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Preface

This document contains lecture notes for the courseRandomized AlgorithmsI have taught at
ETH Zürich in the Winter term of 2003/2004. Although this course has been offered at ETH
in the past (and will be offered in the future), it was a somewhat special year.

In the three previous years, the course was designed and heldas a block course by Emo
Welzl, as part of the international Graduate ProgramCombinatorics, Geometry and Compu-
tation (CGC). In December 2002, ETH decided to stop local funding for CGC, with all the
consequences: no more interesting predoc students from allover the world, no more schools
and seminars, and no more block courses.

Starting from Winter 2004, Angelika Steger, the new full professor in the Institute of Theo-
retical Computer Science, will take over the course as part ofthe recently established bachelor
and master program of the Department.

And in between, it was me. Being a one-shot has the advantage ofbeing free: there was no
need to design a course that lasts for years, fits together with other courses, or even covers the
classic material. (There was also no need to write lecture notes, but this is a different story.)

I made use of this freedom and taught a very specialized course, dealing withunique sink
orientationsof cubes, a topic of current research by a small group of people, some of them
(including me) at ETH. Part of the material has never been covered in class before, and some
of it has been developed specifically for the course. Under these circumstances, the lecture
notes are not only a service to the students, but also a document collecting what I have learned
myself in preparing the course.

Fortunately, the randomized techniques to deal with uniquesink orientations are not so
different from the techniques being used for other, more common problems. For example,
game theory and the theory of random walks are important general tools that also apply to
unique sink orientations; consequently, they are also covered in the course. The point I want
to make is that unique sink orientations are fairly special objects, but the techniques applied
to them during the course are of more general interest and at least partially justify the label
Randomized Algorithms.

I would like to thank Ṕeter Csorba and Kaspar Fischer for inspiring discussions, careful
proofreading, and for providing written solutions; the lecture notes would not nearly be the
same without them! Many thanks also to Ingo Schurr for his suggestions and help (in partic-
ular, his implementations) concerning the Markov chain forgenerating and counting unique
sink orientations. Bernhard von Stengel helped to improve the game theory chapter. Finally,
the students of the course have influenced the lecture notes through interesting questions and
remarks, which I have tried to incorporate; thanks to all of you for sharing this experiment!
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Chapter 1

Introduction

Randomized algorithms are algorithms that flip coins in orderto take certain decisions. This
concept extends the classical model of deterministic algorithms and has become very useful and
popular within the last twenty years. In many cases, randomized algorithms are faster, simpler,
or just more elegant than deterministic ones. A well-known such algorithm—taught in many
introductory computer science courses—is randomized Quicksort: the expected runtime of the
randomized version isO(n log n) for all sequences ofn numbers, while the naive deterministic
variants require quadratic runtime in the worst case.

In this introductory chapter, we discuss just one very simple randomized algorithm, but in
doing so, some important points become clear already. We will see that a randomized algo-
rithm can beprovablybetter than any deterministic algorithm for the same task.1 Our example
will also indicate thattwo-player gamesare useful in designing and analyzing randomized
algorithms. The author hopes that the example itself—dealing with the Roman Emperor Deter-
minatus and his captive, the Gaul Randomix—will not insult the mind of the educated reader.

1.1 The Emperor’s Maze

The malicious Roman Emperor Determinatus plays a game with his captives. If the captive
wins, he or she will be freed, but if Determinatus wins, the captive will be thrown to the lions.
However, the rules are such that Determinatus believes he can always win.

The game takes place in the Emperor’s underground maze whichconsists ofchambersand
tunnelsconnecting the chambers. The maze has the structure of the complete graphKn: any
two among then chambers are connected by a tunnel. The maze has two special chambers, the
entranceand theexit. Moreover, the tunnels are one-way (which is enforced by a number of
(

n
2

)
guards, blocking for each tunnel exactly one of its two doorways). This means that once a

tunnel has been traversed, there’s no way back.
The positions of the guards thus determine anorientationof theKn where the orientation

of each edge indicates the direction in which the corresponding tunnel can be traversed.

1Such statements can be proved for specific models of computation; in the standard model that formalizes
deterministic algorithms viaTuring machinesand randomized algorithms viaprobabilistic Turing machines, it is
not known whether randomization substantially helps.
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The night before the actual game takes place, Determinatus explains the rules to his latest
captive, a Gaul called Randomix: in order to win the game, Randomix has to traverse the maze
from entrance to exit,withoutgoing throughall the chambers. The Emperor also says that he
is being fair to Randomix by guaranteeing that

(i) the maze has at least three chambers, so that Randomix willnot trivially lose,

(ii) the entrance can beleft through all its incident tunnels,

(iii) the exit can beenteredthrough all its incident tunnels, and

(iv) there is no danger of getting caught in a cycle, i.e. oncea chamber is left, there’s no way
of coming back to it later.

Determinatus even brags about being extremely fair, because his guarantees ensure that even
the most stupid captive will reach the exit after passing through at mostn − 1 tunnels (as we
know, actually usingn − 1 tunnels would be fatal for the captive, though). Moreover, it is
possible to reach the exit via just one tunnel. The only problem here is that the tunnels are long
and narrow, and the chamber at the other end of the tunnel becomes only visible once it has
been reached.

To summarize, what we are dealing with is anacyclic orientation ofKn, with the source
corresponding to the entrance chamber and the sink to the exit chamber, see Figure 1.1 for an
example.

source sink

Figure 1.1: Acyclic orientation ofK6

After being informed about this setup, Randomix’s spirits rise: wouldn’t it be an extremely
unlucky situation to go through all the chambers when in factthere is a direct tunnel to the
exit from any of the chambers? But then Determinatus declares that there isone final rule:
Randomix has to commitnow to an algorithm for finding the exit, and the guards would make
sure that he is actually following this algorithm the next day in the maze.
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1.1.1 Keep Left?

Hastily, Randomix starts thinking about algorithms. One that immediately comes to his mind is
the following: within a chamber, always take the leftmost one among the non-blocked tunnels.2

In the orientation of Figure 1.1, this would indeed be a winning strategy, because it traverses
only three out of the six chambers, see Figure 1.2 (left). But it quickly becomes clear to
Randomix that there is also an orientation on which this algorithm would take him directly to
the lions den, see Figure 1.2 (right). Even worse, he realizes that Determinatus, who gets to
know the algorithm in advance, would of course confront him with exactly this bad orientation!
Similarly, a Keep-Right strategy doesn’t work: as Determinatus is free to place source and sink
wherever he wants, he could simply interchange source and sink and flip all edge directions in
Figure 1.2 (right) to arrive at an orientation on which Keep-Right runs through all the chambers.

source sink source sink

Figure 1.2: Algorithm Keep-Left

For a few seconds, Randomix tries to come up with more sophisticated algorithms (in every
second chamber, keep right instead of left; always try to stay as close to the ‘middle’ tunnel as
possible, . . . ), but then he gives up, knowing that all this won’t help (Exercise 1.1 asks you to
prove this in a general setting).

1.1.2 Roll the Dice!

Just as Determinatus is getting impatient waiting for Randomix’s algorithm, the Gaul realizes
that the Emperor is just a silly Roman, and that he knows a way tosurvive with high proba-
bility. He takes the papyrus roll provided by the Emperor forthis purpose and writes down his
algorithm in words (pseudocode had not been invented at thattime):

2What this algorithm does obviously depends on the geometric layout of the maze; let’s assume that the
Emperor is a fan of symmetry and that the layout really looks like in Figure 1.1.
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I will take along an(n−1)-sided die with numbers1 throughn−1 on its faces.
In every chamber I reach, I roll the dice until some numberk appears that is no
larger than the number of non-blocked tunnels. Then I take the k-th non-blocked
tunnel from the left.

The Emperor is baffled: although heknowsRandomix’s algorithm, and he can also make
his guards check that Randomix behaves according to it, he does not know which tunnels
Randomix will choose. In contrast to what Randomix thinks, Determinatus is only malicious
but not stupid, so he realizes that whatever orientation he will provide the next day, he will be
forced to free Randomix with probability1 − 1/(n − 1)! (Exercise 1.2).

Historical note: Determinatus tried his best in not letting Randomix escape his fate, by
downsizing the beautiful maze he was so proud of to the minimum of only three chambers that
he had guaranteed to Randomix. Since1/(3 − 1)! = 1/2, it was, after all, a fair game. Still,
as the first captive during the long regency of Determinatus,Randomix won, and the Emperor
subsequently enrolled in arandomized algorithmsclass.

1.2 The Maze Game Revisited

An acyclic orientation of theKn uniquely corresponds to a total order of the vertices. This
means, we can number the vertices from1 (the sink) ton (the source) so that there is an
oriented edge(v, w) iff v’s number is higher thanw’s (Exercise 1.3). Under this scheme, the
number of a vertex is one larger than its outdegree, see Figure 1.3.

source sink
1

2

3

4

5

6

Figure 1.3: Acyclic orientation ofK6 with induced vertex numbers

Let us interpret Randomix’s algorithm as a process on naturalnumbers. Given that he is
currently in the chamber with numberi, there arei−1 non-blocked tunnels, leading to thei−1
chambers with numbers1, . . . , i−1; by rolling the dice, he will end up in any of these chambers
with the same probability. From the chamber he actually reaches, the process continues in the
same fashion.
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In pseudocode, we can write this down as a recursive procedureMaze.

Algorithm 1.1

Maze(i):
IF i > 1 THEN

choosej ∈ {1, . . . , i − 1} uniformly at random
Maze(j)

END

What is theexpectednumberf(n) of chambers Randomix has to go through in a maze
with n chambers? This is the same as the expected number of comparisons of the form ‘i > 1’
throughout a call ofMaze(n), because exactly one such comparison is done for every chamber
that is visited. We conclude that

f(1) = 1,

f(2) = 2,

f(i) = 1 +
1

i − 1

i−1∑

j=1

f(j), i > 1.

For i > 2, this yields

(i − 1)f(i) − (i − 2)f(i − 1) = 1 + f(i − 1),

equivalently

f(i) =
1

i − 1
+ f(i − 1) =

i−1∑

j=2

1

j
+ f(2) = Hi−1 + 1,

with

Hn :=
n∑

j=1

1

j

being then-th Harmonic number. We conclude that in a maze withn ≥ 1 chambers, Randomix
goes through an expected number of

Hn−1 + 1 < ln(n − 1) + 2

chambers, much less than what Determinatus would like him to.
Throughout the course, we will be concerned withexpectedruntimes of algorithms. It is

important that the expectations we compute hold forall inputs. In our case, we have made no
specific assumption about the acyclic orientation, meaningthat the bound ofHn−1 + 1 holds
for all of them.3 In this sense, the expectations we compute are upper bounds for the expected
performance of the algorithmsin the worst case.

3This is no real surprise here, because all these orientations are isomorphic, see also Exercise 1.3.
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1.3 Adversary Models

The maze game is actually a game between the algorithm (of Randomix) and theadversary
(Determinatus) who wants to make the algorithm perform as poorly as possible. In this inter-
pretation, the adversary is responsible for providing the worst case under which we want to
analyze the algorithm’s performance. Exercise 1.1 shows that the adversary can indeed force
the worst possible number ofn chambers against any deterministic algorithm.

For randomized algorithms (like the one Randomix is proposing), it is important that the
adversary isoblivious, and we will always consider this case. It means that in constructing
a bad input for the algorithm, the adversary may look at the specification of the algorithm
(Determinatus indeed does, to no avail), butnot at the actual random choices the algorithm
makes.

In our case, Determinatus confronts Randomix with a maze whose structure doesnot
change during the game. If he were unfair enough to watch the outcomes of Randomix’s
die and then quickly reposition guards in order to make the actual outcome a bad outcome for
Randomix, the Gaul would be doomed. Under such a powerful adversary model, randomized
algorithms lose their advantage over deterministic ones.

In theofflinescenario where the algorithm gets the complete input and then starts its com-
putations, the oblivious adversary model makes perfect sense: once the algorithm has taken
control, the input won’t change depending on subsequent computations. In theonlineworld,
where decisions have to be taken without knowing parts of theinput, the stronger adversary
model might be interesting. We will not consider online problems during this course, so it’s
justified to stick with oblivious adversaries.

1.4 Sources of Randomness

While Randomix has a die at his disposal, the computer hasn’t. The usual way out in imple-
menting randomized algorithms consists of using apseudorandom number generator. This is
a deterministic procedure for generating a sequence of numbers that ‘look’ random. There are
two problems with this: first, the adversary will know the generator that is being used from the
specification of the algorithm, so there is no unpredictability, let alone true randomness, left in
the game.

The practical justification for using pseudorandom numbersis that in real life, there is no
adversary. In this case, it seems that simulating true randomness by pseudorandomness would
result in similar behavior for all practical purposes.

But this is not true. Many pitfalls in using pseudorandom numbers have been published,
and in some cases the deviations from the truly random behavior are dramatic. This even holds
for the ‘best’ generators that are available, but on top of that, there are bad generators. The
most famous example is the generatorrandu that was widely used in the sixties. It gener-
ates pseudorandom floating point numbers in the interval[0, 1]. When you plot the sequence
x1, x2, . . . of numbers output byrandu, it appears to be fairly random, but when you plot the
triples(x1, x2, x3), (x2, x3, x4), . . . in the unit cube, all these triples live in only fifteen parallel
planes, not what you expect from random triples, see Figure 1.4.
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Figure 1.4: The fifteen planes ofrandu

Can we get hold of truly random numbers to be used in a computer program? This is im-
possible to answer, because one cannot test whether a given finite sequence of numbers has
been generated from a truly random distribution. This meansthat all we can do is trust the dis-
tribution to be truly random. In fact, there are websites from which you can download random
numbers, extracted for example from radioactive decay (www.fourmilab.ch/hotbits/
) or atmospheric noise (www.random.org). While these numbers pass all kinds of statistical
tests, you can never be sure that they are really random. For example, there has been the ques-
tion of whether the numbers provided bywww.random.org have shown unusual behavior
on September 11, 2001. (The answer seems to be ‘no’, but the page explaining this is a little
spooky.)

In the course, we will sweep the issue of random number generation under the rug. We will
analyze our algorithms with the assumption that we can (likeAlgorithm 1.1 does it) sample a
number uniformly at random from a finite set, at some constantcost. What wewill care about
in some cases is thenumberof random numbers we need, because it is an interesting theoretical
question how many random resources are necessary to performa certain task within a certain
time.

1.5 Preview of the Course

The question of how fast we can find a sink in a graph whose edge orientations become known
only by visiting incident vertices, will be central to the course. We will consider it in connection
with different graphs and different classes of orientations. It turns out that many techniques
useful for the design and analysis of randomized algorithmscan be developed in this scenario.
We will see concrete applications (the Emperor’s Maze is certainly not the most important one),
but we will also apply the techniques to other problems not having to do with sink-finding.
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Bibliographic Remarks

The ‘standard reference’ for randomized algorithms is the very good book by Raghavan and
Motwani [11]. Another very interesting book, focusing mainly on randomized algorithms in
the context of computational geometry, has been written by Mulmuley [12].

Exercises

Exercise 1.1Let H = (V,E), E ⊆
(

V
2

)
be some undirected graph on the vertex setV . An

orientationof H can be specified by a directed graphG = (V,D), D ⊆ V × V such thatD
contains for every edge{v, w} ∈ E exactly one of the pairs(v, w) and(w, v).

Suppose thatG = (V,D) is an orientation ofH which contains exactly one sink, and the
goal is to find this sink. In thevertex access model, information aboutD can only be obtained
through an oracle which for any given vertexv ∈ V reveals the set of neighbors ofv along
outgoing edges,

out(v) := {w ∈ V | (v, w) ∈ D}.
Whenever we call the oracle withv, we say thatv is evaluated.

Given the graphH and any orientationG of H with exactly one sink, specified by a vertex
evaluation oracle, we are interested in the smallest number of vertex evaluations a deterministic
algorithm needs in the worst case in order toevaluatethe sink4 of G.

Let t(H) be this minimum number. For example, if|V | = 1, thent(H) = 1. If H consist
of just two vertices and the edge spanned by them, thent(H) = 2, because in one of the two
orientationsG of H, the first vertex evaluated by the algorithm is not the sink.

(i) Prove thatt(Kn) = n, whereKn is the complete graph onn vertices.

(ii) Prove thatt(Cn) = 2n−1 + 1, whereCn is the vertex-edge graph of then-dimensional
cube.

(iii) Assume thatH has avertex cover(set of verticesW such that every edge contains a
vertex fromW ) of sizek. Prove thatt(H) ≤ k + 1 in this case. Are there graphsH for
whicht(H) is smaller than one plus the size of the smallest vertex cover?

Exercise 1.2For n ≥ 1, let Xn be the random variable for the number of comparisons of type
‘ i > 1’ in Algorithm 1.1. Prove that

prob(Xn = n) =
1

(n − 1)!
.

Prove an explicit formula for

prob(Xn = i), 1 ≤ i < n.

(Hint: Browse Emo Welzl’sBasic Examples of Probabilistic Analysis!)

4Justknowingthe vertex which is the sink is not enough; we’ll see later that this simplifies certain computa-
tions.
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Exercise 1.3LetH = (V,E) be an undirected graph with|V | = n vertices and letG = (V,D)
be anacyclicorientation of it as defined in Exercise 1.1.

(i) Prove that there is a bijection

σ : V → [n] := {1, . . . , n}

such that for allv, w ∈ V , (v, w) ∈ D impliesσ(v) > σ(w). Such aσ is called a
topological sortingof G.

(ii) Prove that for givenH and acyclic orientationG of H, the following statements are
equivalent.

(a) G has auniquetopological sorting,

(b) for all v, w ∈ V , there iseithera directed path fromv to w or a directed path from
w to v,

(c) G has a directed Hamiltonian path (a directed path that visitsevery vertex exactly
once).

(iii) Conclude thatKn hasn! acyclic orientations, each of them corresponding to a unique
topological sorting.
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Chapter 2

Smallest Enclosing Balls

In this chapter, we study a classical problem from computational geometry, the problem of
computing the ball©(S) of smallest radius (equivalently, smallest volume) that contains a
given setS of n points ind-dimensional Euclidean1 spaceEd, see Figure 2.1.

S

©(S)

Figure 2.1: The smallest enclosing ball of a point set

2.1 Basics

We consider the following generalization of the smallest enclosing ball problem (in this chapter,
S is always a finite set).

Definition 2.1 Let R ⊆ S ⊆ E
d. If there is a unique closed ballB of smallest radius that

containsS and has the points inR on its boundary (we also say thatB goes throughR and
coversS), this ballB is denoted by©(R,S). ©(∅, S) will be abbreviated as©(S). Moreover,
we set©(∅) := ∅, the ‘empty’ ball.

Lemma 2.2 With R ⊆ S as above,©(R,S) exists if there is some ballB throughR that
coversS.
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R

S
B1 B2

B′

Figure 2.2: Proof of Lemma 2.2

Proof. A standard compactness argument from calculus shows that ifthere is some ball
throughR, coveringS, then there is also a smallest one.2 It remains to show that the smallest
ball is unique. Assume there were two smallest ballsB1,B2 throughR that coverS. Then
the picture would look like in Figure 2.2, and we could find an even smaller ballB′ (dotted)
throughR that coversS, a contradiction. Exercise 2.1 asks you to prove the existence ofB′

formally, here we are satisfied with the geometric intuition.
Because for any finite setS, there is always a ball that coversS, we obtain

Corollary 2.3 For S ⊆ E
d, ©(S) exists.

In general, the setsR andS can be considered asconstraintsunder which we want to find
a ball with smallest radius. Because adding constraints cannot decrease the smallest radius, the
following is obvious.

Fact 2.4 LetR ⊆ R′, S ⊆ S ′ ⊆ E
d. Provided, the respective balls exist, we get

©(R,S) ≤ ©(R′, S ′),

where balls are compared by radius. (Note that if©(R,S) and ©(R′, S ′) have the same
radius, they are both smallest balls throughR, coveringS, so they must be equal by Lemma
2.2.)

The next lemma will be the basis of our randomized algorithm(s) for the efficient compu-
tation of©(S).

Lemma 2.5 LetR ⊆ S ⊆ E
d, p ∈ S \R such that©(R,S) (and consequently also©(R,S \

{p})) exists. If
p /∈ ©(R,S \ {p}),

thenp is on the boundary of©(R,S), equivalently

©(R,S) = ©(R ∪ {p}, S).

Proof. Assume that©(R,S) does not havep on its boundary, but in its interior. Becausep is
outside of©(R,S \ {p}), the two balls are different, and the situation is as in Figure 2.3.

1For us,Ed is just the vector spaceRd, equipped with the standard scalar product〈p, q〉 = pT q that allows us
to measure the Euclidean norm‖p‖ =

√

〈p, p〉 of a point.
2The set of centers of balls throughR, coveringS, whose radius is at most the radius ofB, is a compact set.

The function that maps each such centerc to the radius of the smallest ball with centerc throughR that coversS,
is a continuous function which therefore attains its minimum over the compact set. The corresponding center is
the center of some smallest ball throughR, coveringS.
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R

S \ {p}

©(R,S \ {p})
©(R,S)

B
p

Figure 2.3: Proof of Lemma 2.5

Just like in the proof of Lemma 2.2, we can use Exercise 2.1 andslightly shrink©(R,S)
to obtain a ballB (dotted) which is smaller than©(R,S), but still goes throughR and covers
S, which is a contradiction.

For the remainder of this chapter, we make ageneral position assumption. Although the
algorithms (can be made to) work without it, general position simplifies the correctness proofs
and gives us more time for the performance analysis.

Assumption 2.6 For all setsF ⊆ S such that©(F, F ) exists, and for all pointsp ∈ S \ F ,
©(F, F ) doesnotgo throughp.

This assumption forbidsdegeneratesituations like in Figure 2.4. In the plane, it implies that
no ball goes through four points, but the left part of the figure shows that even balls through
three points may be degenerate. We will point out where we make use of the assumption.

General position can be achieved by a technique calledsymbolic perturbationthat inde-
pendently moves the points by infinitesimal amounts, so thatthe degeneracies disappear. As
indicated above, general position is convenient for us, butnot necessary in order to establish
the results of this chapter.

p
p

q

q

r

r

s

F = {q, r}
F = {q, r, s}

©(F, F )

Figure 2.4: The smallest ball throughF has another pointp on its boundary
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2.2 Algorithm LeaveItThenTakeIt

In this section, we develop our first algorithmLeaveItThenTakeIt(R,S) for computing
©(R,S).

Precondition 2.7

(i) ©(R,S) exists, and

(ii) R is affinely independent, meaning that whenever there is a sequence of real numbers
(λp)p∈R such that

∑

p∈R λpp = 0,
∑

p∈R λp = 0,

thenλp = 0 for all p ∈ R.

The empty set is affinely independent. For nonempty sets, affine independence is closely re-
lated to linear independence. The following is not difficultto verify (Exercise 2.2).

Fact 2.8 For R ⊆ E
d, R 6= ∅, the following statements are equivalent.

(i) R is affinely independent.

(ii) For all p ∈ R, the set of vectors{q − p | q ∈ R \ {p}} is linearly independent.

(iii) For somep ∈ R, the set of vectors{q − p | q ∈ R \ {p}} is linearly independent.

The important consequence for us is

Corollary 2.9 LetR ⊆ E
d be affinely independent. Then|R| ≤ d + 1.

Under the preconditions above,LeaveItThenTakeIt(R,S) will return a setF , satis-
fying the following

Postcondition 2.10

(i) R ⊆ F ⊆ S,

(ii) ©(F, F ) = ©(R,S) = ©(R,F ), and

(iii) F is affinely independent

We call such a setF a basisof the pair(R,S).3 Moreover, Assumption 2.6 implies thatF
is theuniquebasis.4 Exercise 2.3 shows that©(F, F ) is easy to compute in caseF is affinely
independent. The algorithm internally makes use of this fact and can actually be assumed to
deliver©(F, F ) along withF . Here is the algorithm.

3By now, it is not clear that every pair(R,S) which satisfies Precondition 2.7 has a basis at all; this willfollow
from the algorithm’s correctness proof below.

4Assume(R,S) has two different basesF, F ′. Then there is a pointp ∈ F ′\F , say, and because of©(F, F ) =
©(F ′, F ′), p lies on the boundary of©(F, F ), a violation of the general position assumption.
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Algorithm 2.11

LeaveItThenTakeIt(R,S):
IF R = S THEN

F := R
ELSE

choosep ∈ S \ R uniformly at random
F := LeaveItThenTakeIt(R,S \ {p})
IF p /∈ ©(F, F ) THEN

F := LeaveItThenTakeIt(R ∪ {p}, S)
END

END
RETURN F

2.2.1 Correctness

In order to prove correctness of the algorithm, we use induction on the size ofS \ R. If
|S \ R| = 0, the algorithm outputsF = R = S, and Postcondition 2.10 holds by affine
independence ofR. For |S \ R| > 0, the preconditions on(R,S) and Lemma 2.5 ensure that
©(R,S \ {p}) and—ifLeaveItThenTakeIt(R∪{p}, S) is called—©(R∪{p}, S) exist.
We conclude that the preconditions hold forLeaveItThenTakeIt(R,S \ {p}), and using
the induction hypothesis, the call returns an affinely independent setF such that

©(F, F ) = ©(R,S \ {p}) = ©(R,F ).

Case (a) p ∈ ©(F, F ). Then©(F, F ) is a ball throughR that coversS, hence

©(R,S) ≤ ©(F, F ) = ©(R,S \ {p}) ≤ ©(R,S),

where the latter inequality is Fact 2.4. Therefore,©(F, F ) = ©(R,S) and the postconditions
hold.

Case (b) p /∈ ©(F, F ). If we can show thatR∪{p} is affinely independent, the preconditions
for LeaveItThenTakeIt(R ∪ {p}, S) are satisfied, so by induction, the call returns an
affinely independent setF with

©(F, F ) = ©(R ∪ {p}, S) = ©(R ∪ {p}, F ).

By Lemma 2.5,©(R ∪ {p}, S) = ©(R,S) in this case, so

©(F, F ) = ©(R,S) (2.1)

follows. It remains to prove that

©(F, F ) = ©(R,F )

17



in order to establish the postcondition. Assume this does not hold. Then©(F, F ) and©(R,F )
are different balls that both go throughR and coverF ; in addition,©(F, F ) coversS \F , and
by Assumption 2.6, no point inS \F is on the boundary of©(F, F ). The situation is therefore
as in Figure 2.5, and we can for the third time invoke Exercise2.1: slightly shrinking©(F, F )
yields a ballB (dotted) which is smaller than©(F, F ), but still goes throughR and coversS,
a contradiction to (2.1).

R

F

©(R,F )

©(F, F )

B
p

S \ F

Figure 2.5: Proof of Postcondition 2.10 in Case (b)

It remains to prove affine independence ofR ∪ {p} if p /∈ ©(F, F ) = ©(R,S \ {p}). For
this, let us consider real valuesλq, q ∈ R ∪ {p} such that

∑

q∈R∪{p}
λqq = 0, (2.2)

∑

q∈R∪{p}
λq = 0. (2.3)

Let c (c′, respectively) andρ (ρ′, respectively) be center and squared radius of©(R,S\{p})
(©(R ∪ {p}, S), respectively). We know that

ρ = ‖q − c‖2 = qT q − 2cT q + cT c, q ∈ R, (2.4)

ρ < ρ̄ := ‖p − c‖2 = pT p − 2cT p + cT c, (2.5)

ρ′ = ‖q − c′‖2 = qT q − 2c′T q + c′T c′, q ∈ R ∪ {p}. (2.6)

Using (2.2) and (2.3), equations (2.4) and (2.5) imply

λp(ρ̄ − ρ) =
∑

q∈R∪{p}
λqq

T q,

while (2.6) yields
0 =

∑

q∈R∪{p}
λqq

T q.

It follows thatλp = 0, and becauseR is affinely independent, we also getλq = 0, q ∈ R. This
means,R ∪ {q} is affinely independent.
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2.2.2 Runtime

While the correctness of Algorithm 2.11 holds for any choice of p, its efficiency crucially
depends onp being chosen at random (Exercise 2.5).

Each call ofLeaveItThenTakeIt performs abasis computation5 (‘F := R’) or a
violation test(‘p /∈ ©(F, F )’), and only constant-time operations otherwise (excluding the
operations within the recursive calls). This means, the total number of basis computations and
violation tests throughout all recursive calls is a good measure of the algorithm’s performance
(Exercise 2.4 shows that it would be enough to count the violation tests.)

Violation tests. Let tk(n) be the maximumexpectednumber of violation tests in a call to
LeaveItThenTakeIt(R,S), where(R,S) satisfies Precondition 2.7,|S \ R| = n and
d + 1 − |R| = k.6 Note that by Corollary 2.9,k is a nonnegative number. We get

tk(0) = 0, (2.7)

t0(n) = t0(n − 1) + 1, n > 0. (2.8)

While (2.7) is obvious, (2.8) requires a little argument: if|R| = d + 1 already, there cannot be
a second recursive call with parameters(R∪{p}, S), because the correctness proof shows that
in this case,R ∪ {p} would have to be affinely independent. This is impossible fora set with
d + 2 elements.

Another way to look at it is that in case of|R| = d + 1, there is a unique ball throughR—
this follows from Exercise 2.3(ii). Therefore, if©(R,S) exists (which is our precondition),
we must have©(R,S) = ©(R,R), meaning that we will never find a pointp ∈ S \R outside
of ©(R,R).

Fork, n > 0, we get

tk(n) ≤ tk(n − 1) + 1 + pk(n)tk−1(n − 1), (2.9)

wherepk(n) is the maximum probability of the event ‘p /∈ ©(F, F )’ in a call toLeaveItThenTakeIt(R,S),
with (R,S) as in the definition oftk(n). The following is the important

Observation 2.12 pk(n) ≤ k/n.

Proof. If p /∈ ©(F, F ) = ©(R,S \ {p}), thenp is contained in the unique basisB of (R,S).
If not, Postcondition 2.10 and Fact 2.4 would yield

©(R,S) = ©(B,B) = ©(R,B) ≤ ©(R,S \ {p}) ≤ ©(R,S),

hence©(F, F ) = ©(R,S \ {p}) = ©(R,S), which is a contradiction top /∈ ©(F, F ). It
follows that

prob(p /∈ ©(F, F )) ≤ prob(p ∈ B) =
|B \ R|
|S \ R| ≤

d + 1 − |R|
n

=
k

n
.

5we call thiscomputation, because in an actual implementation,©(F, F ) would be computed and returned
along withF ; subsequent violation tests with©(F, F ) are then very cheap.

6for fixed (R,S), the number of violation tests is a random variableX(R,S); then we definetk(n) :=
max{E(X(R,S)) | (R,S) satisfies Precondition 2.7,|S \ R| = n andd + 1 − |R| = k}. This maximum exists,
because there are only finitely manycombinatorially differentpairs(R,S).
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Lemma 2.13 For k, n ≥ 0,
tk(n) ≤ ckn,

where

ck =

{
1, k = 0,

1 + kck−1, k > 0
.

Proof. We proceed by induction overn, noting that the bound holds forn = 0 by (2.7) and
for k = 0 by (2.8). Forn, k > 0, we inductively obtain

tk(n) ≤ tk(n − 1) + 1 +
k

n
tk−1(n − 1)

≤ ck(n − 1) + 1 +
k

n
ck−1(n − 1)

≤ ck(n − 1) + 1 + kck−1

= ckn.

Corollary 2.14 For k, n ≥ 0,

tk(n) ≤ k!
k∑

i=0

1

i!
n =

{
n, k = 0,

⌊ek!⌋ n, k > 0
,

wheree ≈ 2.718 is the Euler constant.

Proof. Fork = 0, the statement is immediate. Fork > 0, we get

ck

k!
=

1

k!
+

ck−1

(k − 1)!
=

k∑

i=1

1

i!
+

c0

0!
=

k∑

i=0

1

i!
.

This implies

ck = k!
k∑

i=0

1

i!
= ek! −

∞∑

i=k+1

k!

i!
= ek! − ε,

whereε < 1 for k > 0. Becauseck is an integer, the bound follows.
It follows that forfixeddimensiond, the expected number of violation tests islinear in |S|.

Theorem 2.15 Let S ⊆ E
d be a set ofn points. AlgorithmLeaveItThenTakeIt(∅, S)

computes©(S) with an expected number of at most

td+1(n) ≤ ⌊e(d + 1)!⌋ n

violation tests.
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Basis computations. Let bk(n) be the maximum expected number of basis computations in
a call toLeaveItThenTakeIt(R,S), where(R,S) satisfies Precondition 2.7,|S \ R| = n
andd + 1 − |R| = k. With the same arguments as fortk(n), we getbk(0) = b0(n) = 1 and

bk(n) ≤ bk(n − 1) +
k

n
bk−1(n − 1), k, n > 0. (2.10)

With

Bk+1(n + 1) := bk(n)
n!

k!
,

(2.10) is equivalent to
Bk+1(n + 1) ≤ nBk+1(n) + Bk(n),

which looks like the recurrence for thecycle number7
[

n + 1
k + 1

]

:

[
n + 1
k + 1

]

= n

[
n

k + 1

]

+

[
n
k

]

.

Checking the base cases reveals that in general,Bk+1(n + 1) 6≤
[

n + 1
k + 1

]

: we have

Bk+1(1) =
1

k!
>

[
1

k + 1

]

= 0, k > 0.

Still, bk(n) can be bounded via cycle numbers. Inductively, one can prove

Lemma 2.16 For k, n ≥ 0,

bk(n) ≤ 1

n!

k∑

i=0

(
k

i

)

i!

[
n + 1
i + 1

]

.

Using the inequality
[

n + 1
i + 1

]

≤ n!

i!
(Hn)i

(easily provable by induction as well, and also to be found inEmo Welzl’s reading assign-
ments), we obtain

bk(n) ≤
k∑

i=0

(
k

i

)

(Hn)i = (1 + Hn)k.

Theorem 2.17 Let S ⊆ E
d be a set ofn points. AlgorithmLeaveItThenTakeIt(∅, S)

computes©(S) with an expected number of at most

bd+1(n) ≤ (1 + Hn)d+1

basis computations.

7

[
n

k

]

is the number of permutations ofn elements withk cycles, see for example Emo Welzl’s reading

assignments.
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This bound is remarkable, because it shows that the expectednumber of basis computations
is not only smaller than the expected number of violation tests, plus two (which we know
from Exercise 2.4), butmuchsmaller: it is only polylogarithmic instead of linear. One basis
computation can be done in timeO(d3) (by Exercise 2.3, computing a ball©(F, F ) amounts
to solving a system of linear equations), while a violation test costsO(d), because the relevant
ball has been computed in a previous basis computation. Thismeans, the actual time required
to perform all violation tests asymptotically dominates the time for the basis computations. We
can summarize our findings as follows.

Theorem 2.18 Let S ⊆ E
d be a set ofn points. AlgorithmLeaveItThenTakeIt(∅, S)

computes©(S) in expected time
O(d(d + 1)! n).

Small cases. If |S| = n ≈ d, the bound of Theorem 2.18 is not too impressive, and we want
to improve on it. Let us concentrate on the casen ≤ d+1. Exercise 2.6 shows that in this case,
the bound of Corollary 2.14 on the expected number of violation tests is an overestimate, and
that

td+1(n) = 2n − 1, n ≤ d + 1 (2.11)

holds. The exercise also shows that the randomization inLeaveItThenTakeItbecomes
irrelevant in this case. In the next section, we develop a (randomized) algorithm which performs
better ifS is anaffinely independentset (which in particular means|S| ≤ d + 1).

2.3 More Basics

Before we can describe the algorithm, we need some further simple facts that will guarantee
its correctness. Recall that we are still working under the general position Assumption 2.6. In
this case, we have

Observation 2.19 LetR ⊆ S ⊆ E
d such that©(R,S) exists,p ∈ S \ R. Then

©(R,S) = ©(R,S \ {p}) ⇔ p ∈ ©(R,S \ {p}),
©(R,S) = ©(R ∪ {p}, S) ⇔ p /∈ ©(R,S \ {p}).

In particular,©(R,S) equalseither©(R,S \ {p}) or©(R ∪ {p}, S), but not both.

The first equivalence is obvious, the second one follows fromLemma 2.5, plus the observation
that

©(R,S \ {p}) 6= ©(R ∪ {p}, S).

This holds, because otherwise,p would be on the boundary of©(F, F ), with F being the basis
of (R,S \ {p}), just what we excluded with our general position assumption.

In addition to the well-knownviolation tests(‘p /∈ ©(F, F )’), the algorithm will perform
looseness tests. Let us introduce both notions formally.
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Definition 2.20 LetF ⊆ E
d be affinely independent.

(i) p /∈ F violatesF if and only if©(F, F ) 6= ©(F, F ∪ {p}).

(ii) p ∈ F is loosein F if and only if©(F, F ) 6= ©(F \ {p}, F ).

p

©(F, F )

©(F \ {p}, F )

Figure 2.6:p is loose inF ; the other two points are ‘tight’

Figure 2.6 illustrates the situation. Testing looseness iseasy, because Observation 2.19
yields the following

Corollary 2.21 LetF ⊆ E
d be affinely independent.p ∈ F is loose inF if and only ifp does

not violateF \ {p}.

Now we are in a position to state the main lemma underlying thealgorithm of this section.
It says thatF is a basis of(R,S) if and only if no point inS \ F violatesF and no point in
F \ R is loose inF .

Lemma 2.22 LetR ⊆ S ⊆ E
d be a pair satisfying Precondition 2.7, and consider an affinely

independent setF with R ⊆ F ⊆ S. Then the following two statements are equivalent:

(i) F is a basis of(R,S), meaning that

©(F, F ) = ©(R,S) = ©(R,F ).

(ii) For all points p ∈ S \ F ,

©(F, F ) = ©(F, F ∪ {p}) (no point inS \ F violatesF ) (2.12)

and for all pointsp ∈ F \ R,

©(F, F ) = ©(F \ {p}, F ) (no point inF \ R is loose inF ). (2.13)
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Proof. Let F be a basis of(R,S). Using Fact 2.4, we get

©(F, F ) ≤ ©(F, F ∪ {p}) ≤ ©(F, S) = ©(F, F ), p ∈ S \ F,

where the latter equality holds because©(F, F ) coversS. Similarly,

©(F, F ) ≥ ©(F \ {p}, F ) ≥ ©(R,F ) = ©(F, F ), p ∈ F \ R,

becauseF is a basis. It follows that equality holds in all cases, and (ii) is established. In the
other direction, (2.12) implies that©(F, F ) coversS, so if we can show that (2.13) implies
©(F, F ) = ©(R,F ), we are done, because©(R,F ) coversS, so©(R,F ) = ©(R,S)
follows.

Assume that©(F, F ) 6= ©(R,F ) which actually means©(R,F ) < ©(F, F ). Let E be
inclusion-maximal such thatR ⊆ E ⊆ F and

©(E,F ) < ©(F, F ). (2.14)

By our assumption,E exists; choose a pointp ∈ F \ E. With Observation 2.19 applied to the
pair (F \ {p}, F ), (2.13) yields

©(F \ {p}, F \ {p}) < ©(F, F ). (2.15)

Moreover,©(E,F ) coversp, while ©(F \ {p}, F \ {p}) does not (use (2.13) and Corollary
2.21). Both balls go throughE and coverF \ {p}.

p

F \ {p}

B

E

©(E,F )

©(F \ {p}, F \ {p})

Figure 2.7: Deriving a ballB which contradicts the choice ofE

The situation is therefore as in Figure 2.7, and with Exercise 2.1 applied for the fourth time,
we find a ballB (dotted) which goes throughE ∪ {p}, coversF , and is smaller than©(F, F )
by (2.14) and (2.15). It follows that

©(E ∪ {p}, F ) < ©(F, F ),

a contradiction to our choice ofE.
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2.4 Algorithm TakeItOrLeaveIt

This section describes the algorithm for computing©(R,S) if S is affinely independent. In this
case,©(R,S) always exists by existence of©(S, S) (Exercise 2.3 and Lemma 2.2). Beyond
the general position Assumption 2.6, no further preconditions are needed. Just like algorithm
LeaveItThenTakeIt, TakeItOrLeaveIt computes the unique basisF of (R,S), see
Postcondition 2.10. Knowing that for anyp ∈ S \ R, ©(R,S) equals either©(R,S \ {p})
or ©(R ∪ {p}, S) (Observation 2.19), the algorithm flips a coin to decide which of the two
balls is (recursively) computed first. If later, this choiceturns out to be wrong, the algorithm
computes the other (correct) ball in a second recursive call.

Exercise 2.7 asks you to prove that the following algorithm indeed returns the basis of
(R,S). With the material from the previous section, this can be done without any further
geometric reasoning about balls: just as we got really familiar with it, we don’t need Exercise
2.1 anymore!

Algorithm 2.23

TakeItOrLeaveIt(R,S):
IF R = S THEN

F := R
ELSE

choose somep ∈ S \ R
choose a bitβ ∈ {0, 1} uniformly at random
IF β = 0 THEN

F := TakeItOrLeaveIt(R,S \ {p})
IF p violatesF THEN

F := TakeItOrLeaveIt(R ∪ {p}, S)
END

ELSE
F := TakeItOrLeaveIt(R ∪ {p}, S)
IF p is loose inF THEN

F := TakeItOrLeaveIt(R,S \ {p})
END

END
END
RETURN F

2.4.1 Runtime

As before, we count the expected number of violation and looseness tests as well as the ex-
pected number of basis computations (‘F := R’), which will give us a reasonable estimate of
the algorithm’s performance.
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Violation and looseness tests. Let t(n) denote the expected number of violation and loose-
ness tests in a call toTakeItOrLeaveIt(R,S), whereS ⊆ E

d is affinely independent and
|S \ R| = n.8 We get

t(0) = 0,

t(n) = t(n − 1) + 1 +
1

2
t(n − 1), n > 0,

because with probability exactly1/2, the ball computed in the first recursive call was the wrong
one, in which case we need a second call of expected costt(n − 1).

It follows that

t(n) = 1 +
3

2
t(n − 1) = 1 +

3

2
+

(
3

2

)2

+ · · · +
(

3

2

)n−1

+

(
3

2

)n

t(0) = 2

((
3

2

)n

− 1

)

,

where we have used
∑m

i=0 zi = (zm+1 − 1)/(z − 1). This is still exponential, but a substantial
improvement over the bound (2.11).

Basis computations. Let b(n) denote the expected number of basis computations in a call
to TakeItOrLeaveIt(R,S), whereS ⊆ E

d is affinely independent and|S \ R| = n. We
obtain

b(0) = 1,

b(n) = b(n − 1) +
1

2
b(n − 1), n > 0,

which solves to

b(n) =

(
3

2

)n

.

As before, we can argue that any basis computation as well as any violation and looseness
test can be performed in timeO(d3), and we get

Theorem 2.24 Let S ⊆ E
d be a set ofn ≤ d + 1 affinely independent points. Algorithm

TakeItOrLeaveIt(∅, S) computes©(S) in expected time

O
(
d31.5n

)
.

The practical implication of this result is that algorithmTakeItOrLeaveIt can be used
to compute the smallest enclosing ball of an affinely independent point setS ⊆ E

50 pretty
quickly. In contrast, algorithmLeaveItThenTakeIt is already very slow ford > 30.

It is a natural question whether we can further reduce the number ofprimitive operations
(violation and looseness tests, basis computations). Thisis indeed possible, and in the next
chapter we will do this in the more general framework ofunique sink orientations.

8The fact that this number only depends onn and not on the specific pair(S,R), can inductively be established
along the lines of the subsequent analysis.
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The algorithmLeaveItThenTakeIt is due to Welzl [16].TakeItOrLeaveIt is due to
Gärtner and Welzl [4]. The proofs via purely geometric arguments using Exercise 2.1 are new.
The nondegeneracy assumption 2.6 can be removed. For algorithmLeaveItThenTakeIt,
this is easy and is already done in Welzl’s original paper [16]. Fischer and G̈artner do this for
TakeItOrLeaveIt [2].

Exercises

Exercise 2.1LetB be a ball with centerc and positive squared radiusρ. Then

B = {x ∈ E
d | fB(x) ≤ 1}, fB(x) := ‖x − c‖2/ρ.

LetB0,B1 be two balls with centersc0, c1 and positive squared radiiρ0, ρ1. Moreover,B0∩B1 6=
∅.

(i) Prove that for anyλ ∈ (0, 1), there is a ballBλ with

fBλ
(x) = (1 − λ)fB0

+ λfB1
.

(ii) Show that ifB0 andB1 both go throughR and coverS, then the same is true forBλ.

(iii) Let ρλ be the squared radius ofBλ. Prove thatρλ < max(ρ0, ρ1) for λ ∈ (0, 1).

Exercise 2.2Prove Fact 2.8.

Exercise 2.3LetF ⊆ E
d be affinely independent,F 6= ∅.

(i) Prove that the center of©(F, F ) is in theaffine hullof F . The affine hull of a setQ is
the set of all affine combinations ofQ,

aff(Q) := {
∑

q∈Q

λqq | ∀q : λq ∈ R,
∑

q∈Q

λq = 1}.

The affine hull is an affine subspace of thelinear hull(set of all linear combinations),

lin(Q) := {
∑

q∈Q

λqq | ∀q : λq ∈ R}.

Argue directly for|F | = 1. For |F | > 1, proceed in the following steps.

(a) Prove that for any pointp ∈ F and any points ∈ Ed,

s ∈ aff(F ) ⇔ s − p ∈ lin(F − p),

where
F − p := {q − p | q ∈ F \ {p}}.
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(b) For p ∈ F , letM be thed×(|F |−1)-matrix whose columns are the points ofF −p
in any order. Show thatMT M is invertible.

(c) For s ∈ Ed, consider the point

s∗ := p + M(MT M)−1MT (s − p)

and prove (using (a)) thats∗ ∈ aff(F ). (s∗ is the projection ofs ontoaff(F ).)

(d) Prove that‖(s∗ − p)‖2 + ‖s − s∗‖2 = ‖s − p‖2.

(e) Assume that the center of©(F, F ) lies outside ofaff(F ), and show (using (d)) that
this leads to a contradiction.

(ii) Prove that there is auniqueball B throughF whose center is inaff(F ). It follows that
B = ©(F, F ). Use the settings and results of part 1 to determine the center c ofB in the
form

c = p + Mλ,

whereλ = (λ1, . . . , λ|F |−1)
T is the unique solution to a suitable system of linear equa-

tions.

Exercise 2.4Prove that in a call ofLeaveItThenTakeIt(R,S) with R 6= S, the number
of basis computations is at most the number of violation tests, plus one.

Exercise 2.5Let S = {p1, . . . , pn} ⊆ E
d and consider the deterministic variant of Algorithm

LeaveItThenTakeIt(S,R) in which the line

choosep ∈ S \ R uniformly at random

is replaced by the line

choosep as the point with largest index inS \ R.

Prove that for any fixed dimensiond ≥ 1, there exists a point setS for which the number of
violation tests in the deterministic variant isΩ(nd+1) (the constant hidden in theΩ may depend
ond). (Hint: find an example ford = 2 first, then try to generalize it.)

Exercise 2.6Prove that forn ≤ k,

tk(n) ≤ 2n − 1.

Show that this bound is best possible by constructing a setS of n = d+1 points inE
d for which

the expected number of violation tests inLeaveItThenTakeIt(R,S) is exactly2|S\R| − 1
for anyR ⊆ S.

Exercise 2.7Prove that AlgorithmTakeItOrLeaveIt(R,S) returns the unique basisF of
(R,S).
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Exercise 2.8We have shown that algorithmLeaveItThenTakeIt computes the smallest
enclosing ball of ann-point setS ⊆ E

d with an expected number of at mostcd+1n violation
tests, wherecd+1 is some constant only depending ond. Prove that for any constantK ≥ 1,
there is an algorithm that requires at most

2Kcd+1n

violation tests, with probability at least

1 − 1

2K
.

This means, there is an algorithm for smallest enclosing balls that achieves linear runtime not
only in expectation, but with arbitrarily high probability.

Exercise 2.9The ideas of algorithmLeaveItThenTakeIt can be used to solve a linear
program ind variables andn inequality constraints in timeO(n), if d is a constant. Here, we
consider linear programs in two variablesx1, x2, of the form

minimize c1x1 + c2x2

subject to ai1x1 + ai2x2 ≤ bi, i = 1, . . . , n,
x1, x2 ≥ 0,

whereai1, ai2, bi are arbitrary real numbers fori = 1, . . . , n, andc1, c2 are nonnegative real
numbers. Develop a randomized algorithm with expected runtime O(n) for finding a pair
(x̃1, x̃2) with smallest valuec1x̃1 + c2x̃2 among the pairs that satisfy alln + 2 inequality
constraints. The inequalitiesx1, x2 ≥ 0 together withc1, c2 ≥ 0 ensure that this smallest value
is bounded from below by0.

If the linear program isinfeasible, meaning that no pair(x1, x2) satisfies all inequalities,
the algorithm should output this fact. Moreover, make sure that your algorithm correctly deals
with the case where the optimal pair(x̃1, x̃2) (of the linear program, or of some subprogram)
is not unique.
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Chapter 3

Unique Sink Orientations of Cubes

In the previous chapter, we have taken a geometric approach in order to develop algorithms for
computing the smallest enclosing ball of a finite point setS ⊆ E

d. In this chapter, we adopt
a purely combinatorial view and show that any instance of theproblem defined by anaffinely
independentsetS of n ≤ d + 1 points has the structure of aunique sink orientation(USO) of
then-cube graph. From the global sink of that orientation, the smallest enclosing ball©(S) of
S can be read off.

It follows that any (in particular, any randomized) algorithm for finding the sink of a general
USO can immediately be applied to the smallest enclosing ball problem.1

This chapter deals with randomized sink-finding algorithmsfor general USO, quite in the
spirit of Randomix’s strategy for quickly finding the exit in Determinatus’s maze, see Chapter
1. Even though the problem is more general than smallest enclosing balls, we will be able to
improve over the results of the previous chapter. The main reason for this is that our combi-
natorial view reveals some structure of the smallest enclosing ball problem that we didn’t see
(and therefore couldn’t use) before, probably because we were too focused on the geometry.
In particular, Algorithm 2.23 from the previous chapter—which appeared to be pretty fancy
back then—will in the USO framework turn out to be a very natural randomized algorithm for
finding the sink.

3.1 Definition and Examples

The vertices of then-dimensional cube can be identified with the subsets of somen-element
setN (which for most examples in this chapter will simply be the set N = [n] := {1, . . . , n}).
Thegraphof then-cube is the graphCn = (V,E), where

V := 2N = {X | X ⊆ N},
E := {{X,X ⊕ {i}} | X ∈ 2N , i ∈ N}.

1There is a number of other interesting problems which profit from USO techniques, but we don’t have time
to discuss them here.
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Here,⊕ is thesymmetric differenceof two sets.2 This means that two subsets ofN are con-
nected by an edge if and only if they differ in exactly one element, and this element will be the
labelof the edge. Figure 3.1 shows the graph of the3-cube with edge labels.

∅

{1} {2} {3}

{1, 3} {2, 3}{1, 2}

{1, 2, 3}

1 1

1

1

2

2

22
3

3

3

3

Figure 3.1: The graphC3 with edge labels

The faces of the cube can be identified withintervalsof vertices

[A,B] := {X | A ⊆ X ⊆ B}.

The faces of the form[X,X] are the vertices themselves,[∅, N ] is the whole cube, and|B \A|
is the dimension of the face[A,B]. Figure 3.2 depicts two faces of the 3-cube in bold.

[{2, 3}, {1, 2, 3}]

[∅, {1, 3}]

1 1

1

1

2 2

2

2 3

3

3

3

Figure 3.2: Faces ofC3

An orientationof Cn is a directed graphO = (2N , D), such thatD contains exactly one of
the ordered pairs(X,X ⊕ {i}) and(X ⊕ {i}, X), for all X ⊆ N andi ∈ N .

2A ⊕ B := (A ∪ B) \ (A ∩ B) is the set of elements which are inexactlyone of the two sets.
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Definition 3.1 An orientationO ofCn is called aunique sink orientation(USO), if for all faces
[A,B], the subgraph ofO induced by[A,B] contains exactly one sink. We also say that[A,B]
contains a unique sink and denote this sink by•❥O(A,B).

In contrast to the setup of Exercise 1.1, we do not only require the whole graph to have a
unique sink, but also certain subgraphs, in this case all subgraphs of the cube graph that are
induced by cube faces. This makes the orientations more specific, and we will see that the
lower bound on the number of vertex evaluations establishedin Exercise 1.1 does not hold here
(Exercise 3.4). It’s time for some examples.

eye

bow

saddle

cycle

Figure 3.3: Orientations ofC2

The 2-cube has (up to isomorphisms) four different orientations, see Figure 3.3. Theeye
and theboware USO, but the other two aren’t: thesaddlehas two sources and two sinks, while
thecyclehas no sink at all. In all cases, we only need to check the single 2-dimensional face,
because vertices and edges always have unique sinks.

While cycles cannot occur in a USO of theC2, there is one USO of theC3 which has a
cycle, see Figure 3.4: there is a unique sink in the whole cube, and every2-face is a bow.

3.2 Smallest Enclosing Balls Revisited

Here is our motivating example for the concept of USO. Recall that for an affinely independent
setS ⊆ E

d, |S| = n ≤ d + 1 and a subsetF ⊆ S, we have defined that a pointp ∈ S \ F
violatesF iff ©(F, F ) 6= ©(F, F ∪ {p}), and that a pointp ∈ F is loosein F if ©(F, F ) 6=
©(F \ {p}, F ) (Definition 2.20).
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Figure 3.4: Cyclic USO ofC3

Theorem 3.2 For S ⊆ E
d affinely independent and in general position according to Assump-

tion 2.6,|S| = n ≤ d + 1, define

D→ := {(F, F ∪ {p}) | F ⊆ S, p ∈ S \ F, p violatesF},
D← := {(F, F \ {p}) | F ⊆ S, p ∈ F, p is loose inF}.

(i) The graphO = (2S, D→ ∪ D←) is a USO of then-cube.

(ii) For any A ⊆ F ⊆ B, the following statements are equivalent.

(a) F = •❥O(A,B)

(b) F is the uniquebasisof (A,B) w.r.t. smallest enclosing balls, meaning that©(A,B) =
©(F, F ) = ©(A,F ).

Proof. By Lemma 2.22,F is the basis of(A,B) if and only if no point inB \ F violatesF
and no point inF \ A is loose inF , which by definition ofO equivalently means thatF is a
sink in the face[A,B]. By general position,(A,B) has a unique basis, so[A,B] has a unique
sink, and both sets coincide. This proves (i) and (ii).

Figure 3.5 shows the two types of USO on the 2-cube that can arise from the smallest
enclosing ball problem over a set of three affinely independent points in the plane. The ori-
entations differ in exactly one edge orientation: in the upper case,r violates{p, q}, while in
the lower case, it doesn’t. The smallest enclosing ball of the three points (whose boundary set
corresponds to the sink of the USO) is drawn solid.

3.3 The Algorithmic Model

In the previous chapter, we have developed Algorithm 2.23 (TakeItOrLeaveIt) which
computes the smallest enclosing ball of a setS of affinely independent points with an expected
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Figure 3.5: USO coming from smallest enclosing balls

number of
(

3

2

)|S|

basis computations (and about twice as much violation and looseness tests, involving a previ-
ously computed basis and some other point).

One goal of this chapter is to show that this algorithm can actually be formulated as a (very
simple) sink-finding procedure for general USO, where a basis computation translates to a so-
calledvertex evaluation. In itself, this generalization does not give us new resultsfor smallest
enclosing balls; however, the point is that the sink in a general USO can be found with even less
vertex evaluations thanTakeItOrLeaveIt needs basis computations, and thisdoesgive us
an improved algorithm also for the special case of smallest enclosing balls.

The model is as follows: the USO is given to us implicitly, andwe can obtain information
about it through vertex evaluations: evaluating vertexX reveals the orientations of the incident
edges. We are looking for a deterministic (randomized) algorithm that minimizes the (ex-
pected) number of vertex evaluations necessary toevaluatethe sink of any USO of then-cube.
More precisely, we define

t(n) := min
A

max
O

t(A,O),

where the minimum is taken over all deterministic algorithms, the maximum is taken over all
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USOs of then-cube, andt(A,O) is the number of vertex evaluations that algorithmA needs
in order to evaluate the sink ofO. Similarly,

t̃(n) := min
A

max
O

t̃(A,O),

where the minimum is taken over allrandomizedalgorithms, and̃t(A,O) is the expected num-
ber of vertex evaluations that algorithmA needs in order to evaluate the sink ofO.

In still other words, the goal is to find the (randomized) algorithm with the best (expected)
worst-case performance.

The following bounds are easy to see.

Observation 3.3
t(1) = 2, t̃(1) = 3/2,
t(2) = 3,

(3.1)

and
t̃(n) ≤ t(n) ≤ 2n−1 + 1. (3.2)

Proof. Any deterministic algorithm for the 1-cube can be forced to evaluate two vertices:
because the adversary knows which vertex is evaluated first,he will make sure that this one is
not the sink.̃t(1) ≤ 3/2 is clear, because one possible randomized algorithm chooses the vertex
to be evaluated first among the two vertices with equal probability. Because the adversary is
oblivious, he must commit to an orientationbeforethe algorithm makes its random choice (just
like Determinatus has to set up a maze before Randomix enters it, see Chapter 1). Then the
expected number of vertices evaluated is1/2(1 + 2) = 3/2. It is also clear that one cannot do
better: any randomized algorithm has to choose the first vertex to be evaluated by assigning
some probabilityp to one of the vertices and1 − p to the other. Ifp 6= 1/2, the adversary
(who knowsp, just like Determinatus knows Randomix’s dice-rolling strategy in Chapter 1)
will place the sink on the vertex less likely to be chosen, leading to an expected number of
strictly more than3/2 vertex evaluations.

In order to seet(2) ≤ 3, we apply (3.2) and fort(2) ≥ 3, the adversary places the source
on the first vertex that is evaluated. Then an easy case analysis shows that for any choice of the
second vertex, there is a USO in which the first one is the source, but the second one isnot the
sink. Thus, the adversary can always enforce a third evaluation.

The general bound oft(n) ≤ 2n−1 + 1 follows like in Exercise 1.1(ii), and̃t(n) ≤ t(n)
is obvious, because any deterministic algorithm can be considered as a randomized algorithm
that doesn’t use its random resources.

In case of smallest enclosing balls inE
d, an evaluation of vertexX can be implemented in

time O(d3); we needO(d3) time to compute©(X,X), and once we have it, the orientations
of the at mostd incident edges can be computed in timeO(d) per edge, by doing one violation
or looseness test.3 This means, any algorithm for finding the sink in a USO with (anexpected
number of)t steps can be used to compute the smallest enclosing ball of anaffinely independent
point set in (expected) timeO(t · d3).

3We didn’t argue how to perform a looseness test inO(d) time; it can be done, but if you have doubts, an
O(d3) bound will do as well, leading to an overall bound ofO(d4) per vertex evaluation.
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3.4 Basic Theory

Any USOO = (2N , D) of Cn defines anoutmaps : 2N → 2N , wheres(X) is the set of labels
of outgoing edges ofX,

s(X) := {i | (X,X ⊕ {i}) ∈ D}.
Obviously,

s( •❥O(∅, N)) = ∅,
and, more generally,

s( •❥O(A,B)) ∩ (B \ A) = ∅. (3.3)

Equation (3.3) holds, because any edge incident to the sink with labela ∈ B \ A is an edge
within the face[A,B] and is therefore incoming.

Figure 3.6 shows the outmap values associated to a bow ofC2. We denote the outmap
defined by a particular orientationO with sO.

1

1

2

2

s(∅) = ∅

s({2}) = {1, 2}

s({1, 2}) = {2}

s({1}) = {1}

Figure 3.6: Outmap of a USO

It is no coincidence that in Figure 3.6, the outmap is a bijection. This always holds.

Lemma 3.4 Lets : 2N → 2N be the outmap of a USOO. Thens is a bijection.

Proof. It suffices to show thats is injective. For this, fix two verticesX andY such that
s(X) = s(Y ) = A ⊆ N . By iterating Exercise 3.3(i), we see that reorienting all edges ofO
with labels inA leads to a USOO′, where

sO′(X) = sO′(Y ) = ∅,
meaning that bothX andY are global sinks inO′. It follows thatX = Y , sos is injective.

Here is a characterization that tells us whether a functions : 2N → 2N is the outmap of a
USO. Its (easy) proof is left as Exercise 3.3(ii)

Lemma 3.5 A functions : 2N → 2N is the outmap of a USO if and only if

(X ⊕ Y ) ∩ (s(X) ⊕ s(Y )) 6= ∅, ∀X 6= Y ⊆ 2N .

This simple condition hits two birds with one stone: apart from encoding the actual USO
property, it guaranteesconsistencyof the orientation, meaning thatexactly oneof the two
neighboring verticesX andX ⊕ {i} has an outgoing edge with labeli.
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Inherited Orientations. In the introduction to this chapter, I have promised some nontrivial
structure that we haven’t seen for smallest enclosing balls. Here it comes.

Theorem 3.6 LetO = (2N , D) be a USO of the|N |-cube with outmaps = sO. Fix A ⊆ N
and consider the functions : 2N\A → 2N\A defined by

s′(X) := s
(
•❥O(X,X ∪ A)

)
.

Thens′ is the outmap of a USOO′ of the|N \ A|-cube.

Before we get to the proof, let us discuss what this means. The setA defines2|N\A| subcubes
spannedby A, of the form

[X,X ∪ A], X ⊆ 2N\A.

In Figure 3.7,N = {1, 2, 3, 4}. The setA = {2, 3} spans four subcubes (the grey blobs).

1
1

1

2 3 4
4

4

Figure 3.7: Inherited USO

The values′(X) records the labels of the outgoing edges at thesinkof the subcube[X,X ∪
A] (bold edges in Figure 3.7). By (3.3),s′(X) ⊆ N \ A.

s′ defines an orientationO′ on a cube spanned byN \ A, see lower left part of Figure 3.7.
This cube arises by ’reducing’ all subcubes (the grey blobs)to their sinks. The statement of the
Theorem is thatO′ is in fact a USO again. Moreover, it is clear that the subcube corresponding
to the sink ofO′ (the rightmost grey blob in Figure 3.7) also contains the global sink.
Proof. We show thats′ satisfies the condition of Lemma 3.5. For this, chooseX 6= Y ⊆ 2N\A

and set

W := •❥O(X,X ∪ A),

Z := •❥O(Y, Y ∪ A).
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Note thatW 6= Z, because they lie in disjoint subcubes. We claim that

(X ⊕ Y ) ∩ (s′(X) ⊕ s′(Y )) = (W ⊕ Z) ∩ (s(W ) ⊕ s(Z)), (3.4)

which proves the Theorem, because the right-hand side is a nonempty set by Lemma 3.5. To
see (3.4), first note that

s′(X) ⊕ s′(Y ) = s(W ) ⊕ s(Z) =: B ⊆ N \ A

by definition. Secondly, fora ∈ N \ A, we havea ∈ X ⇔ a ∈ W (anda ∈ Y ⇔ a ∈ Z),
hence

(X ⊕ Y ) ∩ B = (W ⊕ Z) ∩ B,

which is (3.4).

The Product Algorithm. Theorem 3.6 suggests the following approach for evaluatingthe
sink in a USOO of then-cube, given that you have, for somek ∈ {0, . . . , n}, two (determin-
istic or randomized) algorithmsFindSinkk andFindSinkn−k for evaluating the sink in a
k-cube and an(n − k)-cube, respectively: choose|A| = k and useFindSinkn−k to evaluate
the sink ofO′ as defined by the functions′ above. Whenever the algorithm needs to evaluate
s′(X), callFindSinkk for the original outmaps on [X,X ∪A]. If X is the sink w.r.t.s′, this
call will eventually evaluate the desired sink w.r.t.s. If FindSinkk andFindSinkn−k are
best possible deterministic algorithms, thisproduct algorithmwill call FindSinkk at most
t(n − k) times, and each such call evaluates at mostt(k) vertices. It follows that the product
algorithm requires at mostt(k)t(n− k) vertex evaluations. At this point, it becomes clear why
our algorithmic model counts the number of steps we need toevaluatethe sink rather than
the number of steps until weknow it. Namely, just knowing the sink ofO′ does not allow
us to deduce where the sink ofO is: we only know thek-dimensional subcube containing it.
Consequently, some “plus-one-terms” would uglify the analysis of the product algorithm.

If we work with best possiblerandomizedalgorithms,FindSinkk is called anexpected
number of at most̃t(n−k) times, each call requiring anexpectednumber of at most̃t(k) vertex
evaluations. Because the random choices in both algorithms are independent of each other, the
expectations can be multiplied, and the product algorithm needs at most̃t(k)t̃(n − k) vertex
evaluations in expectation. Because the product algorithm is just one (not necessarily the best)
algorithm for then-cube, we have shown the following result.

Theorem 3.7 For 0 ≤ k ≤ n,

t(n) ≤ t(k)t(n − k),

t̃(n) ≤ t̃(k)t̃(n − k).

Using t̃(1) = 3/2, this gives us

t̃(n) ≤ t̃(n − 1)
3

2
≤

(
3

2

)n

.
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Moreover, there is a simple product algorithm that achievesthis bound: letGuess1 be
the simple randomized algorithm for finding the sink of the1-cube with an expected number of
3/2 vertex evaluations, see Observation 3.3. Consider the product algorithmProductn which
satisfies

Product1 = Guess1,

and which is, forn > 1, recursively defined viak = n − 1 and

FindSinkn−k = Guess1

FindSinkk = Productn−1.

Then the expected number of vertex evaluations ofProductn is easily seen to beexactly
(

3

2

)n

. (3.5)

Actually, we have rediscovered the USO equivalent of the algorithmTakeItOrLeaveIt for
smallest enclosing balls.

Theorem 3.7 also yields
t̃(n) = O

(
t̃(2)n/2

)
. (3.6)

Assume we could find a randomized algorithm for 2-cube USO, with an expected number of
vertex evaluations smaller than (

3

2

)2

=
9

4
=

45

20

in the worst case (this is the bound we get fromProduct2). Then we could use this algorithm
in a recursively defined product algorithm as above, to achieve the bound in (3.6), therefore
beating the bound of (3.5). The concrete result would be a randomized algorithm for smallest
enclosing balls of affinely independent points that is faster thanTakeItOrLeaveIt.

The goal of the next section is to develop such an improved algorithm for the 2-dimensional
case, with an expected number of at most

43

20

vertex evaluations.

3.5 The 2-dimensional Case

The algorithm starts by choosing one of the four vertices uniformly at random. Depending on
whether the chosen vertexX is the sink (Case 1), a vertex with one incoming and one outgoing
edge (Case 2), or the source (Case 3), the algorithm will proceed differently. We will analyze
the performance separately for theeyeand thebowas input, cf. Figure 3.3.

Case 1. The chosen vertexX is the sink. This happens with probability1/4, and there’s
nothing left to do. Table 3.1 records that we need one vertex evaluation, regardless of whether
we have an eye or a bow.
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probability eye bow
Case 1 1/4 1 1
Case 2 1/2 2 5/2
Case 3 1/4
Strategy 1 2 3
Strategy 2 4 5/2

Table 3.1: Number of vertex evaluations in the different cases of the algorithm

Case 2. The chosen vertexX has one incoming and one outgoing edge. This happens with
probability 1/2. We follow the outgoing edge and evaluate its other vertexY . In case of an
eye,Y must be the sink. In case of a bow,Y is the sink with probability1/2, and if it is not the
sink, we evaluate its other neighborZ which then must be the sink, see Figure 3.8. For an eye,
we always need 2 evaluations in this case, for a bow, the expected number is(2 + 3)/2 = 5/2.

XX X

X

Y Y Y

Y

Zeye

eye bow

Figure 3.8: Case 2:X is a vertex with one incoming and one outgoing edge

Case 3. The chosen vertexX is the source. This case happens with probability1/4. We
consider two strategies.

Strategy 1. Evaluate the vertexW antipodal toX. In case of an eye,W is the sink, in case of
a bow,W is not the sink, but since we now know all edge orientations, we need just one more
evaluation to hit the sink. This strategy needs 2 evaluations for an eye and 3 for a bow.

Strategy 2. Choose one of the neighborsU,U ′ of X to be evaluated next, uniformly at ran-
dom. If the chosen neighbor is not the sink, evaluate the other neighbor. In case of an eye, none
of U,U ′ is the sink, so we need a fourth evaluation. In case of a bow, one of U,U ′ is the sink,
and we need(2 + 3)/2 = 5/2 evaluations on average to evaluate it, see Figure 3.9.

Going through Table 3.1, we see that if we are playing Strategy 1 in Case 3, the expected
number of vertex evaluations for an eye is

1

4
· 1 +

1

2
· 2 +

1

4
· 2 =

7

4
.
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X

X

U

U U ′

U ′

eye bow

Figure 3.9: Case 3:X is the source

eye bow
Strategy 1 7/4 9/4
Strategy 2 9/4 17/8

Table 3.2: Summary of algorithm’s performance

The other values can be extracted similarly and are summarized in Table 3.2.
Choosing Strategy 1 with probabilityλ and Strategy 2 with1 − λ, the expected number of

vertex evaluations is
7

4
λ +

9

4
(1 − λ) (3.7)

for the eye and
9

4
λ +

17

8
(1 − λ) (3.8)

for the bow. While (3.7) increases withλ, (3.8) decreases, which means that the maximum of
(3.7) and (3.8) (the worst-case performance of the algorithm) is minimized when the two terms
are equal. This happens forλ = 1/5, in which case both (3.7) and (3.8) evaluate to

43

20
.

Plugging this into the bound (3.6), and using the 2-dimensional algorithm developed above
as the basis for a product algorithm that matches this bound,we get an improvement over our
previously best1.5n bound.

Corollary 3.8 There is a randomized algorithm that evaluates the sink of any USO of then-
cube with an expected number of at most

O

(√

43

20

n)

= O(1.466n)

vertex evaluations.
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The concept of USOs has first been introduced by Stickney and Watson [13]; the product
structure and the product algorithm, as well as the optimal algorithm for d = 2 are due to
Szab́o and Welzl [14]. The reformulation of the smallest enclosing ball problem in terms of
USOs also appears in that paper, but it is already implicit inthe earlier paper by G̈artner and
Welzl [4]. The USO approach can be generalized to smallest enclosing balls ofballs in any
dimension, see Fischer and Gärtner [2].

Exercises

Exercise 3.1Recall Randomix’s strategy of finding the sink in Determinatus’s maze from Chap-
ter 1: at any given vertex, choose one of the outgoing edges atrandom and go to its other
vertex. Repeat until the sink is reached. What is the expected number of vertices visited by this
strategy, starting from the source4 of the cyclic USO of the 3-cube, see Figure 3.4? Can you
find a USO of the 3-cube where the strategy needs to visit more vertices on average?

Exercise 3.2Prove that anacyclicorientation ofCn, n ≥ 2, is a USO if and only if all sub-
graphs induced by 2-dimensional faces have unique sinks.

Exercise 3.3

(i) Given a USO ofCn, prove that reorienting all edges with a fixed labela gives rise to a
USO again.

(ii) Prove Lemma 3.5!

Exercise 3.4Prove that there exists adeterministicalgorithm for finding the sink of any USO
of then-cube with

O(
√

3
n
) ≈ 1.732n

vertex evaluations.

4and also counting the source as a visited vertex
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Chapter 4

Zero-Sum Games

In the previous chapter, we have seen an algorithm for findingthe sink of a 2-dimensional USO
with an expected number of43/20 vertex evaluations. Even though this certainly improves the
bound of (

3

2

)2

=
45

20

that we get from the product algorithm (page 38), the question remained open whether the
improved bound is best possible. This chapter introduces a technique for proving that this is
indeed the case. Even more, the technique allows us tocomputethe best possible algorithm:
even if we hadn’t been clever enough to come up with the algorithm in Section 3.5, we would
get it now.

The technique is based ongame theory, in particular the theory ofzero-sum games. Al-
ready in the introduction, we have described Randomix’s search for a fast strategy to escape
Determinatus’s maze as a game between the two, and we come back to this view here.

4.1 Basics

We have two players, thealgorithm player, and theadversary. The algorithm player has a set
of n algorithms at her disposal,

A = {A1, . . . , An},
while the adversary holds a set ofm inputs for the algorithms,

I = {I1, . . . , Im}.

We also call the elements ofA andI pure strategiesof the players.
Then, there is an(n × m)-matrixM such thatmij denotes the runtime of algorithmAi on

input Ij. M is the so-calledpayoff matrix. Assuming that the algorithm player has to pay the
adversary$1 for every unit of runtime,mij is the payoff the adversary receives (equivalently,
the amount the algorithm player has to pay—a zero-sum situation) whenAi is run onIj.

Definition 4.1
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(i) A mixedstrategy of a player is a probability distribution over his or her set of pure strate-
gies. We encode a mixed strategy of the algorithm player by ann-vector of probabilities

x = (x1, . . . , xn),
n∑

i=1

xi = 1, ∀i : xi ≥ 0

and a mixed strategy of the adversary by anm-vector of probabilities

y = (y1, . . . , ym),
m∑

j=1

yj = 1, ∀j : yj ≥ 0.

(ii) Every mixed strategyx of the algorithm player defines arandomized algorithmA(x):
choose algorithmAi with probabilityxi.

(iii) Every mixed strategyy of the adversary defines arandom inputI(y): choose inputIj

with probabilityyj.

Now we can describe the game and its goal: independently, thealgorithm player chooses
a randomized algorithmA(x), and the adversary chooses a random inputI(y). Given these
choices, the payoff is the expected runtime ofA(x) onI(y), which is

∑

i,j

mij prob(A(x) = Ai, I(y) = Ij)

=
∑

i,j

mij prob(A(x) = Ai) prob(I(y) = Ij) (independence of choice)

=
∑

i,j

mijxiyj

= xT My.

The algorithm player wants to minimize the expected runtime, while the adversary wants
to maximize it. More precisely, the algorithm player wants to choosex in such a way that

max
y

xT My,

the expected runtime ofA(x) on its worst random input, is as small as possible.
The adversary, on the other hand, attempts to find somey such that

min
x

xT My,

the expected runtime of the best randomized algorithm onI(y), is as large as possible.
Let us do a simple example to illustrate these concepts. The problem of finding the sink

in a USO ofC1 can be formulated as a game between the algorithm player and the adversary,
where both can choose between two mixed strategies.
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The algorithm player may first evaluate the vertex∅ (pure strategyA1), or the vertex{1}
(pure strategyA2). If the sink has been missed, the other vertex is evaluated.Obviously, the
algorithm player has other, stupid, strategies: she could evaluate the wrong vertex over and
over again. As it is clear that the best randomized algorithmwill choose such stupid strategies
with probability0, we can as well omit them from our considerations.

The adversary may provide the USO in which vertex∅ is the sink (pure strategyI1), or the
USO in which{1} is the sink (pure strategyI2). The resulting payoff matrix is

M =

(
1 2
2 1

)

.

Figure 4.1 depicts the situation.

A1

A2

I1 I2

1

12

2

Figure 4.1: The 1-dimensional USO game

A natural question is whether randomized algorithms of typeA(x) coverall possibleran-
domized algorithms for solving the problem at hand. If not, the bestA(x) we are computing is
not necessarily the best randomized algorithm for the problem.

In fact, there are natural randomized algorithms that do notarise from a probability dis-
tribution over a finite set of deterministic ones. For example, the next chapter will discuss a
randomized algorithm for finding the sink of a USO, which traverses a chain of adjacent ver-
tices until the sink is found; from each vertex, it follows arandomoutgoing edge to the next
vertex. If the USO has cycles, there is no upper bound on the runtime of this algorithm in the
worst case,1 and therefore the algorithm cannot be a combination of finitely many deterministic
algorithms.

In the setup we are trying to analyze here, there is only a finite number of possible de-
terministic algorithms for finding the sink of ann-cube USO, because every such algorithm is
uniquely characterized by a finite number of sequences with at most2n vertices each,2 sequence
j corresponding to the evaluation order on thej-th USO.

1here, the worst case is taken over the initial vertex and the random choices of the algorithm
2remember that we got rid of stupid strategies that reevaluate vertices
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Therefore, any conceivable randomized algorithmA will—when we run it on all USOs
simultaneously—specialize to one of these deterministic algorithms. If xi is the probability
that it specializes to algorithmi, we haveA = A(x).

4.2 Solving the Game

Finding the optimal mixed strategy for the adversary. Assume the algorithm player knows
the random inputI(y) chosen by the adversary. Here, knowing it means to know the adver-
sary’s probability distributiony. The best randomized algorithmA(x) on I(y) (the one with
smallest expected runtime which we also callbest responseagainsty) is given by any optimal
solutionx to thelinear program

(LPM,y) minimize xT My
subject to

∑n
i=1 xi = 1,

xi ≥ 0, i = 1, . . . , n

in the variablesx1, . . . , xn. In general, a linear program (LP) is the task of minimizing or max-
imizing a linearobjective functionin some number of variables, subject to linear (in)equalities
involving the variables. Linear programs can efficiently besolved, meaning that afeasible so-
lution (a tuple of values for the variables that satisfies all (in)equalities, if that is possible) can
be computed, for which the objective function reaches its best possible value among the set
of all feasible solutions. Such a solution is called anoptimal solution, and the corresponding
objective function value is theoptimal valueof the LP (also calledminimum valuefor min-
imization andmaximum valuefor maximization problems). There is accessible software for
solving LPs (the widely usedMaple program contains a linear programming solver, for ex-
ample). Linear programs are often written in vector and matrix notation: the above LP, for
example, can compactly be written as

(LPM,y) minimize cT x
subject to Ax = b,

x ≥ 0,

where
c = My ∈ R

n, A = (1, . . . , 1) ∈ R
1×n, b = 1 ∈ R

1,

and (in)equalities hold component-wise.
Let us denote the minimum valuexT My of (LPM,y) by fM(y). With this notion, the goal

of the adversary is to find an optimal solutiony to the problem

maximize fM(y)
subject to

∑m
j=1 yj = 1,

yj ≥ 0, j = 1, . . . ,m.

Let ΦM be the maximum value offM(y) in this optimization problem, which is unfor-
tunately no longer a linear program: the function to maximize is not linear, but is itself the
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Theorem 4.2 Consider the two linear programs

(LP) maximize cT x + dT y
subject to Ex + Fy ≤ a,

Gx + Hy = b,
x ≥ 0

in the variable vectorsx andy (and fixed vectors resp. matricesc, d, E, F,G,H of appropriate
sizes), and

(LP△) minimize aT w + bT z
subject to ET w + GT z ≥ c,

F T w + HT z = d,
w ≥ 0

in the variable vectorsw andz of appropriate sizes. (LP) and (LP△) are calleddual to each
other, and their optimal values are equal.

Proof. We only prove the easy direction here, namely that

cT x + dT y ≤ aT w + bT z

for all vectorsx, y, w, z which satisfy the (in)equalities of their respective programs. This
proves that the optimal value of (LP△) is an upper bound for the optimal value of (LP), and this
fact is known asweak LP duality.
Let x, y be any vectors satisfying the (in)equalities of (LP). Ifw ≥ 0 andz arbitrary, we can
multiply the inequalities of (LP) from the left withwT and the equalities from the left withzT .
Doing this, the (in)equalities are preserved, and adding them up, we conclude that

wT Ex + wT Fy + zT Gx + zT Hy ≤ wT a + zT b.

If w andz satisfy all (in)equalities of (LP△), we get (usingx ≥ 0) the desired inequality

cT x + dT y ≤ wT Ex + zT Gx
︸ ︷︷ ︸

≥cT x

+ wT Fy + zT Hy
︸ ︷︷ ︸

=dT y

≤ wT a + zT b.

Remark: In the above form, any maximization (minimization) problemhas all its inequalities
of type “≤” (“ ≥”), but this is of course not a restriction: any inequality inthe other direction
can be multiplied by−1 in order to arrive at a linear program in the form of (LP) or (LP△).

Table 4.1: A crash course on LP duality
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solution to a minimization problem. Luckily, there is a way out using linear programming
duality, see Table 4.1.

The duality theorem tells us thatfM(y) is also the maximum value of the linear program
dual to (LPM,y), which is the following LP in just one variableu:3

(LP△
M,y) maximize u

subject to Miy ≥ u, i = 1, . . . , n.

Here,Mi is thei-th row ofM .
Now, the adversary’s task of finding a mixed strategyy with the largest possible valueΦM

of fM(y) can be solved by simply lettingy vary over all possible choices in (LP△M,y). This leads
us to the linear program

(LPM ) maximize u
subject to Miy ≥ u, i = 1, . . . , n,

∑m
j=1 yj = 1,

yj ≥ 0, j = 1, . . . ,m,

whose maximum value isΦM . A mixed strategỹy that leads to this maximum value can be
read off the solution to this linear program and defines the optimal random input the adversary
is looking for. The valueΦM is the expected runtime of the best randomized algorithm forthis
particular random input.

Finding the optimal mixed strategy for the algorithm player. This is now completely sym-
metric. Given the distributionx of the algorithm player, the worst random inputI(y) for A(x)
(the best response of the adversary againstx) is any optimal solutiony to the LP

(LPx,M ) maximize xT My
subject to

∑m
j=1 yj = 1,

yj ≥ 0, j = 1, . . . ,m.

By the duality theorem, the maximum valuegM(x) of this LP coincides with the minimum
value of the dual LP in just one variablev:

(LP△
x,M ) minimize v

subject to
(
MT

)

j
x ≤ v, j = 1, . . . ,m.

Consequently, the task of the algorithm player, namely to choosex in such a way that
gM(x) achieves its minimum valueΨM , is solved by lettingx vary over all possible choices in
(LP△

x,M ), leading to the LP

(LP△
M ) minimize v

subject to
(
MT

)

j
x ≤ v, j = 1, . . . ,m,

∑n
i=1 xi = 1,

xi ≥ 0, i = 1, . . . , n,

(4.1)

3check that it is really the dual!
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whose minimum value isΨM . A mixed strategỹx that leads to this minimum value can be
read off the solution to the linear program and defines the optimal randomized algorithm the
algorithm player is looking for. The valueΨM is the expected runtime of this algorithm on its
worst random input.

The naming of the LP already anticipates the punchline, namely that the latter LP is the
dual (check this!) of the adversary’s (LPM )!

This implies the following

Theorem 4.3 Let ỹ be an optimal solution to(LPM ), ΦM its optimal value, and let̃x be an
optimal solution to(LP△

M ), ΨM its optimal value. Then

(i) ΦM = ΨM = fM(ỹ) = gM(x̃) = x̃T Mỹ, and

(ii) x̃ is a best response of the algorithm player againstỹ, and ỹ is a best response of the
adversary against̃x.

Proof. (i) ΦM = ΨM is LP duality. By definition,ΦM = fM(ỹ) andΨM = gM(x̃), so
fM(ỹ) = gM(x̃). BecausefM(ỹ) is the minimum value of (LPM,ỹ), while x̃T Mỹ is just some
value that may occur, we get

fM(ỹ) ≤ x̃T Mỹ.

Similarly, it follows that
gM(x̃) ≥ x̃T Mỹ,

so all values must be equal.
(ii) According to (i), x̃ is an optimal solution (and therefore a best response) to (LPM,ỹ),

andỹ is an optimal solution (and therefore a best response) to (LPx̃,M ).
The theorem allows us to establish two important notions.

Definition 4.4

(i) The valueΦM = ΨM is called thevalueof the zero-sum game defined by the payoff
matrix M . It equals the runtime of the randomized algorithm with the best expected
worst case performance (see Exercise 4.2 for an exact statement of what this means).

(ii) An equilibriumof the game is any pair of mixed strategies(x̃, ỹ) that are best responses
with respect to each other.

We have shown that a zero-sum game always has an equilibrium(x̃, ỹ). The pair has the
interesting property that even if the playersknoweach others equilibrium strategies, none of
them can profit by changing its own mixed strategy. One can saythat in an equilibrium, both
players win, because both perform as well as they possibly can.

As a small example, let us solve the game for the 1-dimensional USO of Figure 4.1 by the
above techniques. Recall that

M =

(
1 2
2 1

)
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in this case, so the program (LPM ) reads as

(LPM ) maximize u
subject to y1 + 2y2 ≥ u,

2y1 + y2 ≥ u,
y1 + y2 = 1,

y1, y2 ≥ 0.

We expect the maximum value ofu (the value of the game) to bẽt(1) = 3/2, see Obser-
vation 3.3. Indeed, ify1 = y2 = 1/2 andu = 3/2, we get a feasible solution to the LP, so the
maximum value is at least3/2. On the other hand, adding up the first two inequalities of the
LP, we obtain

2u ≤ 3y1 + 3y2 = 3

for all feasible solutions, because of the equality constraint. Therefore,3/2 is also an upper
bound on the value of the game, so3/2 is the game value. The corresponding optimal values
ỹ1 = ỹ2 = 1/2 define the best mixed strategy of the adversary: choose between the two USOs
of the 1-cube uniformly at random.

In this easy case, the dual linear program (LP△
M ) for finding the optimal mixed strategy for

the algorithm player looks completely similar (still, I encourage the reader to write it down) and
gives rise to the optimal solutioñx1 = x̃2 = 1/2: choose the first vertex to evaluate uniformly
at random between the two vertices.

4.3 Game Trees

We have not developed the machinery in order to deal with the toy problem of the 1-cube, but
to find the value of the game in the 2-dimensional case (more precisely, to certify that the upper
bound of43/20 we have found in the previous chapter is actually the game value). In principle,
we can do this now as we did it in the 1-dimensional case in Figure 4.1: write down all possible
pure strategies of the algorithm player and evaluate their performance on all possible 12 USOs
(the pure strategies of the adversary); this gives the payoff matrix M which is all we need to
write down (LPM ). Then feed this linear program to any LP solver and read off the game value.

The only problem is that the number of pure strategies the algorithm player has at her
disposal is already quite large (we’ll see why), so the LP would be quite large as well. Conse-
quently, the LP solver would be slow, or not even able to process the problem. The approach
we discuss in this section leads to a much smaller linear program which even the solver of the
Maplesystem4 can handle in just a few seconds.

First, let us understand why we have an explosion in the number of pure strategies. Adapt-
ing the approach of Figure 4.1, a pure strategy can be writtenas a tree: the root specifies the
first vertex to evaluate, and its children correspond to the possible answers of the adversary.
For every such answer not corresponding to the sink, the strategy specifies the second vertex to
evaluate, and so on, see Figure 4.2.

4The very general and versatileMaplesystem is a popular tool, but not primarily because of its speed.
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Figure 4.2: Specifying a pure strategy of the algorithm player

Already for the second vertex to evaluate, there are three possible choices5 for every answer
of the adversary (nodes at depth 1), if the sink has not been evaluated so far. This already gives
rise to3 ·3 ·3 = 27 possible combinations, and any such combination splits up into much more
combinations further down the tree.

You can argue that this way of encoding pure strategies is notvery efficient, because the
already quite large structure of Figure 4.2 is repeated forall strategies that agree with the
depicted one in the first two vertex evaluations. It should bepossible for these strategies to
share the encoding of the first two evaluations.

Indeed, we can encode all possible ways in which the game can be played in just onegame
tree, where every path down the tree corresponds to an alternating move sequenceof moves by
the algorithm player and moves by the adversary.

In this formulation, we have to be careful not to let the adversary become too powerful.
Recall from the Introduction (Section 1.3) that we are assuming the adversary to beoblivious,
i.e., the adversary must choose his input—and stick to it—beforethe algorithm player asks her
first question. In the game tree approach, we can model this byletting the adversary make the
first move. However, it is ahiddenmove unknown to the algorithm player. Only through vertex
evaluations, the algorithm player obtains information about the hidden move.

A part of the resulting game tree is depicted in Figure 4.3. Note that after the hidden
move, the adversary always has justonepossible move, because his answer is determined by
the choice of the USO in the hidden move. The nodes in which it’s the algorithm player’s
turn are partitioned intoinformation sets: such a set collects all nodes corresponding to the
same sequence of questions and answers so far. At every node of a fixed information set, the
algorithm player has the same knowledge.

At depth 1, all nodes are in the same information set, but later, information sets split up be-
cause the algorithm player gets additional knowledge aboutthe adversary’s first hidden move.

How can we encode a pure strategy of the algorithm player in the game tree? We must
specify at each information set the next vertex to be evaluated. In this way, the next move takes

5again, we do not consider strategies that reevaluate vertices
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Figure 4.3: Game tree for the 2-dimensional USO game; the part of the information set at level
1 that is shown subdivides into four information sets containing a single node each, and one
information set with two nodes.

into account exactly the information the algorithm player has obtained so far. For information
sets that are not reachable due to earlier choices, no move must be specified, of course.

The selected move is applied atall nodes of the information set. In Figure 4.3, the bold
edges belong to a possible pure strategy.

Even here, the number of pure strategies can in general (for example, in then-dimensional
USO game) be exponential in the size of the game tree; we can see this in Figure 4.3. At depth
3 of the tree, there are twoparallel information sets that are reached through an earlier move,
and at each of them, we can independently choose between three moves, leading again to a
multiplication of the number of possibilities.

4.4 The Sequence Form

Here comes the statement that finally saves us: we can deal with mixedstrategies (and this is
what we want in the end), without ever looking at pure strategies! Instead, we assign probabil-
ities tomove sequences.
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Theorem 4.5 Every mixed strategy of the algorithm player can be obtainedby specifying for
each information setS and each possible movee in S the probabilitypS,e that e is played by
the algorithm player, equivalently that the completemove sequenceending ine is played.

We will not prove this here, but the statement is quite intuitive: instead of deterministi-
cally fixing how we leave an entered information set (pure strategy), we now “distribute” the
probability of entering the information set further among the successor moves.

The randomized algorithm resulting from a mixed strategy specified according to Theorem
4.5 is quite natural: whenever the game reaches a node in an information setS with k possible
movese1, . . . , ek, selecte ∈ {e1, . . . , ek} with probability

pS,e
∑k

ℓ=1 pS,eℓ

.

The sum in the denominator must be nonzero, because it equalsthe probability of reachingS
in the first place.

The number of probabilities we have to specify is bounded by the number of edges in the
game tree, which islinear in the size of the game tree. To encode a mixed strategy in the
“traditional” way, we would have to assign a probability to each of theexponentiallymany
pure strategies.

As before, in every node of the same information set, we must distribute the “incoming”
probability in the same way, as several edges correspond to the same move. Figure 4.4 shows
a part of a mixed strategy in which the probability isx3 that the upper left vertex is evaluated
first; if the outmap pattern is

◭

H

(which is the case for the two USOs depicted in the figure), theprobability x3 is distributed
further among the three possible next moves. On the other hand, if we evaluate the lower
right vertex first (with probabilityx2), we may see different outmaps, and in the corresponding
parallel information sets,x2 is split independently.

It is important to understand that the algorithm player plays severalmove sequences, and
not just one, so the probabilities we assign will not form a probability distribution. Most
obviously, if a sequence is played, every prefix of it is played as well. But the actual reason
are parallel information sets: inanyof them, a move will be selected according to the assigned
probabilities, although in the actual game, the adversary’s answers will only “activate” one of
these moves.

4.5 Solving the Game in Sequence Form

The idea is to generalize the LP approach, and we illustrate all steps using the concrete example
of the 1-dimensional USO game. Figure 4.5 shows the completegame tree for this case, along
with variables for the move probabilities of both players. We also introduce ‘names’ for the
moves which are more intuitive than just the variables.

53



•

• •

•

• •

• •

• •

•

• •

••

• •

•

• •

◭
H

◭
H

◭

H

◭

H

◭

H
◭

N

◭

N

◭

H

◭

H

◭

H

◭

N1 = x1 + x2 + x3 + x4
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Figure 4.4: Specifying a mixed strategy by assigning probabilities to moves

The game is defined by the joint behavior of all move sequencesof the algorithm player on
all USOs of the adversary. This allows us to set up a payoff matrix M , whose entrymij is the
number of vertex evaluations of the algorithm player’si-th move sequence on the adversary’s
j-th USO. It may happen that such a pair does not correspond to alegal way of playing the
game, or that it corresponds to an incomplete game. For example, the move sequenceLR is
impossible on the USO1, and the move sequenceL is incomplete on the USO2. In both cases,
the corresponding entry ofM is 0.

In Figure 4.5, the adversary has the USOs1 and2 at his disposal, associated with variables
y1, y2, while the algorithm player has move sequences

L,R, LR,RL,

with variablesx1, . . . , x4. This yields the payoff matrix
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Figure 4.5: Tree for the 1-dimensional USO game with move probabilities and labels

M =

1 2
↓ ↓







1 0
0 1
0 2
2 0







← L
← R
← LR
← RL

. (4.2)

Observation 4.6 If xi is the algorithm player’s probability of playing thei-th sequence, and
yj is the adversary’s probability of choosing thej-th USO, the expected number of vertex
evaluations is

xT My,

wherex = (xi), y = (yj) are the vectors collecting thexi andyj, respectively.

Recall thatx is not a probability distribution, because the algorithm player plays several
move sequences simultaneously, where the one that actuallyshows up in the game depends on
the adversary’s answers.

Still, the observation can be proved as before: the contribution of the pair(i, j) to the
expected runtime isxiyjmij, becausex andy are chosen independently. This also holds if
mij = 0: an incomplete sequence does not contribute anything, because the runtime will
be counted for the complete supersequences. Also, an illegal sequence does not contribute,
because it does not get activated during the game. In other words, (i, j) contributes to the
runtime if and only if the game reaches a leaf of the game tree when move sequencei is
applied to USOj.

As before, we are concerned with computing optimal values for the probabilitiesxi and
yj. Assuming, the algorithm player knows the distributiony chosen by the adversary, her best
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response is again given by the solution to a linear program

(LPM,y) minimize xT My
subject to Ex = e,

x ≥ 0,

whose optimal value we denote byfM(y). The constraint setEx = e contains one constraint
for every information set, specifying that the probabilityof entering it must be equal to the
probability of leaving it. In Figure 4.4, we see the constraints for four of the information sets.
In the 1-dimensional case of Figure 4.5, the constraints are

x1 + x2 = 1,

x1 = x3,

x2 = x4,

so we have

E =





1 1 0 0
1 0 −1 0
0 1 0 −1



 , e =





1
0
0



 .

The dual of (LPM,y) is the linear program

(LP△
M,y) maximize eT u

subject to ET u ≤ My

in the variable vectoru, and its optimal value isfM(y) as well. Thus, the adversary maximizes
fM(y) by solving the linear program

(LPM ) maximize eT u
subject to ET u ≤ My

∑m
j=1 yj = 1,

yj ≥ 0, j = 1, . . . ,m,

(4.3)

whose optimal value isΦM .
On the other hand, givenx, the best response of the adversary is obtained by solving

(LPx,M ) maximize xT My
subject to

∑m
j=1 yj = 1,

yj ≥ 0, j = 1, . . . ,m,

whose dual is
(LP△

x,M ) minimize v

subject to
(
MT

)

j
x ≤ v, j = 1, . . . ,m,

and both programs have optimal valuegM(x). Therefore, the algorithm player minimizes
gM(x) by solving
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(LP△
M ) minimize v

subject to
(
MT

)

j
x ≤ v, j = 1, . . . ,m,

Ex = e,
x ≥ 0,

(4.4)

and the resulting optimal value isΨM . As before,ΦM = ΨM (and this is thevalueof the
game), because (4.3) and (4.4) are dual to each other.

Writing down (LP△M ) for the 1-dimensional USO game yields the problem

minimize v
subject to x1 + 2x4 ≤ v

x2 + 2x3 ≤ v
x1 + x2 = 1,
x1 = x3,
x2 = x4,
x ≥ 0.

Settingxi = 1/2 for all i andv = 3/2 leads to a feasible solution, so the game value is at
most3/2. On the other hand, adding up the first two inequalities, and using the three equality
constraints, we get that

2v ≥ x1 + x2 + 2x3 + 2x4 = 3x1 + 3x2 = 3,

sov ≥ 3/2. It follows that3/2 is the game value, andx1 = x2 = x3 = x4 = 1/2 describes
the optimal mixed strategy of the algorithm player. By now, this result does not come as a real
surprise anymore.

What about the 2-dimensional case? The game tree is larger, ofcourse, but not of over-
whelming size: it consists of twelve subtrees which are symmetric copies of the tree in Figure
4.6, one subtree for each USO ofC2. Various information sets connect nodes across subtrees.
I have generated the resulting linear program (LP△

M ) by computer. It has226 variables

v, x1, . . . x225,

and in addition to the nonnegativity constraintsx ≥ 0, it has

12 inequalities, one for every USO ofC2,

and
142 equalities, one for every information set.

The LP solver ofMaple needs less than 20 seconds to solve this on my computer. The
resulting optimal mixed strategy is depicted in Figures 4.6and 4.7 that represent two of the
twelve subtrees of the complete tree, one for a particulareye, and one for a particularbow.
The probability values in all other ten subtrees, for the other eyes and bows, are completely
symmetric, so the mixed strategy is already defined by its behavior onsomeeye andsomebow.
And indeed, the value of the game (the value of the variablev in the solution) is43/20.
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Figure 4.6: The optimal mixed strategy, applied to an eye

Looking at the values (whenever an edge has no value attachedto it, the value is0), you
may wonder whether the resulting algorithm is actually the algorithm we have developed in
the previous section. A priori, this is not clear, because there may be several algorithms with
an expected worst-case performance of43/20. Here, the LP solver has in fact delivered our
known algorithm. Without going through the details, you canrecognize some characteristics
of it: for example, the first vertex to be evaluated is chosen uniformly at random; also, in case
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Figure 4.7: The optimal mixed strategy, applied to a bow

of an eye, we may need 4 evaluations, while a bow is always solved with at most 3 evaluations.

4.6 Yao’s Theorem

With the machinery we have developed so far, we can now proveYao’s Theorem, a powerful
tool to establish lower bounds for the expected worst-case performance of the best randomized
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algorithm.
As in the beginning of this chapter, we consider the setup in which the algorithm player

chooses a randomized algorithmA(x) defined by a probability distributionx over a finite set
of deterministic algorithms, while the adversary chooses arandom inputI(y) defined by a
probability distributiony over a finite set of inputs. WithM being the matrix collecting the
runtimes of all algorithms on all inputs,

xT My

is the expected runtime ofA(x) onI(y).
Using the linear programming approach, we have derived the equality

max
y

min
x

xT My =: ΦM = ΨM := min
x

max
y

xT My, (4.5)

wherex andy range over all probability distributions.
An interesting observation is that, for fixedy, we have

fM(y) := min
x

xT My = min
i

eT
i My, (4.6)

and for fixedx,
gM(x) := max

y
xT My = max

j
xT Mej (4.7)

holds, whereek is thek-th unit vector. The (perhaps surprising) interpretation is that the best
response to a fixed strategy can always be chosen as a pure strategy. In other words, when a
player knows the other player’s strategy, there is no need torandomize anymore. (4.6) follows
from

xT My =
∑

i

xie
T
i My,

so at least one valueeT
i My in the right-hand side sum is at most as large asxT My. But then

the smallest possible value ofxT My over allx (which includes theei) must agree with some
eT

i My. The argument for (4.7) is the same.
For any pair(x, y), equations (4.5), (4.6) and (4.7) yield

min
i

eT
i My = fM(y) ≤ max

y′

fM(y′) = ΦM = ΨM ≤ min
x′

gM(x′) ≤ gM(x) = max
j

xT Mej.

Now let x̃ be the optimal mixed strategy for the algorithm player. Thenthe previous inequality
givesYao’s Theorem.

Theorem 4.7 For any mixed strategyy of the adversary,

min
i

eT
i My ≤ max

j
x̃T Mej.

In other words, the expected runtime of thebestdeterministic algorithm on the random input
I(y) is a lower bound for the expected worst-case runtime of thebestrandomized algorithm
A(x).

Thus, in order to prove a lower boundL for the expected worst-case runtime of any random-
ized algorithm, you choose a suitable distributiony and prove that no deterministic algorithm
can be faster thanL in expectation, on the random inputI(y). The art here is to find a distri-
butiony that leads to a good lower boundL. Exercise 4.4 asks you to do this for the game of
Randomix vs. Determinatus.
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Exercises

Exercise 4.1Given the payoff matrix

M =

(
a b
c d

)

with a, b, c, d ∈ R, what are the equilibria(x̃, ỹ)? In which case is there more than one
equilibrium?

Exercise 4.2Let x̃ be the optimal mixed strategy computed by the linear program(4.1) on
page 48. Prove that

(i) for anyrandomized algorithmA(x) overA, there exists an inputI fromI such that the
expected runtime ofA(x) on I is at leastΦ.

(ii) The expected runtime ofA(x̃) is at mostΦ for any input I fromI.

This means, the algorithmA(x̃) is the best randomized algorithm in the worst case.

Exercise 4.3The following question has become famous as theMonty Hall Problem, and even
mathematicians have argued in favor of the wrong answer:

Suppose you’re on a game show, and you’re given the choice of three doors:
Behind one door is a car; behind the others, goats. You pick a door, say No. 1, and
the host, who knows what’s behind the other doors, opens anotherdoor, say No. 3,
which has a goat. He then says to you, ’Do you want to pick door No. 2?’ Is it to
your advantage to take the switch?

Model this process as a zero-sum game between you and the game show host. Your goal
is to maximize your expected payoff (which we may assume to be 1 if you win the car, and 0
otherwise). The game starts with a hidden move by the host who assigns car and goats to the
three doors. Then it’s your turn to pick a door, followed by thehost opening a non-winning
door. In the last move of the game, you choose between stickingto your initial choice, or
switching to the other closed door.

What is the value of this game? What is your best strategy?

Exercise 4.4Use Yao’s Theorem to prove that Randomix’s strategy of finding the sink in De-
terminatus’s maze (Chapter 1) is the best possible randomized algorithm. If the case of general
n seems to difficult, try to attack the casen = 3 explicitly.
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Chapter 5

Random Walks

The theory of random walks is a quite powerful tool in developing and analyzing randomized
algorithms. Basically, a random walk “jumps around” on a fixedstate space, according to
certain transition probabilities between states. For example, Randomix’s strategy for escaping
Determinatus’s maze is a random walk on a state space whose elements are the vertices of a
complete graph.

There are two important types of questions in connection with random walks. Questions
of the first type ask for the expected number of steps until thewalk reaches some prespecified
state or set of states. In the second type of questions, we want to know whether we will end
up in an approximately random state, given that we perform sufficiently many steps; moreover,
we would like to have a bound on the number of steps this takes.

In this chapter, we address both types of questions; we first illustrate them using two easy
warm-up examples, and then answer questions of actual interest for unique sink orientations.

5.1 Two Warm-Ups

The casino walk. Suppose you enter a casino with$k on your hands,k ≥ 0, and you play
roulette (always betting$1 on red), until you either have lost all your money, or you have$N
on your hands, for some prespecifiedN ≥ k. Assuming that in every round, the probabilities
of winning or loosing$1 are1/2 each, what is the expected number of rounds you will play?
We note that this question is relevant even outside of the casino, because it appears for example
in connection with randomized algorithms for boolean satisfiability, or perfect matchings in
regular bipartite graphs.

You might also want to know what the probability of ending up with $N is, or what happens
in the realistic case where the winning probability is less than1/2, because the bank always
wins if zero comes up. This is covered by Exercise 5.1.

The above process can be modeled as a random walk on the state space{0, . . . , N}, where
0 andN areabsorbing, meaning that the walk ends when one of them is reached. For each
i ∈ {1, . . . , N − 1}, the probabilities of going toi − 1 or i + 1 in the next step are1/2 each.
We refer to this as thecasino walk, see Figure 5.1.

Fact 5.1 For i ∈ {0, . . . , N}, let Ei denote the expected number of steps in the casino walk,
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Figure 5.1: The casino walk

starting fromi. Then we have
E0 = EN = 0,

and

Ei = 1 +
1

2
Ei−1 +

1

2
Ei+1, 0 < i < N. (5.1)

We want to develop an explicit formula forEi. The difficulty is that even if we guess the
right formula, it cannot be verified by induction, because the value fori depends on values for
smallerand larger indices. Instead, we use the following

Trick 5.2 Let
bi := Ei − Ei−1 + 2i, 0 < i ≤ N.

Thenbi = bi−1 holds for1 < i ≤ N . In particular, bi = b1 for 0 < i ≤ N .

Proof. We compute
bi − bi−1 = Ei − 2Ei−1 + Ei−2 + 2 = 0,

where the latter equality is just twice the defining equation(5.1) forEi−1.
UsingE0 = 0 andb1 = E1 + 2, we conclude that

Ei = b1 − 2i + Ei−1

= ib1 − 2
i∑

j=1

j + E0

= i(E1 + 2) − i(i + 1)

= i(E1 − (i − 1)), (5.2)

for 0 < i ≤ N (incidentally, the formula also holds fori = 0). Now what isE1? Using (5.2)
for i = N yields

0 = EN = N(E1 − (N − 1)),

soE1 = N − 1, and plugging this back into (5.2), we get the following result.

Theorem 5.3 The expected numberEk of steps in the casino walk, starting fromk, satisfies

Ek = k(N − k).

For example, if you enter the casino with$100, and you are waiting to get$200, it takes
an expected number of10, 000 bets until you can go home with nothing or$200. Even if the
croupier is fast and handles one round of roulette in 30 seconds, you will spend something like
83 hours in the casino.
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The provider walk. Suppose that initially, you are a customer of Swisscom mobile, but then
you need a new mobile phone. Because providers give out free phones only to new customers,
you decide to change the provider; in your everlasting questfor the latest technology, you keep
on switching providers every other year.

Because you don’t care which provider you end up with, as long as you get a free phone,
you switch from your current provider to any of the two others(initially, to Orange or Sunrise),
with equal probability1/2. What is the expected number of provider changes it takes to bea
customer of a more or less random provider?

As before, the process can be modeled as a random walk, this time on a triangle. From any
vertex of the triangle, you go to each of the two other ones with probability1/2 in the next
step. We refer to this as theprovider walk, see Figure 5.2.

Swisscom Orange

Sunrise

1
2

1
2

1
2 1

2

1
2

1
2

Figure 5.2: The provider walk

Fact 5.4 For i ≥ 0 andA ∈ {Swisscom, Orange, Sunrise}, let pi,A denote the probability of
being customer of providerA after i provider changes. Then we have

p0,Swisscom = 1, p0,Orange = p0,Sunrise = 0,

and

pi,Swisscom =
1

2
pi−1,Orange +

1

2
pi−1,Sunrise,

pi,Orange =
1

2
pi−1,Swisscom +

1

2
pi−1,Sunrise,

pi,Sunrise =
1

2
pi−1,Swisscom +

1

2
pi−1,Orange,

for i > 0.

Unlike in the casino walk, the following explicit formulae can easily by verified by induc-
tion (we don’t do this here).
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Theorem 5.5 For i ≥ 0,

pi,Swisscom =
1 − (−1/2)i−1

3
and

pi,Orange = pi,Sunrise =
1 − (−1/2)i

3
.

Let’s check this for small values. Ifi = 0, the theorem indeed yields the boundary condi-
tions of Fact 5.4, and fori = 1, it shows

(p1,Swisscom, p1,Orange, p1,Sunrise) = (0,
1

2
,
1

2
),

which is what we expect.
The theorem also tells us that all probabilities tend to1/3 for i → ∞. Already fori = 10,

we have
(p10,Swisscom, p10,Orange, p10,Sunrise) ≈ (0.33398, 0.33301, 0.33301),

which is a pretty good approximation of the uniform distribution. We will never reach the
uniform distribution, though: according to Theorem 5.5, the fact that you have started out as a
customer of Swisscom will never be “forgotten”.

5.2 TheRandomEdge Algorithm

Trying to mimick Randomix’s strategy for finding the exit of Determinatus’s maze, we arrive at
the following strategy for finding the sink of any given USO: from some initial vertex, proceed
along arandomoutgoing edge to an adjacent vertex. Repeat this process until the sink is hit.
In fact, the behavior of this strategy on the cyclic USO ofC3 was the subject of Exercise 3.1.
Here is the algorithm, written down formally.

Algorithm 5.6
RandomEdges(X)

(* s outmap of a USO,X some initial vertex *)
WHILE s(X) 6= ∅ DO

choosei ∈ s(X) uniformly at random
X := X ⊕ {i}

END
RETURN X

We are interested in the expected number of vertex evaluations performed by this algorithm
in the worst case. An obvious question is whether this expectation exists at all. If the USO has
cycles, it is not even clear that the sink is reachable from the initial vertexX, in which case the
algorithm would not terminate.1 The following lemma shows that such pathological situations
cannot occur.

1if the orientation is acyclic,RandomEdge can visit no vertex twice and therefore eventually reaches the
unique sink.
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Lemma 5.7 LetO be a USO ofCn, X the unique sink andY some other vertex. Then there is
a directed path inO fromY to X, of length|X ⊕ Y |.

The proof is Exercise 5.2. Let us remark that no path fromY to X can be shorter: in order
to get fromY to X, we must traverse at least one edge in directioni, for all i ∈ X ⊕ Y . The
lemma can be used to show thatRandomEdge has finite expected runtime. This in particular
implies that the algorithm terminates almost surely (with probability one).

Corollary 5.8 For any outmaps of an n-cube USO and any initial vertexX, the expected
number of vertex evaluations performed byRandomEdges(X) is at most

(n + 1)nn.

Proof. We subdivide the random walk intophases: a phase ends aftern+1 vertex evaluations,
or if the sink has been reached. Thus, all phases but the last consist of exactlyn + 1 vertex
evaluations. We aim to show that the expected number of phases is at mostnn which implies
the result.

For this, letpi be the conditional probability that the sink is reached in phasei (equivalently,
that phasei is the last phase), given that there are at leasti phases. We claim that

pi ≥
1

nn
.

This holds, because there is a directed path of length at mostn from the first vertex of phasei
to the sink, and this path is selected by the algorithm with probability at least1/nn. The reader
familiar with Bernoulli experiments knows that this proves the expected number of phases to
be at mostnn, but let’s derive this explicitly.

Let P be the random variable for the number of phases. We have just shown that

prob(P ≥ i + 1) = prob(P ≥ i + 1|P ≥ i) prob(P ≥ i)

= (1 − pi) prob(P ≥ i)

≤
(

1 − 1

nn

)

prob(P ≥ i), i ≥ 1,

which—usingprob(P ≥ 1) = 1—implies

prob(P ≥ i) ≤
(

1 − 1

nn

)i−1

, i ≥ 1.
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Now we get

E(P ) =
∞∑

i=1

i prob(P = i)

=
∞∑

i=1

i (prob(P ≥ i) − prob(P ≥ i + 1))

=
∞∑

i=1

i prob(P ≥ i) −
∞∑

i=2

(i − 1) prob(P ≥ i)

=
∞∑

i=1

prob(P ≥ i)

≤
∞∑

i=0

(

1 − 1

nn

)i

= nn.

Having this upper bound on the expected number of vertex evaluations in Algorithm 5.6,
we can think about better bounds. The hope is that(n+1)nn is a gross overestimate; for acyclic
USOs, it obviously is, because no more than2n vertex evaluations are possible in this case. But
even in the general case, it is not completely implausible that a bound which ispolynomialin
n might hold. After all, Randomix managed to escape a maze withn chambers inO(log n)
steps, so why shouldn’t the same method find the sink among2n vertices inpoly(n) time?

Unfortunately, the situation is not as nice: below, we show that for every odd value ofn,
there exists a (highly cyclic) USOO of Cn for which Algorithm 5.6 needs more than

(n − 1)

2
!

steps on average, foreveryinitial vertexX distinct from the sink.

5.2.1 Morris’s USO

Let n ≥ 1 be an odd integer. Morris’s USOOn onCn generalizes the cyclic USO onC3 that we
have already seen several times. In order to describe the general construction in a convenient
way, we change our encoding of vertices and outmap values. Figure 5.3 shows how this works.

With every vertexX ⊆ N = {1, . . . , n}, we associate a bitvector of lengthn, whosei-th
entry is1 if i ∈ X, and0 otherwise. With every outmap values(X) ⊆ N , we associate a sign
vector whosei-th entry is+ if i ∈ s(X), and− otherwise. For a fixed USO, we can identify
the vertices with the resulting bit/sign patterns.

In this view, the sink of the USO in Figure 5.3 is the vertex

0 0 0
− − − ,
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0 0 0
− − −

1 0 0
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0 1 0
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0 0 1
+ − +

1 1 0
+ − −

X : {1, 3}
s(X) : {3} ≈ 1 0 1

− − +

0 1 1
− + −

1 1 1
+ + +

Figure 5.3: Encoding vertices with bit/sign patterns

while the source is
1 1 1
+ + +

.

In order to specifyOn, we need a rule how to obtain the sign vector corresponding toa
given bit vector. If the bit vector is(0, . . . , 0), the sign vector will be(−, . . . ,−). In our “old”
setting, this means that the vertex∅ is always the sink.

In any other case, the bit vector has a1 in some positioni, and we use a rule driven by afinite
automatonto fill in the signs, starting from positioni− 1, and proceeding to the left. When we
cannot go left anymore, we “wrap around” and continue with the rightmost position, until all
signs are determined. Due to the wrap-around, there is a cycle symmetry in the construction:
whenever some vertex (which for us is now a bit/sign pattern)appears, any cyclic shift of it
appears as well. This can already be checked forn = 3 in Figure 5.3. Figure 5.4 explains the
actual construction ofOn, with an example forn = 5.

It is not clear yet that the construction determines a USO; sofar, the signs just correspond
to some mappings : 2N → 2N , but we don’t know whether it is the outmap of a USO. The
following is the key lemma.

Lemma 5.9 Letn ≥ 1 be odd and consider a partial bit/sign pattern witheithera bit or a sign
at any of itsn positions, e.g.

0 1
+ − −
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(a)
0 0 0 0 0 → 0 0 0 0 0

− − − − −

(b)
0 0 1 1 0

? ∗ → 0 0 1 1 0
? +

→ 0 0 1 1 0
? − +

→ 0 0 1 1 0
+ − + ?

→ 0 0 1 1 0
+ − + ? − → 0 0 1 1 0

+ − + − −

1

1 1

1 1

+

+

00 0

0

−

−
M

Figure 5.4: Construction ofOn: (a) if the bit vector is the zero vector, then all signs are
negative. (b) if at least one bit is1, we proceed as follows: given the bit/sign combination at
positioni, the bit at positioni− 1 (modulo wrap-around) determines the sign at positioni− 1,
via the finite automatonM . Any combination(1, ∗) lets us get started, becauseM has the same
behavior in its two states(1, +) and(1,−), indicated by asuperstatethat covers both. The last
step of the construction finally determines the sign below the1 we started with. The result does
not depend on the1 we started with: to the left of any1-entry (due to wrap-around, this means
everywhere), the signs are uniquely determined byM .

in the casen = 5. Then there is auniquecompletion to a full pattern, such that the signs are
determined by the bits according to the rules of Figure 5.4.

Proof. Staring at the automatonM for a while, one realizes that it can also be used to deter-
mine thebit at positioni − 1, given thesign. For example, if the pattern at positioni is (1, +),
and the sign at positioni − 1 is −, the corresponding bit must be0, because the value1 would
enforce a+. Going through all cases reveals a beautiful symmetry: interchanging1 with +
and0 with − in M yields the automaton for determining the bits. We can even merge the
two automata into one which can be used to deduce the missing information at positioni − 1,
regardless of whether it is a bit or a sign. Using this automaton, we can uniquely complete all
partial patterns containing a1 or a+ as an “anchor” for the completion.

Figure 5.5 depicts the surprisingly simple automatonM ′ resulting from the merger, along
with a completion sequence for the example pattern of the lemma.

It remains to show that any partial pattern containing only entries0 and− can only be
completed to the sink, meaning thatall bits are 0 andall signs are−.
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+ − − +
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+ − − +
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+ ? − − +
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+ − − − +
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1

+

+

0

0
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1, + 0,−

1,−

0, +
M ′

Figure 5.5: Completing a partial bit/sign pattern using automatonM ′

For this, consider any other completion and assume it would be obtainable through the
original automatonM , equivalently through the automatonM ′ in Figure 5.5. Because there is
either a0 ar a− at each position,M ′ would have to switch between the superstate and the state
(0,−), for every step it proceeds to the left. This, however, is impossible ifn is odd.

Corollary 5.10 Letn ≥ 1 be odd. ThenOn is a USO.

The proof is left as Exercise 5.3.

5.2.2 RandomEdge on Morris’s USO

We fix some oddn and some initial vertexX of On at level 1; this is defined as a vertex with
exactly one(1, +)-combination. For example, all vertices adjacent to the sink (the ones with
exactly one bit of value 1) are level-1-vertices, as you can easily derive from the automatonM .
In the cyclic orientation ofC3 (see Figure 5.3), level 1 consists of all the vertices on the cycle.

In order to understand the behavior ofRandomEdge onOn, we need to understand how
the bit/sign pattern changes when we go fromX to X ⊕ {i} during the algorithm. For the bit
pattern, this is easy: we just flip the bit at positioni. As far as the signs are concerned, we
know thatX has a+ at positioni (corresponding toi ∈ s(X), while X ⊕{i} has a− (an easy
consequence of the USO property). There are two cases.

Case 1. i /∈ X. Then the situation is as in Figure 5.6.
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X X ⊕ {i}

· · · 0 · · ·
· · · + · · ·

· · · 1 · · ·
? − ?

↑ ↑
i i

Figure 5.6:i 6∈ X

Because(0, +) and(1,−) are in the same superstate of automatonM ′ in Figure 5.5, there
are no changes in signs at positions other thani. Moreover, since we have not changed the
number of(1, +)-combinations, the new vertexX ⊕ {i} is again at level 1.

Observation 5.11 In case 1, the step fromX to X⊕{i} leads from a level-1 vertex to a level-1
vertex and reduces the number of plus-signs in the pattern byone.

Case 2. i ∈ X. Here, the situation is that of Figure 5.7.

X X ⊕ {i}

· · · 1 · · ·
· · · + · · ·

· · · 0 · · ·
? − ?

↑ ↑
i i

Figure 5.7:i ∈ X

There are two subcases. IfX is adjacent to the sink,X ⊕ {i} is the sink, and the random
walk terminates. By Exercise 5.4, this subcase occurs if and only if the number of plus-signs
in X is exactly(n + 1)/2.

Otherwise,X ’s pattern contains at least a second1-bit, which must have a− below it
becauseX is at level 1. Let us consider the1-bit closest to positioni on the left. The situation
is depicted in Figure 5.8.

X X ⊕ {i}

· · · 1 0 · · · 0 1 · · ·
· · · − · · · + · · ·

· · · 1 0 · · · 0 0 · · ·
· · · ? ? · · ·? − · · ·

Figure 5.8:i ∈ X andX 6= {i}

As before, because(1, +) and (1,−) are in the same superstate of the automaton, sign
changes are restricted to theblock delimited by the two1-bits. Within the block,all signs
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change, as you can immediately derive from the automaton. Itfollows thatX ⊕ {i} is again at
level 1: the(1, +)-combination has simply moved to the left.

The automaton tells us even more: the signs below the0’s in the block alternate, with the
first and last one having negative sign inX. In particular, there is an odd number2r + 1 of 0’s
in the block,r of which have a plus-sign inX. Because the step fromX to X ⊕ {i} reverses
all signs in the block, we get

Observation 5.12 In case 2, the step fromX to X ⊕ {i} leads from a level-1 vertex either to
the sink (iff the number of plus-signs inX is (n + 1)/2), or it leads to a level-1 vertex and
increases the number of plus-signs in the pattern by one.

Observations 5.11 and 5.12 show that the behavior ofRandomEdge at level 1 only depends
on the number of plus-signs in the current vertexX, not on the vertex itself. Namely, ifi is the
number of plus-signs inX, exactly one of them has a 1 above it; therefore, case 1 occurswith
probability(i− 1)/i and leads to a level-1 vertex withi− 1 plus-signs. Case 2 has probability
1/i and leads to the sink, or to a level-1 vertex withi + 1 plus-signs.

Fact 5.13 For i ∈ {1, . . . , (n + 1)/2}, let Ei be the expected number of vertex evaluations in
RandomEdge, starting from a level-one vertexX of On with exactlyi plus-signs. Moreover,
let E(n+3)/2 be the expected number of evaluations, starting from the sink. Then we have

E(n+3)/2 = 1, (5.3)

Ei = 1 +
1

i
Ei+1 +

i − 1

i
Ei−1, 1 ≤ i ≤ n + 1

2
. (5.4)

This is like the casino walk, except that we have just one absorbing value(n + 3)/2, and
that the transition probabilities depend on the current value. Still, the idea is, as in the casino
walk, to define a quantity

bi = p(i)Ei − q(i)Ei−1 + t(i),

wherep(i), q(i), t(i) are functions depending oni that ensure

bi = bi−1. (5.5)

In the casino walk we hadp(i) = q(i) = 1, t(i) = 2i. From (5.5), we can derive some
conditions on the functions we may use here. We want that

bi − bi−1 = p(i)Ei − (q(i) + p(i − 1))Ei−1 + q(i − 1)Ei−2 + t(i) − t(i − 1)

= c(i)

(
1

i − 1
Ei − Ei−1 +

i − 2

i − 1
Ei−2 + 1

)

= 0,

for some functionc(i).
This implies the conditions

q(i − 1) = p(i)(i − 2),

q(i) + p(i − 1) = p(i)(i − 1).
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These conditions smell like the functions might involve some factorials, and after some trial-
and-error steps, one finally realizes that choosingp(i) = q(i) = 1/(i − 2)! satisfies both
conditions, and for this choice, we must setc(i) = (i − 1)/(i − 2)!. It remains to find suitable
valuest(i). With t(i) − t(i − 1) = c(i), we must have

t(i) = t(i − 1) +
i − 1

(i − 2)!

= t(i − 1) +
1

(i − 2)!
+

1

(i − 3)!
.

Choosing

t(i) :=
1

(i − 2)!
+ 2

i−3∑

j=0

1

j!
,

the previous equation holds.
In these rough computations, we have ignored all boundary conditions, so let us check that

we have made the right choices. We define

bi :=
1

(i − 2)!




Ei − Ei−1 + T (i − 2)

︸ ︷︷ ︸

t(i)(i−2)!




 , 2 ≤ i ≤ n + 3

2
, (5.6)

where

T (k) := t(k + 2)k! = 1 + 2k!
k−1∑

j=0

1

j!
= 2k!

k∑

j=0

1

j!
− 1, k ≥ 0.

It is easy to verify that
T (k)(k + 1) = T (k + 1) − (k + 2). (5.7)

Lemma 5.14 bi = 0 for 2 ≤ i ≤ (n + 3)/2.

Proof. By induction. From (5.4) we get

b2 = E2 − E1 + 1 = 0.

Now assumei > 2. Inductively, we get

bi = bi − bi−1

=
1

(i − 2)!
Ei −

(
1

(i − 2)!
+

1

(i − 3)!

)

Ei−1 +
1

(i − 3)!
Ei−2 +

T (i − 2)

(i − 2)!
− T (i − 3)

(i − 3)!

=
1

(i − 2)!
Ei −

i − 1

(i − 2)!
Ei−1 +

i − 2

(i − 2)!
Ei−2 +

T (i − 2) − (i − 2)T (i − 3)

(i − 2)!
.

This further yields

(i − 2)!

i − 1
bi =

1

i − 1
Ei − Ei−1 +

i − 2

i − 1
Ei−2 +

T (i − 2) − (i − 2)T (i − 3)

i − 1
(5.7)
=

1

i − 1
Ei − Ei−1 +

i − 2

i − 1
Ei−2 + 1

(5.4)
= 0.
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An immediate consequence ofb(n+3)/2 = 0 is

E(n+1)/2 = T

(
(n − 1)

2

)

+ 1,

but we can also find all other values ofEi. From (5.6) and the lemma, we get

Ei = E1 −
i−2∑

k=0

T (k), 2 ≤ i ≤ n + 3

2
.

Using this fori = (n + 3)/2, the boundary condition (5.3) gives

E1 = 1 +

(n−1)/2
∑

k=0

T (k),

which implies the following result.

Theorem 5.15

Ei = 1 +

(n−1)/2
∑

k=i−1

T (k), 1 ≤ i ≤ n + 3

2
.

Asymptotics. The careful reader might remember that in connection with smallest enclosing
balls, we have already seen how to evaluateT (k), see Corollary 2.14. Here we get

T (k) = 2⌊ek!⌋ − 1, k > 0,

wheree is the Euler constant. This means,T ((n− 1)/2) is the dominant term in the right-hand
side of the theorem, which implies that

Ei = 2e
n − 1

2
! + o

(
n − 1

2
!

)

, 1 ≤ i ≤ n + 1

2
.

In particular, we get the nice formula

E(n+1)/2 = 2⌊en − 1

2
!⌋, n ≥ 3

for the starting value just left of the absorbing value(n + 3)/2.
By definition of Ei, this corresponds to the expected number of vertex evaluations of

RandomEdge on Morris’s USOOn, starting from a vertex adjacent to the sink. Because
such a vertex must eventually be passed forany initial vertex distinct from the sink, the main
result of this section follows. It shows that on Morris’s USO, RandomEdge visits significantly
more vertices than there are distinct vertices. In other words, it heavily runs in cycles.
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Theorem 5.16 Starting from any vertexX of On which is not the sink,RandomEdge takes
an expected number of at least

2⌊en − 1

2
!⌋

vertex evaluations to reach the sink. For any vertex adjacent to the sink, the bound is exact.

Let us briefly check whether this matches the results we have obtained for Exercise 3.1:
in Figure 5.9, all vertices ofO3 are labeled with the expected number of vertex evaluations
needed byRandomEdge, using the vertex as initial vertex.

6

5 55

4 4 4

1

Figure 5.9:RandomEdge runtimes for Morris’s USO onC3

Indeed, for the three vertices adjacent to the sink, the number is4 = 2⌊e⌋. Theorem 5.15
also yields the5’s in the figure, because the three corresponding vertices are at level 1 as well.

Does this mean thatRandomEdge is a bad algorithm? Well, not necessarily: there is the
important special case ofacyclicUSOs, and no acyclic USO on then-cube is known for which
RandomEdge requires more than roughlyn2 steps. In other words,RandomEdge could still
be a good (polynomial-time) algorithm for acyclic USOs. Exercise 5.5 asks you to analyze
RandomEdge on a particular acyclic USO.

We will come back to acyclic USOs in the last chapter, where wecollect evidence that the
acyclic case might indeed be substantially easier than the general one.

5.3 Random Unique Sink Orientations

Suppose you want to generate a USO ofCn uniformly at random, i.e. you want to have a
program which outputs any USO with the same probability1/un, whereun is the number of
USOs ofCn.
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There are two obvious, but inefficient approaches. First, you could generateall USOs and
then select a random one. For very smalln, one can indeed find a complete list of all USOs.
The known numbers are

u0 = 1,

u1 = 2,

u2 = 12,

u3 = 744,

u4 = 5541744.

The statement of Exercise 5.6 can be used to find that

u5 > 6.1 · 1013, and

u6 > 7.5 · 1027,

so the 5-cube has already a number of USOs which cannot be generated in the form of a
complete list, using reasonable space and time.

A second approach is to generate a completely random cube orientation, by choosing the
orientation of each edge independently at random. If the selected orientation is a USO, out-
put it, otherwise repeat. The problem here is that the probability of obtaining a USO within
reasonable time is very small. Already forn = 4, only 5541744 out of the232 orientations
are USOs, which is a fraction of only1/1000, roughly. This fraction rapidly decreases with
the dimension: forn = 5, the fraction is around5 · 10−10. How did we get this number, not
knowingu5? Just read on. . .

A third approach is to perform arandom walkon the set of all USOs: start with an arbitrary
USO and go in each step to a random USO in the neighborhood of the current USO. The hope
is that after only a few steps, we have reached an almost random USO. This is the idea behind
the provider walk of Section 5.1, but things are not that simple here. Two questions need to be
addressed.

1. What is the neighborhood of a USO?

2. Even if we have defined neighborhoods, how can we prove thatthe random walk con-
verges to the uniform distribution?

It turns out that for question 2, the general theory ofMarkov chainswill provide an answer,
so let’s start with this.

5.3.1 Markov Chains

Markov chains are formal models for random walks. We have astate spaceQ (for example,
the set of all USOs ofCn) which we assume to be finite.2 Then we can associateQ with the set
of integers{1, . . . , |Q|}—this will simplify the further notations.

Furthermore, there is a sequence(Xt)t∈N of random variables with values inQ. The value
of Xt is the state in which the random walk resides aftert steps.

2General Markov chains do not necessarily have finite state spaces, but we don’t need this here.
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Definition 5.17 The pairC = (Q, (Xt)t∈N) is called aMarkov chain, if for all t ∈ N and all
sequences(i0, . . . , it) ∈ Qt,

prob(Xt = it|X0 = i0, . . . , Xt−1 = it−1) = prob(Xt = it|Xt−1 = it−1).

This fancy-looking definition simply says that the probability of reaching some state in stept
only depends on the state aftert − 1 steps, but not on states the walk went through earlier. In
all the random walks, we have seen so far, this was the case; for example, the amount of money
you have aftert steps of the casino walk only depends on the money aftert − 1 steps (and the
outcome of your current bet, of course). It doesn’t matter whether you went through a run of
good luck before, or whether you almost went broke. We also say thatC “has no memory”.

Here is another property shared by all our walks so far: the transition probabilities between
states are time-independent:

Definition 5.18

(i) A Markov chainC = (Q, (Xt)t∈N) is calledhomogeneous, if for all t ∈ N, i, j ∈ Q,

prob(Xt = j|Xt−1 = i) = prob(X1 = j|X0 = i).

(ii) For a homogeneous Markov chainC, the matrixP ∈ R
|Q|×|Q|, with entries

pij := prob(X1 = j|X0 = i)

is called thetransition matrixof C.

(iii) For a homogeneous Markov chainC, the directed graphG = (Q,E), with

E = {(i, j) | pij > 0}

is called thegraphof C.

In the homogeneous case, the transition matrix completely specifies the random walk:
whenever the walk is in statei, its next state isj with probability pij, no matter how many
steps have already been performed.

Let’s do an example. The provider walk of Section 5.1 can be written as a homogeneous
Markov chain; its state space can be identified withQ = {1, 2, 3}, where1 = Swisscom, 2 =
Orange, 3 = Sunrise. The transition matrix is

P =





0 1
2

1
2

1
2

0 1
2

1
2

1
2

0



 , (5.8)

and the graph is the one of Figure 5.2.
Recall that in the provider walk, we were interested in the probability of being in statei

aftert steps, for alli. This motivates the next
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Definition 5.19 For a Markov chainC = (Q, (Xt)t∈N), the row vector

qt := (prob(Xt = 1), . . . , prob(Xt = |Q|))

is called thedistributionof C at timet.

Usually,q0 is known (we hadq0 = (1, 0, 0) in the provider walk), and we want to derive
statements aboutqt, t > 0. The following lemma (whose easy proof is Exercise 5.7) comes in
handy.

Lemma 5.20 LetC be a homogeneous Markov chain with transition matrixP . Then

qt = q0P
t.

Assume we don’t start the provider walk withq0 = (1, 0, 0), but withq0 = (1/3, 1/3, 1/3),
meaning that right in the beginning, you are customer of a uniformly random provider. Then
it is easy to check that you willalwaysbe customer of a uniformly random provider:q0 is a
stationary distributionaccording to the following

Definition 5.21 Let C be a homogeneous Markov chain with transition matrixP and π =
(π1, . . . , π|Q|) a row vector such that

|Q|
∑

i=1

πi = 1, πi ≥ 0,∀i.

π is called astationary distributionof C, if

πP = π.

Recall from the beginning of this section that we actually want to generate random USOs.
Assuming we can manufacture a Markov chain for this in the spirit of the one for “generat-
ing” a random mobile phone provider, we still need to prove that this chain has a stationary
distributionπ which is the uniform one, and that the distributionqt converges toπ ast tends to
infinity.

In the provider walk, we were able to do this “manually”, but for less trivial chains, this
approach quickly becomes unmanageable. However, the theory of Markov chains lists some
easy sufficient conditions under which we get the propertieswe want. Once we have this, the
USO case can be dealt with bydesigninga Markov chain that just satisfies these conditions.

Definition 5.22 A homogeneous Markov chainC is called irreducible, if there is a directed
path from any state to any state in the graph ofC (in particular, there must be a directed path
from any state to itself). Equivalently, for any pair(i, j) ∈ Q2, there is a positive probability
of eventually reachingj, starting fromi.

Obviously, the provider walk is irreducible: no matter who your current provider is, you
can become customer of all three providers in the future. Clearly, if a chain is not irreducible,
it cannot be used to generate a random state, because some states might just not be reachable
from the initial state.
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Definition 5.23 A statei of a homogeneous Markov chainC is calledk-periodicfor k ∈ N, if
all directed paths fromi back toi in the graph ofC have lengthkℓ for someℓ ∈ N. C is called
aperiodic, if no state isk-periodic withk ≥ 2.

According to this definition, all states are1-periodic, but higher periods must be avoided
by an aperiodic chain. For example, a2-periodic statei has only directed paths of even length
back to itself. When we start the walk in such a statei, we can not expect to converge to a
random state, because after any odd number of steps, the probability of being ini is zero.

The provider walk is aperiodic, because any state has directed paths back to itself of all
lengths but 1.

Definition 5.24 A homogeneous Markov chainC with transition matrixP is calledsymmetric
if P is symmetric, meaning thatpij = pji, for all i, j ∈ Q.

Again, the provider walk satisfies this, because the matrix (5.8) is symmetric. According
to the following general results, the provider walk therefore converges—as we know—to a
uniformly random provider.

Theorem 5.25 Let C be a homogeneous Markov chain. Then the following three statements
hold.

(i) If C is irreducible, thenC has a unique stationary distributionπ.

(ii) If C is irreducible and aperiodic (this is also known asergodic), then

lim
t→∞

qt = π,

whereπ is the unique stationary distribution.

(iii) If C is irreducible and symmetric, then the unique stationary distributionπ is the uniform
one, i.e.

π =

(
1

|Q| , . . . ,
1

|Q|

)

.

Proofs of these statements are found in most advanced textbooks on probability theory; we
only prove here that (iii) follows from (i), because this is easy and instructive.

If C is symmetric, its transition matrixP is doubly stochastic, meaning that all rows and all
columns sum up to one. In general, this only holds for the rows, but if it holds for the columns
as well, we immediately get

(
1

|Q| , . . . ,
1

|Q|

)

P =

(
1

|Q| , . . . ,
1

|Q|

)

,

so the uniform distribution is stationary. By irreducibility, it is the unique stationary distribu-
tion.
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5.3.2 A Markov Chain for USOs

Now we want to apply the above machinery to a suitable Markov chain over the set of USOs.
For this, we first define what it means that two USOs are neighbors of each other. Then we
assign to every USO a probability distribution over its set of neighbors. Viewing them as
transition probabilities in a random walk, this defines a homogeneous Markov chain on the set
of all USOs.

In the following, let us fix the dimensionn of the cube and its ground setN = {1, . . . , n}.

Definition 5.26 Let O,O′ be two USOs ofCn, i ∈ N . O and O′ are calledneighbors in
directioni if and only ifO agrees withO′ in the orientation of all edges, except possibly the
ones in directioni. Formally,O = (2N , D) andO′ = (2N , D′) are neighbors in directioni, if

(X,X ⊕ {j}) ∈ D ⇔ (X,X ⊕ {j}) ∈ D′, ∀X ∈ 2N , j ∈ N \ {i}.

According to this definition, every USO is a neighbor of itself in any direction. Figure 5.10
shows a nontrivial example of the neighborhood relation.

11 22

Figure 5.10: Two USOs which are neighbors in direction 1

The Markov chain. The state spaceQ is the set of all USOs ofCn. The chain will be homo-
geneous and is therefore completely defined by its transition matrix, containing the transition
probabilities for all pairs of USOs. For a USOO, letN (O, i) be the neighbors ofO in direction
i.

The transition probability of going fromO toO′ is defined as

pO,O′ =
1

n

∑

i:O′∈N (O,i)

1

|N (O, i)| . (5.9)

These values are actually legal transition probabilities.

Fact 5.27 For anyO,
∑

O′

pO,O′ = 1.
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Proof. Letting [A] be the indicator variable for the statement in brackets ([A] = 1 if A holds,
[A] = 0 otherwise), we can write

∑

O′

pO,O′ =
∑

O′

1

n

∑

i:O′∈N (O,i)

1

|N (O, i)|

=
∑

O′

1

n

∑

i∈N

[O′ ∈ N (O, i)]
1

|N (O, i)|

=
1

n

∑

i∈N

∑

O′

[O′ ∈ N (O, i)]
1

|N (O, i)|

=
1

n

∑

i∈N

|N (O, i)|
|N (O, i)| = 1.

Note that the sum in the definition ofpO,O′ consists either of one term (ifO 6= O′), or of n
terms (ifO = O′).

Figure 5.11 shows an example.O has four neighbors in direction 1, and two neighbors in
direction 2, always including itself. The probability of going to a fixed neighbor in direction
1 is therefore1/2 · 1/4 = 1/8, while a neighbor in direction2 is reached with probability
1/2 · 1/2 = 1/4. For the transition fromO to itself, this sums up to1/4 + 1/8 = 3/8.

1 2

1
4

1
8

1
8

1
8

3
8

O

Figure 5.11: Transition probabilities for a fixed bowO′

Theorem 5.28 The homogeneous Markov chain defined by the transition probabilities in (5.9)
is aperiodic, symmetric, and irreducible (this is the orderin which we are going to show the
properties).
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Proof. Because every USO is a neighbor of itself, it has a directed path of length 1 back to
itself. This implies that the chain is aperiodic.3

Symmetry follows directly from the symmetry of the neighborrelation, plus the fact that
N (O, i) = N (O′, i), if O andO′ are neighbors in directioni. The latter holds, because the
neighborhood relation in directioni (Definition 5.26) is not only symmetric, but also reflexive
and transitive, so it is anequivalence relation, where the setsN (O, i) are the equivalence
classes. This means, ifO,O′ are neighbors in directioni, they are equivalent and define the
same equivalence classN (O, i) = N (O′, i).

Finally, we need to show that the chain is irreducible, meaning that we can get from any
USO to any USO by going to a neighbor in each step. Actually, weshow that in at mostn
steps, we can reach theuniformUSO (defined by the outmap valuess(X) = X, for all X); by
symmetry, we can go then from the uniform USO back to any USO inanothern steps at most.

Starting from any USO, stepi reorients only edges in directioni, in such a way that we
again get a USO. Then it is clear that this USO is a neighbor of the previous one. To be more
precise, stepi orients the edges in directioni in such a way that they all go from the larger to
the smaller set. After this, the orientation contains the directed edges

(X ∪ {i}, X), X ⊆ 2N\{i}. (5.10)

We say that the orientation iscombedin direction i; in this case, it’s combed fromtop to
bottom(which is natural when you think about combing your hair), but an orientation can also
be combed frombottom to top, meaning that all edges in directioni go from the smaller to the
larger sets.

It is easy to verify (this is actually part of Exercise 5.6) that the process of combing a USO
in some direction maintains the USO property.

It follows that after at mostn steps, we have a USO which satisfies (5.10) for alli, i.e. it is
combed from top to bottom in all directions. This impliess(X) = X, so we have the uniform
USO.

Together with Theorem 5.25, this theorem implies that the random walk underlying the
Markov chain we have defined indeed converges to the uniform distribution on the set of all
USOs.

The distributionsqt can still be explicitly computed within reasonable time forn = 3. The
Maple plot in Figure 5.12 shows how the largest possible entry inqt (upper graph) and the
smallest possible entry (lower graph) develop witht.4 After around 30 steps, both graphs are
already very close to the middle graph which represents the value1/u3 = 1/744.

When you think about how you actually perform the random walk,there is still one issue.
It seems we would need the neighbors of the current USO in all directions in order to choose
the next one among them, according to the probabilities in (5.9). We could of course, for alli,
go through the2n−1 candidates for neighbors in directioni and collect the USOs among them,
but that would be pretty inefficient. As we show next, all the neighbors of a given USO are
implicitly encoded in the USO itself, and we can make this information explicit. This will also

3actually, this is a common trick to make a chain aperiodic: just add a loop from any state to itself, “stealing”
the probability of looping from the other transitions

4the maxima and minima are taken over all initial distributionsq0
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Figure 5.12: Convergence of the USO chain forn = 3

show that the number of neighbors in a given direction is always a power of two; in the example
of Figure 5.11, we have already come across an incarnation ofthis fact.

Phases. Consider Figure 5.11 again; why doesO have only two neighbors (including itself)
in direction 2? Because the two edges in direction2 are “in phase”: given the orientations of
the edges in direction 1, we only get a USO if the two other edges have the same orientation,
both from top to bottom (as inO), or from bottom to top , as in its other neighbor. The reason
is that there is a pair of verticesX,Y in O (take any pair of antipodal vertices) such that

(X ⊕ Y ) ∩ (sO(X) ⊕ sO(Y )) = {2},

and if we reorient justoneof the two edges incident toX andY in direction2, the resulting
orientationO′ satisfies

(X ⊕ Y ) ∩ (sO′(X) ⊕ sO′(Y )) = ∅.
By our outmap characterization (Lemma 3.5),O′ cannot be a USO in this case. This motivates
the following

Definition 5.29 Let O be a USO over the groundsetN , X,Y ∈ 2N , i ∈ N . X and Y are
calledstrongly in phasewith respect to(O, i) if

(X ⊕ Y ) ∩ (sO(X) ⊕ sO(Y )) = {i}.

Remark 5.30 X andX ⊕ {i} are strongly in phase w.r.t.(O, i), for all X.
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For anyi, the cubeCn subdivides into atop facet(vertices containingi) and abottom facet
(vertices not containingi). If X andY are strongly in phase w.r.t.(O, i), we havei ∈ X⊕Y , so
X andY are in different facets. Theni ∈ sO(X) ⊕ sO(Y ) implies that the two edges incident
to X andY in directioni must both go from top to bottom, or from bottom to top.

The strongly-in-phase relation is symmetric, but it is neither reflexive nor transitive; taking
thetransitive closuregives us a more useful equivalence relation.

Definition 5.31 Let O be a USO overN , X,Y ∈ 2N , i ∈ N . X andY are calledin phase
w.r.t. i, written as

X ≃O,i Y,

if there is a sequence of verticesX = X0, X1, . . . , Xk = Y such thatXt andXt+1 are strongly
in phase w.r.t.(O, i), for t = 0, . . . , k − 1.

It is clear by construction that≃O,i is transitive, and it is also reflexive as a consequence of
Remark 5.30.

We call the equivalence classes of≃O,i the i-phasesof O. Figure 5.13 shows an example
for n = 3. Together with the strongly-in-phase pairs of Remark 5.30, the two indicated pairs
already prove that the six rightmost vertices are in one common 2-phase. It remains to check
that the two leftmost ones are in a different 2-phase.

i = 2

strongly in phase

Figure 5.13: The two2-phases of the cyclic USO

From the considerations above, it follows thatall edges in directioni between the vertices
of a fixedi-phase have the same orientation. For the2-phase of size 6 in Figure 5.13, there are
three such edges, all of them going from top to bottom. Extending previous terminology in the
natural way, we say that thei-phases are combed.

Here is the crucial insight:

Theorem 5.32 If O andO′ are neighbors in directioni in the sense of Definition 5.26, then
≃O,i=≃O′,i, so both USOs have the samei-phases.
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Proof. If O andO′ are neighbors, they differ only in orientations of edges in direction i.
Therefore,

(X ⊕ Y ) ∩ (sO(X) ⊕ sO(Y )) (5.11)

can differ from
(X ⊕ Y ) ∩ (sO′(X) ⊕ sO′(Y )) (5.12)

at most in the elementi. If (5.11) evaluates to{i}, then (5.12) may evaluate to∅, or to {i}.
BecauseO′ is a USO, the former is not possible, and it follows thatX andY are strongly in
phase w.r.t.(O, i) if and only if they are strongly in phase w.r.t.(O′, i).

Now we are in a position to describe how the neighbors ofO in directioni can be read off
thei-phases ofO.

AssumeO hasℓ i-phases. The theorem implies that the number|N (O, i)| of neighbors of
O in directioni is at most2ℓ. Namely, all neighbors have the samei-phases, and eachi-phase
can independently of the others be combed in two ways. It alsofollows that all neighbors of
O can be obtained by reorienting somei-phases. Actually,all possible2ℓ reorientations of
i-phases lead to USOs again (Exercise 5.9), thus

|N (O, i)| = 2ℓ

holds.
Now it is an easy task to choose a random neighbor in directioni, as the transition prob-

abilities (5.9) of our Markov chain require: simply reorient a random subset of thei-phases;
equivalently, toss a coin for eachi-phase to decide whether thisi-phase will be reoriented or
not.

5.4 Counting USOs with the Markov Chain

It is often the case that if one can select an element from somestate space uniformly at random,
then one can also approximately count the number of states. This is particularly useful for state
spaces which are too large to be explicitly enumerated. In this section, we see how the Markov
chain we have introduced in the previous section can be used to find a reasonably good estimate
for the numberu5 of USOs onC5. Recall that our lower bound of

u5 > 6.1 · 1013

already shows that the state spaceis actually too large for an explicit enumeration.
Here is the idea: let̄un be the number of USOs ofCn which are combed in a fixed direction,

sayn. We count a USO for̄un regardless of whether it is combed from top to bottom, or from
bottom to top. For those who have solved Exercise 5.6, the following does not come as a
surprise.

Observation 5.33 ūn = 2(un−1)
2.
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Proof. To obtain a combed USO ofCn, we can combine any USO in the top facet (vertices
containingn) with any USO in the bottom facet (vertices not containingn): if all edges between
upper and lower facet have the same orientation, the result will be a USO ofCn, combed in
directionn. Because upper and lower facets areCn−1’s each, and there are two ways to comb
an orientation in directionn, the bound follows.

The following is actually more a definition than anything else.

Corollary 5.34 Let p̄n be the probability that a USO chosen uniformly at random fromall
USOs ofCn is combed in directionn. Then

p̄n =
ūn

un

= 2
(un−1)

2

un

,

equivalently

un = 2
(un−1)

2

p̄n

.

In the concrete casen = 5 we are interested in,un−1 is a known quantity (namely,u4 =
5541744), andp̄n can be estimated experimentally. For this, we simply use theMarkov chain
to sample a large numbert of (almost) random USOs, and use the fractionp̄(t) of combed ones
(in directionn) as an estimate for̄pn. Thelaw of large numberstells us that this is justified: we
have

“ lim
t→∞

p̄(t) = p̄n.”

Despite being quite intuitive, this statement is mathematically incorrect, because(p(t))t∈N is
not a sequence of numbers but a sequence of random variables.The correct statement is

lim
t→∞

E
(
(p̄(t) − p̄n)2

)
= 0,

but the interpretation is the same: if we wait long enough, the experimental valuēp(t) will be
close top̄n with high probability.

But how long do we have to wait? If the Markov chain were perfectin the sense that it
generates truly random USOs, we could use thecentral limit theoremand find bounds fort
that guarantee a small error. However, we only know that the Markov chain is perfectin the
limit, but we have no clue how “random” the USO is after 100 steps, say. Figure 5.12 looks
encouraging in dimensionn = 3, but it is conceivable that the convergence rate (also knownas
themixing rate) of the chain gets much worse asn grows.

The fact that the graph of the chain has small diameter (in ourcase, any state is reachable
from any state in at most2n steps) does not guarantee a good mixing rate: the graph mighthave
bottlenecksthat are passed by the random walk only with very small probability. No results
concerning the mixing rate of the USO chain are known.

In practice, we just let the experiment run untilp̄(t) stabilizes to our satisfaction. For
example, after letting the walk for the5-dimensional USOs run for two days, taking every
100th USO into account for̄p(t), one finds that

p̄(t) ≈ 0.0962185, (5.13)
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which leads to
u5 ≈ 6.3836 · 1014, (5.14)

roughly a factor of ten higher than the lower bound we had computed. We must be careful,
though: we have no mathematical guarantee that these valuesare even remotely correct. For
example, the chain might in the beginning stabilize to some distribution on some subset of
all USOs, and only much later converge to the actual uniform distribution on all USOs. In
the wrong distribution that we observe, combed USOs might bemuch more (or much less)
frequent than they should, in which case the results of the experiment would be meaningless.

On the other hand, the author is optimistic and actually believes that there is some truth
behind the numbers in (5.13) and (5.14). This optimism also comes from the fact that for
d = 3, 4, we can compare our experimental results with the known values ofu3, u4, and they
perfectly agree.

Bibliographical Remarks

The casino walk is folklore; it appears for example in the book by Grimmet and Stirzaker [5].
Morris’s USO and the analysis ofRandomEdge is due to Walter Morris [10]. The explicit
bound for the expected number of steps is new. Markov chains are classical, Grimmet and
Stirzaker treat them in depth. The Markov chain for USOs is due to Matoǔsek and Wagner [9].
The idea of counting USOs with this chain is new.

Exercises

Exercise 5.1Consider the random walk on{0, . . . , N} which starts ink, moves to the left with
probabilityp and to the right with probabilityq = 1 − p. The walk ends if0 or N is reached.

(i) What is the probability that the walk reachesN?

(ii) What is the expected number of steps in the walk until either 0 or N is reached?

Remark: In the course, we have solved (ii) for the casep = 1/2. This extension covers the
more realistic scenario that your probability of winning a round of roulette by betting on red is
strictly smaller than1/2, because the bank always wins if zero comes up.

Exercise 5.2Prove that in any USO ofCn, there is a directed path of length|X ⊕Y | from any
vertexY to the unique sinkX.

Exercise 5.3Prove Corollary 5.10 of Lemma 5.9.

Exercise 5.4Let#X(1), #X(+) be the number of1-bits, respectively plus-signs in the vertex
X at level 1 of Morris’ USO onCn, n odd. Prove that

#X(1) + #X(+)
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is a constant only depending onn (which one?). Conclude that

#X(1) = 1 ⇔ #X(+) =
n + 1

2
.

Can you generalize this exercise to vertices at levelk (vertices with exactlyk (1, +) com-
binations)?

Exercise 5.5Let N = {1, . . . , n} and consider the functions : 2N → 2N defined by the
following recursive rule.

s(∅) = ∅,
s(A ∪ {i}) = {1, . . . , i} \ s(A), A ⊆ {1, . . . , i − 1}.

(i) Prove thats defines a USOO onCn.

(ii) Prove that there is a directed path inO which visits all2n vertices.

(iii) Prove that the expected number of vertex evaluations performed by the random walk on
O is bounded byO(n2), for any start vertex.

Exercise 5.6Let un be the number of unique sink orientations of then-cube (for example,
u0 = 1, u1 = 2 andu2 = 12).

Prove that
un ≥ 2 (un−1)

2 , n ≥ 1,

and derive from this an explicit lower bound forun.

Exercise 5.7Let P be the transition matrix of a homogeneous Markov chain. Prove that the
distributionqt at timet satisfies

qt = q0P
t, t ≥ 0.

Exercise 5.8 (i) Find a non-irreducibleMarkov chain with no unique stationary distribu-
tion.

(ii) Find an irreducible,non-aperiodicMarkov chain and some distributionq0 such thatqt

does not converge to the stationary distribution.

(iii) Find an irreducible, aperiodic,non-symmetricMarkov chain for which the stationary
distribution is not the uniform distribution.

Exercise 5.9LetO be a USO onCn, and letV ⊆ 2N be the set of vertices forming onei-phase.
Prove that reorienting all edges

{X,X ⊕ {i}}, X ∈ V

gives rise to a USOO′. (BecauseO′ is a neighbor ofO in direction i, O′ has the samei-
phases.)
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Exercise 5.10Suppose you are working as a security person on the tram networkof Zurich.
Your goal is to be “everywhere at the same time”. When you realize that this is not possible,
you become less ambitious: you travel from station to station, hopping on and off trams, with
the goal of being at every station with the same probability.

Describe a random walk on the tram network which lets you achievethis goal in the long
run.

89



Chapter 6

Acyclic Unique Sink Orientations

In Chapter 3, we have shown that an expected number of at most

O

((
43

20

)n/2
)

≈ 1.466n

vertex evaluations suffices to find the sink of any USO ofCn. This bound is attained by the
product algorithm, based on the optimal algorithm forn = 2. Not much more is known in the
general case. Using the optimal algorithm forn = 3 as a basis for the product algorithm,1 we
can slightly improve over the above bound and get an expectednumber of

O

((
4074633

1369468

)n/3
)

≈ 1.438n

vertex evaluations. This is what we know when no further restrictions on the USO are made.
In this final chapter, we want to show that the above bounds canbe substantially improved

if the USO isacyclic, which means the obvious: there are no directed cycles in theorientation.

6.1 The RandomFacet Algorithm

We develop an algorithm that works for all USOs; only in the analysis, we make use of acyclic-
ity. The algorithm is pretty close in spirit to the simple product algorithm— based on the
optimal algorithm forn = 1—that previously gave us the

(
3

2

)n

bound: we choose some directioni of the cube; along directioni, the cube decomposes into
two facets. Recursively, we find the sinkY in one of the facets. If this sink is not yet the global

1The optimal algorithm forn = 3 can be found by the game-theoretic methods of Chapter 4, but asubstantial
refinement (exploiting symmetries) is necessary in order for this approach to stay feasible. Forn = 4, the optimal
algorithm is unknown.
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sink (which we can test by looking at the orientation of its incident edge in directioni), we
recursively find the sink in the other facet, and the result must be the global sink. When we
choose the facet over which we optimize first uniformly at random among the two facets in
directioni, we arrive at the product algorithm and its expected complexity (3/2)n.

Here, we will proceed slightly differently: throughout therecursion, the algorithm not only
maintains the current face but also a vertexX in that face; the (sub)facet to be searched first
will then be chosen uniformly at random among the facets containingX. In other words, the
algorithm chooses arandomdirectioni, and among the two facets along directioni selects the
one containingX as the first facet to search for the sink. In case the facet sinkY is not yet the
global sink, we search the other facet, starting from (and this is the key!) the vertexY ⊕ {i}.

Face/vertex pairs can conveniently be written as follows.

Definition 6.1 LetN = {1, . . . , n} be some fixed ground set ofCn. For X, I ∈ 2N , the set

〈X, I〉 := {X ⊕ J | J ⊆ I}

is the facespannedbyX in directionsI.

It is clear that
〈X, I〉 = [X \ I,X ∪ I]

in our previous notation of faces as intervals of sets (page 31). Also, every face[A,B] can be
written for example as[A,B] = 〈A,B \ A〉, so we do not ‘loose’ any faces in our new setting.
Here is a lemma listing some simple properties (its proof is Exercise 6.1).

Lemma 6.2 LetX, I ∈ 2N , i ∈ N .

(i) 〈X, I〉 = 〈Y, I〉, for all Y ∈ 〈X, I〉.

(ii) 〈X, I〉 = 〈X, I \ {i}〉 ∪ 〈X ⊕ {i}, I \ {i}〉.

(iii) 〈X, I \ {i}〉 contains exactly one of the verticesY andY ⊕ {i}, for anyY ∈ 〈X, I〉.

Figure 6.1 illustrates the process of searching for•❥(〈X, I〉), assuming directioni is chosen
for the decomposition into two facets. The figure also emphasizes the fact that the algorithm
actually follows a directed path in the orientation: whenever the current vertexY changes, it
is replaced by a neighborY ⊕ {i}, reached fromY by following an outgoing edge. Thus, the
algorithm can be considered as a random walk, with more sophisticated rules than the simple
random walkRandomEdge of Algorithm 5.6 from the previous chapter. Here is the algorithm,
written down formally.

Algorithm 6.3 Let s be the outmap of a USOO of Cn. Given a pair(X, I), the following
algorithm evaluates and returns•❥O(〈X, I〉).
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〈X, I \ {i}〉 〈X, I \ {i}〉〈X ⊕ {i}, I \ {i}〉 〈X ⊕ {i}, I \ {i}〉

i i

XX

YY

S

Y ⊕ {i}

Figure 6.1: To find the sink of〈X, I〉, we first recursively find the sinkY in the facet〈X, I \
{i}〉. If Y has an incoming edge in directioni, we are done (left), otherwise, we recursively
find the sinkS in the other facet〈X ⊕ {i}, I \ {i}〉 = 〈Y ⊕ {i}, I \ {i}〉, which must then be
the sink of〈X, I〉 (right).

RandomFacet(X, I):
IF I = ∅ THEN

evaluateX
RETURN X

ELSE
choosei ∈ I at random
Y :=RandomFacet(X, I \ {i})
IF i 6∈ s(Y ) THEN

RETURN Y
ELSE

RETURN RandomFacet(Y ⊕ {i}, I \ {i})
END

END

The correctness proof is an easy induction over|I|, using Lemma 6.2. Actually, it should
already be clear from the above discussion that the algorithm works; moreover, even if the
USO has cycles, no vertex will be visited twice by the algorithm (which can also be shown by
induction). It follows that the number of vertex evaluations is always at most2n, but as we
show next, the expected number is much smaller in the acycliccase.
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6.2 Analysis ofRandomFacet

From now on, the USOO is assumed to be acyclic. In this case, the vertices can betopologi-
cally sorted, meaning that there is some total order< on the vertices such that for allX,Y ,

X reachable fromY (along a directed path inO) ⇒ X < Y. (6.1)

In this order, the global sink is necessarily the minimum, because it is reachable from any
other vertex (Lemma 5.7). In general,< is not unique. For example, the uniform orientation of
C2 allows two different topological orders, see Figure 6.2.

∅

{1} {2}

{1, 2}

Figure 6.2: The uniform USO ofC2 has two different topological orders of the vertices:∅ <
{1} < {2} < {1, 2} and∅ < {2} < {1} < {1, 2}.

Let us fix a topological order< once and for all.2 Then we can introduce the crucial concept
of fixed elements.

Definition 6.4 LetX, I ⊆ 2N . i ∈ I is calledfixed in (X, I), if and only if

X < •❥(〈X ⊕ {i}, I \ {i}〉).

Otherwise,i is calledfree in (X, I).

What does this mean? We have already noted that〈X, I〉 subdivides into two facets along
directioni. If i is fixed, the sink of the facet〈X⊕{i}, I \{i}〉 notcontainingX is not reachable
from X along any directed path. By Lemma 5.7, if the sink of the facet is not reachable,no
vertex of the facet is reachable, and we obtain the following

Corollary 6.5 Let i ∈ I be fixed in(X, I). Then

(i) no vertex in〈X ⊕ {i}, I \ {i}〉 is reachable fromX, and consequently,

(ii) a call to RandomFacet(X, I) visits only vertices in the facet〈X, I \{i}〉, equivalently,
it performs no second recursive call.
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1 12 2

X XY Y

W

Z

Figure 6.3: The concept of fixed and free elements. Left:2 is fixed in(X, {1, 2}), but1 is free.
(Y, {1, 2}) and(W, {1, 2}) have no fixed elements. Both1 and2 are fixed in(Z, {1, 2}). Right:
if X < Y , 2 is fixed in(X, {1, 2}), but(Y, {1, 2}) contains only free elements. IfY < X, 1 is
fixed in (Y, {1, 2}) and(X, {1, 2}) has only free elements.

As an illustration of this concept, consider Figure 6.3, where it also becomes clear that
the notion of fixed elements depends on the order<, and that even for free elementsi, the
statements of Corollary 6.5 might hold (this will neither hurt nor benefit us).

Here are two more consequences of Definition 6.4 that we need later.

Lemma 6.6 LetX, I ⊆ 2N , Y ∈ 〈X, I〉, i ∈ I.

(i) If j ∈ I \ {i} is fixed in(X, I), thenj is also fixed in(X, I \ {i}).

(ii) If j ∈ I is fixed in(X, I) andY < X, thenj is also fixed in(Y, I).

Proof. (i) j being fixed in(X, I) means that

X < •❥(〈X ⊕ {j}, I \ {j}〉) ≤ •❥(〈X ⊕ {j}, I \ {i, j}〉),

where the latter inequality just says that the sink of a face is equal to or reachable from the sink
of any subface. It follows thatj is fixed in(X, I \ {i}) as well. (ii) the assumptions yield

Y < X < •❥(〈X ⊕ {j}, I \ {j}〉). (6.2)

This in particular implies that
Y 6∈ 〈X ⊕ {j}, I \ {j}〉,

equivalently that
Y ⊕ {j} ∈ 〈X ⊕ {j}, I \ {j}〉,

by Lemma 6.2. Using part (ii) of Lemma 6.2 once more, we get

〈X ⊕ {j}, I \ {j}〉 = 〈Y ⊕ {j}, I \ {j}〉,
2We could as well work with thepartial order of the vertices defined by the reachability relation in (6.1), but

that would unnecessarily complicate things in the sequel.
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so (6.2) gives
Y < •❥(〈Y ⊕ {j}, I \ {j}〉).

This means thatj is fixed in(Y, I).
Intuitively, the less free elements there are in(X, I), the fasterRandomFacet(X, I) will

be. In fact, if (X, I) hask free elements, then all verticesY ≤ X visited during the call
to RandomFacet(X, I) must be in a commonk-dimensional face with the sink of(X, I),
because they cannot differ from the sink in any fixed element.This motivates the following

Definition 6.7 LetX, I ⊆ 2N . Thehidden dimensionof (X, I) is the number

h(X, I) = |I| − {i ∈ I | i is fixed in(X, I)} = {i ∈ I | i is free in(X, I)}.
For example, in Figure 6.3 (left), we haveh(X, {1, 2}) = 1 andh(Y, {1, 2}) = 2.

Here is the main result of this chapter. It looks somewhat messy now, but things will clear
up later.

Theorem 6.8 Definetk(m) to be the maximum expected number of vertex evaluations in a call
to RandomFacet(X, I), where|I| = m andh(X, I) ≤ k. Thent0(m) = 1 and

tk(m) ≤ 1

m

(

(m − k)tk(m − 1) +
k∑

j=1

(tk−1(m − 1) + tj−1(m − 1))

)

, k > 0.

Proof. If k = 0, X must be the sink of〈X, I〉, and it is easy to see that exactly one vertex
evaluation (for the pair(X, ∅)) takes place inRandomFacet(X, I).

If k > 0, we may assume without loss of generality thath(X, I) = k: if the worst pair
(X, I) with hidden dimension at mostk hash(X, I) = ℓ < k, we gettk(m) = tℓ(m), and
proving the theorem forℓ yields the required bound fork as well. There are two cases now.

Case (a) i is fixed in(X, I). Because all fixed elementsj 6= i are also fixed in(X, I \ {i})
by Lemma 6.6(i), we haveh(X, I \ {i}) ≤ k. Moreover, there will be no second recursive call
in this case due to Corollary 6.5, so the expected number of vertex evaluations is bounded by
tk(m − 1).

Case (b) i is free in(X, I). Lemma 6.6(i) gives us a bound ofh(X, I \ {i}) ≤ k − 1 in
this case, because we remove a free element. It follows that the expected number of vertex
evaluations in the first recursive call can be bounded bytk−1(m − 1).

To estimate the performance of the second recursive call, let us order thek free elements
i1, . . . , ik in such a way that

•❥(〈X, I \ {i1}〉) ≤ · · · ≤ •❥(〈X, I \ {ik}〉).
If i = ij, and if there is actually a second recursive call with pair(Y ⊕ {i}, I \ {i}), we

know that forℓ > j,

Y ⊕ {i} < Y = •❥(〈X, I \ {i}〉)
≤ •❥(〈X, I \ {iℓ}〉)
= •❥(〈Y ⊕ {i} ⊕ {iℓ}, I \ {iℓ}〉),
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where the latter equality follows—as in the proof of Lemma 6.6(ii)—from Lemma 6.2.
This, on the other hand, means thatij+1, . . . , ik are fixed in(Y ⊕ {i}, I) and therefore also

in (Y ⊕{i}, I \{i}), in additionto the elements that were already fixed in(X, I) (Lemma 6.6).
It follows that

h(Y ⊕ {i}, I \ {i}) ≤ (k − 1) − (k − j) = j − 1.

We conclude that the expected number of vertex evaluations in the second recursive call is
bounded bytj−1(m − 1) if i = ij. Because this happens with probability1/m (which is also
the probability thati is any of them−k fixed elements in case (a)), the claimed bound follows.

The proof formalizes our intuition that it is better for the algorithm to choose somei for
which

Y = •❥(〈X, I \ {i}〉)
is rather small in the order<, because thenY will already be quite close to the sink. Actu-
ally, choosingi = i1 would be best. Unfortunately, the algorithm does not know the order
i1, . . . , ik; by guessingi randomly, we expecti to be somewhere in the middle which is quite
an improvement over the worst case in which we would choosei = ik.

The bound ontk(m) still looks ugly, but upon closer inspection, it turns out that the bound
actually does not depend onm.

Theorem 6.9 For fixedn, define

T (k) := max
m≤n

tk(m).

Then,

T (0) = 1,

T (k) ≤ T (k − 1) +
1

k

k∑

j=1

T (j − 1), k > 0.

Proof. T (0) = 1 is obvious. Fork > 0, consider the valuem that leads to the maximum in
the definition ofT (k). Then we get

T (k) = tk(m)

≤ 1

m

(

(m − k)tk(m − 1) +
k∑

j=1

(tk−1(m − 1) + tj−1(m − 1))

)

≤ 1

m

(

(m − k)T (k) +
k∑

j=1

(T (k − 1) + T (j − 1))

)

,

which is equivalent to

k

m
T (k) ≤ 1

m

(

kT (k − 1) +
k∑

j=1

T (j − 1)

)

.
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Multiplying this with m/k proves the statement.
Using the method ofgenerating functions(or the method of guessing), the following ex-

plicit bound onT (k) can be obtained. Once we have it, a simple proof by induction (which we
omit here) can be used to verify it.

Theorem 6.10 For all k ≥ 0,

T (k) ≤
k∑

j=0

1

j!

(
k

j

)

.

In particular, this gives
T (k) ≤ e2

√
k.

Proof. We only show how the second bound follows from the first one. For this, we use the
easy estimate

(
a

b

)

≤ ab

b!

and compute

T (k) ≤
k∑

j=0

1

j!

(
k

j

)

≤
k∑

j=0

1

j!

kj

j!
=

k∑

j=0

(√
k

j!

)2

≤
(

k∑

j=0

√
k

j!

)2

≤
( ∞∑

j=0

√
k

j!

)2

= e2
√

k.

Because in any USO ofCn, h(X, I) ≤ n for any pair(X, I), the findings of this chapter
can be summarized as follows.

Theorem 6.11 Algorithm 6.3RandomFacet finds the sink of any acyclicn-cube USO with
an expected expected number of at most

e2
√

n

vertex evaluations.

This is still exponential, butmuch smallerthan the previous bounds. We conclude with a
table that compares the expected number of vertex evaluations incurred by the algorithms we
have considered in this course, see Table 6.1.

What can we conclude from this table? When we are willing to waitfor around109 vertex
evaluations (this sounds like a realistic number, given thecapabilities of today’s computers), we
can find the sinks of general USOs in dimensions up to around50, using the product algorithm.
The trivial algorithm quits at aroundn = 30, whileRandomEdge is a bad idea already much
earlier.

If we know that the USO is acyclic, however, we can go up to dimensions aroundn = 130,
usingRandomFacet. Forn = 127, the algorithm seems to visit many vertices, but comparing
this number with thetotal number of vertices, we see that the fraction of visited vertices is
approximately

10−30 = 0.000000000000000000000000000001.
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Trivial Product RandomEdge RandomFacet

2n 3
2
· 43

20

(n−1)/2 ≥ 2⌊en−1
2

!⌋ ≤ ∑n
j=0

1
j!

(
n
j

)

3 8 3.23 4 5.67
7 128 14.9 32 26.0
15 3.28 · 104 3.19 · 102 2.7 · 104 234.0
31 2.15 · 109 1.45 · 105 7.11 · 1012 5.5 · 103

63 9.22 · 1018 3.03 · 1010 4.47 · 1034 5.15 · 105

127 1.70 · 1038 1.32 · 1021 1.01 · 1088 3.32 · 108

255 5.79 · 1076 2.49 · 1042 1.64 · 10214 3.30 · 1012

Table 6.1: Runtime comparisons of four sink-finding algorithms for certain odd values ofn;
the Trivial algorithm goes through all vertices; the Product algorithm combines (for odd di-
mensions) the optimal algorithms for dimensions1 and2; RandomEdge is the simple random
walk, andRandomFacet is the sophisticated random walk of this chapter, its runtime bound
is valid only for the acyclic case.

On the other hand, we cannot argue around the fact that all methods we have studied are
impractical asn gets really large (in the thousands, say). The great challenge is to find better
algorithms, in the hope of ultimately getting a bound which is polynomial inn. Currently, we
are very far away from this goal.

Bibliographic Remarks

The subexponential algorithm for acyclic USOs explicitly appears first in a paper by Ludwig
[7], as a specialization of general techniques by Kalai [6] as well as Matoǔsek, Sharir and Welzl
[8]. The explicitexp(2

√
n) bound is derived by G̈artner [3].

Exercises

Exercise 6.1Prove Lemma 6.2!
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Chapter 7

Solutions to Exercises

This final chapter contains solutions to the exercises, organized by chapters. Due to severe
time constraints, some solutions are only sketched, and even for the ones that are complete,
absolutely no guarantee is given. If you find errors (this actually holds for all chapters), please
report them to me.

7.1 Solutions to Chapter 1

Exercise 1.1
(i) The upper boundt(Kn) ≤ n is clear, because if we evaluate all vertices, we have surely

evaluated the sink. For the lower bound, we argue with an adversary who operates the oracle
in such a way that we are forced to askn questions. The construction is as follows:

Assume we have already evaluatedi − 1 verticesv1, . . . , vi−1, 1 ≤ i ≤ n. Because our
algorithm is deterministic, the answers we have obtained sofar determine the next vertexvi

that we evaluate. The oracle will tell us that

out(vi) = V \ {v1, . . . , vi−1},

i.e. all edges from vertices we have already evaluated are incoming, and all edges to vertices we
haven’t seen yet are outgoing. This in particular implies that only then-th vertex we evaluate
will actually be the sink, proving the lower bound.

In this construction, it is important that the adversary canalways guarantee at least one
orientation which is consistent with all answers given so far—otherwise, we could accuse him
of cheating.

Such an orientation does indeed exist: after having evaluatedvi, the adversary has revealed
thatD contains the following edges:

(a) (vk, vℓ), k < ℓ ≤ i (between evaluated vertices),

(b) (vk, v), k ≤ i, v ∈ V \ {v1, . . . , vi} (between evaluated and non-evaluated vertices).
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Edges between non-evaluated vertices are still unknown to us. In fact, the adversary can put
these vertices intoanyordervi+1, . . . , vn, and the complete orientation induced by

D = {(vk, vℓ) | k < ℓ ≤ n}

is acyclic, contains a unique sinkvn and is compatible with all answers. The actual order in
which these remaining vertices will appear in the end is exactly the order in which we evaluate
them.

(ii) The graph of then-cube can be realized as follows: the vertices are all the2n bitvec-
tors of lengthn, and two bitvectors are connected by an edge iff they differ in exactly one
coordinate, see Figure 7.1.

00

01

10

11

Figure 7.1: Graph of the2-cube

The upper bound is again easy: evaluate all2n−1 vertices with even parity (even number of
one-entries). Because all edges connect a vertex with even parity to one with odd parity, these
evaluations reveal the orientations ofall edges. If the sink has even parity itself, we are done,
otherwise, we need one more evaluation.

For the lower bound, the strategy will be similar as in part 1,but we have to be more careful.
For example, when evaluating a vertexv, the adversary can in generalnot tell us thatout(v)
contains exactly the neighbors ofv that have not been evaluated so far. Consider the situation
in the 2-cube after evaluating vertices00 and11: answering

out(00) = {01, 10}, out(11) = {01, 10}

would result in the orientation of Figure 7.2 which containstwo sinks. Because we have been
guaranteed that the orientation contains exactly one sink,we would now accuse the adversary
of cheating.

Instead, the adversary strategy will be the following: we first construct a Hamiltonian cycle
of Cn (a closed path containing every vertex exactly once). Let usprove by induction that such
a cycle exists, where the base of the induction isn = 2: in this case, we obviously have such a
cycle. Let us assume that we have a cycle forCn−1. The vertices ofCn with last coordinate1
(the upper facet) form aCn−1, and so do the ones with last coordinate0 (the lower facet). By
the induction hypothesis, there are Hamiltonian cycles in both facets, where we can assume that
they are copies of each other (connecting the vertices in thesame order, within the facets). By
just leaving out one edge of each cycle, we get two Hamiltonian paths, and by concatenating
them with two extra edges between the facets, we get a Hamiltonian cycle inCn, see Figure
7.3.
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00

01

10

11

Figure 7.2: AC2-orientation with two sinks

Cn−1

Cn−1

Cn

Figure 7.3: Constructing a Hamiltonian cycle

SoCn has a Hamiltonian cycle ifn ≥ 2. (C1 does not have one, but it is easy to check that
the exercise statement is true forn = 1.)

Let us assume that Alice can find the sink ofCn with 2n−1 evaluations. We can answer her
first 2n−1 − 1 question as if this Hamiltonian cycle were directed, and theother edges are all
outgoing. (Observe that so far, this orientation does not have a sink at all!) After2n−1 − 1
queries, there are still three consecutive non-evaluated vertices, or we have two pairs of two
consecutive non-evaluated vertices, see Figure 7.4 In bothcases, there are still (at least) two

Figure 7.4: The possible choices of the sink after2n−1 − 1 evaluations.

vertices which will become the unique sink after reorienting one edge about whose orientation
Alice has no information. It follows that even if Alice has one more question, she will not be
able to deduce the sink.

(iii) If one evaluates the vertices of avertex cover, then the orientation of every edge is
known, so it is also known where the sink is. In the worst case,we still have to evaluate it.
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Exercise 1.2
If Xn = n then for everyi > 1 the algorithm has to choosei − 1 as the next number from

{1, 2, . . . , i − 1}. This probability is 1
i−1

, so prob(Xn = n) = 1
(n−1)!

.
For the rest we need to define the Stirling numbers (of the firstkind). Any permutationπ ∈

Sn decomposes into cycles, which are sequences(n0, n1, . . . nℓ−1) of elements withπ(ni) =
n(i+1) mod ℓ, for 0 ≤ i < ℓ. For example, the permutation

i 1 2 3 4 5
π(i) 3 5 4 1 2

consists of the two cycles
(1, 3, 4)(2, 5).

The identity hasn cycles(1)(2) · · · (n), while for example any circular shift consists of one
cycle of sizen. The cycle decomposition is unique if we let every new cycle start with the
smallest element not used so far. We define

[
n
k

]

:= |{π ∈ Sn|π hask cycles}|.

For example

[
0
0

]

:= 1,

[
n
0

]

= 0 for n > 0,

[
0
k

]

= 0 for k > 0, and the following

recurrence relation holds for Stirling numbers of first kind.
[

n
k

]

= (n − 1)

[
n − 1

k

]

+

[
n − 1
k − 1

]

, n > 0.

To see this, observe that there are exactly

[
n − 1
k − 1

]

permutations withn appearing in a cycle

(n) of its own. The ones havingn in some nontrivial cycle can be obtained by insertingn into
some cycle of a permutation ofn − 1 elements withk cycles. Since there are exactlyn − 1
different ways to do this for every such permutation (j ways for every cycle of sizej), the
formula follows.

For our algorithm letp(n, k) := prob(Xn+1 = k + 1). Now we have by the definition of
the algorithm that

p(n, k) =
n−1∑

i=0

p(i, k − 1).

This entails
n · p(n, k) − (n − 1)p(n − 1, k) = p(n − 1, k − 1).

Multiplying the equation by(n − 1)! and settingf(n, k) := n!p(n, k) yields

f(n, k) = (n − 1)f(n − 1, k) + f(n − 1, k − 1).

Furthermoref(0, k) = p(0, k) =

[
0
k

]

, sof(n, k) =

[
n
k

]

, and

p(n, k) = prob(Xn+1 = k + 1) =
1

n!

[
n
k

]

.
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Exercise 1.3
(i) By induction onn, where the casen = 1 is trivial. Assume that the statement is true for

graphs onn−1 vertices. and letG haven vertices. BecauseG is acyclic,G must have a source
v (vertex with no incoming edge); we removev and its incident edges fromG and inductively
get a topological sortingσ : V \ {v} → [n − 1] in the resulting graphG′. Extendingσ to V
by settingσ(v) = n gives a topological sorting ofG. To check this, we only need to consider
edges involvingv, and becausev was the source, they must be of type(v, w). Then, however,
the requirement of the topological sorting is fulfilled becauseσ(v) = n > n − 1 ≥ σ(w).

(ii) We show three implications:
(a)⇒(c): let σ be the unique topological sorting. We claim thatσ−1(n), . . . , σ−1(1) is a

directed Hamiltonian path. Namely, if there were two verticesσ−1(i) andσ−1(i − 1) without
a connecting edge, we could swap their order in the topological sorting and obtain a different
topological sorting, a contradiction.

(c)⇒(b): For every pair(v, w) there is directed path between them, along the Hamiltonian
cycle.

(b)⇒(a): for any pair(v, w), the directed path uniquely determines the order of the elements
in the topological sorting: if the path goes fromv to w, we must haveσ(v) > σ(w), and if it
goes fromw to v, the converse holds. Because two different topological sortings would have
to order at least one pair in two ways, there can be only one such order.

(iii) For Kn, every acyclic orientation has a unique topological sorting, since for every two
verticesv, w there is an edge (a path of length 1) between them. And there are n! different
topological sortings.

7.2 Solutions to Chapter 2

Exercise 2.1(i) The functionfBλ
is quadratic inx and therefore we can writefBλ

(x) ≤ 1
as‖x − c‖2 ≤ γ for some vectorc and a (not necessarily positive) constantγ ∈ R. In order
to prove thatBλ is indeed a ball, we must showγ ≥ 0. SinceB0 ∩ B1 6= ∅, there exists
at least one real pointy for which bothfB0

(y) ≤ 1 andfB1
(y) ≤ 1 hold. It follows that

fBλ
(y) = (1 − λ) fB0

(y) + λfB1
(y) ≤ 1. This shows that‖x − c‖2 ≤ γ has a real solution,

which is only possible ifγ ≥ 0.
(ii) is easily seen to hold by pluggingp ∈ R (or p ∈ S, respectively) intofBλ

= (1 −
λ) fB0

+ λfB1
.

(iii) Let fB0
= ‖x− c0‖2/ρ0 andfB1

= ‖x− c1‖2/ρ1 be the defining functions of the given
ballsB0 andB1. ExpandingfBλ

≤ 1 we obtain

fBλ
= xT x

(
1 − λ

ρ0

+
λ

ρ1

)

− 2xT

(
1 − λ

ρ0

c0 +
λ

ρ1

c1

)

+ const ≤ 1,

which we can write in the form‖x − c‖2/γ ≤ 1 for

c =

(
1 − λ

ρ0

c0 +
λ

ρ1

c1

)

/

(
1 − λ

ρ0

+
λ

ρ1

)

.
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This shows that the centerc of Bλ is a convex combination of the centersc0, c1. That is, asλ
ranges from0 to 1, the centerc travels on a line fromc0 to c1. Notice now that the radius ofBλ

is simply the distance fromc to a pointp ∈ ∂B0 ∩ ∂B1, because by (ii) the pointp lies on the
boundary ofBλ for anyλ ∈ [0, 1]. The claim now follows from the fact that the distance from
a pointc moving on a line (namely fromc0 to c1) to a fixed pointp is a strictly convex function.

Exercise 2.2
(i) ⇒ (ii). Fix any p ∈ R and suppose for a contradiction that the vectors{q − p | q ∈

R \ {p}} are linearly dependent. Then there exist coefficientsλq, q ∈ R \ {p}, not all zero,
such that

0 =
∑

q∈R\{p}
λq (q − p) =

∑

q∈R\{p}
λqq −

∑

q∈R\{p}
λqp.

Settingλp :=
∑

q∈R\{p} λq we thus obtain0 =
∑

q∈R λqq with
∑

q∈R λq = 0 for coefficients
λq, q ∈ R, which are not all zero, contradiction.

(ii) ⇒ (iii) is obvious.
(iii) ⇒ (i). Assume the pointsR are affinely dependent, implying that there exist co-

efficientsλq, q ∈ R, not all zero, such that
∑

q∈R λqq = 0 with the coefficients summing
up to zero. In order to get a contradiction we need to show thatfor all p ∈ R, the vectors
{q − p | q ∈ R \ {p}} are linearly dependent.

So pick an arbitraryp ∈ R. Using
∑

q∈R λq = 0 we get

0 =
∑

q∈R

λqq =
∑

q∈R

λqq −
∑

q∈R

λqp =
∑

q∈R\{p}
λq (q − p).

Observe here that at least one of the coefficientsλq, q ∈ R \ {p}, is nonzero:λp cannot be
the only nonzero coefficient because all coefficients together sum up to zero. Thus, the points
{q − p | q ∈ R \ {p}} are linearly dependent and we are done.

Exercise 2.3
The case|F | = 1 is easy because we then have©(F, F ) = F . Thus the center of©(F, F )

is the single point inF which trivially lies in aff(F ) = F . For |F | > 1, we proceed as in the
exercise.

(a) If s ∈ aff(F ) thens =
∑

q∈F λqq for coefficientsλq summing up to one. It follows that
for anyp ∈ F ,

s − p =
∑

q∈F

λqq −
∑

q∈F

λqp =
∑

q∈F\{p}
λq (q − p) ∈ lin(F − p).

This shows direction(⇒); the other direction is shown along the same lines: Ifs − p ∈
lin(F − p), there are coefficientsλq, q ∈ F \ {p}, such thats− p =

∑

q∈F\{p} λq (q− p). Then

s =
∑

q∈F\{p}
λq (q − p) + p =

∑

q∈F\{p}
λqq +

(

1 −
∑

q∈F\{p}
λq

)

p,

and since the involved coefficients sum up to one we concludes ∈ aff(F ).
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(b) Recall first that we assume the pointsF to be affinely independent. This together with
Fact 2.8(ii) guarantees that the columns ofM are linearly independent. SoMx = 0 implies
x = 0 for all vectorsx.

SupposeMT M is not invertible, i.e., there exists a nonzero vectorx with MT Mx = 0.
Then

0 = xT MT Mx = ‖Mx‖2,

and henceMx = 0 for x 6= 0, which is impossible as we have just seen.
(c) From (a) we know thats∗ ∈ aff(F ) if and only if s∗ − p ∈ lin(F − p), or, equivalently,

if s∗ − p = Mx for some vectorx. Takex := (MT M)−1MT (s − p).
(d) We first show thats− s∗ is orthogonal toaff(F ), i.e.,MT (s− s∗) = 0. For this, we use

the definition ofs∗ in order to write

MT (s∗ − p) = MT M(MT M)−1MT (s − p) = MT (s − p);

which readily impliesMT (s − s∗) = 0. We can then conclude

‖s − p‖2 = ‖(s − s∗) + (s∗ − p)‖2

= ‖s − s∗‖2 + ‖s∗ − p‖2 + 2 (s − s∗)T (s∗ − p)

= ‖s − s∗‖2 + ‖s∗ − p‖2 + 2 (s − s∗)T M(MT M)−1MT (s − p),

where the last term reduces to zero.
(e) Let c be the center andρ be the squared radius of©(F, F ), and supposec 6∈ aff(F ).

We will construct a smaller ballB with F on the boundary, which will give us the desired
contradiction.

We takec∗ as the center ofB. By part (d), the distance fromc∗ to any pointp ∈ F is

‖c∗ − p‖2 = ‖c − p‖2 − ‖c − c∗‖2 = ρ − ‖c − c∗‖2. (7.1)

Since the right-hand side of this equation is independent ofp, the pointc∗ has thesamedistance
to all points inF , and hence the ballB of centerc∗ and squared radiusρ− ‖c− c∗‖2 hasF on
the boundary.

Furthermore, sincec 6∈ aff(F ) by assumption, we have‖c − c∗‖2 > 0 and thus equa-
tion (7.1) yieldsρ − ‖c − c∗‖2 < ρ. Consequently,B is a ball withF on the boundary and
smaller radius than©(F, F ), a contradiction.

(ii) Let S be the set of balls that go throughF and have their center inaff(T ). We will set
up a system of equations whose solution space precisely encodes the ballsS; subsequently we
will see that exactly one solution exists.

Fix any pointp ∈ F . We want to find the centerc of a ball going throughF , or, in other
words, a pointc such that the distance fromc to the fixed pointp equals the distance fromc to
any other point inF \ {p}. Settingc′ := c − p and denoting byq′ the columnsq − p of M ,
q ∈ F \ {p}, we can write this as

c′T c′ = (c′ − q′)T (c′ − q′), ∀q ∈ F \ {p}. (7.2)
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Subtractingc′T c′ from both sides of (7.2) results in a system oflinear equations in the unknown
c′:

2c′T q′ = q′T q′, ∀q ∈ F \ {p}. (7.3)

So far, we have not yet imposed the constrained that the center c of B must lie inaff(F ). By
part (a),c ∈ aff(F ) is equivalent toc′ ∈ lin(F − p), and thus we can writec′ asc′ = Mx for
some unknown coefficient vectorx. By plugging this into (7.3) we obtain the|F |−1 equations
2xT MT q′ = q′T q′ which we can write as

2MT Mx = m,

wherem is the vector containing the scalar productsq′T q′, q ∈ F \ {p} (in the same order as
in M ).

By part (b),MT M is a regular matrix and hence the system has exactly one solution, x,
say. This shows that there exists a unique ball with center inaff(F ) havingF on the boundary.
Its center isc = Mx + p and its squared radius is‖Mx‖2 by equation (7.2).

Exercise 2.4The proof is by induction onk := |S \R|. Fork = 0, the algorithm performs
a basis computation ‘F := R’ and zero violation tests, so the claim holds.

Fork > 0, the algorithm calls itself recursively at most twice, eachtime with parameters for
which the induction hypothesis applies. Therefore, the claim still holds after the first recursive
call, and since the algorithm then continues with a violation test, the claim also holds after the
second recursive call.

Exercise 2.5
Let n be a multiple of(d + 1). Then we put ablock of n/(d + 1) points close to any of

thed + 1 corners of a regular simplex, as shown in Figure 7.5 ford = 2, n = 9. The labels
correspond to the indices of the points in the setS.

The claim is that any(d + 1)-element setQ of points containing exactly one point from
each block appears as a setR during the algorithm. The bound follows, because there are

(
n

d + 1

)d+1

such setsQ, and for any (except possibly the last) ball©(Q,Q) appearing in the algorithm, at
least one violation test will be performed.

To prove the claim, letQ = {q1, . . . , qd+1} be such a set, ordered by decreasing index inS.
Always removing the last point ofS for the first recursive call, we removeq1 at some stage

and recursively compute©(S ′, ∅), for S ′ the prefix ofS that stops just beforeq1. By construc-
tion, q1 6∈ ©(S ′, ∅), so there will be a recursive call computing©(S ′, {q1}). Subsequently, the
algorithm computes©(S ′′, {q1}), whereS ′′ is the prefix ofS stopping just beforeq2. Again,
q2 6∈ ©(S ′′, {q1}), and a recursive call for©(S ′′, {q1, q2}) is spawned. Continuing like this,
we eventually get the whole setQ into the second argument, which is what we wanted to prove.

Exercise 2.6Let t(n) be the maximum expected number of violation tests in a call to
LeaveItThenTakeIt(R,S), where|S \ R| = n. Clearly,

t(0) = 0,

t(n) = t(n − 1) + 1 + pvt(n − 1), n > 0, (7.4)
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Figure 7.5: Construction for theΩ(nd+1) lower bound

Figure 7.6: Thed-dimensional regular simplex embedded inR
d+1 for d = 1 (left) andd = 2

(right).

wherepv is the maximum probability for the event ‘p 6∈ ©(F, F )’. Since we definitely have
pv ≤ 1 we obtain the recursiont(n) ≤ 2t(n − 1) + 1 with t(0) = 0, which solves tot(n) ≤
2n − 1. It follows tk(n) ≤ t(n) ≤ 2n − 1.

To show that this is best possible, we takeS to be the vertices of theregular simplexin
R

d, and show that algorithmLeaveItThenTakeIt(R,S) needs exactly2|S\R|−1 violation
tests for anyR ⊆ S.

As we will prove below, the verticesS of thed-dimensional regular simplex have the prop-
erty that for anyR ⊆ S, ©(R,S) does not contain any point fromS \ R. Consequently,
pv = 1 in equation (7.4), regardless of the outcome of the random choices. It follows that
t(n) = 2t(n − 1) + 1 which together witht(0) = 0 solves to2n − 1.

It remains to state what a regular simplex is and to verify that it indeed has the property we
have used above. Thed-dimensional regular simplexis the convex hull of thed + 1 standard
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basis vectorsSd := {e1, . . . , ed+1}, see Figure 7.6. Observe that the pointsSd and hence their
convex hull all lie in thed-dimensional hyperplane

H := {x ∈ R
d+1 | ∑d+1

i=1 xi = 1}.

So if we think ofH asR
d, we see that the regular simplex is indeed ad-dimensional object.

(We could have defined it directly inRd, but the resulting formulas for the vertices would be
uglier than the given representation inR

d+1.)
Fix a setF = {ei1 , . . . , eik} ⊆ Sd. We want to show that no point inSd \ F is contained

in ©(F, F ). The case|F | ≤ 1 is obvious; so let us assume from now on thatF consists of at
least two points. In this case, we can use the result from Exercise 2.3(ii) to calculate the center
and radius of©(F, F ) explicitly:

The matrixM (whose columns are the pointseij − ei1) consists ofd rows: one full of−1’s,
andd − 1 rows with exactly one1 at different places and nothing but zeroes elsewhere. From
this we immediately get

2MT M =








4 2 · · · 2

2 4
. ..

...
...

.. . . .. 2
2 · · · 2 4








and m =






2
...
2




 .

The solution of the system2MT Mx = m is x = (1/k, . . . , 1/k) as you can easily verify, and
therefore the entries ofc′ = Mx read

c′j =







−(k − 1)/k, if j = i1,
1/k, if j 6= i1 andej ∈ F ,
0, otherwise.

Finally, c = c′ + ei1 is the zero vector with1/k in entry i iff ei ∈ F .1 For a pointej ∈ F we
thus get

‖ej − c‖2 = (1 − 1/k)2 + (k − 1)
1

k2
=

k − 1

k
,

that is, the squared radius of©(F, F ) is (k − 1)/k. On the other hand, a pointej 6∈ F has
distance

‖ej − c‖2 = 12 + k
1

k2
=

k + 1

k
,

to c and is thus outside©(F, F ).

Exercise 2.7
Induction on|S \ R|. If R = S, the algorithm returnsF = R which is obviously correct.

If |S \ R| > 0, we can assume by the induction hypothesis that the setF returned by the first
recursive call is the unique basis of(R,S \ {p}) (if β = 0) or (R ∪ {p}, S) if β = 1. By

1So the center of©(F, F ) is the center of gravity of the pointsF , something you probably would have guessed
beforehand.
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Lemma 2.22,F has no loose points and no violators w.r.t. the pair it came from. If no second
recursive call happens, we have made sure thatF also has no loose elements and no violators
w.r.t. (R,S), soF is the basis of(R,S), again by Lemma 2.22.

If there is a second recursive call, we can again inductivelyassume that it returns the basis
of its respective pair. By Observation 2.19, this basis (which we return) must be the basis of
(R,S).

Exercise 2.8
Let X be a random variable. The Markov inequality tells us that

prob(X ≥ 2E(X)) ≤ 1

2
.

It follows that with probability smaller than1/2, LeaveItThenTakeIt performs more
than2cd+1n violation tests. We install a counter, and if the algorithm has not yet terminated
after2cd+1n violation tests, we simply abort it and start from scratch. We need to do this with
probability smaller than1/2.

We require more than2Kcd+1n violation tests if and only if we abort at leastK times.
Because individual runs of the algorithm are independent, this happens with probability smaller
than

1

2K
,

from which the claimed bound follows.

Exercise 2.9This is covered in detail in the bookComputational Geometry: Algorithms
and Applicationsby M. de Berg, M. van Kreveld, M. Overmars and O. Schwarzkopf [1].

7.3 Solutions to Chapter 3

Exercise 3.1Let E be the expected number of visited vertices. The probabilitythat we need
to visit only 4 vertices is1

2
(after visiting the first 3, we get to the sink with probability 1

2
, and

with the same probability, we stay on the cycle of length 6. After taking 2 more steps, we are
in the same situation as before. This gives

E = 4 · 1

2
+ (E + 2) · 1

2
,

soE = 6.
Now we prove that for any other USO the expected number of visited vertices, starting

from the source, is at most 6. First we claim that (up to symmetry) there is only one USO of
the 3-cube which is cyclic. If cycles occur, they must be of length 6: a cycle of length 4 would
be a cycle in a2-dimensional face, which is not possible in a USO. Also, a cycle of length 8
would mean that there is no global sink. It is also clear that no odd cycles can occur, because
the cube graph is bipartite.
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Figure 7.7: The two “possible” cycles of the 3-cube.

Thus, the only possibility is to have some cycle of length 6, and there are (up to symmetries)
two ways how such a cycle can look like, see figure 7.7.

The first one gives the USO of the exercise. The second one is not possible, since there
is an edge which splits this 6 cycle into two squares. Under any orientation of this edge, we
would get a 4-cycle which is not possible in a USO.

Let’s focus on the number of vertex evaluations. In order to get more than 6 on average, for
some acyclic USO, we must have a path longer than 6 (see Figure7.8). If the longest path has

1

1 2

2 3

3

4

4

5

5

6

6

7

7

8

8

Figure 7.8: Assuming paths of length 8 or 7 from the source

length 8, the source has one edge to the vertex labeled 7 in thefigure, and two more outgoing
edges. These edges can go only to the vertices denoted by 5,3,1 in the figure (otherwise we
would have an (undirected) odd cycle).

It follows that a path of length at most 4 is chosen with probability at least1/3 (namely, if
the edge going to3, or to1—one of them must exist—is chosen). On the other hand, the length-
8 path has probability1/3 at most, because it can only occur if the edge to7 is chosen. As all
other paths have length 6 at most, it follows that the expected number of vertex evaluations is
at most 6.

The case where the longest path has length 7 can be done similarly, see Figure 7.8 (bottom).
With probability at least1/3, there is a path of length at most 5, starting with the edge from the
source to 4 or 1—one of them must exist. As before, the path of length7 has probability1/3
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at most, and together with all other paths being of length at most 6, the claim follows.

Exercise 3.2
Assume that all2-dimensional faces have unique sinks, but that the orientation is not a

USO. Consider a faceF of smallest dimension which does not have a unique sink. Because
there are no cycles,F must have at least two sinksX1, X2. Also, they must be antipodal to
each other onF , because otherwise, there would be two sinks in some facet ofF , contradicting
our choice ofF . This also implies thatF has no other sinks thanX1, X2, and that every facet
of F contains eitherX1, or X2.

Now consider any vertexY in F which is different fromX1 andX2. BecauseY is not a
sink in F , is has some outgoing edge inF . Actually, it must have even two outgoing edges,
because otherwise,Y would be a facet sink, meaning that there is some facet ofF with two
sinks,Y and one ofX1 andX2, again contradicting our choice ofF . Only one of the two
outgoing edges can go toX1 or X2, because|X1 ⊕ X2| ≥ 3 (recall that the ‘bad’ faceF
cannot be a2-face). This means, we can reach a non-sinkY ′, following an outgoing edge from
Y . Continuing with this argument fromY ′, we can carry on until we see some vertex for the
second time. By that moment, however, we have constructed a directed cycle, a contradiction.

Exercise 3.3
(i) Let i be the fixed label. SplitCn into the two facets (subcubes)C1 andC2, whereC1

consists of the vertices not containingi, while C2 collects all vertices containingi.
Any cube faceF is either completely in one of the two facets, or it is dividedamong the

two facets. In the first case, the orientation inF is not affected by relabeling (asF does not
contain edges labeledi).

In the second case,F 1 = F ∩ C1 andF 2 = F ∩ C2 are facets ofF . Let X1, X2 be their
sinks, where we assume without loss of generality thatX1 is the sink ofF . It easily follows
that after relabeling,X2 is the unique sink ofF .

(ii) First assumes has the required property; take a face[I, J ]. We have to show that[I, J ]
has a unique sink.

Consider the restricted map̃s : [I, J ] → 2J\I ,

s̃(X) = s(X) ∩ (J \ I).

We first show that̃s is injective. Namely, assume there areX,Y ∈ [I, J ] with s̃(X) = s̃(Y ).
For these vertices we get

(s(X) ⊕ s(Y )) ∩ (J \ I) = ∅,
and sinceX ⊕ Y ⊂ J \ I, this contradicts the assumption.

It follows that s̃ is bijective. In particular, there is exactly one sinkX ∈ [I, J ] (having
s̃(X) = ∅).

Now assumes does not have the property and letX,Y witness its failure. But then, since
(X⊕Y )∩ (s(X)⊕s(Y )) = ∅, in the face[X∩Y,X∪Y ] bothX andY have the same outmap
valueS = s(X) ∩ (X ⊕ Y ) = s(Y ) ∩ (X ⊕ Y ). Therefore, after reorienting the edges with
label inS, the face[X ∩ Y,X ∪ Y ] has two sinksX,Y , i.e. it is not a USO, ands is not the
outmap of a USO.
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Exercise 3.4Using the product algorithm, we get

t(n) = t(2)⌊n/2⌋t(1)n mod 2.

Plugging int(2) = 3, the bound follows.

7.4 Solutions to Chapter 4

Exercise 4.1
By interchanging the column player’s (adversary’s) strategies, we may assume thata ≤ b.

We first argue that the only interesting case is where the relations between the entries ofM are
as follows. 



a < b
< >
c > d



 . (7.5)

Let’s get rid of the other cases. Assume that one of the four relations is an equality, say
a = b (the other case are completely symmetric). Then, ifc < d, the unique optimal strategy
of the column player is̃y = (0, 1), and ifc > d, it’s ỹ = (1, 0). If c = d, the column player can
choose any strategy.

If c < d, the row player (algorithm player) therefore chooses the row with smaller entry
in the second column: ifb < d, she plays̃x = (1, 0), if b > d, it’s x̃ = (0, 1). If b = d, she
can play any strategy. The casec > d is similar. Even ifc = d, the relation betweenb andd
(equivalently, betweena andc) decides the possible optimal strategies for the row player.

It remains to deal with the case where all four relations are strict inequalities, but for exam-
plea < b, c < d. As before, the column player then uniquely choosesỹ = (0, 1), and the rows
player’s optimal behavior follows.

Under the relations in (7.5), it is not difficult to show that the unique optimal solution of
(LPM ) is assumed when both inequalities involvingu are satisfied with equality. This implies

ỹ =

(
d − b

a − c + b − d
,

a − c

a − c + b − d

)

.

Similarly (by solving the dual), we get

x̃ =

(
d − c

a − c + b − d
,

a − b

a − c + b − d

)

.

The value of the game is
det(M)

a − c + d − b
.

Exercise 4.2
(i) Let Φ = gM(x̃) be the value of the game. Given algorithmA(x), the best response

of the adversary (the runtime ofA(x) against its worst random input) isgM(x) by definition.
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Becausẽx minimizesgM(x) over allx, we getΦ ≤ gM(x), soA(x) is not faster thanΦ on
some random input. But then it is also not faster thanΦ on some concrete inputIj (recall the
arguments from the proof of Yao’s Theorem).

(ii) the runtime ofA(x̃) is Φ if the adversary plays optimally. It follows that the runtime is
never more thanΦ.

Exercise 4.3
The gameshow host has six possible strategies; he has to choose where to put the car (three

choices), and for each of these choices specify which door toopen in case your first choice
is the door that hides the car (otherwise, his answer is unique). Therefore, we can encode the
host’s strategies with a pair of distinct numbers between1 and3.x

You have six strategies as well; there are three choices for the door you pick first, and for
each of these, you may switch or not. We can encode these strategies by a number and a letter
in {Y,N} (Y means you switch). Here, whether you switch or not does not depend on the door
the host opens. We can include this, but it wouldn’t change anything.

The payoff matrix therefore looks as follows (the host is therow player with the goal of
minimizing your payoff, you are the column player and want tomaximize the payoff).

1Y 1N 2Y 2N 3Y 3N
12 0 1 1 0 1 0
13 0 1 1 0 1 0
21 1 0 0 1 1 0
23 1 0 0 1 1 0
31 1 0 1 0 0 1
32 1 0 1 0 0 1

Consider the resulting linear program (LPM ). Adding up the first six inequalities, we get

4y1 + 2y2 + 4y3 + 2y4 + 4y5 + 2y6 ≥ 6u,

and plugging in the constraint
6∑

i=1

yi = 1,

we get
2 + 2(y1 + y3 + y5) ≥ 6u.

Becausey1 + y3 + y5 ≤ 1, u ≤ 2/3 follows. On the other hand, valueu = 2/3 is attainable,
by setting

y1 = y3 = y5 =
1

3
, y2 = y4 = y6 = 0.

It follows that these setting define an optimal strategy: initially, choose between the doors
uniformly at random, but then switch in any case.

Exercise 4.4
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For this, we need a slightly more formal view of deterministic algorithms for this scenario.
We assume that the vertices are labeled, and any deterministic algorithm specifies the label of
the next vertex to go to, depending on the sequence of vertices seen so far.

We use Yao’s Theorem with the uniform distribution on all inputs, i.e. with each of then!
acyclic orientations ofKn (see Exercise 1.3(iii)) appearing with probability1/n!.

Assume we are at the vertex of ranki (the rank is the order in the unique topological
sorting corresponding to the orientation, where the sink has rank1). Because the algorithm has
no information about vertices of smaller rank and the orientations of edges between them, any
smaller-rank vertex offixed label (the one the algorithm moves to next) still has random rank
among the vertices of ranks1, . . . , i−1, averaged over all acyclic orientations. This implies that
the expected numberf(i) of steps, starting from the vertex of ranki, satisfies the recurrence

f(i) = 1 +
1

i − 1

i−1∑

j=1

f(j),

which is exactly the recurrence we also proved for Randomix’sstrategy against afixedorien-
tation.

7.5 Solutions to Chapter 5

Exercise 5.1
(i) Let pi denote the probability that a random walk starting ati ends inN . We know that

p0 = 0, pN = 1, and
pi = p · pi−1 + q · pi+1, p + q = 1. (7.6)

If p = 0, thenpi = 1, i 6= 0, while for q = 0, we getpi = 0, i 6= N , so let’s assume that bothp
andq are nonzero.

Let
bi = q · pi − p · pi−1. (7.7)

We obtain that
bi − bi−1 = q · pi − p · pi−1 − q · pi−1 + p · pi−2 = 0,

using thatp + q = 1 and (7.6). Sinceb1 = q · p1 we get from (7.7) that

pi =
p

q
pi−1 + p1,

which gives that

pi =

(

1 +
p

q
+ · · · +

(
p

q

)i−1
)

p1.

So

pi =

(
p
q

)i

− 1

p
q
− 1

p1, p 6= 1

2
,
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and

pi = i · p1, p = q =
1

2
.

Using that

1 = pN =

(
p
q

)N

− 1

p
q
− 1

p1, p 6= 1

2

and

1 = pN = N · p1, p = q =
1

2
,

we get that

pi =

(
p
q

)i

− 1
(

p
q

)N

− 1
, p 6= 1

2
,

and

pi =
i

N
, p = q =

1

2
.

(ii) Here is a sketch: we proceed as above, but with

bi = p · Ei − q · Ei−1 + i.

In solving this, the following formula comes in handy:

i=n∑

i=1

i · xi =
n · xn+2 − (n + 1)xn+1 + x

(x − 1)2
.

Exercise 5.2
One can prove this by induction on|X ⊕ Y |. If |X ⊕ Y | = 1 than there is a directed edge

betweenY andX. Otherwise let|X ⊕Y | = n. The cube[X,Y ] hasX as a sink, so there is an
outgoing edgei from Y . By the inductive hypothesis there is a directed path of length n − 1
from Y ⊕ {i} to X. Combined with the edge(Y, Y ⊕ {i}), we get the desired directed path of
lengthn from Y to X.

Exercise 5.3The face[A,B] corresponds to all bit patterns which have a1 at positions in
A and a0 at positions not inB. Any sink of [A,B] must have minus-signs at all positions in
B \A. This means, any sink of[A,B] corresponds to the same partial bit/sign pattern with a bit
or sign at any position. The fact that the pattern is completable in a unique way then translates
to the fact that[A,B] has a unique sink.

Exercise 5.4Looking at the automaton in Figure 5.5, it becomes clear thatevery vertexX
can be decomposed into blocks of the three types

1
+

,
0 0
+ − , and

1 0
− − .
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At level 1, we have only one block of the first type, so there are

n − 1

2

blocks of the two other types. Since each of them contributeseither a1 or a+, we get

#X(1) + #X(+) =
n − 1

2
+ 2 =

n + 3

2
,

as desired.
Now consider a vertexX at levelk. n being odd implies thatk is odd as well. Then we

havek blocks of the first type and(n − k)/2 of the second and third type. It follows as before
that

#X(1) + #X(+) =
n − k

2
+ 2k =

n + 3k

2
.

Exercise 5.5
(i) For a faceF = [A,B], we defined(F ) = |B \ A| andb(F ) = |B|.
We prove by double induction over(d(F ), b(F )) that every face has a unique sink. This

obviously holds for vertices(d(F ) = 0) and if d(F ) = b(F ): in this case, the face is of the
form

[∅, B]

and has∅ as its unique sink, as one can easily conclude from the definition of the outmaps.
Now assumeF = [A,B] with b(F ) > d(F ) > 0. Let i = max(B). There are two cases.

Case (a) i ∈ B \ A. Then

s(X ∪ {i}) = {1, . . . , i} \ s(X) ⊇ {i}, X ∈ [A,B \ {i}].

It follows that the sinks of[A,B] are exactly the sinks of[A,B \ {i}], and by induction, we
know that there is a unique such sink.

Case (b) i ∈ A. Then

s(X ∪ {i}) = {1, . . . , i} \ s(X), X ∈ [A \ {i}, B \ {i}].

It follows that the sinks in[A,B] are exactly thesourcesin [A\{i}, B \{i}]. Because the latter
face and all its subfaces have unique sinks by induction, we have a USO on[A \ {i}, B \ {i}],
which implies that the face also has a unique source (this easily follows from Exercise 3.3.

(ii) We inductively prove that there is a directed Hamiltonian path through all vertices in
[∅, {1, . . . , i}], starting in{i} and ending in∅. The casei = 1 is clear.

For i > 1, we inductively assume that there is a path from{i − 1} to ∅ in the face
[∅, {1, . . . , i − 1}]. As in case (b) of part (i), we can conclude from this the existence of an
‘inverse’ directed Hamiltonian path in[{i}, {1, . . . , i}] from {i} to {i − 1, i}. Concatenating
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these paths by inserting the directed edge({i − 1, i}, {i − 1})—which exists by definition of
s— yields the desired path from{i} to ∅ in [∅, {1, . . . , i}].

(iii) By definition, any vertex containingn (vertex in the upper facet) also hasn in its
outmap value. It follows that from every such vertex, we havea chance of1/n at least to go to
a vertex not containingn (vertex in the lower facet), and from the lower facet there isno way
to get back to the upper facet. It follows that after an expected number of at mostn steps, we
reach a vertex in the lower facet.

Because in the lower facet, the same holds with respect to its upper facet (vertices contain-
ing n − 1), we can iterate this argument and obtain a bound of

n + (n − 1) + · · · + 1 =

(
n + 1

2

)

= O(n2)

for the expected number of steps taken by the random walk. Theexpected number of vertex
evaluations is one larger.

Exercise 5.6Any pair of USOs of the(n − 1)-cubesC1 = [∅, {1, . . . , n − 1}] andC2 =
[n, {1, . . . , n}] can be extended to a USO of then-cube[∅, {1, . . . , n}] by combing all edges in
directionn (there are two ways of doing this). This gives that

un ≥ 2u2
n−1.

Using thatu0 = 1 we get thatun ≥ 22n−1.

Exercise 5.7
This is a trivial consequence of the definitions.

Exercise 5.8

(i) The following Markov chain is non-irreducible and e.g.(0, 0, 1), (1, 0, 0) are stationary
distributions.

GFED@ABCa11 22
GFED@ABCa2

1

2oo
1

2 // GFED@ABCa3 1ll

(ii) The following Markov chain is irreducible and 2-periodic. The initial distribution(1, 0)
does not converge to the stationary distribution(1

2
, 1

2
).

GFED@ABCa1

1 ++ GFED@ABCa2

1
kk

(iii) The following Markov chain is irreducible, aperiodicand non-symmetric. The stationary
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distribution(2
7
, 2

7
, 3

7
) is not the uniform distribution.

GFED@ABCa1

1

2

,,

1

2

¸¸

GFED@ABCa21

2

ll

1

2

¡¡GFED@ABCa3

1

3

II

1

3

UU

1

3

@@

Exercise 5.9Because we reorient only edges in directioni, we know that

(X ⊕ Y ) ∩ (s(X) ⊕ s(Y ))

and
(X ⊕ Y ) ∩ (s

′

(X) ⊕ s
′

(Y ))

can differ only ini.
If the former evaluates exactly to{i}, X andY are strongly in phase, so either both their

incident edges in directioni get flipped, or none of them. It follows that also the latter expres-
sion evaluates to{i}. If the former contains somej 6= i, j will also be contained in the latter.
In both cases, the latter is nonempty, and the USO property follows.

Exercise 5.10
The idea is to use Theorem 5.25 and proceed similarly as we generated a USO uniform at

random.
The vertices of the graph of our Markov chain will be the stations of the city (we assume

that this graph is connected). LetN be the number of stations. Whenever there is a tram
between two stationsA,B we choose1

N
as the transition probability in both directions. In

addition, we put loops into every vertexA, where the transition probability for the loop will be
chosen such that the probabilities on all outgoing edges ofA sum up to 1. This Markov chain
is homogeneous, irreducible, aperiodic and symmetric. This ensures that in the long run, we
will be at any station with the same probability.

7.6 Solutions to Chapter 6

Exercise 6.1
They key observation one needs to make is that the operator⊕ is associative: both the sets

A ⊕ (B ⊕ C)
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and
(A ⊕ B) ⊕ C

consist exactly of the elements which are not in exactly two of the sets. Using this, the state-
ments are easy.
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