Randomized Algorithms
An Introduction through Unique Sink Orientations

Lecture Notes

Bernd Gartner, ETH Zirich

February 13, 2004

Preface

This document contains lecture notes for the coltaadomized Algorithmishave taught at
ETH Zurich in the Winter term of 2003/2004. Although this courses lheen offered at ETH
in the past (and will be offered in the future), it was a somatdpecial year.

In the three previous years, the course was designed andbedlock course by Emo
Welzl, as part of the international Graduate Progi@ambinatorics, Geometry and Compu-
tation (CGC). In December 2002, ETH decided to stop local funding folCC®ith all the
conseqguences: no more interesting predoc students frooveallthe world, no more schools
and seminars, and no more block courses.

Starting from Winter 2004, Angelika Steger, the new fullfessor in the Institute of Theo-
retical Computer Science, will take over the course as pahefecently established bachelor
and master program of the Department.

And in between, it was me. Being a one-shot has the advantdggrgf free: there was no
need to design a course that lasts for years, fits togethlerothier courses, or even covers the
classic material. (There was also no need to write lecturesnbut this is a different story.)

| made use of this freedom and taught a very specialized epdesling withunique sink
orientationsof cubes, a topic of current research by a small group of gegame of them
(including me) at ETH. Part of the material has never beemri@alin class before, and some
of it has been developed specifically for the course. Undesdltircumstances, the lecture
notes are not only a service to the students, but also a dotwokecting what | have learned
myself in preparing the course.

Fortunately, the randomized techniques to deal with un®&jok orientations are not so
different from the techniques being used for other, more mmom problems. For example,
game theory and the theory of random walks are importantrget@ols that also apply to
unique sink orientations; consequently, they are alsoreavin the course. The point | want
to make is that unique sink orientations are fairly specigécts, but the techniques applied
to them during the course are of more general interest anehat partially justify the label
Randomized Algorithms

| would like to thank Rter Csorba and Kaspar Fischer for inspiring discussiongfuda
proofreading, and for providing written solutions; thetlee notes would not nearly be the
same without them! Many thanks also to Ingo Schurr for higgsstjons and help (in partic-
ular, his implementations) concerning the Markov chaingenerating and counting unique
sink orientations. Bernhard von Stengel helped to improeegdime theory chapter. Finally,
the students of the course have influenced the lecture rfutasgh interesting questions and
remarks, which | have tried to incorporate; thanks to all@d yor sharing this experiment!

Contents

1 Introduction 4
1.1 TheEmperorsMaze it 4
1.1.1 KeeplLeft? 6
1.1.2 RolltheDice! 6
1.2 The Maze Game Revisited 7
1.3 AdversaryModels. 9
1.4 Sourcesof Randomness 9.
1.5 PreviewoftheCourse e 10
2 Smallest Enclosing Balls 13
2.1 BasiCS e 13
2.2 AlgorithmLeavel t ThenTakelt 16
2.2.1 COITeCtnesS o i e e 17
222 Runtime. e 19
2.3 MoreBasiCsS e 22
2.4 AlgorithmTakeltOrLeavelt, 25
241 Runtime. e e 25
3 Unique Sink Orientations of Cubes 30
3.1 Definitionand Examples e 30
3.2 Smallest Enclosing BallsRevisited, 32
3.3 The AlgorithmicModel 33
3.4 BasicTheory e 36
3.5 The2-dimensionalCase 39
4 Zero-Sum Games 43
4.1 BaSICS e 43
4.2 SolvingtheGame 6 4
4.3 GameTrees o i i i e e e e 50
4.4 TheSequenceForm e 2 5
4.5 Solvingthe Gamein SequenceForm 53
4.6 Yao'sTheorem 59

5 Random Walks 62

51 TwoWarm-Ups e e e e 62
5.2 TheRandonEdge Algorithm 65
521 Morris'sUSO e 67
5.2.2 RandontEdgeonMorrissUSO 70
5.3 Random Unique Sink Orientations 75
531 MarkovChains 76
5.3.2 AMarkovChainforUSOs 80
5.4 Counting USOs with the MarkovChain 85
6 Acyclic Unique Sink Orientations 90
6.1 The RandomFacet Algorithm 90
6.2 AnalysisofRandonfacet, 93
7 Solutions to Exercises 99
7.1 SolutionstoChapterl 99
7.2 SolutionstoChapter2 e 103
7.3 SolutionstoChapter3 109
7.4 SolutionstoChapter4 112
7.5 SolutionstoChapter5 114
7.6 SolutionstoChapter6 118

Chapter 1

Introduction

Randomized algorithms are algorithms that flip coins in otddeke certain decisions. This
concept extends the classical model of deterministic d@lyos and has become very useful and
popular within the last twenty years. In many cases, randedalgorithms are faster, simpler,
or just more elegant than deterministic ones. A well-knowohsalgorithm—taught in many
introductory computer science courses—is randomizedk3ait: the expected runtime of the
randomized version i©(n log n) for all sequences of numbers, while the naive deterministic
variants require quadratic runtime in the worst case.

In this introductory chapter, we discuss just one very samphdomized algorithm, but in
doing so, some important points become clear already. Wesea! that a randomized algo-
rithm can beprovablybetter than any deterministic algorithm for the same ta@kir example
will also indicate thattwo-player gamesre useful in designing and analyzing randomized
algorithms. The author hopes that the example itself—udgalith the Roman Emperor Deter-
minatus and his captive, the Gaul Randomix—uwill not insudt thind of the educated reader.

1.1 The Emperor’'s Maze

The malicious Roman Emperor Determinatus plays a game wstledptives. If the captive
wins, he or she will be freed, but if Determinatus wins, thptiv@ will be thrown to the lions.
However, the rules are such that Determinatus believesrhaleays win.

The game takes place in the Emperor’s underground maze wbidists othambersand
tunnelsconnecting the chambers. The maze has the structure of thelet® graphi’,,: any
two among the: chambers are connected by a tunnel. The maze has two sgemmbers, the
entranceand theexit Moreover, the tunnels are one-way (which is enforced byrabar of
(’;) guards, blocking for each tunnel exactly one of its two daysy. This means that once a
tunnel has been traversed, there’s no way back.

The positions of the guards thus determineoaentationof the K,, where the orientation
of each edge indicates the direction in which the corresipgrtdinnel can be traversed.

1Such statements can be proved for specific models of conimmutan the standard model that formalizes
deterministic algorithms viduring machinesnd randomized algorithms viaobabilistic Turing machinest is
not known whether randomization substantially helps.

The night before the actual game takes place, Determinaplaies the rules to his latest
captive, a Gaul called Randomix: in order to win the game, Rarixlbas to traverse the maze
from entrance to exitwithoutgoing throughall the chambers. The Emperor also says that he
is being fair to Randomix by guaranteeing that

(i) the maze has at least three chambers, so that Randominotitivially lose,
(i) the entrance can bleft through all its incident tunnels,
(iii) the exit can beenteredthrough all its incident tunnels, and

(iv) there is no danger of getting caught in a cycle, i.e. cacbamber is left, there’s no way
of coming back to it later.

Determinatus even brags about being extremely fair, bechissguarantees ensure that even
the most stupid captive will reach the exit after passingugh at most. — 1 tunnels (as we
know, actually using: — 1 tunnels would be fatal for the captive, though). Moreoversi
possible to reach the exit via just one tunnel. The only molhere is that the tunnels are long
and narrow, and the chamber at the other end of the tunnehieeconly visible once it has
been reached.

To summarize, what we are dealing with is @ryclic orientation ofK,,, with the source
corresponding to the entrance chamber and the sink to thetesinber, see Figure 1.1 for an
example.

™
7

source sink

Figure 1.1: Acyclic orientation ofq

After being informed about this setup, Randomix’s spiriseriwouldn’t it be an extremely
unlucky situation to go through all the chambers when in fhete is a direct tunnel to the
exit from any of the chambers? But then Determinatus declares that themeeidinal rule:
Randomix has to commitowto an algorithm for finding the exit, and the guards would make
sure that he is actually following this algorithm the nexy dathe maze.

5

1.1.1 Keep Left?

Hastily, Randomix starts thinking about algorithms. One tmnediately comes to his mind is
the following: within a chamber, always take the leftmost @among the non-blocked tunnéls.
In the orientation of Figure 1.1, this would indeed be a wngnstrategy, because it traverses
only three out of the six chambers, see Figure 1.2 (left). Buaickly becomes clear to
Randomix that there is also an orientation on which this dlgorwould take him directly to
the lions den, see Figure 1.2 (right). Even worse, he reatizat Determinatus, who gets to
know the algorithm in advance, would of course confront hiithhexactly this bad orientation!
Similarly, a Keep-Right strategy doesn’t work: as Deterrusas free to place source and sink
wherever he wants, he could simply interchange source akdasd flip all edge directions in
Figure 1.2 (right) to arrive at an orientation on which Keight runs through all the chambers.

source sink source sink

Figure 1.2: Algorithm Keep-Left

For a few seconds, Randomix tries to come up with more sopatstil algorithms (in every
second chamber, keep right instead of left; always try tp ataclose to the ‘middle’ tunnel as
possible, ...), but then he gives up, knowing that all thi:iwbelp (Exercise 1.1 asks you to
prove this in a general setting).

1.1.2 Roll the Dice!

Just as Determinatus is getting impatient waiting for Rangsnalgorithm, the Gaul realizes
that the Emperor is just a silly Roman, and that he knows a waytaive with high proba-
bility. He takes the papyrus roll provided by the Emperortfos purpose and writes down his
algorithm in words (pseudocode had not been invented atithej:

2What this algorithm does obviously depends on the geomedyiout of the maze; let's assume that the
Emperor is a fan of symmetry and that the layout really lodkesih Figure 1.1.

| will take along an(n—1)-sided die with numbersthroughn —1 on its faces.
In every chamber | reach, | roll the dice until some numbeappears that is no
larger than the number of non-blocked tunnels. Then | take:tth non-blocked
tunnel from the left.

The Emperor is baffled: although lkeowsRandomix’s algorithm, and he can also make
his guards check that Randomix behaves according to it, he mmeknow which tunnels
Randomix will choose. In contrast to what Randomix thinks,db®inatus is only malicious
but not stupid, so he realizes that whatever orientationii@wvide the next day, he will be
forced to free Randomix with probability— 1/(n — 1)! (Exercise 1.2).

Historical note: Determinatus tried his best in not letting Randomix escapddie, by
downsizing the beautiful maze he was so proud of to the mimrmtionly three chambers that
he had guaranteed to Randomix. Singé3 — 1)! = 1/2, it was, after all, a fair game. Still,
as the first captive during the long regency of Determinaasdomix won, and the Emperor
subsequently enrolled inrandomized algorithmslass.

1.2 The Maze Game Revisited

An acyclic orientation of the€s,, uniquely corresponds to a total order of the vertices. This
means, we can number the vertices franfthe sink) ton (the source) so that there is an
oriented edgév, w) iff v's number is higher than’s (Exercise 1.3). Under this scheme, the
number of a vertex is one larger than its outdegree, seed-igGr

\

S/

source sink

Figure 1.3: Acyclic orientation oks with induced vertex numbers

Let us interpret Randomix’s algorithm as a process on naturalbers. Given that he is
currently in the chamber with numbérthere aré — 1 non-blocked tunnels, leading to the 1
chambers with numbeits. . ., i—1; by rolling the dice, he will end up in any of these chambers
with the same probability. From the chamber he actuallylreacthe process continues in the
same fashion.

In pseudocode, we can write this down as a recursive proeddze.

Algorithm 1.1
Maze(i):
| Fi>1THEN
choosej € {1,...,7 — 1} uniformly at random
Maze(yj)
END

What is theexpectechumber f(n) of chambers Randomix has to go through in a maze
with n chambers? This is the same as the expected number of coonsaoikthe form? > 1’
throughout a call oMaze(n), because exactly one such comparison is done for every @ramb
that is visited. We conclude that

fay =1
2 =2
) = 1+ =3 1(), P>

Fori > 2, this yields

equivalently

with
"1
Hn = -
2

being then-th Harmonic numberWe conclude that in a maze with> 1 chambers, Randomix
goes through an expected number of

H,1+1<In(n—1)+2

chambers, much less than what Determinatus would like him to

Throughout the course, we will be concerned vagtpecteduntimes of algorithms. It is
important that the expectations we compute holddibinputs. In our case, we have made no
specific assumption about the acyclic orientation, meathagthe bound off,,_; + 1 holds
for all of them? In this sense, the expectations we compute are upper boonttefexpected
performance of the algorithms the worst case

3This is no real surprise here, because all these orienagi@isomorphic, see also Exercise 1.3.

8

1.3 Adversary Models

The maze game is actually a game between the algorithm (ofdRairiland theadversary
(Determinatus) who wants to make the algorithm perform aslp@as possible. In this inter-
pretation, the adversary is responsible for providing tlmestvcase under which we want to
analyze the algorithm’s performance. Exercise 1.1 shoafsthie adversary can indeed force
the worst possible number afchambers against any deterministic algorithm.

For randomized algorithms (like the one Randomix is proggsiit is important that the
adversary iblivious and we will always consider this case. It means that in cooshg
a bad input for the algorithm, the adversary may look at theci$igation of the algorithm
(Determinatus indeed does, to no avail), bot at the actual random choices the algorithm
makes.

In our case, Determinatus confronts Randomix with a maze evlstsicture doesot
change during the game. If he were unfair enough to watch titeomes of Randomix’s
die and then quickly reposition guards in order to make theahoutcome a bad outcome for
Randomix, the Gaul would be doomed. Under such a powerfulradme model, randomized
algorithms lose their advantage over deterministic ones.

In the offline scenario where the algorithm gets the complete input anmdgsteets its com-
putations, the oblivious adversary model makes perfedeseance the algorithm has taken
control, the input won’t change depending on subsequenpatations. In theonline world,
where decisions have to be taken without knowing parts ofrthet, the stronger adversary
model might be interesting. We will not consider online gesbs during this course, so it's
justified to stick with oblivious adversaries.

1.4 Sources of Randomness

While Randomix has a die at his disposal, the computer hashi. usual way out in imple-
menting randomized algorithms consists of usiqgsaudorandom number generatdthis is

a deterministic procedure for generating a sequence of atsitbhat ‘look’ random. There are
two problems with this: first, the adversary will know the geator that is being used from the
specification of the algorithm, so there is no unprediciigbiket alone true randomness, left in
the game.

The practical justification for using pseudorandom numietkat in real life, there is no
adversary. In this case, it seems that simulating true ranéss by pseudorandomness would
result in similar behavior for all practical purposes.

But this is not true. Many pitfalls in using pseudorandom narsthave been published,
and in some cases the deviations from the truly random behake dramatic. This even holds
for the ‘best’ generators that are available, but on top af,tthere are bad generators. The
most famous example is the generatandu that was widely used in the sixties. It gener-
ates pseudorandom floating point numbers in the intééval. When you plot the sequence
x1, T2, ... Of numbers output by andu, it appears to be fairly random, but when you plot the
triples (z1, zo, x3), (2, 23, 24), . . . in the unit cube, all these triples live in only fifteen pagdll
planes, not what you expect from random triples, see Figudre 1

Figure 1.4: The fifteen planes nandu

Can we get hold of truly random numbers to be used in a compubgrgm? This is im-
possible to answer, because one cannot test whether a givensiequence of numbers has
been generated from a truly random distribution. This méfaasall we can do is trust the dis-
tribution to be truly random. In fact, there are websitesrfnwhich you can download random
numbers, extracted for example from radioactive deeay f our m | ab. ch/ hot bi t s/

) or atmospheric noiseMwv. r andom or g). While these numbers pass all kinds of statistical
tests, you can never be sure that they are really random xaan@e, there has been the ques-
tion of whether the numbers provided taww. r andom or g have shown unusual behavior
on September 11, 2001. (The answer seems to be ‘no’, but tleegalaining this is a little
spooky.)

In the course, we will sweep the issue of random number ggaenander the rug. We will
analyze our algorithms with the assumption that we can @ikmrithm 1.1 does it) sample a
number uniformly at random from a finite set, at some constast. What wewill care about
in some cases is tmumberof random numbers we need, because it is an interestingeteadr
guestion how many random resources are necessary to paafoemtain task within a certain
time.

1.5 Preview of the Course

The question of how fast we can find a sink in a graph whose edgetations become known
only by visiting incident vertices, will be central to theuzse. We will consider it in connection
with different graphs and different classes of orientatioft turns out that many techniques
useful for the design and analysis of randomized algoritbamsbe developed in this scenario.
We will see concrete applications (the Emperor’s Maze itagdly not the most important one),
but we will also apply the techniques to other problems neirfzato do with sink-finding.

10

Bibliographic Remarks

The ‘standard reference’ for randomized algorithms is ey \good book by Raghavan and
Motwani [11]. Another very interesting book, focusing niginn randomized algorithms in
the context of computational geometry, has been written binMley [12].

Exercises

Exercise 1.1LetH = (V,E),E C (‘2/) be some undirected graph on the vertex8etAn
orientationof H can be specified by a directed graph= (V, D), D C V x V such thatD
contains for every edgfy, w} € E exactly one of the pair&, w) and (w, v).

Suppose that: = (V, D) is an orientation ofd which contains exactly one sink, and the
goal is to find this sink. In theertex access modehformation aboutD can only be obtained
through an oracle which for any given vertexc V reveals the set of neighbors ofalong
outgoing edges,

out(v) :={w e V| (v,w) € D}.
Whenever we call the oracle with we say thav is evaluated

Given the graphH and any orientatiorG of H with exactly one sink, specified by a vertex
evaluation oracle, we are interested in the smallest numbegidex evaluations a deterministic
algorithm needs in the worst case in orderawaluatethe sink of G.

Lett(H) be this minimum number. For example|Wif| = 1, thent(H) = 1. If H consist
of just two vertices and the edge spanned by them, tfién = 2, because in one of the two
orientationsG of H, the first vertex evaluated by the algorithm is not the sink.

(i) Prove thatt(K,) = n, whereK,, is the complete graph om vertices.

(i) Prove thatt(C,) = 2" ! + 1, whereC,, is the vertex-edge graph of thedimensional
cube.

(i) Assume thatH has avertex cover(set of verticedV such that every edge contains a
vertex fromiV’) of sizek. Prove thatt(H) < k + 1 in this case. Are there graphs for
whicht(H) is smaller than one plus the size of the smallest vertex over

Exercise 1.2Forn > 1, let X,, be the random variable for the number of comparisons of type
‘7 > 1"in Algorithm 1.1. Prove that

prob(X,, =n) = Tk

Prove an explicit formula for
prob(X,, =i), 1<i<n.

(Hint: Browse Emo Welzl'Basic Examples of Probabilistic Analy8is

4Justknowingthe vertex which is the sink is not enough; we’'ll see latet this simplifies certain computa-
tions.

11

Exercise 1.3LetH = (V, F) be an undirected graph witfy’| = n vertices and leGG = (V, D)
be anacyclicorientation of it as defined in Exercise 1.1.

(i) Prove that there is a bijection
o:V —[n]:={1,....n}
such that for allv,w € V, (v,w) € D implieso(v) > o(w). Such ao is called a
topological sortingf G.

(i) Prove that for givenH and acyclic orientation7 of H, the following statements are
equivalent.

(&) G has auniquetopological sorting,

(b) forall v,w € V, there iseithera directed path from to w or a directed path from
w o v,

(c) G has a directed Hamiltonian path (a directed path that visiery vertex exactly
once).

(iif) Conclude thatK, hasn! acyclic orientations, each of them corresponding to a uaiqu
topological sorting.

12

Chapter 2

Smallest Enclosing Balls

In this chapter, we study a classical problem from componali geometry, the problem of
computing the ball)(S) of smallest radius (equivalently, smallest volume) thattams a
given setS of n points ind-dimensional Euclidedrspacek?, see Figure 2.1.

O(S)

Figure 2.1: The smallest enclosing ball of a point set

2.1 Basics

We consider the following generalization of the smallesi@sing ball problem (in this chapter,
S is always a finite set).

Definition 2.1 Let R C S C E“. If there is a unique closed balf of smallest radius that
containsS and has the points ik on its boundary (we also say th&tgoes throughk and
coversS), this ball B is denoted by)(R, S). O(0, S) will be abbreviated ag)(S). Moreover,
we set)(() := 0, the ‘empty’ ball.

Lemma 2.2 With R C S as above()(R, S) exists if there is some baB} through R that
coverssS.

13

Bl BQ
R

Figure 2.2: Proof of Lemma 2.2

Proof. A standard compactness argument from calculus shows ttiaeiié is some ball

throughR, coveringS, then there is also a smallest ché.remains to show that the smallest

ball is unique. Assume there were two smallest bAlIsB, through R that coverS. Then

the picture would look like in Figure 2.2, and we could find aeresmaller ball3’ (dotted)

through R that coversS, a contradiction. Exercise 2.1 asks you to prove the existexi3’

formally, here we are satisfied with the geometric intuition
Because for any finite sét, there is always a ball that cove$ss we obtain

Corollary 2.3 For S C E?, O(9) exists.

In general, the set® and.S can be considered @asnstraintsunder which we want to find
a ball with smallest radius. Because adding constraintsatalatrease the smallest radius, the
following is obvious.

Fact2.4 LetR C R',S C S’ C E“. Provided, the respective balls exist, we get

O(R, 5) < O(R, 5,

where balls are compared by radius. (Note thatf ?, S) and O(R’,S’) have the same
radius, they are both smallest balls through coveringS, so they must be equal by Lemma
2.2))

The next lemma will be the basis of our randomized algorig)rfdr the efficient compu-
tation of O(5).

Lemma25LetR C S CEYpe S\ Rsuchthat)(R,S) (and consequently alsO)(R, S\
{p})) exists. If

p & OR, S\ {p}),
thenp is on the boundary of)(R, S), equivalently
O(R,S) = O(RUA{p}, 5).

Proof. Assume that)(R, S) does not have on its boundary, but in its interior. Becausés
outside of O (R, S\ {p}), the two balls are different, and the situation is as in FegB.

For us,E is just the vector spadk?, equipped with the standard scalar prodiicty) = p” ¢ that allows us
to measure the Euclidean notip|| = 1/ (p, p) of a point.

The set of centers of balls throudt) coveringsS, whose radius is at most the radiusifis a compact set.
The function that maps each such centty the radius of the smallest ball with centahroughR that coversS,
is a continuous function which therefore attains its minimover the compact set. The corresponding center is
the center of some smallest ball throughcoverings.

14

Figure 2.3: Proof of Lemma 2.5

Just like in the proof of Lemma 2.2, we can use Exercise 2.1ségltly shrink (R, .S)
to obtain a ball3 (dotted) which is smaller thaf) (R, S), but still goes througtk and covers
S, which is a contradiction.
For the remainder of this chapter, we makgemeral position assumptiorAlthough the
algorithms (can be made to) work without it, general posisonplifies the correctness proofs
and gives us more time for the performance analysis.

Assumption 2.6 For all setsF' C S such thatO)(F, F') exists, and for all pointp € S\ F,
O(F, F) doesnotgo throughp.

This assumption forbiddegeneratsituations like in Figure 2.4. In the plane, it implies that
no ball goes through four points, but the left part of the fegshows that even balls through
three points may be degenerate. We will point out where weermigk of the assumption.

General position can be achieved by a technique cal@abolic perturbatiorthat inde-
pendently moves the points by infinitesimal amounts, sotttetdegeneracies disappear. As
indicated above, general position is convenient for usnotinecessary in order to establish
the results of this chapter.

O(F, F)

V2)

Figure 2.4: The smallest ball throughhas another point on its boundary

15

2.2 Algorithm Leavel t ThenTakel t

In this section, we develop our first algorithneavel t ThenTakel t (R, S) for computing

O(R, 5).
Precondition 2.7
(i) O(R,S) exists, and

(i) R is affinely independentmeaning that whenever there is a sequence of real numbers
(Ap)per SUch that
ZPER)‘pp = 0,
ZpER)‘p - 07

then), = O forall p € R.

The empty set is affinely independent. For nonempty setsieaiffidependence is closely re-
lated to linear independence. The following is not diffidolverify (Exercise 2.2).

Fact 2.8 For R C E?, R # (), the following statements are equivalent.
() Ris affinely independent.
(i) Forall p € R, the setof vector§g —p | ¢ € R\ {p}} is linearly independent.
(iii) For somep € R, the set of vector§g —p | ¢ € R\ {p}} is linearly independent.
The important consequence for us is

Corollary 2.9 Let R C E? be affinely independent. TheR| < d + 1.

Under the preconditions aboveeavel t ThenTakel t (R, S) will return a setF’, satis-
fying the following

Postcondition 2.10
() RCFCS,
(i) OF, F) = O(R,5) = O(R, F), and
(i) F'is affinely independent

We call such a sef’ abasisof the pair(R, S).2 Moreover, Assumption 2.6 implies that
is theuniquebasis? Exercise 2.3 shows th&})(F, F') is easy to compute in cageis affinely
independent. The algorithm internally makes use of thisdad can actually be assumed to
deliverO(F, F) along with F'. Here is the algorithm.

3By now, it is not clear that every paiz, S) which satisfies Precondition 2.7 has a basis at all; thisfelithw
from the algorithm’s correctness proof below.

4Assume R, S) has two different baseg F’. Then there is a point € F'\ F, say, and because GJ(F, F) =
O(F’, F"), p lies on the boundary af)(F, F'), a violation of the general position assumption.

16

Algorithm 2.11
Leavel t ThenTakel t (R, S):

| FR=S5THEN
F=R
ELSE

choosep € S\ R uniformly at random
F :=Leavel t ThenTakel t (R, S\ {p})
| Fp ¢ O(F, F) THEN
F :=Leavel t ThenTakel t (RU {p},S)
END
END
RETURN F'

2.2.1 Correctness

In order to prove correctness of the algorithm, we use indoabdn the size ofS \ R. If
S\ R| = 0, the algorithm output¥” = R = S, and Postcondition 2.10 holds by affine
independence ak. For|S \ R| > 0, the preconditions ofR, S) and Lemma 2.5 ensure that
O(R, S\ {p}) and—ifLeavel t ThenTakel t (RU{p}, S) is called—)(RU{p}, S) exist.
We conclude that the preconditions hold fezavel t ThenTakel t (R, S \ {p}), and using
the induction hypothesis, the call returns an affinely irehgent sef’ such that

O(Fv F) = O(R’S\{p}> = O(R’ F)
Case (a) p € O(F, F). ThenO(F, F) is a ball through® that coversS, hence

where the latter inequality is Fact 2.4. Therefarg F, F') = O(R, S) and the postconditions
hold.

Case (b) p ¢ O(F, F). If we can show thaRU{p} is affinely independent, the preconditions
for Leavel t ThenTakel t (R U {p}, S) are satisfied, so by induction, the call returns an
affinely independent set with

O(F, F) = O(RU {p}, 5) = O(R U {p}, F).
By Lemma 2.50)(R U {p}, S) = O(R, S) in this case, so

follows. It remains to prove that

Q(F>F> :O(R7F)

17

in order to establish the postcondition. Assume this doekaid. Then))(F, F') andO(R, F)
are different balls that both go throughand coverF’; in addition,O(F, F') coversS \ F', and
by Assumption 2.6, no point ifi \ F' is on the boundary of)(F, F'). The situation is therefore
as in Figure 2.5, and we can for the third time invoke Exergide slightly shrinkingD(F, F)
yields a ball5 (dotted) which is smaller tha@)(F, F'), but still goes througiR and coversS,
a contradiction to (2.1).

O(F, F)

Figure 2.5: Proof of Postcondition 2.10 in Case (b)

It remains to prove affine independencefd {p} if p ¢ O(F, F) = O(R, S\ {p}). For
this, let us consider real valueg, ¢ € R U {p} such that

> A =0, (2.2)
g€ RU{p}

dooa =0 (2.3)
q€RU{p}

Letc (¢, respectively) and (o', respectively) be center and squared radiuSoR, S\{p})
(O(RU{p}, S), respectively). We know that

p = llg—c?=q"¢—2"q+c"¢, qeR, (2.4)
p<p = |lp=—c|*=p"p—2"p+ " (2.5)
po= llg=<IP=q"q-2"q+ "¢, qe RU{p}. (2.6)

Using (2.2) and (2.3), equations (2.4) and (2.5) imply

ME—p) = > Mg,

g€ RU{p}

0= Z)\quq.

g€ RU{p}

It follows that\, = 0, and because® is affinely independent, we also get= 0,¢ € R. This
means,kR U {¢} is affinely independent.

while (2.6) yields

18

2.2.2 Runtime

While the correctness of Algorithm 2.11 holds for any choi¢eppits efficiency crucially
depends op being chosen at random (Exercise 2.5).

Each call ofLeavel t ThenTakel t performs abasis computation('/ := R’) or a
violation test('p ¢ (O(F, F)’), and only constant-time operations otherwise (exclgdime
operations within the recursive calls). This means, thal ttimber of basis computations and
violation tests throughout all recursive calls is a good soea of the algorithm’s performance
(Exercise 2.4 shows that it would be enough to count the tioridests.)

Violation tests. Let ¢,(n) be the maximunmexpectechumber of violation tests in a call to
Leavel t ThenTakel t (R, S), where(R,S) satisfies Precondition 2.75 \ R| = n and
d + 1 —|R| = k.° Note that by Corollary 2.% is a nonnegative number. We get

te(0) = 0, (2.7)
to(n) = to(n—1)+1, n>0. (2.8)

While (2.7) is obvious, (2.8) requires a little argument./if = d + 1 already, there cannot be
a second recursive call with parameteRsU {p}, S), because the correctness proof shows that
in this caseR U {p} would have to be affinely independent. This is impossibleafset with
d + 2 elements.
Another way to look at it is that in case @R| = d + 1, there is a unique ball through—
this follows from Exercise 2.3(ii). Therefore, (R, S) exists (which is our precondition),
we must have)(R, S) = O(R, R), meaning that we will never find a poipte S\ R outside
of O(R, R).
Fork,n > 0, we get

tr(n) <tg(n—1)+ 1+ pe(n)tr_1(n —1), (2.9)

wherep,(n) is the maximum probability of the event & O(F, F)’inacalltoLeavel t ThenTakel t (R, S),
with (R, S) as in the definition of;(n). The following is the important

Observation 2.12 pi(n) < k/n.

Proof. If p ¢ O(F, F) = O(R, S\ {p}), thenp is contained in the unique badisof (R, 5).
If not, Postcondition 2.10 and Fact 2.4 would yield

O(R7 S) = O(BvB) = O(R7 B) < O(R,S\{p}) < O(R7 S)»

henceO(F, F) = O(R, S\ {p}) = O(R,S), which is a contradiction tp ¢ O(F, F). It
follows that

prob(p ¢ O(F, F)) < prob(p € B) = '@ § j;' <At B _E

Swe call thiscomputation because in an actual implementatign(F, F') would be computed and returned
along with F'; subsequent violation tests wifh (F, F') are then very cheap.

6for fixed (R, S), the number of violation tests is a random variabl¢R, S); then we define(n) =
max{FE(X(R,S)) | (R, S) satisfies Precondition 2.} \ R| = n andd + 1 — |R| = k}. This maximum exists,
because there are only finitely maogmbinatorially differenpairs(R, .S).

19

Lemma 2.13 For k,n > 0,
tk(n) S Cen,

where
B 1, k=0,
Ck = 1+k6k_1, k>0 -

Proof. We proceed by induction over, noting that the bound holds far = 0 by (2.7) and
for k = 0 by (2.8). Forn, k > 0, we inductively obtain

tk(n) tk(n — 1) +1+ %tk_l(n — 1)

IN

IN

k
cg(n—1)+1+ ﬁck_l(n —1)

< cn—1)+ 1+ kcg_q
= Cgnh.
Corollary 2.14 For k,n > 0,
"1 n, k=
| - — 9 - 9
tr(n) < k'zgz’! " { lek!|n, E>0 ~
wheree ~ 2.718 is the Euler constant.
Proof. Fork = 0, the statement is immediate. Hor> 0, we get
k k
Cp 1 Ck—1 - 1 Co 1
MR- _;¢!+01 _;i!‘
This implies
A > k!
Ck:k!Zﬁ:ek!_ Z E:ek!—e,
=0 i=k+1
wheres < 1 for £ > 0. Because;, is an integer, the bound follows. H]

It follows that forfixeddimensiond, the expected number of violation testdiear in |.S|.

Theorem 2.15Let S C E? be a set ofn points. AlgorithmLeavel t ThenTakel t (0, S)
computes)(.S) with an expected number of at most

tara(n) < [e(d+ 1)l n

violation tests.

20

Basis computations. Let b,(n) be the maximum expected number of basis computations in
acalltoLeavel t ThenTakel t (R, S), where(R, S) satisfies Precondition 2.75 \ R| = n
andd + 1 — |R| = k. With the same arguments as fp(n), we getb,(0) = by(n) = 1 and

be(n) <bg(n—1)+ %bk_l(n —-1), k,n>0. (2.10)

With |
n:
Bk+1(n + 1) = bk(n)y,

(2.10) is equivalent to

Bjy1(n+1) < nByy1(n) + Bi(n),
n+1]

)]

Checking the base cases reveals that in genBral,(n + 1) £ {

which looks like the recurrence for tlegcle number {

n+1

k+1]:wehave

1 1
Still, b,(n) can be bounded via cycle numbers. Inductively, one can prove

Lemma 2.16 For k,n > 0,

Using the inequality

(easily provable by induction as well, and also to be foun&mo Welzl's reading assign-
ments), we obtain

k
k .
< H,)' = (1+ H,)".
i <3 () 1 = 1+ 1
Theorem 2.17 Let S C E? be a set ofn points. AlgorithmLeavel t ThenTakel t (0, S)
computes)(.S) with an expected number of at most

bas1(n) < (1+ H,)™

basis computations.

7 n
k
assignments.

is the number of permutations af elements withk cycles, see for example Emo Welzl's reading

21

This bound is remarkable, because it shows that the expeatater of basis computations
is not only smaller than the expected number of violatiorntsteglus two (which we know
from Exercise 2.4), bunmuchsmaller: it is only polylogarithmic instead of linear. Onasis
computation can be done in tin@d®) (by Exercise 2.3, computing a bal)(F, F') amounts
to solving a system of linear equations), while a violatiesttcost)(d), because the relevant
ball has been computed in a previous basis computation.méans, the actual time required
to perform all violation tests asymptotically dominates time for the basis computations. We
can summarize our findings as follows.

Theorem 2.18 Let S C E< be a set ofn points. AlgorithmLeavel t ThenTakel t (0, .5)
computeg)(S) in expected time
O(d(d+ 1) n).

Small cases. If |S| = n = d, the bound of Theorem 2.18 is not too impressive, and we want
to improve on it. Let us concentrate on the case d+ 1. Exercise 2.6 shows that in this case,
the bound of Corollary 2.14 on the expected number of viotatésts is an overestimate, and
that

tir1(n)=2"—-1, n<d+1 (2.11)

holds. The exercise also shows that the randomizatidreswvel t ThenTakel t becomes
irrelevant in this case. In the next section, we developradpanized) algorithm which performs
better if S is anaffinely independerget (which in particular means| < d + 1).

2.3 More Basics

Before we can describe the algorithm, we need some furtheasifacts that will guarantee
its correctness. Recall that we are still working under theegal position Assumption 2.6. In
this case, we have

Observation 2.19 Let R C S C E? such that)(R, S) existsp € S\ R. Then

O(R,S) = O(R, S\ {p}) & peO(R,S\{p}),
O(R,S)=0ORU{p},S) & p& OR,S\{p}).

In particular, O(R, S) equalseitherO(R, S\ {p}) or O(R U {p}, S), but not both.

The first equivalence is obvious, the second one follows ftemma 2.5, plus the observation
that

O(R, 5\ {p}) # O(RU{p},9).
This holds, because otherwigawould be on the boundary 6f)(F, F'), with F' being the basis
of (R, S\ {p}), just what we excluded with our general position assumption
In addition to the well-knowviolation testy‘'p ¢ (O(F, F)’), the algorithm will perform
looseness testéet us introduce both notions formally.

22

Definition 2.20 Let F' C E? be affinely independent.
(i) p ¢ FviolatesF if and only if O(F, F') # O(F, F U {p}).
(i) p € Fisloosein F ifand only if O(F, F) # O(F \ {p}, F).

OF\GhE)

Figure 2.6:p is loose inF’; the other two points are ‘tight’

Figure 2.6 illustrates the situation. Testing loosenessasy, because Observation 2.19
yields the following

Corollary 2.21 Let F' C E? be affinely independeng. € F is loose inF if and only ifp does
not violate " \ {p}.

Now we are in a position to state the main lemma underlyingatgerithm of this section.
It says thatF" is a basis of R, .S) if and only if no point inS \ F' violates /' and no point in
F\ Risloose inF.

Lemma 2.22 Let R C S C E? be a pair satisfying Precondition 2.7, and consider an affine
independent set’ with R C F' C S. Then the following two statements are equivalent:

() Fisabasis of R, S), meaning that
O(F, F) = O(R, S) = O(R, F).
(i) Forall pointsp € S\ F,
O(F,F) = O(F,FU{p}) (nopointinS\ F violatesF) (2.12)
and for all pointsp € F \ R,

O(F, F)=O(F\A{p},F) (nopointinF \ Risloose inF). (2.13)

23

Proof. Let F' be a basis of R, S). Using Fact 2.4, we get

O(F, F) < O(F, Fu{p}) <O(F,5) = O(F F), peS\F

where the latter equality holds becaysgr, F') coversS. Similarly,

O, F) 2 O(F\{p}, F) =2 O(R, F) = O(F, F), peF\R,

becausée is a basis. It follows that equality holds in all cases, aidgiestablished. In the
other direction, (2.12) implies th&b)(F, F') coversS, so if we can show that (2.13) implies
O(F,F) = O(R, F), we are done, becauge(R, F) coversS, soO(R, F) = O(R,S5)
follows.

Assume that)(F, F') # O(R, F') which actually mean§)(R, F') < O(F, F). Let E be
inclusion-maximal such that C £ C F and

O(E,F) < O(F,F). (2.14)

By our assumptionE exists; choose a poipte F'\ E. With Observation 2.19 applied to the
pair (F'\ {p}, F), (2.13) yields

OF \{p}, F\ {p}) < O(F, F). (2.15)

Moreover,)(E, F') coversp, while O(F \ {p}, F'\ {p}) does not (use (2.13) and Corollary
2.21). Both balls go through' and coverF \ {p}.

OF\A{p}, F\ {p})

Figure 2.7: Deriving a balB which contradicts the choice &
The situation is therefore as in Figure 2.7, and with Exer2id applied for the fourth time,
we find a ballB (dotted) which goes through U {p}, coversF’, and is smaller thatq)(F, F)
by (2.14) and (2.15). It follows that

O(E U {p}, F) < O(F, F),

a contradiction to our choice @. H]

24

2.4 Algorithm Takelt Or Leavel t

This section describes the algorithm for computingr, S) if S is affinely independent. In this
case (R, S) always exists by existence 6)(5,.S) (Exercise 2.3 and Lemma 2.2). Beyond
the general position Assumption 2.6, no further precood#iare needed. Just like algorithm
Leavel t ThenTakel t, Takel t Or Leavel t computes the unique basisof (R, S), see
Postcondition 2.10. Knowing that for apyc S \ R, O(R, S) equals eithet)(R, S \ {p})
or O(R U {p},5) (Observation 2.19), the algorithm flips a coin to decide Wtof the two
balls is (recursively) computed first. If later, this chotoens out to be wrong, the algorithm
computes the other (correct) ball in a second recursive call

Exercise 2.7 asks you to prove that the following algoritimdeiled returns the basis of
(R,S). With the material from the previous section, this can beedathout any further
geometric reasoning about balls: just as we got really famwith it, we don’t need Exercise
2.1 anymore!

Algorithm 2.23
Takel t Or Leavel t (R, S5):

| FR=S5THEN
F=R
ELSE

choose somg € S\ R
choose a bit; € {0, 1} uniformly at random
| F 3 =0THEN
F :=Takel t O Leavel t (R, S\ {p})
| F pviolatesF THEN
F :=Takel t O Leavel t (RU{p},S5)
END
ELSE
F :=Takel t O Leavel t (RU{p},S5)
| Fpisloose inf” THEN
F :=Takel t O Leavelt (R, S\ {p})
END
END
END
RETURN F

2.4.1 Runtime

As before, we count the expected number of violation anddoess tests as well as the ex-
pected number of basis computations (= R’), which will give us a reasonable estimate of
the algorithm’s performance.

25

Violation and looseness tests. Let t(n) denote the expected number of violation and loose-
ness tests in a call fbakel t Or Leavel t (R, S), whereS C E? is affinely independent and
1S\ R| =n.B We get

t(0) = 0,
t(n) = t(n—l)—l—l—i—%t(n—l), n >0,

because with probability exactly 2, the ball computed in the first recursive call was the wrong
one, in which case we need a second call of expected @ost 1).
It follows that

H(n) = 1+gt(n—1) _ 1+g+ (g)2+---+ @)nl+ (g)nt(O) —9 ((g)n—1),

where we have usef;" , 2 = (™*! — 1)/(z — 1). This is still exponential, but a substantial
improvement over the bound (2.11).

Basis computations. Let b(n) denote the expected number of basis computations in a call
to Takel t Or Leavel t (R, S), whereS C E?is affinely independent and \ R| = n. We
obtain

which solves to

As before, we can argue that any basis computation as wefiyagialation and looseness
test can be performed in tinte(4*), and we get

Theorem 2.24Let S C E? be a set ofn < d + 1 affinely independent points. Algorithm
Takel t Or Leavel t (0, .S) computeg)(S) in expected time

O (d*1.5").

The practical implication of this result is that algoritirakel t Or Leavel t can be used
to compute the smallest enclosing ball of an affinely indeleen point setS C E*° pretty
quickly. In contrast, algorithrheavel t ThenTakel t is already very slow fod > 30.

It is a natural question whether we can further reduce thebeurof primitive operations
(violation and looseness tests, basis computations). i$hredleed possible, and in the next
chapter we will do this in the more general frameworkiaofque sink orientations

8The fact that this number only dependsroand not on the specific paif, R), can inductively be established
along the lines of the subsequent analysis.

26

Bibliographical Remarks

The algorithmLeavel t ThenTakel t is due to Welzl [16].Takel t Or Leavel t is due to
Gartner and Welzl [4]. The proofs via purely geometric argataeising Exercise 2.1 are new.
The nondegeneracy assumption 2.6 can be removed. Fortalgareavel t ThenTakel t
this is easy and is already done in Welzl's original papel.[Féscher and @rtner do this for
Takel t Or Leavel t [2].

Exercises

Exercise 2.1Let B be a ball with center: and positive squared radiys Then

B={zeE"| fp(x) <1}, [fs(x) =]z —cl*/p.

LetB,, B; be two balls with centers, ¢; and positive squared radii,, p;. Moreover53,NB; #

0.
(i) Prove that for any\ € (0, 1), there is a ball, with

[(x) = (1 = A) f5, + Af,.-
(i) Show that ifB, and B, both go through? and coversS, then the same is true f@,.
(iii) Let py be the squared radius @&). Prove thatp, < max(po, p1) for A € (0,1).
Exercise 2.2 Prove Fact 2.8.
Exercise 2.3Let F' C E? be affinely independen; # 0.

(i) Prove that the center of)(F, F') is in thealffine hullof F'. The affine hull of a s&p is
the set of all affine combinations 6f,

aff(Q) :={) Mg |Vg: A eRD N, =1}

qeqQ q€Q

The affine hull is an affine subspace of limear hull(set of all linear combinations),

lin(Q) == {D Mg | Vg: A € R}.
qeQ

Argue directly for|F| = 1. For |F'| > 1, proceed in the following steps.
(a) Prove that for any point € F and any points € £,
seaff(F) < s—peln(F —p),
where

F—p:={q¢—plqge F\{p}}

27

(b) Forp € F, let M be thed x (| F'| — 1)-matrix whose columns are the pointsfof- p
in any order. Show that/” M is invertible.

(c) Fors € E4, consider the point
s i=p+ MMT"M) M (s - p)
and prove (using (a)) that" € aff(F’). (s* is the projection ok ontoaff(F').)

(d) Prove that]|(s* — p)||2 + ||s — s*[|> = ||s — p||>.

(e) Assume that the center@f(F, F') lies outside offf(F"), and show (using (d)) that
this leads to a contradiction.

(i) Prove that there is ainiqueball B through F' whose center is iaff (F'). It follows that
B = O(F, F). Use the settings and results of part 1 to determine the cerdes in the
form

c=p+ M),

whereX = (\y,..., \jr—1)" is the unique solution to a suitable system of linear equa-
tions.

Exercise 2.4 Prove that in a call ofLeavel t ThenTakel t (R, S) with R # S, the number
of basis computations is at most the number of violatiorsigstis one.

Exercise 2.5LetS = {py,...,p,} C E?and consider the deterministic variant of Algorithm
Leavel t ThenTakel t (S, R) in which the line

choosep € S\ R uniformly at random
is replaced by the line
choosep as the point with largest index ifi \ R.

Prove that for any fixed dimensiah> 1, there exists a point se&t for which the number of
violation tests in the deterministic variantign?+1) (the constant hidden in tie may depend
ond). (Hint: find an example fod = 2 first, then try to generalize it.)

Exercise 2.6 Prove that forn < k,

Show that this bound is best possible by constructing & &t = d+ 1 points inE¢ for which
the expected number of violation testdimavel t ThenTakel t (R, S) is exactly2l5\Fl — 1
foranyR C S.

Exercise 2.7 Prove that AlgorithnTakel t Or Leavel t (R, S) returns the unique basig of
(R,S).

28

Exercise 2.8 We have shown that algorithbreavel t ThenTakel t computes the smallest
enclosing ball of am-point setS C E¢ with an expected number of at maest ;n violation
tests, where,,, is some constant only depending @nProve that for any constarit’ > 1,
there is an algorithm that requires at most

2Kcgi1n
violation tests, with probability at least
1
1-— oK

This means, there is an algorithm for smallest enclosindslibbt achieves linear runtime not
only in expectation, but with arbitrarily high probability.

Exercise 2.9 The ideas of algorithnbeavel t ThenTakel t can be used to solve a linear
program ind variables andr inequality constraints in timé(n), if d is a constant. Here, we
consider linear programs in two variables, x5, of the form

minimize c;x; + ¢

SUbjeCt 10 a;1201 + aors < bi, 1=1,...,n,
1,72 > 0,
wherea;, a;2, b; are arbitrary real numbers foi = 1,...,n, andc, c; are nonnegative real

numbers. Develop a randomized algorithm with expected ment?(n) for finding a pair
(%1, T2) with smallest value:; 7, + ¢, among the pairs that satisfy all + 2 inequality
constraints. The inequalities,, x5 > 0 together withe;, c; > 0 ensure that this smallest value
is bounded from below Ly

If the linear program isinfeasible meaning that no paifz;, z2) satisfies all inequalities,
the algorithm should output this fact. Moreover, make shat your algorithm correctly deals
with the case where the optimal pdit,, Z,) (of the linear program, or of some subprogram)
is not unique.

29

Chapter 3

Unigue Sink Orientations of Cubes

In the previous chapter, we have taken a geometric approamidéer to develop algorithms for
computing the smallest enclosing ball of a finite pointSeT E?. In this chapter, we adopt
a purely combinatorial view and show that any instance optiodlem defined by aaffinely
independensetS of n < d + 1 points has the structure ofumique sink orientatiofflUSO) of
then-cube graph. From the global sink of that orientation, thelsest enclosing ball)(.S) of

S can be read off.

It follows that any (in particular, any randomized) algbnit for finding the sink of a general
USO can immediately be applied to the smallest enclosingbablem?

This chapter deals with randomized sink-finding algoritforsgeneral USO, quite in the
spirit of Randomix’s strategy for quickly finding the exit ireRerminatus’s maze, see Chapter
1. Even though the problem is more general than smallesbging balls, we will be able to
improve over the results of the previous chapter. The masae for this is that our combi-
natorial view reveals some structure of the smallest emmgjdsall problem that we didn’'t see
(and therefore couldn’t use) before, probably because we ww® focused on the geometry.
In particular, Algorithm 2.23 from the previous chapter—@¥happeared to be pretty fancy
back then—will in the USO framework turn out to be a very naksandomized algorithm for
finding the sink.

3.1 Definition and Examples

The vertices of thex.-dimensional cube can be identified with the subsets of somlement
setNV (which for most examples in this chapter will simply be theSe= [n] := {1,....n}).
Thegraphof then-cube is the graphly,, = (V, E), where

V o= 2V ={X| X C N},
E = {{X, X {i}}| XxXe2V iec N}

There is a number of other interesting problems which pragitff USO techniques, but we don’t have time
to discuss them here.

30

Here, @ is thesymmetric differencef two sets? This means that two subsets dfare con-
nected by an edge if and only if they differ in exactly one ed@mand this element will be the
label of the edge. Figure 3.1 shows the graph ofikmube with edge labels.

Figure 3.1: The graph’; with edge labels
The faces of the cube can be identified wittervalsof vertices
[A,B] . ={X | AC X C B}.

The faces of the formX, X] are the vertices themselves, N] is the whole cube, and \ A|
is the dimension of the fadel, B]. Figure 3.2 depicts two faces of the 3-cube in bold.

[{2,3},{1,2,3}]

Figure 3.2: Faces df’;

An orientationof C,, is a directed grapth = (2, D), such thatD contains exactly one of
the ordered pair6X, X @ {i}) and(X @ {i}, X), forall X C N andi € N.

2A® B := (AU B) \ (AN B) is the set of elements which aregractlyone of the two sets.

31

Definition 3.1 An orientationO of C,, is called aunique sink orientatioUSO), if for all faces
[A, B], the subgraph o® induced by A, B] contains exactly one sink. We also say thatB]
contains a unique sink and denote this sinkéy(A, B).

In contrast to the setup of Exercise 1.1, we do not only reqgte whole graph to have a
unique sink, but also certain subgraphs, in this case alirayns of the cube graph that are
induced by cube faces. This makes the orientations morefspend we will see that the
lower bound on the number of vertex evaluations establigh&aercise 1.1 does not hold here
(Exercise 3.4). It’s time for some examples.

; : eye ; : saddle
; : bow ; : cycle

Figure 3.3: Orientations af’,

The 2-cube has (up to isomorphisms) four different orieomst see Figure 3.3. Theye
and theboware USO, but the other two aren’t: teaddlehas two sources and two sinks, while
thecyclehas no sink at all. In all cases, we only need to check theesitigimensional face,
because vertices and edges always have unique sinks.

While cycles cannot occur in a USO of tlig, there is one USO of thé’; which has a
cycle, see Figure 3.4: there is a unique sink in the whole ,cahe every2-face is a bow.

3.2 Smallest Enclosing Balls Revisited

Here is our motivating example for the concept of USO. Reball tor an affinely independent
setS C E4 |S| = n < d+ 1 and a subset’ C S, we have defined that a poipte S\ F'
violatesF' iff O(F, F) # O(F, F U{p}), and that a poinp € F isloosein F if O(F, F) #
O(F \ {p}, F) (Definition 2.20).

32

Figure 3.4: Cyclic USO of’;

Theorem 3.2 For S C E? affinely independent and in general position according teulsp-
tion 2.6,|S| = n < d + 1, define

D = {(F,FU{p}) | FCS, peS\F, pviolatesF'},
D_ = {(F,F\{p})|FCS, peF, pislooseinF}.

(i) The graphO = (2%, D_, U D_) is a USO of the:-cube.
(i) Forany A C F' C B, the following statements are equivalent.

(@) F'=®o0(A,B)
(b) Fisthe uniqudasisof (A, B) w.r.t. smallest enclosing balls, meaning thiat A, B) =
O(F. F) = O(A, F).

Proof. By Lemma 2.22 ' is the basis of A, B) if and only if no pointinB \ F violatesF
and no point inf' \ A is loose inF', which by definition ofO equivalently means thdt is a
sink in the facd A, B]. By general position(A, B) has a unique basis, $d, B] has a unique
sink, and both sets coincide. This proves (i) and (ii). Hl

Figure 3.5 shows the two types of USO on the 2-cube that cae &dm the smallest
enclosing ball problem over a set of three affinely indepahg@eints in the plane. The ori-
entations differ in exactly one edge orientation: in theeampgase; violates{p, ¢}, while in
the lower case, it doesn’t. The smallest enclosing ball eftkinee points (whose boundary set
corresponds to the sink of the USO) is drawn solid.

3.3 The Algorithmic Model

In the previous chapter, we have developed Algorithm 228kel t O Leavel t) which
computes the smallest enclosing ball of aSef affinely independent points with an expected

33

Figure 3.5: USO coming from smallest enclosing balls

3\ 15!
(2)
basis computations (and about twice as much violation anskloess tests, involving a previ-
ously computed basis and some other point).

One goal of this chapter is to show that this algorithm canallyt be formulated as a (very
simple) sink-finding procedure for general USO, where ade@mputation translates to a so-
calledvertex evaluationin itself, this generalization does not give us new redotsmallest
enclosing balls; however, the point s that the sink in a gaiéSO can be found with even less
vertex evaluations thafakel t Or Leavel t needs basis computations, and thigsgive us
an improved algorithm also for the special case of smallesibsing balls.

The model is as follows: the USO is given to us implicitly, amel can obtain information
about it through vertex evaluations: evaluating vetXexeveals the orientations of the incident
edges. We are looking for a deterministic (randomized) ritlgm that minimizes the (ex-
pected) number of vertex evaluations necessaey&buatethe sink of any USO of the-cube.
More precisely, we define

number of

t(n) = min mgxt(A, 0),

where the minimum is taken over all deterministic algorithithe maximum is taken over all

34

USOs of then-cube, and (A, O) is the number of vertex evaluations that algoritdrmeeds
in order to evaluate the sink @f. Similarly,

t(n) = min mgxt(A, 0),

where the minimum is taken over aindomizedalgorithms, and(4, O) is the expected num-
ber of vertex evaluations that algorithiineeds in order to evaluate the sink®f

In still other words, the goal is to find the (randomized) aigpon with the best (expected)
worst-case performance.

The following bounds are easy to see.

Observation 3.3 ~
t(1) = 2, t(1)=3/2,

H2) — 3, (3.1)

and

t(n) < t(n) < 2"t 4 1. (3.2)

Proof. Any deterministic algorithm for the 1-cube can be forced valgate two vertices:
because the adversary knows which vertex is evaluatedHestill make sure that this one is
not the sinkZ(1) < 3/2is clear, because one possible randomized algorithm chtlos®ertex
to be evaluated first among the two vertices with equal pritibabBecause the adversary is
oblivious, he must commit to an orientatibeforethe algorithm makes its random choice (just
like Determinatus has to set up a maze before Randomix emtesesei Chapter 1). Then the
expected number of vertices evaluated i8(1 + 2) = 3/2. Itis also clear that one cannot do
better: any randomized algorithm has to choose the firsexdd be evaluated by assigning
some probabilityp to one of the vertices antd — p to the other. Ifp # 1/2, the adversary
(who knowsp, just like Determinatus knows Randomix’s dice-rolling stgy in Chapter 1)
will place the sink on the vertex less likely to be chosendileg to an expected number of
strictly more thar/2 vertex evaluations.

In order to see(2) < 3, we apply (3.2) and fot(2) > 3, the adversary places the source
on the first vertex that is evaluated. Then an easy case ash@vs that for any choice of the
second vertex, there is a USO in which the first one is the sobid the second onem®t the
sink. Thus, the adversary can always enforce a third evaluat

The general bound affn) < 27! + 1 follows like in Exercise 1.1(ii), and(n) < t(n)
is obvious, because any deterministic algorithm can beidered as a randomized algorithm
that doesn't use its random resources. Hl

In case of smallest enclosing ballslif, an evaluation of verteX can be implemented in
time O(d?); we needD(d?) time to compute)(X, X), and once we have it, the orientations
of the at most/ incident edges can be computed in timél) per edge, by doing one violation
or looseness tedtThis means, any algorithm for finding the sink in a USO with €apected
number of) steps can be used to compute the smallest enclosing balbdfiaely independent
point set in (expected) tim@(t - d*).

3We didn’t argue how to perform a looseness tesif) time; it can be done, but if you have doubts, an
O(d?) bound will do as well, leading to an overall bound@fd*) per vertex evaluation.

35

3.4 Basic Theory

Any USOO = (2, D) of C,, defines amutmaps : 2V — 2, wheres(X) is the set of labels
of outgoing edges ok,
s(X):={i| (X, Xa®{i}) € D}.
Obviously,
s(®@o(0,N)) =0,
and, more generally,
s(@o(A,B))N(B\A) =0. (3.3)

Equation (3.3) holds, because any edge incident to the sithklabela € B\ A is an edge
within the face[A, B] and is therefore incoming.

Figure 3.6 shows the outmap values associated to a ba.ofWe denote the outmap
defined by a particular orientati@® with se.

s({1,2}) = {2}

s({2}) = {1,2}

Figure 3.6: Outmap of a USO

It is no coincidence that in Figure 3.6, the outmap is a hipectThis always holds.
Lemma 3.4 Lets : 2V — 2% be the outmap of a USO. Thens is a bijection.

Proof. It suffices to show that is injective. For this, fix two verticex andY such that
s(X) =s(Y) = A C N. By iterating Exercise 3.3(i), we see that reorienting atiesiofO
with labels inA leads to a USQ@’, where

S(/)/(X) = So (Y) - ®7

meaning that bottX andY” are global sinks i®’. It follows thatX = Y, sos is injective. H]
Here is a characterization that tells us whether a functiog” — 2% is the outmap of a
USO. Its (easy) proof is left as Exercise 3.3(ii)

Lemma 3.5 A functions : 2V — 2% is the outmap of a USO if and only if
(XeY)Nn(s(X)@s(Y))#0, VX #Y C2V.

This simple condition hits two birds with one stone: apadnirencoding the actual USO
property, it guaranteesonsistencyof the orientation, meaning thaxactly oneof the two
neighboring vertice and X @ {i} has an outgoing edge with label

36

Inherited Orientations. In the introduction to this chapter, | have promised somenoal
structure that we haven't seen for smallest enclosing .bidise it comes.

Theorem 3.6 Let O = (2", D) be a USO of théN|-cube with outmap = sp. Fix A C N
and consider the function: 2¥\4 — 2M\4 defined by

§(X) = s (®o(X,X UA)).
Thens' is the outmap of a USQ’ of the| N \ A|-cube.

Before we get to the proof, let us discuss what this means. gthedefine2V\4 subcubes

spannecdy A, of the form
(X, X UA], X C2M4

In Figure 3.7,N = {1,2,3,4}. The setd = {2, 3} spans four subcubes (the grey blobs).

Figure 3.7: Inherited USO

The values’(X) records the labels of the outgoing edges asihk&of the subcub&X, X U
A] (bold edges in Figure 3.7). By (3.3)(X) C N\ A.

s’ defines an orientatio®’ on a cube spanned by \ A, see lower left part of Figure 3.7.
This cube arises by reducing’ all subcubes (the grey blab#)eir sinks. The statement of the
Theorem is tha®’ is in fact a USO again. Moreover, it is clear that the subculseesponding
to the sink ofQ’ (the rightmost grey blob in Figure 3.7) also contains théglsink.

Proof. We show that’ satisfies the condition of Lemma 3.5. For this, chofise Y C 2V\4
and set

W = @O(X,XUA),
Z = @o(Y,Y UA).

37

Note thatiV’ £ Z, because they lie in disjoint subcubes. We claim that
(XaY)N(X)asY)=Wa2Z)n(s(W)ds(Z)), (3.4)

which proves the Theorem, because the right-hand side im@maty set by Lemma 3.5. To
see (3.4), first note that

SX)es(Y)=s(W)®s(Z)==BCN\A

by definition. Secondly, fo. € N\ A, we haves € X & a € W (anda € Y < a € Z),
hence
(XeY)NnB=W®a& Z)NB,

which is (3.4).

The Product Algorithm. Theorem 3.6 suggests the following approach for evaludtieg
sink in a USQOQ of then-cube, given that you have, for sorhes {0, ...,n}, two (determin-
istic or randomized) algorithmi ndSi nk, andFi ndSi nk,,_;. for evaluating the sink in a
k-cube and arin — k)-cube, respectively: choosd| = k and useé~i ndSi nk,,_; to evaluate
the sink of O’ as defined by the functiosi above. Whenever the algorithm needs to evaluate
s'(X), callFi ndSi nk,, for the original outmag on [X, X U A]. If X is the sink w.r.t<, this
call will eventually evaluate the desired sink w.et.If Fi ndSi nk, andFi ndSi nk,,_, are
best possible deterministic algorithms, tpi®duct algorithmwill call Fi ndSi nk, at most
t(n — k) times, and each such call evaluates at mg'st vertices. It follows that the product
algorithm requires at mostk)t(n — k) vertex evaluations. At this point, it becomes clear why
our algorithmic model counts the number of steps we neeglv&duatethe sink rather than
the number of steps until wienowit. Namely, just knowing the sink o’ does not allow
us to deduce where the sink 6fis: we only know thet-dimensional subcube containing it.
Consequently, some “plus-one-terms” would uglify the asialpf the product algorithm.

If we work with best possibleandomizedalgorithms,Fi ndSi nk;, is called anexpected
number of at most(n — k) times, each call requiring a@xpecteciumber of at most(k) vertex
evaluations. Because the random choices in both algoritheniadependent of each other, the
expectations can be multiplied, and the product algoritle®ds at most(k)t(n — k) vertex
evaluations in expectation. Because the product algorighost one (not necessarily the best)
algorithm for then-cube, we have shown the following result.

Theorem 3.7 For0 < k < n,

tn) < tE)t(n— k),
t(n) < tk)t(n —k)
Using#(1) = 3/2, this gives us
t(n) <t(n— 1)% < (g) :

38

Moreover, there is a simple product algorithm that achidtes bound: letGuess; be
the simple randomized algorithm for finding the sink of theube with an expected number of
3/2 vertex evaluations, see Observation 3.3. Consider the ptatlyorithmPr oduct ,, which
satisfies

Pr oduct ; = Guess,,

and which is, fom > 1, recursively defined via = n — 1 and

Fi ndSi nk,_, = Quess;
Fi ndSi nk;,, = Product,_;.

Then the expected number of vertex evaluationBradduct ,, is easily seen to bexactly

2y o9

Actually, we have rediscovered the USO equivalent of theri#tlgm Takel t Or Leavel t for
smallest enclosing balls.
Theorem 3.7 also yields
t(n) =0 (£(2)"?). (3.6)
Assume we could find a randomized algorithm for 2-cube US@) am expected number of
vertex evaluations smaller than
3* 9 45
(2) 420

in the worst case (this is the bound we get frBnoduct ;). Then we could use this algorithm
in a recursively defined product algorithm as above, to aehibe bound in (3.6), therefore
beating the bound of (3.5). The concrete result would be daized algorithm for smallest
enclosing balls of affinely independent points that is fatanTakel t Or Leavel t.

The goal of the next section is to develop such an improveatittgn for the 2-dimensional
case, with an expected number of at most

43
20
vertex evaluations.

3.5 The 2-dimensional Case

The algorithm starts by choosing one of the four verticesoumily at random. Depending on
whether the chosen vertex is the sink (Case 1), a vertex with one incoming and one ouggoin
edge (Case 2), or the source (Case 3), the algorithm will pcodeterently. We will analyze
the performance separately for tygeand thebowas input, cf. Figure 3.3.

Case 1. The chosen verteX is the sink. This happens with probability4, and there’s
nothing left to do. Table 3.1 records that we need one vexabkiation, regardless of whether
we have an eye or a bow.

39

probability | eye | bow
Casel 1/4 1 1
Case 2 1/2 2 |5/2
Case 3 1/4
Strategy 1 2 3
Strategy 2 4 | 5/2

Table 3.1: Number of vertex evaluations in the differenesasf the algorithm

Case 2. The chosen verteX has one incoming and one outgoing edge. This happens with
probability 1/2. We follow the outgoing edge and evaluate its other veFfexn case of an
eye,Y must be the sink. In case of a boW,is the sink with probabilityt /2, and if it is not the
sink, we evaluate its other neighb@rwhich then must be the sink, see Figure 3.8. For an eye,
we always need 2 evaluations in this case, for a bow, the éspp@cimber ig2 + 3)/2 = 5/2.

e

Figure 3.8: Case 2X is a vertex with one incoming and one outgoing edge

Case 3. The chosen verteX is the source. This case happens with probabiljty. We
consider two strategies.

Strategy 1. Evaluate the vertel antipodal toX. In case of an eyd}/ is the sink, in case of
a bow, 1V is not the sink, but since we now know all edge orientatioresneed just one more
evaluation to hit the sink. This strategy needs 2 evaluationan eye and 3 for a bow.

Strategy 2. Choose one of the neighbais U’ of X to be evaluated next, uniformly at ran-
dom. If the chosen neighbor is not the sink, evaluate the oiighbor. In case of an eye, none
of U, U’ is the sink, so we need a fourth evaluation. In case of a boevob®, U’ is the sink,
and we need2 + 3)/2 = 5/2 evaluations on average to evaluate it, see Figure 3.9.

Going through Table 3.1, we see that if we are playing Styalem Case 3, the expected
number of vertex evaluations for an eye is

1 1+1 2+1 2—7
4 2 4 = 4

40

bow

Figure 3.9: Case 3X is the source

eye | bow
Strategy 1| 7/4 | 9/4
Strategy 2| 9/4 | 17/8

Table 3.2: Summary of algorithm’s performance

The other values can be extracted similarly and are sumethnizTable 3.2.
Choosing Strategy 1 with probabilityand Strategy 2 with —)\, the expected number of
vertex evaluations is

7 9

ZA + 1(1 —A) (3.7)
for the eye and

9 17

1A+§(1—)\) (3.8)

for the bow. While (3.7) increases with (3.8) decreases, which means that the maximum of
(3.7) and (3.8) (the worst-case performance of the algoiie minimized when the two terms
are equal. This happens far= 1/5, in which case both (3.7) and (3.8) evaluate to

43
20°
Plugging this into the bound (3.6), and using the 2-dimearadialgorithm developed above

as the basis for a product algorithm that matches this bouadjet an improvement over our
previously best.5™ bound.

Corollary 3.8 There is a randomized algorithm that evaluates the sink gflaBO of then-
cube with an expected number of at most

43" .
o (4 - ot

vertex evaluations.

41

Bibliographical Remarks

The concept of USOs has first been introduced by Stickney aatsdfv [13]; the product
structure and the product algorithm, as well as the optirfgdrahm for d = 2 are due to
Szald and Welzl [14]. The reformulation of the smallest enclgsiiall problem in terms of
USOs also appears in that paper, but it is already implicihenearlier paper by &tner and
Welzl [4]. The USO approach can be generalized to smalledbsing balls ofballs in any
dimension, see Fischer andf@ner [2].

Exercises

Exercise 3.1 Recall Randomix’s strategy of finding the sink in Determisagtmaze from Chap-
ter 1. at any given vertex, choose one of the outgoing edgesnalom and go to its other
vertex. Repeat until the sink is reached. What is the exgectmber of vertices visited by this
strategy, starting from the sourdeof the cyclic USO of the 3-cube, see Figure 3.4? Can you
find a USO of the 3-cube where the strategy needs to visit mdieegon average?

Exercise 3.2 Prove that anacyclic orientation ofC,,,n > 2, is a USO if and only if all sub-
graphs induced by 2-dimensional faces have unique sinks.

Exercise 3.3

(i) Given a USO of,,, prove that reorienting all edges with a fixed laketjives rise to a
USO again.

(i) Prove Lemma 3.5!

Exercise 3.4 Prove that there exists @eterministicalgorithm for finding the sink of any USO
of then-cube with .
O(V3") ~ 1.732"

vertex evaluations.

4and also counting the source as a visited vertex

42

Chapter 4

Zero-Sum Games

In the previous chapter, we have seen an algorithm for finiegink of a 2-dimensional USO
with an expected number d8/20 vertex evaluations. Even though this certainly improves th

bound of
3)"_ 45
2/ 20

that we get from the product algorithm (page 38), the questemnained open whether the
improved bound is best possible. This chapter introduceslnique for proving that this is
indeed the case. Even more, the technique allows gsnutethe best possible algorithm:
even if we hadn’t been clever enough to come up with the algorin Section 3.5, we would
get it now.

The technique is based @ame theoryin particular the theory otzero-sum gamesAl-
ready in the introduction, we have described Randomix’scéefor a fast strategy to escape
Determinatus’s maze as a game between the two, and we coméolthcs view here.

4.1 Basics

We have two players, thalgorithm player and theadversary The algorithm player has a set
of n algorithms at her disposal,
A: {Al,...,An},

while the adversary holds a setnfinputs for the algorithms,
I=AL,....,I,}.

We also call the elements of andZ pure strategie®f the players.

Then, there is an x m)-matrix M such thatn;; denotes the runtime of algorithr; on
input 7;. M is the so-calleghayoff matrix Assuming that the algorithm player has to pay the
adversany1 for every unit of runtimesm;; is the payoff the adversary receives (equivalently,
the amount the algorithm player has to pay—a zero-sum gitjavhenA; is run onl;.

Definition 4.1

43

(i) A mixedstrategy of a player is a probability distribution over hisleer set of pure strate-
gies. We encode a mixed strategy of the algorithm player by-aector of probabilities

r=(x1,...,2,), inzl, Vi:x; >0

=1
and a mixed strategy of the adversary byrarvector of probabilities

m

j=1

(i) Every mixed strategy: of the algorithm player defines mndomized algorithmd(x):
choose algorithm!; with probability ;.

(iii) Every mixed strategy of the adversary definesrandom inputZ(y): choose input/;
with probability y;.

Now we can describe the game and its goal: independentlgltjogithm player chooses
a randomized algorithmi(x), and the adversary chooses a random iff{yl). Given these
choices, the payoff is the expected runtime4gfr) onZ(y), which is

ZTTM]’ prob(A(x) = Ai, Z(y) = ;)

= Z m;; prob(A(x) = A;) prob(Z(y) = I;) (independence of choice)
i.j

The algorithm player wants to minimize the expected runtimiale the adversary wants
to maximize it. More precisely, the algorithm player wam€hooser in such a way that

max z? My,
y

the expected runtime od(x) on its worst random input, is as small as possible.
The adversary, on the other hand, attempts to find spsueh that

min z? My,
x

the expected runtime of the best randomized algorithr#i @), is as large as possible.

Let us do a simple example to illustrate these concepts. Tdidem of finding the sink
in a USO ofC; can be formulated as a game between the algorithm playeharabiversary,
where both can choose between two mixed strategies.

44

The algorithm player may first evaluate the verfe¢pure strategyd,), or the vertex{1}
(pure strategyds). If the sink has been missed, the other vertex is evaluaaiously, the
algorithm player has other, stupid, strategies: she cowdtliate the wrong vertex over and
over again. As it is clear that the best randomized algorithirchoose such stupid strategies
with probability 0, we can as well omit them from our considerations.

The adversary may provide the USO in which verftag the sink (pure strategk), or the
USO in which{1} is the sink (pure strategh). The resulting payoff matrix is

w-(17)

Figure 4.1 depicts the situation.

L I
@=—0 O——0
o0
/\
A, ®=0 OT© 1)
o—e
o—e
/\
AQ@TO o=@ 2 1
O

Figure 4.1: The 1-dimensional USO game

A natural question is whether randomized algorithms of tge) coverall possibleran-
domized algorithms for solving the problem at hand. If niog bestA(x) we are computing is
not necessarily the best randomized algorithm for the prabl

In fact, there are natural randomized algorithms that doamise from a probability dis-
tribution over a finite set of deterministic ones. For examphe next chapter will discuss a
randomized algorithm for finding the sink of a USO, which &eses a chain of adjacent ver-
tices until the sink is found; from each vertex, it followsaandomoutgoing edge to the next
vertex. If the USO has cycles, there is no upper bound on thgme of this algorithm in the
worst casé,and therefore the algorithm cannot be a combination of finiteny deterministic
algorithms.

In the setup we are trying to analyze here, there is only aefimimber of possible de-
terministic algorithms for finding the sink of ancube USO, because every such algorithm is
uniquely characterized by a finite number of sequences witloat2” vertices each sequence
j corresponding to the evaluation order on jki USO.

here, the worst case is taken over the initial vertex andahdom choices of the algorithm
2remember that we got rid of stupid strategies that reevaluatices

45

Therefore, any conceivable randomized algoritAnwill—when we run it on all USOs
simultaneously—specialize to one of these determinidgorahms. If z; is the probability
that it specializes to algorithiy we haveA = A(z).

4.2 Solving the Game

Finding the optimal mixed strategy for the adversary. Assume the algorithm player knows
the random inpuf (y) chosen by the adversary. Here, knowing it means to know therad
sary’s probability distributiory. The best randomized algorith#(z) onZ(y) (the one with
smallest expected runtime which we also tabt responsagainsty) is given by any optimal
solutionz to thelinear program

(LPys,) minimize z' My
subjectto > x; =1,
2;>0, i=1,...,n

in the variablesy, ..., z,. In general, a linear program (LP) is the task of minimizimgrax-
imizing a linearobjective functionn some number of variables, subject to linear (in)equeaiti
involving the variables. Linear programs can efficientlysoéved, meaning thatfeasible so-
lution (a tuple of values for the variables that satisfies all (ingijes, if that is possible) can
be computed, for which the objective function reaches it pessible value among the set
of all feasible solutions. Such a solution is calledagatimal solution and the corresponding
objective function value is theptimal valueof the LP (also callesminimum valugor min-
imization andmaximum valudor maximization problems). There is accessible software f
solving LPs (the widely useMaple program contains a linear programming solver, for ex-
ample). Linear programs are often written in vector and ixatotation: the above LP, for
example, can compactly be written as

(LPasy) minimize 'z
subjectto Ax = b,
x>0,

where
c=MyeR" A=(1,...,1)eR™ b=1€cR'

and (in)equalities hold component-wise.
Let us denote the minimum valu€ My of (LP,.,) by fu(y). With this notion, the goal
of the adversary is to find an optimal solutigiio the problem

maximize f(y)
subjectto > 7", y; =1,
ijO,]:1,,77’1
Let &), be the maximum value of,,(y) in this optimization problem, which is unfor-
tunately no longer a linear program: the function to maxanig not linear, but is itself the

46

Theorem 4.2 Consider the two linear programs

(LP) maximize 'z + d'y

subjectto Fz + Fy < a,
Gr + Hy = b,
x > 0

in the variable vectors andy (and fixed vectors resp. matricesi, F, F, G, H of appropriate
sizes), and
(LP?) minimize «"w + b’z

subjectto ETw + GTz > ¢,
Ffw + H'2 = d,
w > 0

in the variable vectorsy and » of appropriate sizes. (LP) and (P are calleddualto each
other, and their optimal values are equal.

Proof. We only prove the easy direction here, namely that
Ar+dy<a'w+ bz

for all vectorsz, y, w, z which satisfy the (in)equalities of their respective pags. This
proves that the optimal value of (ERis an upper bound for the optimal value of (LP), and this
fact is known asveak LP duality
Let z, y be any vectors satisfying the (in)equalities of (LP)wIf> 0 andz arbitrary, we can
multiply the inequalities of (LP) from the left witlh” and the equalities from the left witif .
Doing this, the (in)equalities are preserved, and addiagitbp, we conclude that

w'Ex +wlFy+ 7Gx+ zTHy < wha + 27b.
If w andz satisfy all (in)equalities of (LP), we get (using: > 0) the desired inequality

e+ dTy <w'Exr+ zTGag+§UTFy + zTHzi <wla+ 2"b.

T
>ctzx =dTy

Remark: In the above form, any maximization (minimization) probléas all its inequalitie
of type “<” (* >”), but this is of course not a restriction: any inequalitytive other directior
can be multiplied by-1 in order to arrive at a linear program in the form of (LP) or (hP

il 2]

Table 4.1: A crash course on LP duality

47

solution to a minimization problem. Luckily, there is a waytasinglinear programming
duality, see Table 4.1.

The duality theorem tells us thdi,(y) is also the maximum value of the linear program
dual to (LPy,), which is the following LP in just one variable®

(LPj;,) maximize u
subjectto My >wu, i1=1,...,n.

Here, M; is thei-th row of M.

Now, the adversary’s task of finding a mixed stratggyith the largest possible value,,
of fy/(y) can be solved by simply lettingvary over all possible choices in (@Ey). This leads
us to the linear program

(LP,s) maximize u
subjectto M,y >wu, i=1,...,n,
Z;n:1 Y; =]-7
y; 20, g=1,...,m,

whose maximum value i$,,. A mixed strategyy that leads to this maximum value can be
read off the solution to this linear program and defines thava@ random input the adversary
is looking for. The valueb,, is the expected runtime of the best randomized algorithrthier
particular random input.

Finding the optimal mixed strategy for the algorithm player. Thisis now completely sym-
metric. Given the distributiom of the algorithm player, the worst random infi(ty) for A(x)
(the best response of the adversary agaipg& any optimal solutiony to the LP

(LP,) maximize z” My
subjectto 77", y; =1,
ijO,]:1,,m
By the duality theorem, the maximum valyg (z) of this LP coincides with the minimum
value of the dual LP in just one variahte

LP2 minimize v
x, M
subject to (MT)], r<v, jg=1,...,m.

Consequently, the task of the algorithm player, namely tooshe in such a way that
gu(x) achieves its minimum valué ,, is solved by letting: vary over all possible choices in
(LP,,), leading to the LP

(LP%) minimize v
subject to (MT)jx <w, j=1,....m,

Z?:l z; =1,

LCZZO, z'zl,...,n,

(4.1)

3check that it is really the dual!

48

whose minimum value i¥/,,. A mixed strategyz that leads to this minimum value can be
read off the solution to the linear program and defines thengbtrandomized algorithm the
algorithm player is looking for. The valug,, is the expected runtime of this algorithm on its
worst random input.

The naming of the LP already anticipates the punchline, hathat the latter LP is the
dual (check this!) of the adversary’s (LP!

This implies the following

Theorem 4.3 Let ¢y be an optimal solution t¢LP,,), ®,, its optimal value, and lef be an
optimal solution tdLPﬁ), U, its optimal value. Then

() Py =Yy = fu(y) = gu(2) = 2" My, and

(i) 7 is a best response of the algorithm player agaipsand g is a best response of the
adversary against.

Proof. (i) &3, = Uy, is LP duality. By definition,®,, = fy(g) and¥,, = g (Z), so
f(9) = gu (). Becausefy (7) is the minimum value of (LR ;), while Z7 My is just some
value that may occur, we get

fu(9) < 2" M3,

Similarly, it follows that
gu (%) > &' My,

so all values must be equal.
(if) According to (i), z is an optimal solution (and therefore a best response) tq;()P
andy is an optimal solution (and therefore a best response) tg ()P Hl
The theorem allows us to establish two important notions.

Definition 4.4

() The value®,, = V,, is called thevalue of the zero-sum game defined by the payoff
matrix M. It equals the runtime of the randomized algorithm with thetlexpected
worst case performance (see Exercise 4.2 for an exact statevhehat this means).

(i) An equilibriumof the game is any pair of mixed strategi@sy) that are best responses
with respect to each other.

We have shown that a zero-sum game always has an equilifiiuim. The pair has the
interesting property that even if the playdwsoweach others equilibrium strategies, none of
them can profit by changing its own mixed strategy. One cartlsatyin an equilibrium, both
players win, because both perform as well as they possiloly ca

As a small example, let us solve the game for the 1-dimenkld8® of Figure 4.1 by the
above techniques. Recall that

1 2
v-(3 1)

49

in this case, so the program (L reads as

(LPy;) maximize w

subjectto y; + 2y, > u,
21 + Y2 = U,

Y1+ Yy = 1,

y,y2 = 0.

We expect the maximum value af(the value of the game) to ki¢1) = 3/2, see Obser-
vation 3.3. Indeed, if; = y» = 1/2 andu = 3/2, we get a feasible solution to the LP, so the
maximum value is at least/2. On the other hand, adding up the first two inequalities of the
LP, we obtain

2u < 3y1+3yg =3

for all feasible solutions, because of the equality comstrar herefore,3/2 is also an upper
bound on the value of the game, 3@ is the game value. The corresponding optimal values
71 = 9o = 1/2 define the best mixed strategy of the adversary: choose batthe two USOs

of the 1-cube uniformly at random.

In this easy case, the dual linear programﬁpﬁ’or finding the optimal mixed strategy for
the algorithm player looks completely similar (still, | enogage the reader to write it down) and
gives rise to the optimal solutioly = 7, = 1/2: choose the first vertex to evaluate uniformly
at random between the two vertices.

4.3 Game Trees

We have not developed the machinery in order to deal withah@toblem of the 1-cube, but
to find the value of the game in the 2-dimensional case (m@e&igely, to certify that the upper
bound of43 /20 we have found in the previous chapter is actually the gameeyaln principle,
we can do this now as we did it in the 1-dimensional case inrgiguL: write down all possible
pure strategies of the algorithm player and evaluate tlegfopmance on all possible 12 USOs
(the pure strategies of the adversary); this gives the payafrix A/ which is all we need to
write down (LR,;). Then feed this linear program to any LP solver and reacheftjiame value.

The only problem is that the number of pure strategies therilign player has at her
disposal is already quite large (we’ll see why), so the LP lidne quite large as well. Conse-
guently, the LP solver would be slow, or not even able to pgedhe problem. The approach
we discuss in this section leads to a much smaller linearrgrogvhich even the solver of the
Maplesystemt can handle in just a few seconds.

First, let us understand why we have an explosion in the nuwitjgure strategies. Adapt-
ing the approach of Figure 4.1, a pure strategy can be wrdtses tree: the root specifies the
first vertex to evaluate, and its children correspond to th&sipble answers of the adversary.
For every such answer not corresponding to the sink, theegirapecifies the second vertex to
evaluate, and so on, see Figure 4.2.

4The very general and versatildaple system is a popular tool, but not primarily because of itedpe

50

Figure 4.2: Specifying a pure strategy of the algorithm ptay

Already for the second vertex to evaluate, there are thresilple choicesfor every answer
of the adversary (nodes at depth 1), if the sink has not besdnaed so far. This already gives
rise to3-3-3 = 27 possible combinations, and any such combination splitetgomuch more
combinations further down the tree.

You can argue that this way of encoding pure strategies ivemt efficient, because the
already quite large structure of Figure 4.2 is repeatedafbstrategies that agree with the
depicted one in the first two vertex evaluations. It shoulgpbssible for these strategies to
share the encoding of the first two evaluations.

Indeed, we can encode all possible ways in which the gameesataiped in just ongame
tree, where every path down the tree corresponds to an altegratiwe sequenad moves by
the algorithm player and moves by the adversary.

In this formulation, we have to be careful not to let the adaey become too powerful.
Recall from the Introduction (Section 1.3) that we are assgrttie adversary to bablivious
i.e., the adversary must choose his input—and stick td#ferethe algorithm player asks her
first question. In the game tree approach, we can model thisttiayg the adversary make the
first move. However, it is &iddenmove unknown to the algorithm player. Only through vertex
evaluations, the algorithm player obtains informationwthibe hidden move.

A part of the resulting game tree is depicted in Figure 4.3.teNibat after the hidden
move, the adversary always has josepossible move, because his answer is determined by
the choice of the USO in the hidden move. The nodes in whightlitz algorithm player’s
turn are partitioned intanformation sets such a set collects all nodes corresponding to the
same sequence of questions and answers so far. At every hadeed information set, the
algorithm player has the same knowledge.

At depth 1, all nodes are in the same information set, but, lst®rmation sets split up be-
cause the algorithm player gets additional knowledge ath@uadversary’s first hidden move.

How can we encode a pure strategy of the algorithm playerengime tree? We must
specify at each information set the next vertex to be evatlidh this way, the next move takes

Sagain, we do not consider strategies that reevaluate gsrtic

51

E} information set E} w

Figure 4.3: Game tree for the 2-dimensional USO game; theop#lre information set at level
1 that is shown subdivides into four information sets cantgj a single node each, and one
information set with two nodes.

into account exactly the information the algorithm playas lobtained so far. For information
sets that are not reachable due to earlier choices, no mostehaspecified, of course.

The selected move is applied @t nodes of the information set. In Figure 4.3, the bold
edges belong to a possible pure strategy.

Even here, the number of pure strategies can in general{éongle, in the:-dimensional
USO game) be exponential in the size of the game tree; we eathisan Figure 4.3. At depth
3 of the tree, there are twmarallel information sets that are reached through an earlier move,
and at each of them, we can independently choose betweenmioees, leading again to a
multiplication of the number of possibilities.

4.4 The Sequence Form

Here comes the statement that finally saves us: we can ddainikedstrategies (and this is
what we want in the end), without ever looking at pure striai€gnstead, we assign probabil-
ities tomove sequences

52

Theorem 4.5 Every mixed strategy of the algorithm player can be obtaimgdpecifying for
each information sef and each possible movein S the probabilityps . thate is played by
the algorithm player, equivalently that the completeve sequencending ine is played.

We will not prove this here, but the statement is quite intait instead of deterministi-
cally fixing how we leave an entered information set (puratstyy), we now “distribute” the
probability of entering the information set further amohg successor moves.

The randomized algorithm resulting from a mixed strategctfed according to Theorem
4.5 is quite natural: whenever the game reaches a node ificamattion setS with £ possible
movesey, . .., e, Selecte € {ey, ..., e;} with probability

Ps.e
=i
Zézl ps7eé

The sum in the denominator must be nonzero, because it etpegisobability of reaching'
in the first place.

The number of probabilities we have to specify is boundedheynumber of edges in the
game tree, which isinear in the size of the game tree. To encode a mixed strategy in the
“traditional” way, we would have to assign a probability tacé of theexponentiallymany
pure strategies.

As before, in every node of the same information set, we migstilslite the “incoming”
probability in the same way, as several edges corresporitsadme move. Figure 4.4 shows
a part of a mixed strategy in which the probabilityzigthat the upper left vertex is evaluated
first; if the outmap pattern is G

(which is the case for the two USOs depicted in the figure) pitodability =5 is distributed
further among the three possible next moves. On the othet, hiwe evaluate the lower
right vertex first (with probabilityz,), we may see different outmaps, and in the corresponding
parallel information sets;, is split independently.

It is important to understand that the algorithm player plsgveralmove sequences, and
not just one, so the probabilities we assign will not form abability distribution. Most
obviously, if a sequence is played, every prefix of it is pthgs well. But the actual reason
are parallel information sets: amyof them, a move will be selected according to the assigned
probabilities, although in the actual game, the adversagswers will only “activate” one of
these moves.

4.5 Solving the Game in Sequence Form

The idea is to generalize the LP approach, and we illusttbdéeps using the concrete example
of the 1-dimensional USO game. Figure 4.5 shows the comgéatee tree for this case, along
with variables for the move probabilities of both playerse Wso introduce ‘names’ for the

moves which are more intuitive than just the variables.

53

E} 1:I1+ZL’2+I3+ZL’4 E}

X1 X2 X3 L4 X1 X2 X3 Lq
Ty = X8 + Tg + T1o To = X11 + T12 + 213
xg Z10 . o 11 Z13 o ‘ o
Tg L2

] e 1

Te X

Ty

Figure 4.4: Specifying a mixed strategy by assigning prdibigls to moves

The game is defined by the joint behavior of all move sequeoicd algorithm player on
all USOs of the adversary. This allows us to set up a payoffimat, whose entryn;; is the
number of vertex evaluations of the algorithm playeéfth move sequence on the adversary’s
j-th USO. It may happen that such a pair does not correspondetgaaway of playing the
game, or that it corresponds to an incomplete game. For deatiie move sequendeR is
impossible on the USQ, and the move sequenéds incomplete on the US@. In both cases,
the corresponding entry aff is 0.

In Figure 4.5, the adversary has the USCGand2 at his disposal, associated with variables
Y1, ¥2, While the algorithm player has move sequences

L,R,LR,RL,

with variablesry, . . ., x4. This yields the payoff matrix

54

Y1 Y2
(©=—0) [o—==0]
L Ty R T3

Figure 4.5: Tree for the 1-dimensional USO game with movd&abdities and labels

1 2
Ll
1 0 — L
M = 01 R (4.2)
0 2 — LR
2 0 — RL

Observation 4.6 If z; is the algorithm player’s probability of playing theth sequence, and
y; Is the adversary’s probability of choosing theth USO, the expected number of vertex
evaluations is

:cTMy,

wherez = (z;),y = (y,) are the vectors collecting the andy;, respectively.

Recall thatz is not a probability distribution, because the algorithrayelr plays several
move sequences simultaneously, where the one that acsihaiys up in the game depends on
the adversary’s answers.

Still, the observation can be proved as before: the cortabuwf the pair(i, j) to the
expected runtime is;y;m;;, becauser andy are chosen independently. This also holds if
m;; = 0: an incomplete sequence does not contribute anything,ubecte runtime will
be counted for the complete supersequences. Also, anlitegaence does not contribute,
because it does not get activated during the game. In othetsw@, j) contributes to the
runtime if and only if the game reaches a leaf of the game treernvmove sequenceis
applied to USQ,.

As before, we are concerned with computing optimal valuegte probabilitiesr; and
y;. Assuming, the algorithm player knows the distributipohosen by the adversary, her best

55

response is again given by the solution to a linear program

(LPysy) minimize ' My
subjectto Ez = e,
x>0,

whose optimal value we denote By, (y). The constraint seEz = e contains one constraint
for every information set, specifying that the probabilityentering it must be equal to the
probability of leaving it. In Figure 4.4, we see the consttsifor four of the information sets.
In the 1-dimensional case of Figure 4.5, the constraints are

T1+ Ty = 1,
ry = g,
Ty = Ty,
SO we have
11 0 0 1
E = 1 0 -1 0], e= 0
01 0 -1 0

The dual of (LR,,) is the linear program

(LP3;,) maximize eTu
subjectto ETu < My

in the variable vecton, and its optimal value igy;(y) as well. Thus, the adversary maximizes
fu(y) by solving the linear program

(LPy;) maximize eTu
subjectto ETu < My
Z;nzl Y; = 17
ijOJ .j:17"'7m7

(4.3)

whose optimal value i$,.
On the other hand, given the best response of the adversary is obtained by solving

(LP,) maximize z” My
subjectto > 7", y; =1,
ijO, jzl,...,m,
whose dual is
(LPﬁM) minimize v
subject to (MT)jx <wv, j=1,...,m,

and both programs have optimal valyg (). Therefore, the algorithm player minimizes
gum(x) by solving

56

(LP5) minimize v
subject to (MT)jx <w, j=1,...,m,
Exr=e,
x>0,
and the resulting optimal value i&,,. As before,®,, = ¥,, (and this is thevalue of the

game), because (4.3) and (4.4) are dual to each other.
Writing down (LP@) for the 1-dimensional USO game yields the problem

(4.4)

minimize v

subjectto x; + 2x4 < v
To + 223 <w
T+ To = 1,
T = T3,
Lo = Ty,
x> 0.

Settingz; = 1/2 for all andv = 3/2 leads to a feasible solution, so the game value is at
most3/2. On the other hand, adding up the first two inequalities, esidg.the three equality
constraints, we get that

20 > x1 4+ 29 + 223 + 224 = 321 + 319 = 3,

sov > 3/2. It follows that3/2 is the game value, and, = z, = z3 = x4 = 1/2 describes
the optimal mixed strategy of the algorithm player. By nows tiesult does not come as a real
surprise anymore.

What about the 2-dimensional case? The game tree is largeauo$e, but not of over-
whelming size: it consists of twelve subtrees which are sgtniccopies of the tree in Figure
4.6, one subtree for each USO®@§. Various information sets connect nodes across subtrees.
| have generated the resulting linear programﬁ}l)lby computer. It hag26 variables

V,T1,...2225,

and in addition to the nonnegativity constraimt® 0, it has

12 inequalities, one for every USO 6,

and
142 equalities, one for every information set

The LP solver ofMaple needs less than 20 seconds to solve this on my computer. The
resulting optimal mixed strategy is depicted in Figuresah@ 4.7 that represent two of the
twelve subtrees of the complete tree, one for a partioeyar and one for a particuldsow.

The probability values in all other ten subtrees, for theeottyes and bows, are completely
symmetric, so the mixed strategy is already defined by itaehonsomeeye andsomebow.
And indeed, the value of the game (the value of the varialitethe solution) ist3/20.

57

FN.
S

> =
=
[N
S
=
o

DS D I O SR D O

Figure 4.6: The optimal mixed strategy, applied to an eye

Looking at the values (whenever an edge has no value attaohiedhe value i9)), you
may wonder whether the resulting algorithm is actually tlgp@thm we have developed in
the previous section. A priori, this is not clear, becausedhmay be several algorithms with
an expected worst-case performancel®f20. Here, the LP solver has in fact delivered our
known algorithm. Without going through the details, you cacognize some characteristics
of it: for example, the first vertex to be evaluated is chosafounly at random; also, in case

58

I,
AT
IS

S

Figure 4.7: The optimal mixed strategy, applied to a bow
of an eye, we may need 4 evaluations, while a bow is alwaygdalith at most 3 evaluations.

4.6 Yao's Theorem

With the machinery we have developed so far, we can now praeés Theorema powerful
tool to establish lower bounds for the expected worst-cas®pnance of the best randomized

59

algorithm.

As in the beginning of this chapter, we consider the setuphiciwvthe algorithm player
chooses a randomized algorithi{z) defined by a probability distributiom over a finite set
of deterministic algorithms, while the adversary choosearmlom inputZ(y) defined by a
probability distributiony over a finite set of inputs. Witld/ being the matrix collecting the
runtimes of all algorithms on all inputs,

=T My
is the expected runtime of(x) onZ(y).
Using the linear programming approach, we have deriveddhalgy

max min z? My =: ®,; = ¥,; := minmax z? My, (4.5)
y o« ¢y

wherez andy range over all probability distributions.
An interesting observation is that, for fixgdwe have

far(y) == minz” My = min el My, (4.6)

and for fixedz,
gy (%) := max 2’ My = max 2’ Me; 4.7)
y j

holds, where, is thek-th unit vector. The (perhaps surprising) interpretat®ithiat the best
response to a fixed strategy can always be chosen as a puegtran other words, when a
player knows the other player’s strategy, there is no needrtdomize anymore. (4.6) follows
from

T My = Z :Eie;-rMy,

so at least one valug My in the right-hand side sum is at most as large-ad/y. But then
the smallest possible value of My over allz (which includes the;) must agree with some
el My. The argument for (4.7) is the same.

For any pairn(z, y), equations (4.5), (4.6) and (4.7) yield

mine; My = fu(y) < max fu(y') = @ar = Upr < min gy (2') < gur(z) = maxa’ Me;.

i y x! J
Now letz be the optimal mixed strategy for the algorithm player. Tthenprevious inequality
givesYao’s Theorem
Theorem 4.7 For any mixed strategy of the adversary,

mine! My < maxfiTMej.
i J

In other words, the expected runtime of thestdeterministic algorithm on the random input
Z(y) is a lower bound for the expected worst-case runtime ob#strandomized algorithm
A(z).

Thus, in order to prove a lower bouridor the expected worst-case runtime of any random-
ized algorithm, you choose a suitable distributipand prove that no deterministic algorithm
can be faster thanh in expectation, on the random inglity). The art here is to find a distri-

butiony that leads to a good lower bourid Exercise 4.4 asks you to do this for the game of
Randomix vs. Determinatus.

60

Bibliographical Remarks

The presentation of the general method is adapted from tlyeniee survey by von Stengel
[15]. In principle, the application to 2-dimensional USOasknown, but in explicit form, it is
new.

Exercises

Exercise 4.1 Given the payoff matrix

w1 4)

with a,b,¢,d € R, what are the equilibria(z, 7)? In which case is there more than one
equilibrium?

Exercise 4.2Let 2 be the optimal mixed strategy computed by the linear progféh) on
page 48. Prove that

(i) for anyrandomized algorithrd(z) over A, there exists an input from Z such that the
expected runtime ofl(x) on I is at leastd.

(i) The expected runtime 04(7) is at mostd for anyinput / fromZ.
This means, the algorithtd (7) is the best randomized algorithm in the worst case.

Exercise 4.3 The following question has become famous adbaty Hall Problemand even
mathematicians have argued in favor of the wrong answer:

Suppose you're on a game show, and you're given the choideed toors:
Behind one door is a car; behind the others, goats. You piaka, day No. 1, and
the host, who knows what’s behind the other doors, opens andtiogrsay No. 3,
which has a goat. He then says to you, 'Do you want to pick door NblsAt to
your advantage to take the switch?

Model this process as a zero-sum game between you and the paméest. Your goal
is to maximize your expected payoff (which we may assume tofby@d win the car, and 0
otherwise). The game starts with a hidden move by the host wignassar and goats to the
three doors. Then it's your turn to pick a door, followed by tigest opening a non-winning
door. In the last move of the game, you choose between stitkiggur initial choice, or
switching to the other closed door.

What is the value of this game? What is your best strategy?

Exercise 4.4 Use Yao’s Theorem to prove that Randomix’s strategy of finttia sink in De-
terminatus’s maze (Chapter 1) is the best possible randahailgmrithm. If the case of general
n seems to difficult, try to attack the case-= 3 explicitly.

61

Chapter 5
Random Walks

The theory of random walks is a quite powerful tool in devetgpand analyzing randomized
algorithms. Basically, a random walk “jumps around” on a fixstdte space, according to
certain transition probabilities between states. For gtapiRandomix’s strategy for escaping
Determinatus’s maze is a random walk on a state space whexsels are the vertices of a
complete graph.

There are two important types of questions in connectioh vahdom walks. Questions
of the first type ask for the expected number of steps untitakk reaches some prespecified
state or set of states. In the second type of questions, wetw&now whether we will end
up in an approximately random state, given that we perfoffficgntly many steps; moreover,
we would like to have a bound on the number of steps this takes.

In this chapter, we address both types of questions; we [fustriate them using two easy
warm-up examples, and then answer questions of actuagsttier unique sink orientations.

5.1 Two Warm-Ups

The casino walk. Suppose you enter a casino with on your handsk > 0, and you play
roulette (always betting1 on red), until you either have lost all your money, or you h&xe

on your hands, for some prespecifi&d> k. Assuming that in every round, the probabilities
of winning or loosing$1 are1/2 each, what is the expected number of rounds you will play?
We note that this question is relevant even outside of th@aasecause it appears for example
in connection with randomized algorithms for boolean $atidity, or perfect matchings in
regular bipartite graphs.

You might also want to know what the probability of ending ughv§V is, or what happens
in the realistic case where the winning probability is ldsantl /2, because the bank always
wins if zero comes up. This is covered by Exercise 5.1.

The above process can be modeled as a random walk on thepstaed & . . ., N}, where
0 and N areabsorbing meaning that the walk ends when one of them is reached. [Ebr ea
i€ {l,...,N — 1}, the probabilities of going to — 1 or i + 1 in the next step aré¢/2 each.
We refer to this as theasino walk see Figure 5.1.

Fact5.1 Fori € {0,..., N}, let E; denote the expected number of steps in the casino walk,

62

1 1—1 ¢+ 141 N-1 N

Figure 5.1: The casino walk

starting fromi. Then we have

Ey=EyN =0,
and) .
Ei:1+§Ei_1+§Ei+1, 0<i<N. (51)

We want to develop an explicit formula fd#;. The difficulty is that even if we guess the
right formula, it cannot be verified by induction, becausehlue for; depends on values for
smallerandlarger indices. Instead, we use the following

Trick 5.2 Let
Thenb; = b;_; holds forl < i < N. In particular,b; = b; for0 < i < N.
Proof. We compute

bi—bi1=FE; —2E;,_ 1+ E;_>+2=0,

where the latter equality is just twice the defining equamai) for F;_;. Hl
Using By = 0 andb; = F; + 2, we conclude that

EZ' — b1 - 22+E7‘,1

= i —2) j+E
j=1
= i(Ey+2)—i(i+1)
= (B — (i 1)), (5.2)
for 0 < i < N (incidentally, the formula also holds fer= 0). Now what isF;? Using (5.2)
for i = N yields
0=FEy=N(E —(N-1)),

soF; = N — 1, and plugging this back into (5.2), we get the following fesu
Theorem 5.3 The expected numbéi, of steps in the casino walk, starting fromsatisfies
Ep = k(N — k).

For example, if you enter the casino wih00, and you are waiting to geé200, it takes
an expected number af), 000 bets until you can go home with nothing $200. Even if the
croupier is fast and handles one round of roulette in 30 s#x;oou will spend something like
83 hours in the casino.

63

The provider walk. Suppose that initially, you are a customer of Swisscom negbilt then
you need a new mobile phone. Because providers give out fi@@egionly to new customers,
you decide to change the provider; in your everlasting gioeshe latest technology, you keep
on switching providers every other year.

Because you don’t care which provider you end up with, as langoa get a free phone,
you switch from your current provider to any of the two oth@ngially, to Orange or Sunrise),
with equal probabilityl /2. What is the expected number of provider changes it takes & be
customer of a more or less random provider?

As before, the process can be modeled as a random walk rttesot a triangle. From any
vertex of the triangle, you go to each of the two other one& wibbability1/2 in the next
step. We refer to this as thpovider walk see Figure 5.2.

Sunrise

Swisscom Orange

Figure 5.2: The provider walk

Fact5.4 Fori > 0 and A € {Swisscom, Orange, Sunrise}, let p; » denote the probability of
being customer of providet after: provider changes. Then we have

Po,Swisscom = 17p0,0range = Po,Sunrise — 0,

and
DiSwisscom = §pifl,0range + ipifl,Sunrisea
1 1
Pi,Orange = épi—l,Swisscom + §pi—1,Sunrisea
1 1
DiSunrise — épi—l,Swisscom + ipi—l,Orangm
fori > 0.

Unlike in the casino walk, the following explicit formula@m easily by verified by induc-
tion (we don’t do this here).

64

Theorem 5.5 Fori > 0, }
1—(=1/2)""

Di,Swisscom = 3

and

1-(=1/2)

Di,Orange = Pi,Sunrise = 3

Let’s check this for small values. if= 0, the theorem indeed yields the boundary condi-
tions of Fact 5.4, and far= 1, it shows

(pl,SWisscomypl,Orangeypl,Sunrise) - (Oa §a 5)7

which is what we expect.
The theorem also tells us that all probabilities tend 8 for i — oc. Already fori = 10,
we have
(P10 Swisscom» P10,Oranges P10.Sunrise) A (0.33398,0.33301, 0.33301),

which is a pretty good approximation of the uniform disttibn. We will never reach the
uniform distribution, though: according to Theorem 5.% thct that you have started out as a
customer of Swisscom will never be “forgotten”.

5.2 TheRandonEdge Algorithm

Trying to mimick Randomix’s strategy for finding the exit of eminatus’s maze, we arrive at
the following strategy for finding the sink of any given US@rh some initial vertex, proceed
along arandomoutgoing edge to an adjacent vertex. Repeat this procedghasink is hit.
In fact, the behavior of this strategy on the cyclic USQCgfwas the subject of Exercise 3.1.
Here is the algorithm, written down formally.

Algorithm 5.6
RandonmEdge;(X)
(* s outmap of a USOX some initial vertex *)
VWHI LE s(X) # () DO
choose € s(X) uniformly at random

X =X {i}
END
RETURN X

We are interested in the expected number of vertex evahsgtierformed by this algorithm
in the worst case. An obvious question is whether this eqpiect exists at all. If the USO has
cycles, itis not even clear that the sink is reachable framrhial vertex.X, in which case the
algorithm would not terminaté The following lemma shows that such pathological situation
cannot occur.

Lif the orientation is acyclicRandonEdge can visit no vertex twice and therefore eventually reaches t
unique sink.

65

Lemmab5.7 LetO be a USO of”,,, X the unique sink andl” some other vertex. Then there is
a directed path ir©O fromY to X, of length| X @ Y.

The proof is Exercise 5.2. Let us remark that no path fioo X can be shorter: in order
to get fromY” to X, we must traverse at least one edge in directidor alli € X ® Y. The
lemma can be used to show tlRgndonEdge has finite expected runtime. This in particular
implies that the algorithm terminates almost surely (withability one).

Corollary 5.8 For any outmaps of ann-cube USO and any initial verteX, the expected
number of vertex evaluations performedRandontEdge (X) is at most

(n+1)n"

Proof. We subdivide the random walk infthasesa phase ends after+ 1 vertex evaluations,
or if the sink has been reached. Thus, all phases but thedastst of exactlyn + 1 vertex
evaluations. We aim to show that the expected number of phas¢ most.™ which implies
the result.

For this, letp; be the conditional probability that the sink is reached iag# (equivalently,
that phase is the last phase), given that there are at legstases. We claim that

pi = —.
nn
This holds, because there is a directed path of length at mivetn the first vertex of phase
to the sink, and this path is selected by the algorithm witibpbility at least /n™. The reader
familiar with Bernoulli experiments knows that this proves expected number of phases to
be at most.”, but let's derive this explicitly.
Let P be the random variable for the number of phases. We haveljostrsthat
prob(P >i+1) = prob(P >i+ 1|P > i) prob(P > 1)
= (1 —pi)prob(P = i)

1
< (1——)prob(P2i), i >1,
nn

which—usingprob(P > 1) = 1—implies

66

Now we get

o0

E(P) = Ziprob(P:i)

= Zz (prob(P > i) — prob(P > i+ 1))

=1

=) iprob(P > i) - Z(i — 1) prob(P > 1)

i=1 1=2

= Zprob(P>z)
=1
[e.@] 1 (2
< %)
= n".

H]

Having this upper bound on the expected number of vertexuatiahs in Algorithm 5.6,
we can think about better bounds. The hope isthatl)n" is a gross overestimate; for acyclic
USOs, it obviously is, because no more tR&arvertex evaluations are possible in this case. But
even in the general case, it is not completely implausikd¢ ahbound which ipolynomialin
n might hold. After all, Randomix managed to escape a maze withambers ir0D(logn)
steps, so why shouldn’t the same method find the sink arabngrtices inpoly(n) time?

Unfortunately, the situation is not as nice: below, we shbat for every odd value af,
there exists a (highly cyclic) USO of C,, for which Algorithm 5.6 needs more than

(n—1),
—Y,

steps on average, fewveryinitial vertex X distinct from the sink.

5.2.1 Morris’s USO

Letn > 1 be an odd integer. Morris’s USO,, onC,, generalizes the cyclic USO ar that we
have already seen several times. In order to describe treragjeronstruction in a convenient
way, we change our encoding of vertices and outmap valugsré-b.3 shows how this works.

With every vertexX C N = {1,...,n}, we associate a bitvector of length whosei-th
entry is1 if i € X, and0 otherwise. With every outmap valu¢X) C N, we associate a sign
vector whose-th entry is+ if i € s(X), and— otherwise. For a fixed USO, we can identify
the vertices with the resulting bit/sign patterns.

In this view, the sink of the USO in Figure 5.3 is the vertex

0/0]0

67

X: {1,3} 1101

Q

1 1
+ —
110
+ [+
Figure 5.3: Encoding vertices with bit/sign patterns
while the source is
1111
+ |+ [+
In order to specify®,,, we need a rule how to obtain the sign vector correspondirg to
given bit vector. If the bit vector i€, . .., 0), the sign vector will bé—, ..., —). In our “old”

setting, this means that the vertgis always the sink.

In any other case, the bit vector hakia some position, and we use a rule driven byfiaite
automatorto fill in the signs, starting from position— 1, and proceeding to the left. When we
cannot go left anymore, we “wrap around” and continue with ilghtmost position, until all
signs are determined. Due to the wrap-around, there is @ sychmetry in the construction:
whenever some vertex (which for us is now a bit/sign pattappears, any cyclic shift of it
appears as well. This can already be checked:.fer 3 in Figure 5.3. Figure 5.4 explains the
actual construction ab,,, with an example fon = 5.

It is not clear yet that the construction determines a USQasdhe signs just correspond
to some mapping : 2V — 2V, but we don’t know whether it is the outmap of a USO. The
following is the key lemma.

Lemma 5.9 Letn > 1 be odd and consider a partial bit/sign pattern wéhhera bit or a sign
at any of itsn positions, e.g.

0 1

68

0/0]0]0]|0 010|010/ 0
@ e o o I e
b 0/0|1]11]0 00| 1(1]0 0(0]1]11]0
(b) 7| % - 74 _>7—+
0jl0[11]110 0]0[11]1]0 0j011]110
— — —
T -+ |7 T+ 7] - nEEEE

Figure 5.4: Construction of),: (a) if the bit vector is the zero vector, then all signs are
negative. (b) if at least one bit is we proceed as follows: given the bit/sign combination at
positionz, the bit at positioni — 1 (modulo wrap-around) determines the sign at positien,

via the finite automaton/. Any combination1,) lets us get started, becausehas the same
behavior in its two stated, +) and(1, —), indicated by asuperstatehat covers both. The last
step of the construction finally determines the sign bela tve started with. The result does
not depend on thé we started with: to the left of anientry (due to wrap-around, this means
everywhere), the signs are uniquely determinedhy

in the casen = 5. Then there is ainiquecompletion to a full pattern, such that the signs are
determined by the bits according to the rules of Figure 5.4.

Proof. Staring at the automatal/ for a while, one realizes that it can also be used to deter-
mine thebit at position: — 1, given thesign For example, if the pattern at positioms (1, +),
and the sign at position— 1 is —, the corresponding bit must lbebecause the valuewould
enforce a+. Going through all cases reveals a beautiful symmetry:réhngingl with +
and 0 with — in M yields the automaton for determining the bits. We can evergenthe
two automata into one which can be used to deduce the missimgriation at position — 1,
regardless of whether it is a bit or a sign. Using this autematve can uniquely complete all
partial patterns containinglaor a+ as an “anchor” for the completion.

Figure 5.5 depicts the surprisingly simple automatdhresulting from the merger, along
with a completion sequence for the example pattern of thenam

It remains to show that any partial pattern containing omiyries0 and — canonly be
completed to the sink, meaning thak bits are 0 andll signs are-.

69

x| 0 1
— | =17
0 711

H
+| | ==+
01?7101

H
+ | ==+
01011

H
+ 1?7 ==+
71011011

H

_|____

0101101

-
+ ===+

Figure 5.5: Completing a partial bit/sign pattern using engton)/’

For this, consider any other completion and assume it woaldltainable through the
original automaton\/, equivalently through the automatan’ in Figure 5.5. Because there is
either a0 ar a— at each position}/’ would have to switch between the superstate and the state
(0, —), for every step it proceeds to the left. This, however, isasgible ifn is odd.

Corollary 5.10 Letn > 1 be odd. Ther®,, is a USO.

The proof is left as Exercise 5.3.

5.2.2 Randontdge on Morris’s USO

We fix some oddr and some initial verteX of O,, atlevel 1, this is defined as a vertex with
exactly one(1, +)-combination. For example, all vertices adjacent to th& éine ones with
exactly one bit of value 1) are level-1-vertices, as you @msilgderive from the automataly .
In the cyclic orientation of’; (see Figure 5.3), level 1 consists of all the vertices on yloéec

In order to understand the behaviorkdndontdge on O,,, we need to understand how
the bit/sign pattern changes when we go framo X & {i} during the algorithm. For the bit
pattern, this is easy: we just flip the bit at positionAs far as the signs are concerned, we
know thatX has a+ at position: (corresponding té € s(X), while X @ {i} has a— (an easy
consequence of the USO property). There are two cases.

Case 1. i ¢ X. Then the situation is as in Figure 5.6.

70

e
S
@

N.—)_.I_ o
~
|
~

Figure 5.61 ¢ X

Becausd0, +) and(1, —) are in the same superstate of automaténin Figure 5.5, there
are no changes in signs at positions other thaMoreover, since we have not changed the
number of(1, +)-combinations, the new verteX @ {i} is again at level 1.

Observation 5.11 In case 1, the step frotk to X @ {i} leads from a level-1 vertex to a level-1
vertex and reduces the number of plus-signs in the patteonby

Case 2. i € X. Here, the situation is that of Figure 5.7.

X X @ {i}
1].-. e 10
+ 217
! !
]]

Figure 5.71 € X

There are two subcases. Af is adjacent to the sink @ {i} is the sink, and the random
walk terminates. By Exercise 5.4, this subcase occurs if ahdibthe number of plus-signs
in X is exactly(n +1)/2.

Otherwise, X'’s pattern contains at least a secontit, which must have a below it
becauseX is at level 1. Let us consider thebit closest to position on the left. The situation
is depicted in Figure 5.8.

X X & {i}
11o0---0117--- .. 11l0---070
— 4| e |27] =

Figure 5.8: € X andX # {i}

As before, becausgl, +) and (1, —) are in the same superstate of the automaton, sign
changes are restricted to théock delimited by the twol-bits. Within the block,all signs

71

change, as you can immediately derive from the automatdalldtvs thatX @ {:} is again at
level 1: the(1, +)-combination has simply moved to the left.

The automaton tells us even more: the signs belowthe the block alternate, with the
first and last one having negative signin In particular, there is an odd numbsr+ 1 of 0’'s
in the block,r of which have a plus-sign iX. Because the step froid to X & {i} reverses
all signs in the block, we get

Observation 5.12 In case 2, the step frotN to X @ {i} leads from a level-1 vertex either to
the sink (iff the number of plus-signs K is (n + 1)/2), or it leads to a level-1 vertex and
increases the number of plus-signs in the pattern by one.

Observations 5.11 and 5.12 show that the behaviBaofdonEdge at level 1 only depends
on the number of plus-signs in the current verfdéxnot on the vertex itself. Namely, ifis the
number of plus-signs itX, exactly one of them has a 1 above it; therefore, case 1 ouwgtirs
probability (i — 1) /i and leads to a level-1 vertex with- 1 plus-signs. Case 2 has probability
1/i and leads to the sink, or to a level-1 vertex with 1 plus-signs.

Fact5.13Fori € {1,...,(n+ 1)/2}, let E; be the expected number of vertex evaluations in
RandonEdge, starting from a level-one verteX of O,, with exactlyi plus-signs. Moreover,
let £,3)/2 be the expected number of evaluations, starting from tHe Sinen we have

Epysy2 = 1, (5.3)

1 ,— 1 1
E, = 1+ -E1+ : Eiy, 1<:< nt : (5.4)
i

7
This is like the casino walk, except that we have just one rdrsg value(n + 3)/2, and
that the transition probabilities depend on the currentevalStill, the idea is, as in the casino

walk, to define a quantity
bi = p(i) B — q(i) Eiq + t(i),
wherep(i), q(7), t(i) are functions depending arthat ensure
bi = bi_1. (5.5)

In the casino walk we hag(i) = ¢(i) = 1,t(i) = 2i. From (5.5), we can derive some
conditions on the functions we may use here. We want that

bi —biy = p(i)E; — (q(i) + p(i — 1)) Eimy + q(i = 1) iy + 1() — £(i — 1)

1 1—2
= i Ei—E + %F ,+1
c(z)(i_1 1+z—1 2+)

for some functiore(z).
This implies the conditions

These conditions smell like the functions might involve sofactorials, and after some trial-
and-error steps, one finally realizes that choositig = ¢(i) = 1/(i — 2)! satisfies both

conditions, and for this choice, we must 8et) = (i — 1)/(¢ — 2)!. It remains to find suitable
valuest (7). With t(i) — t(i — 1) = ¢(i), we must have

ti) = t(i—1)+ il

(i —2)!
1 1

(=2 =3

= t(i—1)+

Choosing
-3

t(z) .=
()= =g ZE
the previous equation holds.
In these rough computations, we have ignored all boundarglitons, so let us check that
we have made the right choices. We define

1 n+3

b= —— | EBi—E +T@{0-2)|, 2<:1< : (5.6)
(1 —2)! —_— 2
(i) (i—2)!
where
k—1 1 k 1
T(k) :=t(k +2)k! = 1+2k!;ﬁ :2k!;ﬁ —1, k>0.
J= J=
It is easy to verify that
Tk)k+1)=T(k+1) — (k+2). (5.7)
Lemmab5.14 b, = 0for2 <i < (n+ 3)/2.
Proof. By induction. From (5.4) we get
b2:E2_E1+1:0.
Now assume > 2. Inductively, we get
bi = bi—bi
1 1 1 1 T(i—2) T(i—3)
= ——F— | = . E; Ei : -
(i —2)! (@-2)!*@-3)!) L T e) M R
1 i—1 i—2 T(i—2)—(i—2)T(—3)
= E; — E Ei_ .
) TR T R o TR (i —2)!
This further yields
—9)1 - _ _
(z‘ 2).bi _ 1 e B, + 2Ei_2 N T —2)— ‘(z 2)T(i —3)
1—1 1—1 -1 1—1
el LE% —Ei 1+ .—2Ei—2 +1
1—1 1—1
(5.4)

73

An immediate consequence igf,,3)2 = 0 is

n—1
By =T <(5)) +1,

but we can also find all other values Bf. From (5.6) and the lemma, we get

i—2
3
B =E -Y T(k), 2§¢§”; .
k=0

Using this fori = (n + 3)/2, the boundary condition (5.3) gives
(n—1)/2
Ey=1+ Y T(k),
k=0
which implies the following result.

Theorem 5.15

Asymptotics. The careful reader might remember that in connection withlkast enclosing
balls, we have already seen how to evalu@tg), see Corollary 2.14. Here we get

T(k)=2lek!] —1, k>0,

wheree is the Euler constant. This meafig,(n — 1)/2) is the dominant term in the right-hand
side of the theorem, which implies that

EZ:Zen_lwo n—1, , 1§z’§"+1.
2 2 2

In particular, we get the nice formula

n—1
2

E(n+1)/2 = 2L€ 'j,n > 3
for the starting value just left of the absorbing valuet 3) /2.

By definition of E;, this corresponds to the expected number of vertex evahmwf
RandonkEdge on Morris’s USOQ,,, starting from a vertex adjacent to the sink. Because
such a vertex must eventually be passedafoy initial vertex distinct from the sink, the main
result of this section follows. It shows that on Morris’s USRandonEdge visits significantly
more vertices than there are distinct vertices. In othedgdt heavily runs in cycles.

74

Theorem 5.16 Starting from any verteX” of O,, which is not the sinkRandonEdge takes

an expected number of at least

n—1
|
2 '

vertex evaluations to reach the sink. For any vertex adjateethe sink, the bound is exact.

2le

Let us briefly check whether this matches the results we hbteireed for Exercise 3.1:
in Figure 5.9, all vertices 005 are labeled with the expected number of vertex evaluations
needed byRandonEdge, using the vertex as initial vertex.

Figure 5.9:RandonEdge runtimes for Morris’s USO o1y

Indeed, for the three vertices adjacent to the sink, the rursd = 2|e|. Theorem 5.15
also yields thé’s in the figure, because the three corresponding vertieeatdevel 1 as well.

Does this mean th&andonEdge is a bad algorithm? Well, not necessarily: there is the
important special case atyclicUSOs, and no acyclic USO on thecube is known for which
RandonEdge requires more than roughhy? steps. In other word®andontdge could still
be a good (polynomial-time) algorithm for acyclic USOs. Exee 5.5 asks you to analyze
RandonEdge on a particular acyclic USO.

We will come back to acyclic USOs in the last chapter, wherealkect evidence that the
acyclic case might indeed be substantially easier thanghergl one.

5.3 Random Unique Sink Orientations
Suppose you want to generate a USOCHf uniformly at random, i.e. you want to have a

program which outputs any USO with the same probabiljty,,, whereu,, is the number of
USOs ofC,,.

75

There are two obvious, but inefficient approaches. Firat, gauld generatall USOs and
then select a random one. For very smalbne can indeed find a complete list of all USOs.
The known numbers are

ug = 1,

U = 2,

Uy = 12,

uz = 744,

uy = 5541744.

The statement of Exercise 5.6 can be used to find that

us > 6.1-10%, and
ug > 7.5-10%,

so the 5-cube has already a number of USOs which cannot beageten the form of a
complete list, using reasonable space and time.

A second approach is to generate a completely random cubetation, by choosing the
orientation of each edge independently at random. If thecsedl orientation is a USO, out-
put it, otherwise repeat. The problem here is that the pritityabf obtaining a USO within
reasonable time is very small. Already for= 4, only 5541744 out of the23? orientations
are USOs, which is a fraction of only/1000, roughly. This fraction rapidly decreases with
the dimension: fon = 5, the fraction is around - 10~'°. How did we get this number, not
knowingus? Just read on. ..

A third approach is to performr@ndom walkon the set of all USOs: start with an arbitrary
USO and go in each step to a random USO in the neighborhoo@ aitinent USO. The hope
is that after only a few steps, we have reached an almost natO. This is the idea behind
the provider walk of Section 5.1, but things are not that $&niq@re. Two questions need to be
addressed.

1. What is the neighborhood of a USO?

2. Even if we have defined neighborhoods, how can we provethlkeatandom walk con-
verges to the uniform distribution?

It turns out that for question 2, the general theoryiarkov chainswill provide an answer,
so let’s start with this.

5.3.1 Markov Chains

Markov chains are formal models for random walks. We hastate space) (for example,
the set of all USOs of,) which we assume to be finifeThen we can associafg with the set
of integers{1, ..., |Q|}—this will simplify the further notations.

Furthermore, there is a sequeriéé)<y of random variables with values . The value
of X, is the state in which the random walk resides aftsteps.

2General Markov chains do not necessarily have finite stateesp but we don’t need this here.

76

Definition 5.17 The pairC = (Q, (Xt):en) is called aMarkov chain if for all ¢ € N and all
sequencesiy, . . ., i) € Q°,

prob(Xt = it‘XO = io, . 7Xt—1 = it—l) = pI‘Ob(Xt = it|Xt_1 = it—l)-

This fancy-looking definition simply says that the prob#pibf reaching some state in step
only depends on the state after 1 steps, but not on states the walk went through earlier. In
all the random walks, we have seen so far, this was the casexdmple, the amount of money
you have aftet steps of the casino walk only depends on the money after steps (and the
outcome of your current bet, of course). It doesn’t matteetivar you went through a run of
good luck before, or whether you almost went broke. We algdlsztC “has no memory”.

Here is another property shared by all our walks so far: #esition probabilities between
states are time-independent:

Definition 5.18
(i) A Markov chainC = (@, (X;)n) is calledhomogeneousf for all t € N, i, € @Q,

prob(X; = j|X;—1 = i) = prob(X; = j|Xo = 1).
(i) For a homogeneous Markov chaih the matrixP € RI%/*IQl with entries
pij := prob(X; = j|Xo = 1)

is called thetransition matrixof C.
(iii) For a homogeneous Markov chaih the directed grapliz = (Q, E), with

E={(i,j) | py >0}
is called thegraphof C.

In the homogeneous case, the transition matrix complefghgifes the random walk:
whenever the walk is in statg its next state ig with probability p;;, no matter how many
steps have already been performed.

Let's do an example. The provider walk of Section 5.1 can h#&emas a homogeneous
Markov chain; its state space can be identified wijth- {1, 2, 3}, wherel = Swisscom, 2 =
Orange, 3 = Sunrise. The transition matrix is

pP= (5.8)

== O
Nl= O N
O NN =

and the graph is the one of Figure 5.2.
Recall that in the provider walk, we were interested in thebphility of being in state
aftert steps, for ali. This motivates the next

77

Definition 5.19 For a Markov chainC = (@, (X}):en), the row vector

¢ := (prob(X; = 1),...,prob(X; = |Q)|))
is called thedistributionof C at timet.

Usually, ¢ is known (we hady, = (1,0,0) in the provider walk), and we want to derive
statements aboyt, ¢t > 0. The following lemma (whose easy proof is Exercise 5.7) come
handy.

Lemma 5.20 LetC be a homogeneous Markov chain with transition maffixThen
qr = QOPt-

Assume we don't start the provider walk wigh= (1,0, 0), but withg, = (1/3,1/3,1/3),
meaning that right in the beginning, you are customer of &oumily random provider. Then
it is easy to check that you willlwaysbe customer of a uniformly random provideg; is a
stationary distributioraccording to the following

Definition 5.21 Let C be a homogeneous Markov chain with transition matfixand = =
(m1,...,mq) arow vector such that

Q|
Zﬂ'l'zl, WZZO,\V/Z
i=1

7 is called astationary distributiorf C, if
P =.

Recall from the beginning of this section that we actually ttargenerate random USOs.
Assuming we can manufacture a Markov chain for this in theitspi the one for “generat-
ing” a random mobile phone provider, we still need to prowat tihis chain has a stationary
distribution7 which is the uniform one, and that the distributigrconverges tar ast tends to
infinity.

In the provider walk, we were able to do this “manually”, bat fess trivial chains, this
approach quickly becomes unmanageable. However, theytioéddarkov chains lists some
easy sufficient conditions under which we get the propemiesvant. Once we have this, the
USO case can be dealt with bgsigninga Markov chain that just satisfies these conditions.

Definition 5.22 A homogeneous Markov chathis calledirreducible if there is a directed
path from any state to any state in the graptCdin particular, there must be a directed path
from any state to itself). Equivalently, for any p&ir j) € Q?, there is a positive probability
of eventually reaching, starting from.

Obviously, the provider walk is irreducible: no matter whauy current provider is, you
can become customer of all three providers in the future.rylgda chain is not irreducible,
it cannot be used to generate a random state, because soesensight just not be reachable
from the initial state.

78

Definition 5.23 A state; of a homogeneous Markov chains called k-periodicfor £k € N, if
all directed paths from back to: in the graph ofC have length:¢ for somel € N. C is called
aperiodic if no state isk-periodic withk > 2.

According to this definition, all states ateperiodic, but higher periods must be avoided
by an aperiodic chain. For example2-geriodic state has only directed paths of even length
back to itself. When we start the walk in such a statere can not expect to converge to a
random state, because after any odd number of steps, thaliitbof being in: is zero.

The provider walk is aperiodic, because any state has dolguaths back to itself of all
lengths but 1.

Definition 5.24 A homogeneous Markov chainwith transition matrixP” is calledsymmetric
if P is symmetric, meaning thal; = p;;, forall ¢, j € Q.

Again, the provider walk satisfies this, because the mafi&)(is symmetric. According
to the following general results, the provider walk therefeonverges—as we know—to a
uniformly random provider.

Theorem 5.25 Let C be a homogeneous Markov chain. Then the following threerstaies
hold.

(i) If Cisirreducible, therC has a unique stationary distribution
(ii) If Cisirreducible and aperiodic (this is also known esgyodig, then
Jim g =
wherer is the unique stationary distribution.

(iii) If Cisirreducible and symmetric, then the unique stationasgrdbution is the uniform

one, i.e.
W:(L L)
el el)

Proofs of these statements are found in most advanced t&kelom probability theory; we
only prove here that (iii) follows from (i), because this e&sg and instructive.

If C is symmetric, its transition matri® is doubly stochastianeaning that all rows and all
columns sum up to one. In general, this only holds for the réasif it holds for the columns
as well, we immediately get

1 1 1 1
e | P= o
(!Q|’ ’\Q!) (!Q\’ ’\Q!)’

so the uniform distribution is stationary. By irreducibyjliit is the unique stationary distribu-
tion.

79

5.3.2 A Markov Chain for USOs

Now we want to apply the above machinery to a suitable Markaircover the set of USOs.
For this, we first define what it means that two USOs are neighbbeach other. Then we
assign to every USO a probability distribution over its seheighbors. Viewing them as
transition probabilities in a random walk, this defines a bgeneous Markov chain on the set
of all USOs.

In the following, let us fix the dimension of the cube and its ground s&t= {1,...,n}.

Definition 5.26 Let O, O’ be two USOs of’,, « € N. O and O’ are calledneighbors in
directioni if and only if O agrees withO’ in the orientation of all edges, except possibly the
ones in direction. Formally,O = (2, D) and©O’ = (2", D’) are neighbors in direction, if

X, Xo{jH)eD & (X, Xao{jheD, vxe2V jeN\/{i}.

According to this definition, every USO is a neighbor of itsalany direction. Figure 5.10
shows a nontrivial example of the neighborhood relation.

Figure 5.10: Two USOs which are neighbors in direction 1

The Markov chain. The state spaa@ is the set of all USOs af’,,. The chain will be homo-
geneous and is therefore completely defined by its transitiatrix, containing the transition
probabilities for all pairs of USOs. For a USQ, let V' (O, i) be the neighbors @ in direction
T.

The transition probability of going fror® to O’ is defined as

1 1
Po,or = o Z m (5.9)

:0'eN(O,i)

These values are actually legal transition probabilities.

Z po,or = 1.
o

Fact 5.27 For any O,

80

Proof. Letting [A] be the indicator variable for the statement in bracket$ € 1 if A holds,
[A] = 0 otherwise), we can write

1
;p"w’ - . X , V(0.0

o’ 0'eN (O

— Z ZOIENOZ)]’N((’) Al

(o4 1EN

— _ZZOIGNOZ)]]/\/(O Al

ieEN O
B \/\/ (9 7)
Note that the sum in the definition pb,o/ consists either of one term @ # O’), or ofn
terms (ifO = O’).
Figure 5.11 shows an exampl@. has four neighbors in direction 1, and two neighbors in
direction 2, always including itself. The probability ofigg to a fixed neighbor in direction

1 is thereforel /2 - 1/4 = 1/8, while a neighbor in directior2 is reached with probability
1/2-1/2 = 1/4. For the transition fron® to itself, this sums up td/4 + 1/8 = 3/8.

Y.
N

o=

=
oo

Figure 5.11: Transition probabilities for a fixed baWw

Theorem 5.28 The homogeneous Markov chain defined by the transition pibtias in (5.9)
is aperiodic, symmetric, and irreducible (this is the ord@gemvhich we are going to show the
properties).

81

Proof. Because every USO is a neighbor of itself, it has a directeld plalength 1 back to
itself. This implies that the chain is aperiodic.

Symmetry follows directly from the symmetry of the neighbelation, plus the fact that
N(0O,i) = N(O'1), if O and®’ are neighbors in direction The latter holds, because the
neighborhood relation in directian(Definition 5.26) is not only symmetric, but also reflexive
and transitive, so it is aequivalence relationwhere the setd/ (O, i) are the equivalence
classes. This means,@, O are neighbors in directiofy they are equivalent and define the
same equivalence clad§(O, i) = N(O',1).

Finally, we need to show that the chain is irreducible, meguhat we can get from any
USO to any USO by going to a neighbor in each step. Actuallysth@v that in at most
steps, we can reach to@iformUSO (defined by the outmap valugsX) = X, for all X); by
symmetry, we can go then from the uniform USO back to any US&hothem steps at most.

Starting from any USO, stepreorients only edges in directian in such a way that we
again get a USO. Then it is clear that this USO is a neighbdneptevious one. To be more
precise, step orients the edges in directianin such a way that they all go from the larger to
the smaller set. After this, the orientation contains thheated edges

(X U{i}, X), X C2Mi, (5.10)

We say that the orientation isombedin directioni; in this case, it's combed frortop to
bottom(which is natural when you think about combing your hair}, & orientation can also
be combed fronbottom to top meaning that all edges in directioigo from the smaller to the
larger sets.

It is easy to verify (this is actually part of Exercise 5.6tlthe process of combing a USO
in some direction maintains the USO property.

It follows that after at most steps, we have a USO which satisfies (5.10) fof,ale. it is
combed from top to bottom in all directions. This impligsY') = X, so we have the uniform
USO. H]

Together with Theorem 5.25, this theorem implies that theloan walk underlying the
Markov chain we have defined indeed converges to the unifesinizlition on the set of all
USOs.

The distributionsy; can still be explicitly computed within reasonable time foe 3. The
Maple plot in Figure 5.12 shows how the largest possible entry; ifupper graph) and the
smallest possible entry (lower graph) develop withAfter around 30 steps, both graphs are
already very close to the middle graph which representsaheev /u; = 1/744.

When you think about how you actually perform the random wii&re is still one issue.
It seems we would need the neighbors of the current USO inraittibns in order to choose
the next one among them, according to the probabilities.®) (3Ve could of course, for all
go through the"~! candidates for neighbors in directioand collect the USOs among them,
but that would be pretty inefficient. As we show next, all teeghbors of a given USO are
implicitly encoded in the USO itself, and we can make thiginfation explicit. This will also

3actually, this is a common trick to make a chain aperiodist add a loop from any state to itself, “stealing”
the probability of looping from the other transitions
“the maxima and minima are taken over all initial distribogq,

82

©
o

0.01

©
o
@y Gty My g

0.00

————

o

10 20 30 40

Figure 5.12: Convergence of the USO chainsor 3

show that the number of neighbors in a given direction is géngapower of two; in the example
of Figure 5.11, we have already come across an incarnatitmsofact.

Phases. Consider Figure 5.11 again; why do@shave only two neighbors (including itself)
in direction 2? Because the two edges in directiare “in phase”: given the orientations of
the edges in direction 1, we only get a USO if the two other edgere the same orientation,
both from top to bottom (as i), or from bottom to top , as in its other neighbor. The reason
is that there is a pair of vertices, Y in O (take any pair of antipodal vertices) such that

(X @Y)N (s0(X) & s0(Y)) = {2},

and if we reorient jusbneof the two edges incident t& andY in direction2, the resulting
orientation(D’ satisfies
(;Xf 69 }/) N (SCQ/()() EB Sc)/(}/)) = @.

By our outmap characterization (Lemma 3.8),cannot be a USO in this case. This motivates
the following

Definition 5.29 Let © be a USO over the groundsét, X,Y € 2V i ¢ N. X andY are
called strongly in phasevith respect tq O, 7) if

(X @Y)N (so(X) @ s0(Y)) = {i}.

Remark 5.30 X and X & {i} are strongly in phase w.r.tO, i), for all X.

83

For anyi, the cube”,, subdivides into @op facet(vertices containing) and abottom facet
(vertices not containing. If X andY are strongly in phase w.rffO, i), we have € X&Y', so
X andY are in different facets. Thene so(X) @ so(Y') implies that the two edges incident
to X andY in directioni must both go from top to bottom, or from bottom to top.

The strongly-in-phase relation is symmetric, but it is heitreflexive nor transitive; taking
thetransitive closuragives us a more useful equivalence relation.

Definition 5.31 Let O be a USO overV, X,Y € 2V i € N. X andY are calledin phase
w.r.t. 4, written as

X >~0,Y,
if there is a sequence of vertic&ds= X, X1, ..., X, = Y such thatX, and X, are strongly
in phase w.r.t(O,i),fort =0,...,k — 1.

It is clear by construction that, ; is transitive, and it is also reflexive as a consequence of
Remark 5.30.

We call the equivalence classesgf ; thei-phasesf O. Figure 5.13 shows an example
for n = 3. Together with the strongly-in-phase pairs of Remark 5.88,ttvo indicated pairs
already prove that the six rightmost vertices are in one com2aphase. It remains to check
that the two leftmost ones are in a different 2-phase.

~ . strongly in phase

+—=

Figure 5.13: The tw@-phases of the cyclic USO

From the considerations above, it follows tladitedges in direction between the vertices
of a fixedi-phase have the same orientation. For2ipghase of size 6 in Figure 5.13, there are
three such edges, all of them going from top to bottom. Extengrevious terminology in the
natural way, we say that thephases are combed.

Here is the crucial insight:

Theorem 5.321f © and O’ are neighbors in direction in the sense of Definition 5.26, then
~0 =0, SO both USOs have the samphases.

84

Proof. If O and(©’ are neighbors, they differ only in orientations of edges imreation i.
Therefore,
(X @Y)N (s0(X) D so(Y)) (5.11)

can differ from
(X () Y) N (S@/ (X) () SO/<Y)) (512)

at most in the element If (5.11) evaluates tdi}, then (5.12) may evaluate fiy or to {i}.
Becausg)’ is a USO, the former is not possible, and it follows thaandY are strongly in
phase w.r.t(O, 7) if and only if they are strongly in phase w.r(t)’, 7). H]

Now we are in a position to describe how the neighbor®af direction: can be read off
thei-phases 00.

AssumeO has/ i-phases. The theorem implies that the numBétO,)| of neighbors of
O in directioni is at most’. Namely, all neighbors have the samghases, and eacdkphase
can independently of the others be combed in two ways. Itfaldmwvs that all neighbors of
O can be obtained by reorienting somphases. Actuallyall possible2‘ reorientations of
i-phases lead to USOs again (Exercise 5.9), thus

IN(O,)] =2

holds.

Now it is an easy task to choose a random neighbor in directias the transition prob-
abilities (5.9) of our Markov chain require: simply reorienrandom subset of thephases;
equivalently, toss a coin for eaéfphase to decide whether thigphase will be reoriented or
not.

5.4 Counting USOs with the Markov Chain

It is often the case that if one can select an element from stae space uniformly at random,
then one can also approximately count the number of states.idparticularly useful for state
spaces which are too large to be explicitly enumerated.isrstéction, we see how the Markov
chain we have introduced in the previous section can be odetita reasonably good estimate
for the numbern; of USOs onC's. Recall that our lower bound of

us > 6.1-10"

already shows that the state sp&cactually too large for an explicit enumeration.

Here is the idea: lat,, be the number of USOs 6f,, which are combed in a fixed direction,
sayn. We count a USO foti,, regardless of whether it is combed from top to bottom, or from
bottom to top. For those who have solved Exercise 5.6, tHewiolg does not come as a
surprise.

Observation 5.33 @, = 2(u,_1)>.

85

Proof. To obtain a combed USO d@f,,, we can combine any USO in the top facet (vertices
containingn) with any USO in the bottom facet (vertices not containifgif all edges between
upper and lower facet have the same orientation, the resiibeva USO ofC',, combed in
directionn. Because upper and lower facets é@fg ;'s each, and there are two ways to comb
an orientation in direction, the bound follows. H]

The following is actually more a definition than anythingeels

Corollary 5.34 Let p, be the probability that a USO chosen uniformly at random fralin
USOs ofC,, is combed in directiom. Then

Un

Pn =
Uy, Unp,

equivalently
2
Uy = QLnjl))
Pn
In the concrete case = 5 we are interested iny,,_; is a known quantity (namelyy, =
5541744), andp, can be estimated experimentally. For this, we simply usévtagkov chain
to sample a large numbeof (almost) random USOs, and use the fractigot) of combed ones
(in directionn) as an estimate far,. Thelaw of large numbertells us that this is justified: we
have

* lim p(t) = o
Despite being quite intuitive, this statement is mathecadlyi incorrect, becaus@(t)).cn is
not a sequence of numbers but a sequence of random varidbkesorrect statement is

lim B ((p(t) = p)?) = 0,
but the interpretation is the same: if we wait long enough,akperimental valug(t) will be
close top,, with high probability.

But how long do we have to wait? If the Markov chain were perfedhe sense that it
generates truly random USOs, we could usedéetral limit theoremand find bounds fot
that guarantee a small error. However, we only know that tlaekibl chain is perfedn the
limit, but we have no clue how “random” the USO is after 100 steps, Beyure 5.12 looks
encouraging in dimensiom = 3, but it is conceivable that the convergence rate (also krasvn
themixing ratg of the chain gets much worse agrows.

The fact that the graph of the chain has small diameter (ircase, any state is reachable
from any state in at mo&t: steps) does not guarantee a good mixing rate: the graph haght
bottleneckghat are passed by the random walk only with very small priibabNo results
concerning the mixing rate of the USO chain are known.

In practice, we just let the experiment run uniilt) stabilizes to our satisfaction. For
example, after letting the walk for thedimensional USOs run for two days, taking every
100th USO into account fqi(¢), one finds that

p(t) ~ 0.0962185, (5.13)

86

which leads to
us ~ 6.3836 - 10, (5.14)

roughly a factor of ten higher than the lower bound we had ageth We must be careful,
though: we have no mathematical guarantee that these \alees/en remotely correct. For
example, the chain might in the beginning stabilize to som#&idution on some subset of
all USOs, and only much later converge to the actual unifoistridution on all USOs. In
the wrong distribution that we observe, combed USOs mighinbeh more (or much less)
frequent than they should, in which case the results of tpem@xent would be meaningless.

On the other hand, the author is optimistic and actuallyeveb that there is some truth
behind the numbers in (5.13) and (5.14). This optimism atsmes from the fact that for
d = 3,4, we can compare our experimental results with the knownegabfus, u,, and they
perfectly agree.

Bibliographical Remarks

The casino walk is folklore; it appears for example in thelbbp Grimmet and Stirzaker [5].
Morris’s USO and the analysis ®8ndonEdge is due to Walter Morris [10]. The explicit
bound for the expected number of steps is new. Markov chamglassical, Grimmet and
Stirzaker treat them in depth. The Markov chain for USOs s tduMatosek and Wagner [9].
The idea of counting USOs with this chain is new.

Exercises

Exercise 5.1 Consider the random walk oft, . . . , N'} which starts ink, moves to the left with
probability p and to the right with probabilityy = 1 — p. The walk ends i or N is reached.

() What is the probability that the walk reach@&s?

(i) What is the expected number of steps in the walk untikeitbor N is reached?
Remark: In the course, we have solved (ii) for the case 1/2. This extension covers the
more realistic scenario that your probability of winning aurad of roulette by betting on red is
strictly smaller thanl /2, because the bank always wins if zero comes up.

Exercise 5.2 Prove that in any USO df’,, there is a directed path of lengtiX’ & Y| from any
vertexY to the unique sink.

Exercise 5.3 Prove Corollary 5.10 of Lemma 5.9.

Exercise 5.4 Let#x (1), #x(+) be the number of-bits, respectively plus-signs in the vertex
X atlevel 1 of Morris’ USO orC,,, n odd. Prove that

#x (1) +#x(+)

87

is a constant only depending an(which one?). Conclude that

_n+1

Can you generalize this exercise to vertices at lévelertices with exactly: (1, +) com-
binations)?

Exercise 5.5Let N = {1,...,n} and consider the function : 2% — 2V defined by the
following recursive rule.

s(@) = 0,
S(AU{Y) = {1,...i}\s(A), AC{l,....i—1}

(i) Prove thats defines a US@ onC,,.
(i) Prove that there is a directed path i®? which visits all2™ vertices.

(i) Prove that the expected number of vertex evaluatiogrsggmed by the random walk on
O is bounded by)(n?), for any start vertex.

Exercise 5.6 Let u,, be the number of unique sink orientations of theube (for example,
ug=1,u; =2 andUQ =]_2)
Prove that
Uy > 2(un_1)27 n>1,

and derive from this an explicit lower bound foy.

Exercise 5.7 Let P be the transition matrix of a homogeneous Markov chain. etinat the
distribution ¢, at timet satisfies
qi = QOPt, t 2 0.

Exercise 5.8 (i) Find a non-irreducibleMarkov chain with no unique stationary distribu-
tion.

(i) Find an irreducible,non-aperiodidMarkov chain and some distributiap such thatg,
does not converge to the stationary distribution.

(i) Find an irreducible, aperiodic,non-symmetridMarkov chain for which the stationary
distribution is not the uniform distribution.

Exercise 5.9LetO be aUSO ort,,, and lety C 2% be the set of vertices forming oi@phase.
Prove that reorienting all edges

{(X, X®{i}}, XeV

gives rise to a US@)'. (Becaus&)' is a neighbor ofO in directioni, O’ has the same-
phases.)

88

Exercise 5.10Suppose you are working as a security person on the tram netwidlrich.
Your goal is to be “everywhere at the same time”. When you zedlhat this is not possible,
you become less ambitious: you travel from station to statimpping on and off trams, with
the goal of being at every station with the same probability.

Describe a random walk on the tram network which lets you achiggegoal in the long

run.

89

Chapter 6

Acyclic Unigue Sink Orientations

In Chapter 3, we have shown that an expected number of at most

n/2
43
— ~ 1.466"
o(()) a0

vertex evaluations suffices to find the sink of any USQCQf This bound is attained by the
product algorithm based on the optimal algorithm far= 2. Not much more is known in the
general case. Using the optimal algorithm for= 3 as a basis for the product algorititmye
can slightly improve over the above bound and get an expecteiber of

n/3
4074633
— ~ 1.438"
0 ((1369468) > 38
vertex evaluations. This is what we know when no furtherietgins on the USO are made.

In this final chapter, we want to show that the above bound$easubstantially improved
if the USO isacyclic which means the obvious: there are no directed cycles iarikatation.

6.1 The RandomFacet Algorithm

We develop an algorithm that works for all USOs; only in thalgsis, we make use of acyclic-
ity. The algorithm is pretty close in spirit to the simple guat algorithm— based on the
optimal algorithm fom = 1—that previously gave us the

§ n

2
bound: we choose some directionf the cube; along directiofy the cube decomposes into
two facets Recursively, we find the sinK in one of the facets. If this sink is not yet the global

The optimal algorithm for, = 3 can be found by the game-theoretic methods of Chapter 4, dulistantial
refinement (exploiting symmetries) is necessary in ordethiis approach to stay feasible. Foe= 4, the optimal
algorithm is unknown.

90

sink (which we can test by looking at the orientation of itsidlent edge in direction), we
recursively find the sink in the other facet, and the resulstnine the global sink. When we
choose the facet over which we optimize first uniformly atd@m among the two facets in
directioni, we arrive at the product algorithm and its expected conitylg¢l,/2)".

Here, we will proceed slightly differently: throughout trecursion, the algorithm not only
maintains the current face but also a verféxn that face; the (sub)facet to be searched first
will then be chosen uniformly at random among the facetsainimg X. In other words, the
algorithm chooses eandomdirection:, and among the two facets along directiaselects the
one containingX as the first facet to search for the sink. In case the facet)Siisknot yet the
global sink, we search the other facet, starting from (aiglisithe key!) the verteX” & {i}.

Face/vertex pairs can conveniently be written as follows.

Definition 6.1 Let N = {1,...,n} be some fixed ground set@f. For X, I € 2V, the set
(X, I)={XeJ|JCI}
is the facespannedy X in directions!.

It is clear that
(X, 1) =[X\I,XUI

in our previous notation of faces as intervals of sets (pdge Also, every faceA, B] can be
written for example agA, B] = (A, B\ A), so we do not ‘loose’ any faces in our new setting.
Here is a lemma listing some simple properties (its proofxsrEise 6.1).

Lemma6.2 LetX,] ¢ 2V i€ N.
() (X, I)=(Y,I),forall Y € (X, I).

(i) (X, 1) = (X, I\ {i}) U(X @ {i}, [\ {i}).
(i) (X, I\ {i}) contains exactly one of the verticksandY & {i}, foranyY € (X, I).

Figure 6.1 illustrates the process of searchingsidt X, 7)), assuming directionis chosen
for the decomposition into two facets. The figure also emikaghe fact that the algorithm
actually follows a directed path in the orientation: whesrethe current vertex” changes, it
is replaced by a neighbadf @ {i}, reached front” by following an outgoing edge. Thus, the
algorithm can be considered as a random walk, with more stphied rules than the simple
random walkRandonEdge of Algorithm 5.6 from the previous chapter. Here is the aildpon,
written down formally.

Algorithm 6.3 Let s be the outmap of a USO of C,,. Given a pair(X, I), the following
algorithm evaluates and returi®o ((X, 7)).

91

(X, T\ {d}) (X @ {i}, I\ {i}) (X, T\ {i}) (X @ {i}, I\ {i})

Y Y Y @ {i}

Figure 6.1: To find the sink ofX, I'), we first recursively find the sink” in the facet(X, I \
{i}). If Y has an incoming edge in directionwe are done (left), otherwise, we recursively
find the sinkS in the other facetX @ {i}, I \ {i}) = (Y @ {i}, I \ {i}), which must then be
the sink of(X, I) (right).

Randonfacet (X, I):
| FI =0 THEN
evaluateX
RETURN X
ELSE
choose € I at random
Y :=Randonfacet (X, I\ {i})
| Fi¢s(Y)THEN
RETURNY
ELSE
RETURN Randontacet (Y @ {i}, I\ {i})
END
END

The correctness proof is an easy induction gvérusing Lemma 6.2. Actually, it should
already be clear from the above discussion that the algontlorks; moreover, even if the
USO has cycles, no vertex will be visited twice by the aldont(which can also be shown by
induction). It follows that the number of vertex evaluasas always at mos2”, but as we
show next, the expected number is much smaller in the acyatie.

92

6.2 Analysis ofRandonfacet

From now on, the US@ is assumed to be acyclic. In this case, the vertices cdaogmdogi-
cally sorted meaning that there is some total ordeon the vertices such that for all, Y/,

X reachable fromY” (along a directed pathi®) = X <Y. (6.1)

In this order, the global sink is necessarily the minimuncauese it is reachable from any
other vertex (Lemma 5.7). In general,is not unique. For example, the uniform orientation of
C, allows two different topological orders, see Figure 6.2.

{1,2}

{1 {2}

Figure 6.2: The uniform USO af’, has two different topological orders of the vertic@s<
{1} < {2} < {1,2} andd < {2} < {1} < {1,2}.

Let us fix a topological order once and for alf. Then we can introduce the crucial concept
of fixed elements

Definition 6.4 Let X, I C 2V. i € I is calledfixedin (X, I), if and only if
X <@(X @ {i}, 1\ {1}))-
Otherwise; is calledfreein (X, I).

What does this mean? We have already noted ¢hat/') subdivides into two facets along
directioni. If i is fixed, the sink of the facétX & {i}, '\ {7}) notcontainingX is not reachable
from X along any directed path. By Lemma 5.7, if the sink of the fasetdt reachableno
vertex of the facet is reachable, and we obtain the following

Corollary 6.5 Leti € I be fixed in(X, I). Then

(i) novertexin(X & {i}, 1\ {i}) is reachable from¥X, and consequently,

(i) acallto Randontacet (X, I) visits only vertices in the facéX, '\ {i}), equivalently,
it performs no second recursive call.

93

Figure 6.3: The concept of fixed and free elements. LZif$:fixed in (X, {1,2}), butl is free.
(Y, {1,2}) and(W, {1, 2}) have no fixed elements. Botrand2 are fixed in(Z, {1, 2}). Right:
if X <Y,2isfixedin(X,{1,2}), but(Y,{1,2}) contains only free elements. ¥f < X, 1is
fixed in (Y, {1,2}) and(X, {1, 2}) has only free elements.

As an illustration of this concept, consider Figure 6.3, vehi¢ also becomes clear that
the notion of fixed elements depends on the ordeand that even for free elementsthe
statements of Corollary 6.5 might hold (this will neither twior benefit us).

Here are two more consequences of Definition 6.4 that we raeed |

Lemma6.6 Let X, I C2V Y € (X, I),i e I.
(i) If j €I\ {i}isfixedin(X,1I),thenjis also fixed in(X, I\ {:}).

(i) If j € Iisfixedin(X,I)andY < X, thenj is also fixed inY, I).

Proof. (i) 7 being fixed in(X, I) means that

X <@(X o {7} 1\ {j}) c@(Xe{j}, I\{ij})

where the latter inequality just says that the sink of a faegual to or reachable from the sink
of any subface. It follows thatis fixed in (X, I \ {i}) as well. (ii) the assumptions yield

V<X <@Xe{ihI\{j}h) (6.2)
This in particular implies that
V¢ Xe{ihI\{j}),
equivalently that
Ye{jteXae{j5LI\{j}),
by Lemma 6.2. Using part (ii) of Lemma 6.2 once more, we get

Xo{ihI\h=&a{hLI\{h,

2We could as well work with th@artial order of the vertices defined by the reachability relation in (BtLit
that would unnecessarily complicate things in the sequel.

94

so (6.2) gives
Y <@Ye{i1\{i})
This means that is fixed in(Y, I). H]
Intuitively, the less free elements there arg¢ M I), the fasteiRandonfacet (X,) will
be. In fact, if (X,) hask free elements, then all verticds < X visited during the call
to Randonfacet (X, I) must be in a commok-dimensional face with the sink dfX, 7),
because they cannot differ from the sink in any fixed elemEmis motivates the following

Definition 6.7 Let X, I C 2. Thehidden dimensiownf (X, I) is the number
h(X,I)=|I|-{iel|iisfixedin(X,I)} ={iel|iisfreein(X,I)}.

For example, in Figure 6.3 (left), we haxeX, {1,2}) = 1 andh(Y, {1,2}) = 2.
Here is the main result of this chapter. It looks somewhatsyasw, but things will clear
up later.

Theorem 6.8 Definet,(m) to be the maximum expected number of vertex evaluationsat a c
to Randonfacet (X, I), where|/| = m andh(X,) < k. Thenty,(m) = 1 and

m

tk(m)§i<(m /{Ztk —1 +Ztk1 —1 +t] 1(—1))), k> 0.

Proof. If k& = 0, X must be the sink o(X, I, and it is easy to see that exactly one vertex
evaluation (for the paifX, ())) takes place ilrRandonfacet (X, I).

If £ > 0, we may assume without loss of generality thak, /) = k: if the worst pair
(X, I) with hidden dimension at moéthash(X,I) = ¢ < k, we gett,(m) = t,(m), and
proving the theorem fof yields the required bound fdras well. There are two cases now.

Case (a) iisfixed in(X,). Because all fixed elemenis# i are also fixed i X, I \ {i})
by Lemma 6.6(i), we have(X, I\ {i}) < k. Moreover, there will be no second recursive call
in this case due to Corollary 6.5, so the expected number téwewraluations is bounded by

tk(m — 1).

Case (b) i is free in(X,). Lemma 6.6(i) gives us a bound afX, 7\ {i}) < k—1in
this case, because we remove a free element. It follows lieag¢xpected number of vertex
evaluations in the first recursive call can be bounded,by(m — 1).

To estimate the performance of the second recursive calislerder the: free elements
i1,...,14; in such a way that

@O(X, I\ {i})) <--- <@UX, T\ {ix})).

If i = i;, and if there is actually a second recursive call with p&ir® {i},1 \ {i}), we
know that for¢ > 7,

Yo {i} <Y

@(X, I\ {i}))
@X, T\ {ic}))
@Y @ {i} @ {ic}, I\ {ie})),

95

IN

where the latter equality follows—as in the proof of Lemm@(iB—from Lemma 6.2.

This, on the other hand, means that, . .. , i, are fixed in(Y & {:}, I) and therefore also
in (Y@ {i}, I'\{i}), inadditionto the elements that were already fixed ¥,) (Lemma 6.6).
It follows that

WY @{i}, I\{i}) <(k—1) = (k—j)=j— 1L
We conclude that the expected number of vertex evaluatiotisei second recursive call is
bounded byt;_;(m — 1) if i« = i;. Because this happens with probabilltym (which is also
the probability that is any of them — k fixed elements in case (a)), the claimed bound follows.
H]
The proof formalizes our intuition that it is better for thiga@rithm to choose soméefor

which
Y =@(X, I\ {i}))

is rather small in the ordet;, because thel” will already be quite close to the sink. Actu-
ally, choosing: = i; would be best. Unfortunately, the algorithm does not knog dhder
i1, ...,1g; by guessing randomly, we expectto be somewhere in the middle which is quite
an improvement over the worst case in which we would choesé;.

The bound ort; (m) still looks ugly, but upon closer inspection, it turns owattkhe bound
actually does not depend om.

Theorem 6.9 For fixedn, define

T(k) —maxtk().

mn

Then,
T0) = 1,

T(k) < T(k—1)+ T(j—1), k>0.

<
I
—

| =
-

Proof. T'(0) = 1 is obvious. Fort > 0, consider the value: that leads to the maximum in
the definition of7’(k). Then we get

T(k) = tr(m)

< %((m k)ti(m +Ztk1 —1) +t] 1(m _1))>

< % ((m — k)T(k) + Z(T(k —1)+T(- 1))) ,

Multiplying this with m /k proves the statement.

Using the method ofienerating functiongor the method of guessing), the following ex-
plicit bound on7’(k) can be obtained. Once we have it, a simple proof by inductidrich we
omit here) can be used to verify it.

Theorem 6.10 For all £ > 0,

In particular, this gives
T(k) < e*V*.

Proof. We only show how the second bound follows from the first one. this, we use the
easy estimate

0y o

b b!
and compute

T(k)égl(i) silﬁzi (@)2 (i?)l (i%)QzeQﬁ.

! !
]. j j:0 j:()

IN

H]
Because in any USO df,,, h(X,I) < n for any pair(X, I), the findings of this chapter
can be summarized as follows.

Theorem 6.11 Algorithm 6.3Randonfacet finds the sink of any acyclie-cube USO with
an expected expected number of at most

eV
vertex evaluations.

This is still exponential, bunuch smallethan the previous bounds. We conclude with a
table that compares the expected number of vertex evahgitiwgurred by the algorithms we
have considered in this course, see Table 6.1.

What can we conclude from this table? When we are willing to ¥emiiround10® vertex
evaluations (this sounds like a realistic number, givercpabilities of today’s computers), we
can find the sinks of general USOs in dimensions up to ar60ndsing the product algorithm.
The trivial algorithm quits at around = 30, while RandonEdge is a bad idea already much
earlier.

If we know that the USO is acyclic, however, we can go up to disnens arouna = 130,
usingRandonfacet . Forn = 127, the algorithm seems to visit many vertices, but comparing
this number with theotal number of vertices, we see that the fraction of visited gesiis
approximately

10~*% = 0.000000000000000000000000000001.

97

Trivial | Product |RandonEdge | Randonfacet
> 38O saendty | <y 3()
3 8 3.23 4 5.67
7 128 14.9 32 26.0
15 | 3.28-10* | 3.19-10? 2.7-10* 234.0
31 | 2.15-10° | 1.45-10° 7.11- 10" 5.5-10°
63 [9.22-10" | 3.03-10' 4.47-10% 5.15-10°
127 [1.70 - 10%% | 1.32-10* 1.01 - 10%® 3.32- 108
255 5.79- 107 | 2.49 - 10*2 1.64 - 101 3.30 - 10"

Table 6.1: Runtime comparisons of four sink-finding algamnghfor certain odd values of;
the Trivial algorithm goes through all vertices; the Pradaigorithm combines (for odd di-
mensions) the optimal algorithms for dimensidrend2; RandonEdge is the simple random
walk, andRandontacet is the sophisticated random walk of this chapter, its ruatbound
is valid only for the acyclic case.

On the other hand, we cannot argue around the fact that afiadetwe have studied are
impractical as: gets really large (in the thousands, say). The great clgdleto find better
algorithms, in the hope of ultimately getting a bound whiglpolynomial inn. Currently, we
are very far away from this goal.

Bibliographic Remarks

The subexponential algorithm for acyclic USOs explicithpaars first in a paper by Ludwig
[7], as a specialization of general techniques by Kalai §8jall as Mato&ek, Sharir and WelzI
[8]. The explicitexp(24/n) bound is derived by &rtner [3].

Exercises

Exercise 6.1 Prove Lemma 6.2!

98

Chapter 7

Solutions to Exercises

This final chapter contains solutions to the exercises,nizgd by chapters. Due to severe
time constraints, some solutions are only sketched, ana frethe ones that are complete,
absolutely no guarantee is given. If you find errors (thisiakty holds for all chapters), please
report them to me.

7.1 Solutions to Chapter 1

Exercise 1.1

(i) The upper bound(K,,) < n is clear, because if we evaluate all vertices, we have surely
evaluated the sink. For the lower bound, we argue with anradwe who operates the oracle
in such a way that we are forced to askuestions. The construction is as follows:

Assume we have already evaluated 1 verticesvy,...,v;_1,1 < i < n. Because our
algorithm is deterministic, the answers we have obtainethisdetermine the next vertex
that we evaluate. The oracle will tell us that

out(v;) = V\{v1,...,vi1},

i.e. all edges from vertices we have already evaluated acening, and all edges to vertices we
haven’t seen yet are outgoing. This in particular implies timly then-th vertex we evaluate
will actually be the sink, proving the lower bound.

In this construction, it is important that the adversary ebmays guarantee at least one
orientation which is consistent with all answers given se+4atherwise, we could accuse him
of cheating.

Such an orientation does indeed exist: after having evedugtthe adversary has revealed
that D contains the following edges:

(@) (vg,ve), k<l <i (between evaluated vertices),

(0) (v, v), k <i,v e V\{v,...,v} (between evaluated and non-evaluated vertices).

99

Edges between non-evaluated vertices are still unknowss.tdrufact, the adversary can put
these vertices intanyorderv, 4, . .., v,, and the complete orientation induced by

D = {(vg,v) | k<l <n}

is acyclic, contains a unique sink and is compatible with all answers. The actual order in
which these remaining vertices will appear in the end is g#we order in which we evaluate
them.

(i) The graph of then-cube can be realized as follows: the vertices are alRthkitvec-
tors of lengthn, and two bitvectors are connected by an edge iff they diffieexactly one
coordinate, see Figure 7.1.

01 11

00 10

Figure 7.1: Graph of the-cube

The upper bound is again easy: evaluat@il vertices with even parity (even number of
one-entries). Because all edges connect a vertex with evép fmaone with odd parity, these
evaluations reveal the orientationsaif edges. If the sink has even parity itself, we are done,
otherwise, we need one more evaluation.

For the lower bound, the strategy will be similar as in paliut,we have to be more careful.
For example, when evaluating a vertexthe adversary can in generadt tell us thatout(v)
contains exactly the neighbors othat have not been evaluated so far. Consider the situation
in the 2-cube after evaluating vertice&and11: answering

out(00) = {01,10}, out(11) = {01,10}

would result in the orientation of Figure 7.2 which contaiws sinks. Because we have been
guaranteed that the orientation contains exactly one sigkiould now accuse the adversary
of cheating.

Instead, the adversary strategy will be the following: wstfmonstruct a Hamiltonian cycle
of C,, (a closed path containing every vertex exactly once). Lg@rage by induction that such
a cycle exists, where the base of the induction is 2: in this case, we obviously have such a
cycle. Let us assume that we have a cycledgr ;. The vertices of”,, with last coordinate
(the upper facet) form &,_,, and so do the ones with last coordinatéhe lower facet). By
the induction hypothesis, there are Hamiltonian cycleoth flacets, where we can assume that
they are copies of each other (connecting the vertices isdhee order, within the facets). By
just leaving out one edge of each cycle, we get two Hamiltopeths and by concatenating
them with two extra edges between the facets, we get a Hamaiticcycle inC,,, see Figure
7.3.

100

01 11
00 10
Figure 7.2: AC,-orientation with two sinks
/\

Figure 7.3: Constructing a Hamiltonian cycle

So(, has a Hamiltonian cycle it > 2. (C; does not have one, but it is easy to check that
the exercise statement is true foe= 1.)

Let us assume that Alice can find the sink’gf with 27—! evaluations. We can answer her
first 2n~! — 1 question as if this Hamiltonian cycle were directed, anddther edges are alll
outgoing. (Observe that so far, this orientation does nwe lasink at all!) After2”—! — 1
gueries, there are still three consecutive non-evaluagetices, or we have two pairs of two
consecutive non-evaluated vertices, see Figure 7.4 Indadbs, there are still (at least) two

<
b g

Figure 7.4: The possible choices of the sink after' — 1 evaluations.

vertices which will become the unique sink after reoriegitime edge about whose orientation
Alice has no information. It follows that even if Alice haseomore question, she will not be
able to deduce the sink.

(i) If one evaluates the vertices of\gertex coverthen the orientation of every edge is
known, so it is also known where the sink is. In the worst cagestill have to evaluate it.

101

Exercise 1.2

If X,, = nthen for every > 1 the algorithm has to chooge- 1 as the next number from
{1,2,...,i— 1}. This probability is-1;, so prolf.X,, = n) = = 11,

For the rest we need to define the Stlrllng numbers (of thekﬁllnst) Any permutationr €
S, decomposes into cycles, which are sequeriggsn, ... n,—1) of elements withr(n;) =
N(i+1)mod ¢, fOr 0 < @ < £. For example, the permutation

[1]2]3]4]5
m(@)[3]5][4]1]2

consists of the two cycles
(1,3,4)(2,5).

The identity has cycles(1)(2) - - - (n), while for example any circular shift consists of one
cycle of sizen. The cycle decomposition is unique if we let every new cytéatswith the
smallest element not used so far. We define

[Z } := {7 € S,|7 hask cycles|.

8 = 0forn > 0, 2 = 0 for £ > 0, and the following
recurrence relation holds for Stirling numbers of first kind

{Z}:(n—l){n;1]+{z:i},n>0.

To see this, observe that there are exa%tig/: 1 } permutations with, appearing in a cycle

For example 8} =1,

(n) of its own. The ones having in some nontrivial cycle can be obtained by insertinigito
some cycle of a permutation aef — 1 elements withk cycles. Since there are exactly— 1
different ways to do this for every such permutatignaays for every cycle of sizg), the
formula follows.

For our algorithm lep(n, k) := prob(X,.,; = k£ + 1). Now we have by the definition of
the algorithm that

p(n, k) = Z_:p(i, k—1).

This entails
Multiplying the equation byn — 1)! and settingf (n, k) := n!p(n, k) yields

Furthermoref (0, k) = p(0, k) = [2 1,sof(n, k) = { Z },and

p(n, k) = prob(X,y =k +1) = :u [H

102

Exercise 1.3

(i) By induction onn, where the case = 1 is trivial. Assume that the statement is true for
graphs om — 1 vertices. and let; haven vertices. Becausg@ is acyclic,G must have a source
v (vertex with no incoming edge); we removeand its incident edges frod and inductively
get a topological sorting : V' \ {v} — [n — 1] in the resulting graplé=’. Extendingo to /
by settingo(v) = n gives a topological sorting a@i. To check this, we only need to consider
edges involving, and because was the source, they must be of typew). Then, however,
the requirement of the topological sorting is fulfilled beses(v) =n >n —1 > o(w).

(i) We show three implications:

(@)=(c): let o be the unique topological sorting. We claim that!(n),...,oc7!(1) is a
directed Hamiltonian path. Namely, if there were two vexsie ! (i) ando (i — 1) without
a connecting edge, we could swap their order in the topadbgiarting and obtain a different
topological sorting, a contradiction.

(c)=(b): For every paifv, w) there is directed path between them, along the Hamiltonian
cycle.

(b)=(a): for any pairv, w), the directed path uniquely determines the order of the etsn
in the topological sorting: if the path goes framto w, we must haver(v) > o(w), and if it
goes fromw to v, the converse holds. Because two different topologicalrsgstwould have
to order at least one pair in two ways, there can be only onle sraer.

(i) For K, every acyclic orientation has a unique topological sgttsince for every two
verticesv, w there is an edge (a path of length 1) between them. And there! aifferent
topological sortings.

7.2 Solutions to Chapter 2

Exercise 2.1(i) The function f, is quadratic inx and therefore we can writgs, () < 1
as|lz — ¢||* < v for some vector: and a (not necessarily positive) constant R. In order
to prove thatB, is indeed a ball, we must show > 0. SinceB, N B; # (), there exists
at least one real poinj for which both f5,(y) < 1 and fz,(y) < 1 hold. It follows that
I, (y) = (1 = X) f5,(y) + Afp,(y) < 1. This shows thafjz — ¢||* < v has a real solution,
which is only possible ify > 0.

(i) is easily seen to hold by plugging € R (or p € S, respectively) intofg, = (1 —
>‘) fBo + /\fBl'

(iii) Let f, = ||z — cl|?/po @andf5, = ||z — c1]|?/p1 be the defining functions of the given
balls B, and B,. Expandingfz, < 1 we obtain

1—X A 1—X A
B, = T (+ —) — 22T (co+ — cl> + const < 1,
Po P1 Po P1

which we can write in the fornjx — ¢||*/y < 1 for

(1—>\ A) (1—>\)\)
C = Co+—01 / + — 1.
Po P1 Po P1

103

This shows that the centerof B, is a convex combination of the centetsc,. That is, as\
ranges front to 1, the center: travels on a line frona, to ¢;. Notice now that the radius @?),

is simply the distance fromto a pointp € 9B, N 0By, because by (ii) the pointlies on the
boundary ofB, for any A € [0, 1]. The claim now follows from the fact that the distance from
a pointc moving on a line (namely from, to ¢;) to a fixed poinp is a strictly convex function.

Exercise 2.2
(i) = (ii). Fix any p € R and suppose for a contradiction that the vecfars- p | g €
R\ {p}} are linearly dependent. Then there exist coefficiegis; € R\ {p}, not all zero,

such that
= > MNa-p)= > Ma— Y. Ap.

q€R\{p} q€R\{p} q€R\{p}

Setting\, := >~ g\ 3 Ag WE thus obtair) = >° » A.q with >° A, = 0 for coefficients
Ag» ¢ € R, which are not aII zero, contradiction.

(ii) = (iii) is obvious.

(i) = (i). Assume the points? are affinely dependent, implying that there exist co-
efficients\;, ¢ € R, not all zero, such thaEqeR Aq = 0 with the coefficients summing
up to zero. In order to get a contradiction we need to showftivaall p € R, the vectors
{¢—p|qe€ R\ {p}} are linearly dependent.

So pick an arbitrary € R. Using)_ . A\, = 0 we get
OZZAqq:Z/\qq—Zqu: Z Ag (g —p)-
qER qER qER qeR\{p}

Observe here that at least one of the coefficiegis; € R\ {p}, is nonzero:)\, cannot be
the only nonzero coefficient because all coefficients tagresbm up to zero. Thus, the points
{¢—p]|qe€ R\ {p}} arelinearly dependent and we are done.

Exercise 2.3

The caseF| = 1is easy because we then havg F, F') = F. Thus the center af)(F, F)
is the single point inF’ which trivially lies inaff(F) = F. For|F| > 1, we proceed as in the
exercise.

(@) If s € aff(F) thens = . A\,q for coefficients\, summing up to one. It follows that
foranyp € F,

S=p=3 MNa—> Ap= Y AN(g—p)€lin(F—p).
qeF qeF q€F\{p}

This shows directior{=-); the other direction is shown along the same liness ¥ p €
lin(F — p), there are coefficients,, ¢ € '\ {p}, such that —p = ZqGF\{p} A; (g—p). Then

Z A (g —p) Z)\qq—f—(l— Z /\q>p,

q€F\{p} q€F\{p} q€F\{p}

and since the involved coefficients sum up to one we concludeff(F').

104

(b) Recall first that we assume the poiitdo be affinely independent. This together with
Fact 2.8(ii) guarantees that the columnsidéfare linearly independent. Sdz = 0 implies
x = 0 for all vectorsz.
SupposeM” M is not invertible, i.e., there exists a nonzero vectowith M” Mz = 0.
Then
0=a"M"Mz = |Mz|?

and hence\/xz = 0 for = # 0, which is impossible as we have just seen.

(c) From (a) we know that* € aff(F) if and only if s* — p € lin(F" — p), or, equivalently,
if s* —p = Muz for some vector. Takezr := (M7 M)~ 1M (s — p).

(d) We first show that — s* is orthogonal taff (F), i.e., M* (s — s*) = 0. For this, we use
the definition ofs* in order to write

M (s" —p) = M"M(M"M)"'M" (s — p) = M" (s — p);
which readily impliesM/” (s — s*) = 0. We can then conclude

Is =plI* = ll(s =57+ (s" =)|’
= ls=s" 1P+ lIs" —pl* +2(s = s)"(s" = p)
= s =s" 1"+ s = pll* + 2 (s = ") MM M)""M" (s — p),

where the last term reduces to zero.

(e) Letc be the center angd be the squared radius 0)(F, F'), and suppose ¢ aff(F').
We will construct a smaller balB with F' on the boundary, which will give us the desired
contradiction.

We takec* as the center oB. By part (d), the distance frort to any pointp € F'is

le* = pll* = lle = plI* = le = c*|I* = p = [le = *|*. (7.1)

Since the right-hand side of this equation is independenttbie pointc* has thesamedistance
to all points inF’, and hence the balb of centerc* and squared radiys— ||c — ¢*||* hasF on
the boundary.

Furthermore, since ¢ aff(F') by assumption, we havie — ¢*||> > 0 and thus equa-
tion (7.1) yieldsp — ||c — ¢*||* < p. ConsequentlyB is a ball with 7' on the boundary and
smaller radius that)(F, F'), a contradiction.

(i) Let S be the set of balls that go throughand have their center inff (7). We will set
up a system of equations whose solution space preciselgleatbe ballss; subsequently we
will see that exactly one solution exists.

Fix any pointp € F. We want to find the centerof a ball going through?’, or, in other
words, a point such that the distance froato the fixed poinp equals the distance fronto
any other point in#" \ {p}. Settingc’ := ¢ — p and denoting by, the columns; — p of M,

q € F\ {p}, we can write this as

T = (=)' —q), VgeF\{p} (7.2)

105

Subtracting’? ¢’ from both sides of (7.2) results in a systeminéar equations in the unknown

c

2¢7q = ¢, Vge F\{p}. (7.3)
So far, we have not yet imposed the constrained that thercenfeB must lie inaff(F'). By
part (a),c € aff(F') is equivalent ta’ € lin(F — p), and thus we can write as¢’ = M« for
some unknown coefficient vector By plugging this into (7.3) we obtain tHé'| — 1 equations
20T MTq = ¢'"¢' which we can write as

OMT Mz =m,

wherem is the vector containing the scalar produgtsy, ¢ € F \ {p} (in the same order as
in M).

By part (b), MT M is a regular matrix and hence the system has exactly ondémulut
say. This shows that there exists a unique ball with centeff ") having ' on the boundary.
Its center is: = Mx + p and its squared radius fis\/z||* by equation (7.2).

Exercise 2.4The proof is by induction ot := |S'\ R|. Fork = 0, the algorithm performs
a basis computation¥” := R’ and zero violation tests, so the claim holds.

Fork > 0, the algorithm calls itself recursively at most twice, etinfe with parameters for
which the induction hypothesis applies. Therefore, tharckill holds after the first recursive
call, and since the algorithm then continues with a violatist, the claim also holds after the
second recursive call.

Exercise 2.5

Let n be a multiple of(d + 1). Then we put &lockof n/(d + 1) points close to any of
thed + 1 corners of a regular simplex, as shown in Figure 7.5dfet 2,n = 9. The labels
correspond to the indices of the points in the Set

The claim is that anyd + 1)-element set) of points containing exactly one point from
each block appears as a g&tluring the algorithm. The bound follows, because there are

o\ 4t
d+1

such setg), and for any (except possibly the last) b@)(@, ?) appearing in the algorithm, at
least one violation test will be performed.
To prove the claim, le® = {q, ..., qs+1} be such a set, ordered by decreasing index.in
Always removing the last point & for the first recursive call, we remove at some stage
and recursively computg)(S’, (), for S’ the prefix ofS that stops just beforg . By construc-
tion, g1 € O(S’,0), so there will be a recursive call computiay(S’, {¢:}). Subsequently, the
algorithm compute$)(S”, {¢: }), whereS” is the prefix ofS stopping just before,. Again,
@ & OWS”,{q:1}), and a recursive call fof)(S”, {¢1,¢=}) is spawned. Continuing like this,
we eventually get the whole s@tinto the second argument, which is what we wanted to prove.

Exercise 2.6Let ¢(n) be the maximum expected number of violation tests in a call to
Leavel t ThenTakel t (R, S), where|S \ R| = n. Clearly,

t(0) = 0,
t(n) = tihn—1)+1+pit(n—1), n>0, (7.4)

106

9
6
3
oo
2
5
8
Figure 7.5: Construction for th@(n?*!) lower bound

g

Figure 7.6: Thel-dimensional regular simplex embeddedrifi! for d = 1 (left) andd = 2
(right).

wherep, is the maximum probability for the eveni ‘¢ O(F, F')'. Since we definitely have
p» < 1 we obtain the recursiot{n) < 2t(n — 1) + 1 with ¢(0) = 0, which solves ta(n) <
2" — 1. Itfollows ti(n) < t(n) < 2" —1.

To show that this is best possible, we takeéo be the vertices of theegular simplexin
R<, and show that algorithibeavel t ThenTakel t (R, S) needs exactlg!*\#l — 1 violation
tests for anyR C S.

As we will prove below, the verticeS of thed-dimensional regular simplex have the prop-
erty that for anyk C S, O(R, S) does not contain any point frorsi \ R. Consequently,
p, = 1 in equation (7.4), regardless of the outcome of the randooicek. It follows that
t(n) = 2t(n — 1) + 1 which together witht(0) = 0 solves ta2" — 1.

It remains to state what a regular simplex is and to verify ithadeed has the property we
have used above. Thedimensional regular simpleis the convex hull of thel + 1 standard

107

basis vectors; := {e1,...,eqs1}, See Figure 7.6. Observe that the poifitsand hence their
convex hull all lie in thel-dimensional hyperplane

H:={z e R | Yz, =1}

So if we think of H asR?, we see that the regular simplex is indeed-dimensional object.
(We could have defined it directly iR¢, but the resulting formulas for the vertices would be
uglier than the given representationRA+!.)

Fix a setF" = {e;,,...,e;, } € S;. We want to show that no point ifi; \ £ is contained
in O(F, F). The caseF'| < 1 is obvious; so let us assume from now on thatonsists of at
least two points. In this case, we can use the result fromdseP.3(ii) to calculate the center
and radius of)(F, F') explicitly:

The matrix) (whose columns are the points — ¢;,) consists of/ rows: one full of-1’s,
andd — 1 rows with exactly ond at different places and nothing but zeroes elsewhere. From
this we immediately get

4 2 5
o= | 2 and =
o e 2 9

The solution of the syste@M? Mx = misx = (1/k,...,1/k) as you can easily verify, and
therefore the entries of = M« read

;= 1/k, if j # i, ande; € F,
0, otherwise.

Finally, c = ¢’ + ¢;, is the zero vector with /% in entryi iff e; € F.! For a pointe; € F we

thus get
1 kE—1
e —ell? = (1= 1/kP + (k= 1) 15 = ——
that is, the squared radius O)(F, F') is (k — 1) /k. On the other hand, a poiat ¢ F' has
distance L ka1
2 2
les el = 1* 4 kg = ——.

to c and is thus outsidé)(F, F).

Exercise 2.7

Induction on|S \ R|. If R = S, the algorithm returng’ = R which is obviously correct.
If |S'\ R| > 0, we can assume by the induction hypothesis that thé'seturned by the first
recursive call is the unique basis @&, S \ {p}) (if 3 = 0) or (R U {p},S) if 3 = 1. By

1So the center of)(F, F') is the center of gravity of the poinfs, something you probably would have guessed
beforehand.

108

Lemma 2.22F has no loose points and no violators w.r.t. the pair it caromfrif no second
recursive call happens, we have made sure khalso has no loose elements and no violators
w.rt. (R, S), soF is the basis of R, S), again by Lemma 2.22.

If there is a second recursive call, we can again inductigebume that it returns the basis
of its respective pair. By Observation 2.19, this basis (W@ return) must be the basis of
(R, S).

Exercise 2.8
Let X be a random variable. The Markov inequality tells us that

prob(X > 2E(X)) < %

It follows that with probability smaller thai/2, Leavel t ThenTakel t performs more
than2c,.n violation tests. We install a counter, and if the algorithas mot yet terminated
after2c,,1n violation tests, we simply abort it and start from scratcle Wéed to do this with
probability smaller thar /2.

We require more thaBK ¢y, n violation tests if and only if we abort at least times.
Because individual runs of the algorithm are independeisthégppens with probability smaller
than

2K

from which the claimed bound follows.

Exercise 2.9This is covered in detail in the bodRomputational Geometry: Algorithms
and Applicationdy M. de Berg, M. van Kreveld, M. Overmars and O. Schwarzkopf [1

7.3 Solutions to Chapter 3

Exercise 3.1Let F be the expected number of visited vertices. The probalitizy we need
to visit only 4 vertices is; (after visiting the first 3, we get to the sink with probalyili§, and
with the same probability, we stay on the cycle of length 6teAfaking 2 more steps, we are
in the same situation as before. This gives

1
E:4-§+(E+2)-

DO | —

SOE = 6.

Now we prove that for any other USO the expected number ofedsiertices, starting
from the source, is at most 6. First we claim that (up to symynehere is only one USO of
the 3-cube which is cyclic. If cycles occur, they must be o 6: a cycle of length 4 would
be a cycle in &-dimensional face, which is not possible in a USO. Also, deyt length 8
would mean that there is no global sink. It is also clear tlabad cycles can occur, because
the cube graph is bipatrtite.

109

Figure 7.7: The two “possible” cycles of the 3-cube.

Thus, the only possibility is to have some cycle of length@) there are (up to symmetries)
two ways how such a cycle can look like, see figure 7.7.

The first one gives the USO of the exercise. The second onet igassible, since there
is an edge which splits this 6 cycle into two squares. Undgraaientation of this edge, we
would get a 4-cycle which is not possible in a USO.

Let's focus on the number of vertex evaluations. In ordergiongore than 6 on average, for
some acyclic USO, we must have a path longer than 6 (see Figgixelf the longest path has

- — -

"< 2 = 3\+ 4 < 5% 6 - 7+\i8

e - ———— =~

e -

_ ~

] - 2 = 3 = e 6+\17

~ ~

e e S 7

.
Figure 7.8: Assuming paths of length 8 or 7 from the source

length 8, the source has one edge to the vertex labeled 7 figtire, and two more outgoing
edges. These edges can go only to the vertices denoted lyib Bie figure (otherwise we
would have an (undirected) odd cycle).

It follows that a path of length at most 4 is chosen with proligiat least1/3 (namely, if
the edge going t8, or to 1—one of them must exist—is chosen). On the other hand, tlgtHen
8 path has probability /3 at most, because it can only occur if the edgé& te chosen. As alll
other paths have length 6 at most, it follows that the exgectamber of vertex evaluations is
at most 6.

The case where the longest path has length 7 can be donerkinsidee Figure 7.8 (bottom).
With probability at least /3, there is a path of length at most 5, starting with the edga fiee
source to 4 or 1—one of them must exist. As before, the pathrafth7 has probabilityl /3

110

at most, and together with all other paths being of length@tr6, the claim follows.

Exercise 3.2

Assume that alR-dimensional faces have unique sinks, but that the orientas not a
USO. Consider a facé' of smallest dimension which does not have a unique sink. Becau
there are no cycles;’ must have at least two sinks,, X;. Also, they must be antipodal to
each other o, because otherwise, there would be two sinks in some fadetodntradicting
our choice ofF’. This also implies that’ has no other sinks thaki;, X,, and that every facet
of F' contains eitheX;, or X,.

Now consider any verteX in F' which is different fromX; and X,. Because& is not a
sink in F, is has some outgoing edge i Actually, it must have even two outgoing edges,
because otherwis@; would be a facet sink, meaning that there is some facét wfith two
sinks, Y and one ofX; and X, again contradicting our choice @f. Only one of the two
outgoing edges can go t&; or X5, becausdX; @ X,| > 3 (recall that the ‘bad’ face”’
cannot be &-face). This means, we can reach a non-sinkfollowing an outgoing edge from
Y. Continuing with this argument froi’, we can carry on until we see some vertex for the
second time. By that moment, however, we have constructeceted cycle, a contradiction.

Exercise 3.3

(i) Let i be the fixed label. Spli’, into the two facets (subcubeg€) andC?, whereC"
consists of the vertices not containingvhile C? collects all vertices containing

Any cube faceF' is either completely in one of the two facets, or it is dividadong the
two facets. In the first case, the orientationfins not affected by relabeling (&5 does not
contain edges labelejl

In the second casé;! = F'N C! andF? = F N C? are facets of-. Let X;, X, be their
sinks, where we assume without loss of generality fiats the sink of 7. It easily follows
that after relabelingX, is the unique sink of".

(i) First assumes has the required property; take a fa¢e/]. We have to show thaf, /|
has a unique sink.
Consider the restricted map [/, J] — 27\,

(X) =s(X)N (J\T).

VA

We first show thag is injective. Namely, assume there a¥eY € [/, J] with 5(X) = 3(Y).
For these vertices we get
(s(X)@s(YV)) N (J\I) =0,

and sinceX @ Y C J\ I, this contradicts the assumption.

It follows that s is bijective. In particular, there is exactly one sifk € [/, J] (having
§(X) =0).

Now assume does not have the property and fétY” witness its failure. But then, since
(XaY)N(s(X)®s(Y)) =0, inthe facd X NY, X UY] both X andY” have the same outmap
valueS = s(X)N(Xa@Y) =sY)Nn (X &Y). Therefore, after reorienting the edges with
label in S, the face[X NY, X U Y] has two sinksX, Y, i.e. it is not a USO, and is not the
outmap of a USO.

111

Exercise 3.4Using the product algorithm, we get
t(n) _ t(2) L”/th(l)andQ‘

Plugging int(2) = 3, the bound follows.

7.4 Solutions to Chapter 4

Exercise 4.1
By interchanging the column player’s (adversary’s) strigiggve may assume that< b.
We first argue that the only interesting case is where théioelmbetween the entries 81 are

as follows.
a < b
< > . (7.5)
c > d

Let’'s get rid of the other cases. Assume that one of the fdatioas is an equality, say
a = b (the other case are completely symmetric). Then,<f d, the unique optimal strategy
of the column playerig = (0,1), and ifc > d, it's § = (1,0). If ¢ = d, the column player can
choose any strategy.

If ¢ < d, the row player (algorithm player) therefore chooses thewith smaller entry
in the second column: # < d, she playst = (1,0), if b > d, it's z = (0,1). If b = d, she
can play any strategy. The case- d is similar. Even ifc = d, the relation betweehandd
(equivalently, between andc) decides the possible optimal strategies for the row player

It remains to deal with the case where all four relations aret snequalities, but for exam-
plea < b, c < d. As before, the column player then uniquely choages (0, 1), and the rows
player’s optimal behavior follows.

Under the relations in (7.5), it is not difficult to show thaetunique optimal solution of
(LP,,) is assumed when both inequalities involvim@re satisfied with equality. This implies

_ d—2b a—c
y= a—c+b—d a—c+b—d)’

Similarly (by solving the dual), we get

. d—c a—2b
v a—c+b—d a—c+b—d)’

The value of the game is

det(M)
a—c+d—0b

Exercise 4.2

() Let ® = gy (z) be the value of the game. Given algorith#{x), the best response
of the adversary (the runtime of(z) against its worst random input) is,(x) by definition.

112

Becauser minimizesg,,(x) over allz, we get® < g, (x), so0.A(x) is not faster thard on
some random input. But then it is also not faster thaon some concrete inpuj (recall the
arguments from the proof of Yao’s Theorem).

(i) the runtime of A(z) is @ if the adversary plays optimally. It follows that the runéris
never more thao.

Exercise 4.3

The gameshow host has six possible strategies; he has teecivb@re to put the car (three
choices), and for each of these choices specify which doopém in case your first choice
is the door that hides the car (otherwise, his answer is @)idlherefore, we can encode the
host’s strategies with a pair of distinct numbers betweand3.x

You have six strategies as well; there are three choicedhi&dbor you pick first, and for
each of these, you may switch or not. We can encode theseg&atby a number and a letter
in{Y, N} (Y means you switch). Here, whether you switch or not does mmidon the door
the host opens. We can include this, but it wouldn’t changeamng.

The payoff matrix therefore looks as follows (the host is tbe player with the goal of
minimizing your payoff, you are the column player and want@aximize the payoff).

1Y 1N 2Y 2N 3Y 3N

12 0 1 10 1 0
13 0 1 10 1 0
2.1 0 O 1 1 0
231 0 0 1 1 0
311 0 1 0 0 1
32 1 0 1 0 0 1

Consider the resulting linear program (12 Adding up the first six inequalities, we get
dyr + 2y + dys + 2ya + dys + 2y = 6u,

and plugging in the constraint
6
Zyz = 17
=1
we get
2+ 2(y1 + Y3 + y5) > 6u.

Becausey; + y3 + y5 < 1, u < 2/3 follows. On the other hand, value= 2/3 is attainable,

by setting
1
Y=Y =Y =3 Yo =ya = Yo = 0.
It follows that these setting define an optimal strategytially, choose between the doors

uniformly at random, but then switch in any case.

Exercise 4.4

113

For this, we need a slightly more formal view of determimistigorithms for this scenario.
We assume that the vertices are labeled, and any detenm@ligorithm specifies the label of
the next vertex to go to, depending on the sequence of verdeen so far.

We use Yao’s Theorem with the uniform distribution on allutg i.e. with each of the!
acyclic orientations of<,, (see Exercise 1.3(iii)) appearing with probabilityn!.

Assume we are at the vertex of rankthe rank is the order in the unique topological
sorting corresponding to the orientation, where the sirskrhakl). Because the algorithm has
no information about vertices of smaller rank and the oagahs of edges between them, any
smaller-rank vertex dfixedlabel (the one the algorithm moves to next) still has randankr
among the vertices of ranks. . ., i—1, averaged over all acyclic orientations. This implies that
the expected numbgfi(i) of steps, starting from the vertex of rahksatisfies the recurrence

[=1+ == 1)

which is exactly the recurrence we also proved for Randonsix&tegy against ixed orien-
tation.

7.5 Solutions to Chapter 5

Exercise 5.1
(i) Let p; denote the probability that a random walk starting ends inN. We know that
Do = O,pN =1, and
pi=p-pi-1+q pis1, prg=1L1 (7.6)
If p =0, thenp; = 1,7 # 0, while forq = 0, we getp; = 0,7 # N, so let’'s assume that both
andq are nonzero.
Let

bi=q pi—p-pi-1- (7.7)
We obtain that
bi—bi1=q-pi—Dp-Pi-1 —q-Pi-1 + P pPi—2 =0,
using thaty + ¢ = 1 and (7.6). Sincé; = ¢ - p; we get from (7.7) that

p
Di = 5271'_1 + p1,

which gives that

So

and

) 1
bi=1-P1, P:CI:§~
Using that
N
(£) -
1: et —
PN o P P#F g
and .
l=py=N-p, p= 257
we get that .
pl
(5) -1 1
Pi= x> p#é,
O
q
and
_s 1
PZ—N7 P—Q—Q-

(i) Here is a sketch: we proceed as above, but with
bi=p-Ei—q-Ei1+1.

In solving this, the following formula comes in handy:

= Comea™?— (n+ D2t 4o
51
p (x —1)2

Exercise 5.2

One can prove this by induction ¢X @ Y. If | X @ Y| = 1 than there is a directed edge
betweerny” and.X. Otherwise letX © Y| = n. The cubg.X, Y] hasX as a sink, so there is an
outgoing edge from Y. By the inductive hypothesis there is a directed path of lengt 1
fromY & {i} to X. Combined with the edg&’,Y & {i}), we get the desired directed path of
lengthn fromY to X.

Exercise 5.3The face[A, B] corresponds to all bit patterns which have at positions in
A and a0 at positions not inB. Any sink of [A, B] must have minus-signs at all positions in
B\ A. This means, any sink 0fi, B] corresponds to the same partial bit/sign pattern with a bit
or sign at any position. The fact that the pattern is completan a unique way then translates
to the fact thafA, B] has a unique sink.

Exercise 5.4Looking at the automaton in Figure 5.5, it becomes cleardhaty vertexX
can be decomposed into blocks of the three types

1 010 110
S , and :
+] [+]- —| -

115

At level 1, we have only one block of the first type, so there are

n—1
2

blocks of the two other types. Since each of them contribeitber al or a+, we get

—1 3
n +2:n+

#x(1) + #x(+) = 5 5

as desired.
Now consider a verteX at levelk. n being odd implies that is odd as well. Then we
havek blocks of the first type anth — k) /2 of the second and third type. It follows as before

that . © 3k
n — n
2k = .
2 + 2

#x(1)+#x(+) =

Exercise 5.5

(i) For a faceF' = [A, B|, we defined(F') = |B \ A| andb(F') = |B|.

We prove by double induction ovéd(F'),b(F')) that every face has a unique sink. This
obviously holds for verticesd(F') = 0) and ifd(F') = b(F): in this case, the face is of the
form

0, B]

and had) as its unique sink, as one can easily conclude from the defirof the outma.
Now assumé&” = [A, B] with b(F') > d(F') > 0. Leti = max(B). There are two cases.

Case(a) i € B\ A. Then

s(XU{i}) ={1,....i} \ s(X) 2 {i}, X €A B\{i}

It follows that the sinks of A, B| are exactly the sinks df4, B \ {i}|, and by induction, we
know that there is a unique such sink.

Case (b) i € A. Then

s(XULY) ={1,...,i \ s(X), Xe[A\{},B\)]

It follows that the sinks inA, B] are exactly thsourcesn [A\ {i}, B\ {i}|. Because the latter
face and all its subfaces have unique sinks by induction,ave B USO onA \ {i}, B \ {:}],
which implies that the face also has a unique source (thi/dabows from Exercise 3.3.

(i) We inductively prove that there is a directed Hamiltamipath through all vertices in
0,{1,...,i}], starting in{¢} and ending ir). The case = 1 is clear.

Fori > 1, we inductively assume that there is a path fréin— 1} to () in the face
0,{1,...,7 — 1}]. As in case (b) of part (i), we can conclude from this the exise of an
‘inverse’ directed Hamiltonian path i{:},{1,...,:}] from {i} to {i — 1,:}. Concatenating

116

these paths by inserting the directed edje— 1,:}, {i — 1})—which exists by definition of
s— yields the desired path frodt} to 0 in [0, {1,...,4}].

(i) By definition, any vertex containing: (vertex in the upper facet) also hasin its
outmap value. It follows that from every such vertex, we hawdance of /n at least to go to
a vertex not containing (vertex in the lower facet), and from the lower facet theredsvay
to get back to the upper facet. It follows that after an expaéctumber of at most steps, we
reach a vertex in the lower facet.

Because in the lower facet, the same holds with respect tpjtsrfacet (vertices contain-
ingn — 1), we can iterate this argument and obtain a bound of

n+n—1)+---+1= (nzl) = O(n?)

for the expected number of steps taken by the random walk.eXpected number of vertex
evaluations is one larger.

Exercise 5.6Any pair of USOs of thdn — 1)-cubesC! = [0, {1,...,n — 1}] andC? =
[n,{1,...,n}] can be extended to a USO of thecube[), {1, ...,n}] by combing all edges in
directionn (there are two ways of doing this). This gives that

w, > 2u .
Using thatu, = 1 we get that,, > 22" 1.

Exercise 5.7
This is a trivial consequence of the definitions.

Exercise 5.8

(i) The following Markov chain is non-irreducible and e(§,0,1), (1,0,0) are stationary

distributions.
1 1

(i) The following Markov chain is irreducible and 2-peried The initial distribution(1, 0)
does not converge to the stationary distributigns).

1
3
V
1

(iif) The following Markov chain is irreducible, aperiodand non-symmetric. The stationary

117

distribution(

o

, 2, 2) is not the uniform distribution.

Exercise 5.9Because we reorient only edges in directipwe know that
(XaY)Nn(s(X)a®s(Y))

and
(XeY)N (s (X)as(Y))

can differ only ini.

If the former evaluates exactly §o}, X andY are strongly in phase, so either both their
incident edges in directionget flipped, or none of them. It follows that also the lattepres-
sion evaluates t¢:}. If the former contains somg# i, j will also be contained in the latter.
In both cases, the latter is nonempty, and the USO propétone.

Exercise 5.10

The idea is to use Theorem 5.25 and proceed similarly as wergkad a USO uniform at
random.

The vertices of the graph of our Markov chain will be the stagi of the city (we assume
that this graph is connected). L&t be the number of stations. Whenever there is a tram
between two stationsl, B we (:hoose]iV as the transition probability in both directions. In
addition, we put loops into every vertek where the transition probability for the loop will be
chosen such that the probabilities on all outgoing edge$ €im up to 1. This Markov chain
is homogeneous, irreducible, aperiodic and symmetrics €hsures that in the long run, we
will be at any station with the same probability.

7.6 Solutions to Chapter 6

Exercise 6.1
They key observation one needs to make is that the opetaiassociative: both the sets

As (B ()

118

and
(AeB)a C

consist exactly of the elements which are not in exactly tivthe sets. Using this, the state-
ments are easy.

119

Bibliography

[1] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfrgxhwarzkopf.Computa-
tional Geometry: Algorithms and Application$pringer-Verlag, Berlin, Germany, 2nd
edition, 2000.

[2] K. Fischer and B. @rtner. The smallest enclosing ball of balls: combinatsteuc-
ture and algorithmsinternational Journal of Computational Geometry and Apgfions
(IJCGA), 2004, to appear.

[3] B. Gartner. The Random-Facet simplex algorithm on combindtotihes. Random
Structures & Algorithms20(3), 2002 (preliminary version at RANDOM’98).

[4] B. Gartner and E. Welzl. Explicit and implicit enforicing o— @mized optimization.
In Lecture Notes of the Graduate Program Computational Disdwdehematicsvolume
2122 ofLNCS pages 26—49. Springer-Verlag, 2001.

[5] G.R. Grimmet and D.R. StirzakeProbability and Random Processe®xford Science
Publications, 1982.

[6] G. Kalai. A subexponential randomized simplex algamthIn Proc. 24th annu. ACM
Symp. on Theory of Computingages 475-482, 1992.

[7] W. Ludwig. A subexponential randomized algorithm foe tsimple stochastic game prob-
lem. Information and Computatiqri17(1):151-155, 1995.

[8] J. Matowsek, M. Sharir, and E. Welzl. A subexponential bound fordingrogramming.
Algorithmicag 16:498-516, 1996.

[9] J. Matowsek and U. Wagner. Almost uniform smapling of unique sinkeiota-
tions. http://ww. ti.inf.ethz.ch/ew workshops/01-1c/ probl ens/
node6. ht m

[10] Walter Morris. Randomized principal pivot algorithma fP-matrix linear complemen-
tarity problems.Math. Programming, Ser. 22:285-296, 2002.

[11] R. Motwani and P. RaghavaRandomized Algorithm&ambridge University Press, New
York, NY, 1995.

120

[12] K. Mulmuley. Computational Geometry: An Introduction Through Randothia&yo-
rithms. Prentice Hall, Englewood Cliffs, NJ, 1993.

[13] Alan Stickney and Layne Watson. Digraph models of biggk algorithms for the linear
complementary problenMathematics of Operations Resear8i322—-333, 1978.

[14] Tibor Szald and Emo Welzl. Unique sink orientations of cubes. Pioc. 42"¢ IEEE
Symp. on Foundations of Comput. Spages 547-555, 2000.

[15] Bernhard von Stengel. Computing equilibria for two-pergames. IrHandbook of
Game Theoryvolume 3. North-Holland, Amsterdam, 2002.

[16] Emo Welzl. Smallest enclosing disks (balls and elligsp In H. Maurer, editorNew
Results and New Trends in Computer Sciemokime 555 ot_ecture Notes Comput. Sci.
pages 359-370. Springer-Verlag, 1991.

121

