by 0, the sequence
(x̃

(k)
d ) converges to a value u < buc+ 1. Consequently, there is an index `d such that

x̃
(`d)
d < buc+ 1.

If x̃
(`d)
d = buc = u, we are done, as before, otherwise, x̃

(`d)
d 6∈ Z, and the algorithm adds the

cut
xd ≤ bβ1c − bλ

T cxN ,

94



where xd = β1 − λT xN is the tableau row of the variable xd. Let x̃′ be the next optimal
solution, obtained after adding this cut. This solution is a feasible solution to the previous
problem and therefore still satisfies

x̃′
d = β1 − λT x̃′

N .

Because of x̃′
d ≤ x̃d = β1, we must have λi ≥ 0 for all i such that x̃′

i > 0. Because of this,

x̃′
d ≤ bβ1c − bλ

T cx̃′
N ≤ bβ1c,

and x̃′
d has reached its final integer value bβ1c

8.3 Separation Oracles

The method of Gomory cuts might be useful for general ILP, for which no extra information
is given. In this case, the Gomory cuts are “minimal” cuts which are always guaranteed to
work. However, the method is quite slow in practice, and it is more of theoretical interest.
The approach of cutting planes is more general, and better cuts can be used for special
ILP like the TSP (we will get to such cuts below).

In these methods (and even in the Gomory cut method) we have one problem left, which
we have already mentioneded above: if the initial inequality description of Q is already
very large (for example, exponential in the size of the input instance, like in TSP), step 2
already takes exponential time. However, there is a very general result which provides a
way out.

Assume, we have a separation oracle with the following specification.

Given Q and x̃, either certify that x̃ ∈ Q, or find a separating inequality
dT x ≤ f , meaning that

dT x ≤ f, x ∈ Q,

dT x̃ > f.

The reason to call this an oracle is that we assume to obtain an answer immediately, but
we don’t really care how this answer is found. Instead, we bound the runtime of algorithms
in terms of the number of oracle calls that are needed. Given a concrete runtime bound for
the implementation of an oracle, we then get a concrete runtime bound for an algorithm
using the oracle. The following result is due to Grötschel, Lóvasz and Schrijver.

Theorem 8.3 Let Q be a convex set. An optimal solution to the problem

maxmize cT x
x ∈ Q.

can be found with a polynomial number of calls to the separation oracle.

95



I won’t specify what this “polynomial number” actually means here; it is not clear what
the input really is. Think of this theorem as saying that separation and optimization over
convex sets are equally difficult with respect to polynomial-time solvability.

The Gomory cuts described above do not implement a separation oracle, because they
only provide cuts for special solutions x̃. In order to be able to optimize, cuts must in
principal be provided for all possible x̃, because the optimizing algorithm might just ask
for it.

Using this theorem, the following lemma shows that one can optimize over the subtour
polytope (8.1) in polynomial time, although it is defined by exponentially many inequali-
ties.

Lemma 8.4 There exists a polynomial-time separation oracle for the subtour polytope; this
means, we can decide in polynomial time, whether a given vector x̃ satisfies all (in)equalities
of the system in (8.1), and return a separting inequality if this is not the case.

Proof. Given x̃, we first check whether 0 ≤ x̃e ≤ 1, e ∈ E and
∑

e3v x̃e = 2, v ∈ V .
As these are only polynomially many constraints (polynomial in the size of the graph
underlying the TSP problem), this can be done in polynomial time, and every violated
(in)equality directly leads to a separating hyperplane.

Now assume x̃ satisfies the above constraints; it is easy to see (exercise) that in this
case, the inequalities

∑

e⊆A

x̃e ≤ |A| − 1, A 6= ∅, V

are equivalent to
∑

e:|e∩A|=1

x̃e ≥ 2, A 6= ∅, V.

Interpreting the x̃e as edge weights, the latter class of inequalities is equivalent to the
statement that all cuts in the graph have total weight at least 2. To see this, observe that
the edges e such that |e ∩ A| = 1 are exactly the edges that cross the cut defined by A.

Thus, all these inequalities are fulfilled if and only if the minimum cut in the graph
(under edge weights x̃) has weight at least 2. Because minimum cuts under nonnegative
edge weights can be computed in polynomial time (see also Exercise 5, Problem 1), we
either certify in polynomial time that all inequalities hold, or we find a cut A (namely
the minimum cut) of weight smaller than 2. The corresponding inequality is a separating
inequality.

96



Chapter 9

The Travelling Salesperson Problem

The TSP problem we have already discussed in the previous chapter to some extent is
one of the most important problems in discrete optimization. Many new techniques have
been developed with the goal of finding better solutions to large TSP instances. Therefore,
this problem deserves its own chapter. I will introduce two important techniques (cutting
planes beyond Gomory cuts, Branch & Bound) for the TSP problem, where it will become
clear how they are applied in the general situation. I will start with an approximation
algorithm for the TSP problem in the special case where the weights satisfy the triangle
inequality.

9.1 Christofides’ Approximation Algorithm

We are given a weighted complete graph on n vertices V , where the weights we satisfy the
triangle inequality. This means, if p, q, r are vertices of the graph, then the weights satsify

w{p,q} ≤ w{p,r} + w{r,q}.

Interpreting the weights as edge lengths, the triangle inequality stipulates that the
direct way from p to q is at least not longer than the detour via a third vertex r. The
important case of Euclidean TSP is covered by this. Here, the vertices are points in the
plane, end the edge weights are actual euclidean lengths.

Here is Christofides’ algorithm to find a provably good tour.

1. Compute the minimum-spanning tree (MST) T of the graph with respect to the
given edge weights. This is a tree whose total weight is as small as possible. It is
well-known that an MST can be found in polynomial time (actually, in O(n2) time),
see Figure 9.1.

2. Let V ′ be the vertices which have odd degree in T . Because the number of odd-degree
vertices is even in every graph, |V ′| is an even number. In the complete subgraph
induced by V ′, compute a minimum-weight matching M . We have already indicated

97



T

Figure 9.1: Minimum spanning tree T .

T
M

Figure 9.2: T and M .

that this can be done in polynomial time as well, although we have only dealt with
the bipartite case in the lecture. Figure 9.2 shows both T and M .

3. Interpreting T and M as edge sets, every vertex has even degree in the graph
(V, T ∪M) (which might have multiple edges). It follows that there exist an Eu-
ler tour, a tour through the edges of the graph which traverses each edge exactly
once. Moreover, such an Euler tour can be found in polynomial time (exercise).

4. Traverse the Euler tour and report the vertices in order of apperance along the Euler
tour. This order defines the output tour of Christofides’ algorithm, see Figure 9.3.

Theorem 9.1 Let opt be the length of the shortest tour and C the length of the tour
computed by Christofides’ algorithm. Then

C ≤
3

2
opt.

Proof. It holds that C ≤ w(T ) + w(M), where w(T ), w(M) denote the total weight of
T and M , respectively. Namely, w(T ) + w(M) is the length of the Euler tour, and the
output tour makes only shortcuts with respect to that Euler tour (here we need the triangle
inequality). We now show that

w(T ) ≤ opt, (9.1)

w(M) ≤ opt/2, (9.2)

98



1
2

3 4

5

6
7

89

1011

Figure 9.3: Euler tour

which implies the theorem. For this, let S be the edges of an optimal tour and e ∈ S.
S \ {e} is a path and in particular a spanning tree. Because T was the minimum-spanning
tree, we get

w(T ) ≤ w(S \ {e}) ≤ w(S) = opt,

using the assumption that we have nonnegative edge weights. This shows (9.1). Now, let
S ′ be the edge set of an optimal tour in the complete subgraph induced by V ′, the set
of odd-degree vertices in T . Because |V ′| was even, S ′ has even length and decomposes
into two matchings M1,M2 which alternate along S ′. Because M was the minimum-weight
matching, we get

w(M) + w(M) ≤ w(M1) + w(M2) = w(S ′) ≤ w(S) = opt,

because the optimal tour in V ′ cannot be longer than the optimal tour through all vertices.
This shows (9.2).

I want to remark that the triangle inequality is crucial for this result. For general
weighted graphs, the length of the optimal tour cannot be approximated up to a constant
factor, unless P = NP.

9.2 Beyond Gomory Cuts

Gomory cuts are the weakest possible cuts, because they don’t make use of any special
problem structure. For most concrete problems like TSP, much better cuts are known.
Intuitively, a cut is better if it cuts off more fractional solutions. The following lemma
describes a class of cuts specific to the TSP, which is a better approximation of TSP-
polytope than subtour polytope.

Lemma 9.2 Let x̃ be the characteristic vector of a tour (meaning that x̃e = 1 iff e is in
the tour), A ⊆ V , F ⊆ δ(A) := {e ∈ E | |e ∩ A| = 1}, |F | odd. Then x̃ satsifies the
following, so-called 2-matching inequality.

∑

e⊆A

xe +
∑

e∈F

xe ≤ |A|+
|F | − 1

2
.

99



The proof is simple and given as an exercise. This means, if we are given a fractional
solution x̃ and are able to find a violated 2-matching inequality, we can add this inequality
to our current set of known inequalities (which initially are just the subtour inequalities),
and reoptimize. In fact, if x̃ violates some 2-matching inequality, such an inequality can
be found in polynomial time. In other words, there is a polynomial-time separation oracle
for the class of 2-matching inequalities.

There are many more known classes of inequalities which are satisfied by every tour,
but which are not implied by other inequalities. Only at the point where a fractional
solution is obtained which satisfies all these inequalities, the method of cutting planes gets
stuck, unless one resorts to the very inefficient Gomory cuts. In this situtaion, the serach
for the optimal tour usually continues with branch & bound.

In general, much of the work invested into solving real-life problems nowadays is spent
in finding classes of inequalities which can be separated in polynomial time (meaning that
a polynomial-time separation oracle exists for the polyhedron described by all inequalities
in the class).

9.3 Branch & Bound

The branch & bound approach finally does what you might do if you were faced with an
ILP: it enumerates all possible integral solutions to pick out the best one. However, it
tries to do this in a clever way, so that many solutions need not be considered at all. This
clerveness is wasted in the worst case, but in typical situations that occur in practice, it
works quite well.

Given the problem
(ILP) maximize cT x

Ax ≤ b,
x ≥ 0,
x ∈ Z

n,

(9.3)

we first solve the LP relaxtaion by dropping the constraint “x ∈ Z
n”. If the resulting

solution x̃ is integral, we are done, otherwise there exists a coordinate i such that x̃i /∈ Z.
Then we branch, meaning that we recursively solve the subproblems

(ILP)1 maximize cT x
Ax ≤ b,
xi ≤ bx̃ic,
x ≥ 0,
x ∈ Z

n,

and
(ILP)2 maximize cT x

Ax ≤ b,
xi ≥ bx̃ic+ 1,
x ≥ 0,
x ∈ Z

n,

100



and return the better of the two solutions. The crucial observation that makes this work is
that every integral solution is feasible in exactly one of the two subproblems, so it cannot
be missed. When we do this, we obtain a computation tree, where every node corresponds
to an ILP, and the edges connecting a node to its children correspond to a branching step.

The computation inside a node terminates if the LP relaxation that is being solved in
that node is infeasible or returns an integral solution. The whole computation is guaranteed
to terminate if the polyhedron {x | Ax ≤ b, x ≥ 0} is bounded, like in case of TSP.

Up to now, this is not really clever. What makes the difference is the following bound
step. Assume we traverse the computation tree in some order, and we have already solved
the LP relaxations at certain nodes. Then we can maintain the quantity

zI ,

which denotes the best objective function value of any integral solution that has been
found in solving the LP relaxations. In the beginning, we have zI = −∞, but throughout
the tree, zI will increase.

Whenever we solve the LP relaxation at a new node v, we obtain an optimal objective
function value zLP (v), in the general case assumed by a fractional solution.

Fact 9.3 If zLP (v) ≤ zI , then no integral solution to the ILP at node v can be optimal for
the original ILP (9.3).

To see this, observe that any integral solution has objective function value at most zLP (v),
which is already worse than the best integral solution found in some other branch of the
computation. It follows that node v can be killed, i.e. we do not need to branch in v.

The hope is that the computation tree stays small, because many nodes are killed early
in the computation. Of course, there are important factors that influence the efficiency of
this scheme in practice. Among them are

• the order in which tree nodes are processed, and

• the choice of the index i such that x̃i 6∈ Z, where x̃ is the solution to the LP relaxation
in the node.

It is also important to start off with a value of zI which is already large. This can ususally
be done by computing a good integral solution to start with by some other method. For
example, running Christofides’ algorithm as a preprosessing stage for a branch& bound
computation in the case of TSP leads to a good initial value of zI already.

9.4 Branch & Bound for the TSP

Branch & Bound is a method which goes beyond ILP. It is applicable whenever we have a
problem which can be partioned into subproblems in such a way that the optimal solution
to the whole problem is found among the optimal solutions to the subproblems. Moreover,

101



we need upper bounds for the optimal objective function values in the nodes. In case of
ILP, we can obtain them by using the LP relaxation, but this is not the only method which
is available, even in case of ILP. For example, in case of TSP, the LP relaxation can be
solved in polynomial time, but this is not very efficient in practice. If slightly weaker upper
bound are obtainable by much simpler methods, this is preferrable. In general, there is a
trade-off between the time it takes to compute the upper bound and its quality.

In the following, we outline an application of Branch & Bound for TSP which makes
use of the fact that the assignment problem has a simple and fast algorithm. The algorithm
is independent from the previous cutting plane approach, and it is even not clear how to
combine it with the cutting-plane method directly. Note that the TSP is a minimization
problem, so we need lower bounds for the optimal objective function values in the nodes,
which we compare to a global upper bound zI on the length of a best tour found so far.

Given a tour, we can encode it as a 0/1-vector in a way different from the one that has
led us to the subtour polytope. Namely, we can introduce variables x(p,q) for order pairs
of nodes, with the interpretation that

x(p,q) =

{
1, if q is successor of p in the tour,
0, otherwise.

If x̃ is the characteristic vector of a tour, it must satisfy the equations

∑

q

x(p,q) = 1,∀p,
∑

p

x(p,q) = 1,∀q, x(p,q) ∈ {0, 1},∀p, q, (9.4)

because every vertex has exactly one successor and one predecessor in the tour. Therefore,
if we minimize ∑

p6=q

w{p,q}x(p,q)

over the constraints given by (9.4), we obtain a lower bound for the length of the optimal
tour. It is only a lower bound, because the conditions of (9.4) are only necessary for a
tour, but not sufficient: we might get subtours.

In return, the ILP we get has a nice structure: it is actually an assignment problem over
a bipartite graph, where both vertex sets are copies of the vertex set of our original complete
graph. Edge weights are the given edge weights, with the exception that w(p,p) =∞ which
means that in a minimum-weight assignment, this edge will never be chosen.

Thus, we solve the assignment problem and then branch; again, we do not do it as
indicated in the outline above for ILP, but according to some different rule which creates
more than two branches. Namely, if the solution to the assignment problem does not give
us a tour, there exists a proper subtour of length k < n, involving edges ei = (pi, qi), i =
1, . . . , k. Then we branch off into k subproblems, where problem i introduces the additonal
constraint xei

= 0. Because the globally optimal tour cannot contain all edges of the
subtour, it must be feasible for at least one of the subproblems. The subproblems can be
considered as TSP problems again, after resetting w{pi,qi} =∞ for the i-th subproblem.

102



9.5 Branch & Cut

I have remarked above that Branch& Bound is usually invoked after all known cuts are
exhausted, i.e. if a fractional solution has been obtained which cannot be cut off by any
inequality from the classes of inequalities one has at hand for the concrete problem. How-
ever, in the subproblems generated during the branching, the cuts may become effective
again. Thus, Branch& Cut interleaves Branch steps with Cut steps, applying the latter
first whenever possible. With additonal tricks, Branch & Cut codes for the TSP are able
to solve very large instances with several tenthousand cities.

103


