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Introduction

A classical problem in combinatorial geometry is to find a combinatorial characterization of
arrangements of hyperplanes (or configurations of points, which are dual to arrangements, as we
will see in chapter 1), i.e. establish a scheme that maps the infinite number of arrangements into
finitely many classes in such a way that arrangements with thesame image can be regarded as
equal with respect to some property one is interested in.

J.E.Goodman and R.Pollack [GP80a] have given an example which explains the usefulness
of such a classification scheme: LetH(n) be the smallest natural number, such that every set ofH(n) points in the plane (no three of them collinear) contains thevertices of an empty convexn-gon. It is known thatH(5) = 10 [Ha] and thatH(7) does not exist [Ho]. WhetherH(6) exists,
is still an open problem. Suppose you want to attack this question algorithmically and test each
configuration of a given number of points whether it containsan empty convex hexagon. Besides
from the immense complexity for large configurations, how doyou generate all ”essentially dis-
tinct” configurations? A classification that reflects convexity properties could solve this problem
in principle.

In fact, there exists a combinatorial structure that reflects many interesting properties of planar
configurations, namelycircular sequences, which were introduced by Perrin [Pe] and treated in
detail by Goodman and Pollack [GP80a], [GP84]. An overview is given in [Ed].

Another representation of2-dimensional arrangements was given by Ringel [Ri]; both ap-
proaches work only for nondegenerate arrangements and configurations.

A very powerful and general classification ofd-dimensional arrangements (which need not
even be in general position) in terms of so-calledoriented matroids, was intended by J.Folkman
and J.Lawrence [FL] and reproved by A.Mandel [Ma]. A new approach to the 2-dimensional case
was given by R.Cordovil [Co].

It was first observed by Ringel in his paper that the structurehe uses to characterize arrange-
ments of lines actually covers a larger class of arrangements, namely arrangements ofpseudolines,
which are topologically similar to straight arrangements.He shows that there are simple arrange-
ments of pseudolines which are notstretchable, i.e. whose cell complex is not equivalent to that
of any arrangement of lines.

Ringel’s observation has an equivalent for any combinatorial structure encoding arrangements
– so it seems that straightness cannot be recognized by purely combinatorial means.

In this paper we develop a characterization of simpled-dimensional arrangements of pseu-
dohyperplanes in terms of certain set systems of Vapnik-Chervonenkis dimensiond. These set
systems are calledpseudogeometric range spacesand were introduced by E.Welzl [We], who has
observed that every simple arrangement determines such a range space.

We show that the converse is also true; as a tool, we introducean interesting new class of
range spaces derived from the pseudogeometric spaces, and we characterize both classes by simple
maximality conditions. Our techniques are then applied to derive some results on two more topics
related to arrangements.

Given a set of hyperplanesH in d-space, where one of the open halfspaces of eachh 2 H
is called thepositive halfspaceof h (denoted byh+), we obtain anarrangement of halfspaces



2A(H+), which consists of the same faces as the underlying arrangement of hyperplanes together
with the information, which of the positive halfspaces contain a given point.

Now every cellc of the arrangement can be labelled with the set of hyperplanes, whose positive
halfspaces containc; the collection of the labels of all cells determines thedescription of cellsofA(H+), denoted byC(H+) (figure 1.1). Formally,C(H+) is a pair(H;R), whereH is the set of
hyperplanes andR a subset of2H . Such a pair is called arange space. We refer toH as the set of
elementsof the range space, whileR is the set ofrangesof C(H+).

If the arrangement has at least one vertex, thenC(H+) is a range space of Vapnik-Chervonenkis
dimensiond. Furthermore, if the arrangement issimple (or in general position), thenC(H+)
reaches the maximum number of ranges that a range space of VC-dimensiond can have. Welzl
calls a range space with this propertycompleteof dimensiond.

Chapter 2 studies complete range spaces and develops their basic properties. Besides from a
new concept ofrange space dualityand a corresponding duality theorem, all the concepts of this
chapter are taken directly or in a slightly modified form froman unpublished manuscript of Welzl
[We]. Some of them have already appeared in literature.

If we are given a one-dimensional arrangement of halfspaces(i.e. an arrangement of rays
on the line), and we connect two ranges of the corresponding description of cells by an edge
whenever they differ by a single element, we obtain thedistance-1-graph, which in this case
has the structure of a path. In a general complete space of VC-dimension 1 this graph is only a
tree, which gives a necessary condition for a complete spaceto be the description of cells of some
arrangement. This necessary condition generalizes to higher dimensions and leads to the definition
of pseudogeometric range spaces, which are the subject of chapter 3 (figure 3.1).

The basic properties and characterizations are again takenfrom [We].
We prove two theorems motivated by Levi’s Enlargement Lemmafor arrangements of pseu-

dolines [Le], [Gr] and newly introduce the concepts ofclosureandboundaryof a range space.
This leads to an interesting characterization of pseudogemetric spaces by a maximality condition
for the number of ranges in the boundary. Furthermore, the duality theorem for complete spaces
is shown to hold also for pseudogeometric spaces.

In chapter 4 we discuss a third class of range spaces, calledPG-spaces, which are spaces that
arise as the closure of some pseudogeometric space.PG-spaces can be obtained as the description of cells of so-called arrangements of hemi-
spheres, and as well as complete and pseudogemetric spaces they can be characterized by a certain
maximality condition. Once more a duality theorem is established forPG-spaces.

In chapter 5 we show thatPG-spaces correspond to simple oriented matroids, and this will
lead to a major result of the paper, namely thatPG-spaces characterize simplearrangements
of pseudohemispheresand pseudogeometric spaces correspond toarrangements of pseudohalfs-
paces.

The terminolgy and the basic properties of oriented matroids we develop in section 5.2 are
taken from [Ma] as well as the formal definitions of arrangements of pseudohemispheres and
pseudohalfspaces in section 5.5.

The last two chapters aboutgeometric embeddabilityandelementary transformationsof com-
plete range spaces were inspired by conjectures and suggestions of Welzl. These chapters should
be seen from the point of view of chapter 5, for they are motivated by properties of arrangements.

Chapter 6 generalizes planarity to range spaces by introducing an embedding scheme that
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avoids intersections of certain convex hulls. A main motivation for this embeddability concept is
thek-set problem, and we show how embeddability is related to thek-set problem. Furthermore,
we characterize the complete spaces, which allow a good embedding in a certain sense.

Finally, chapter 7 discusses the problem of replacing a range of a complete space by another
one in such a way that the completeness-property is maintained. This is motivated bysimplex
transformationsin arrangements of pseudohyperplanes. We characterize theranges that can be
replaced and show that simplex transformations have an equivalent in complete and pseudogeo-
metric spaces.

Using a result of Ringel [Ri] we show that any two pseudogeometric spaces of VC-dimension 2
and the same boundary can be transformed into each other by using only simplex transformations,
a result that does not generalize to higher dimensions.

Chapters 1 through 4 should be read in consecutive order, while chapters 5, 6 and 7 are inde-
pendent from each other, but are based on the first four chapters.

Throughout the paper, some details and proofs are omitted. In this case they either are easily
obtained in a straightforward manner or the reader is referred to the literature.

Furthermore, some set operations as well as the concept ofduality occur in a double meaning.
As an example, consider the symmetric difference, denoted by 4. If we have setsR;R0 which
are subsets of the same domainX, thenR4R0 is the usual symmetric difference defined byR4R0 := (R [R0)� (R \R0).

If we haveR � 2X , r0 � X, then the set operations should be applied to the elements ofR,
i.e. R4r0 := fr4r0 j r 2 Rg in this case. Whenever we refer to this non-standard definition, we
explicitly mention it the first time it occurs. Usually, it isclear from the context which meaning is
currently valid.

As far as duality is concerned, there exists ageometric dualityand arange space duality; both
concepts do not occur very often in this paper, and again it will be clear from the context to which
concept we refer.
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Chapter 1

Arrangements of Halfspaces

1.1 The Description of Cells

Consider a finite setH of n hyperplanes ind-dimensional Euclidean spaceEd. H defines an
arrangement of hyperplanesA(H), i.e. a dissection ofEd into connected pieces of various di-
mensions, calledfacesof the arrangement, such that the disjoint union of all facesis Ed. A face
of dimensionk is called ak-face; 0-faces areverticesof the arrangement,d-faces are calledcells.
Observe that each facef is open in the affine subspace aff(f), where aff(f) denotes the affine
hull of the points inf . Cells are open inEd (for a more formal and detailed treatment of arrange-
ments see [Ed]). In the sequel we will always assume that the number of hyperplanes is at leastd,
otherwiseA(H) is equivalent to a lower-dimensional arrangement.

Every hyperplaneh 2 H defines two open halfspaces, and by arbitrarily choosing oneof these
two halfspaces to be calledh+ or thepositive halfspaceof h, (and the other oneh� or the negative
halfspace ofh), we get anarrangement of halfspacesA(H+), whereH+ := fh+ j h 2 Hg.

In this way an arrangement of hyperplanes determines2jHj arrangements of halfspaces.A(H+) is defined to consist of the same faces asA(H) together with the information, which
of the halfspaces fromH+ contain a given pointp 2 Ed. This information enables us to define
thedescription of cellsof a set of halfspaces.A(H+) contains several cells, and every cellc can
be labelled with the setv(c) of all h 2 H, such thatc is contained in the positive halfspace ofh.

1.1.1 Definition

LetH+ be a finite set of halfspaces. The ordered pairC(H+) := (H; fv(c) j c cell ofA(H+)g);
wherev(c) := fh 2 H j c � h+g, is called thedescription of cellsof H+.

It is clear thatv(c) 6= v(c0), if c 6= c0, sincec andc0 are separated by at least one hyperplaneh
and therefore lie in different halfspaces ofh. (figure 1.1).

The description of cells can as well be obtained by labellingeach pointp 2 Ed with the set of
hyperplanes whose positive halfspaces containp and then considering the collection of labels of
all points which do not lie on any of the hyperplanes. Clearly, these are exactly the points which
lie in the cells of the arrangement.

7
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Figure 1.1: Description of cells of an arrangement of halfspaces

The concept of the description of cells is similar to that ofposition vectorsgiven by Edels-
brunner: Leth1; :::; hn be the hyperplanes fromH. Now every facef of A(H+) is labelled with
ann-dimensional vector�(f), where�i(f) is+1, 0 or�1, depending on whetherf is contained
in h+i , hi or h�i .

At first glance it seems that this labelling contains more information than our description of
cells, since every face is assigned a position vector, whilewe label the cells only. But it is easy to
see, that the position vectors of allk-faces, wherek < d, are determined by the position vectors
of the cells.

Ringel [Ri] has studied the description of cells of2-dimensional arrangements, and in chapter
7 we will use one of his results.

1.2 Geometric Duality

By using a geometric duality it is possible to obtainC(H+) from a set ofdirected pointsinstead
of halfspaces. Assume that no hyperplaneh 2 H is vertical.1 We define a duality transform that
maps hyperplanes to points and vice versa. It is well known that a hyperplaneh can be written in
the form h : � = a1x1 + :::+ adxd;
i.e. h is the set of points satisfying this equation for appropriate scalar values�; a1; :::; ad. The
two halfspaces ofh are obtained by changing ”=” to ”<” and ”>”, respectively. A hyperplane is
vertical, iff ad = 0.

Given a pointp = (p1; :::; pd) 2 Ed, its dual is defined as the hyperplane~p : pd = 2p1x1 + :::+ 2pd�1xd�1 � xd:
Conversely, given a hyperplaneh : � = a1x1 + :::+ adxd, its dual point is~h = (� a12ad ; :::;�ad�12ad ;� �ad ):1This does not mean that the vertical direction is distinguished in some way; the assumption is made simply in order
to apply a convenient duality transform. At the cost of making things a little harder to visualize, we could use another
duality that works also for vertical hyperplanes.
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This shows that the duality is self-inverse, but is not defined for vertical hyperplanes.
Using this duality we can map an arrangement of non-verticalhyperplanes to aconfiguration

of points (and vice versa).
The duality is incidence-preserving in the following sense:

1.2.1 Observation

Point p lies on (above, below) hyperplaneh, iff point ~h lies on (above, below)
hyperplane~p.

Details concerning this duality transform can be found in [Ed].

We extend the correspondence to halfspaces and directed points in the following obvious way:
a directed pointis a pair(p; dir), wherep 2 Ed anddir 2 fup; downg. We can visualize a
directed point as a point with a ray attached to it that pointsinto the direction given bydir. For
a non-vertical hyperplaneh let hbelow denote the halfspace belowh, habove the one aboveh. We
dualizehbelow to the directed point(~h; up) andhabove to (~h; down). How a directed point is
dualized to a halfspace is immediate from this.

Now the following holds and is an easy consequence of the above observation:

1.2.2 Observation

Point p is contained in halfspaceh+, iff ~h 62 ~p and the ray emanating from~h+
stabs hyperplane~p.

This observation yields the dual approach to the description of cells: given a configuration of
directed points inEd, label each non-vertical hyperplaneh of Ed with the set of all points whose
rays stabh. Then the collection of labels of all hyperplanes containing none of the points is the
description of cells of the dual arrangement of halfspaces (figure 1.2).

1.3 Simplicity

So far we have considered arbitrary arrangements of halfspaces, but in the following we will
restrict ourselves to the simple case: an arrangement of halfspaces inEd is calledsimple, iff
the underlying arrangement of hyperplanes is simple, whichmeans that anyd hyperplanes have
a unique point in common and anyd + 1 have empty intersection. This translates to the dual
space in the following way: a configuration of directed points inEd is simple, iff the underlying
configuration of points is simple, and this is the case if anyd points lie on a unique non-vertical
hyperplane and there is no hyperplane containingd + 1 of the points. Note that this implies that
no line through two of the points is vertical.

The reason to deal with simple arrangements only is the following

1.3.1 Observation

LetA(H+) be an arrangement ofn halfspaces with description of cellsC(H+).
Then there exists a simple arrangementA(G+) of n halfspaces, such thatC(H+) �C(G+).
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Figure 1.2: arrangement of halfspaces and dual configuration of directed points

To see that this is true, observe that there is only a finite number of cells in an arrangement and
each of them has non-vanishing volume. It follows that the hyperplanes can be slightly perturbed
without destroying any of the cells. This perturbation can be performed in such a way that all
degeneracies disappear, i.e. the arrangement becomes simple. So this simplification transform
(figure 1.3) generates some new cells and hence some new labels in the description of cells without
changing the old ones.

This shows that simple arrangements maximize the description of cells and this fact is rea-
son enough for us to rule out non-simplicity in the sequel, for it turns out that only a maximal
description of cells gives rise to a well-behaved structurein our approach.

We will use the dual view in terms of a configuration of directed points in chapter 6. In
the other chapters all the concepts are motivated and explained using the primal arrangement of
halfspaces; this turns out to be more handy in what follows. However, we encourage the reader to
visualize a newly introduced notion also in the dual space.

For a finite set of halfspaces we now want to work out the basic properties ofC(H+), intro-
ducing as the main tool the concept ofrange spaces.

1.4 Range Spaces

If X is a set andR a collection of subsets ofX (possibly empty), the pairS = (X;R) is called a
range space. X is theunderlying setof S, consisting of theelementsof S, the elements ofR are
calledrangesof S. If X is a finite set,S is calledfinite. With the exception of examples, all the
range spaces in this paper are assumed to be finite, so this is not always mentioned explicitly.
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Figure 1.3: simplifying an arrangement of halfspaces – new cells are generated

When geometric concepts are absent, the termhypergraphis more commonly used to denote(X;R). By talking of range spaces we usually have in mind thatX is some set of points andR a
collection of geometric ranges (like in the following examples).

Range spaces (especially of finite VC-dimension, a combinatorial parameter that we introduce
in the next section) play an important role in connection with geometric range queries,�-nets
[HW], [CW], concept learning [Fd], [BEHW], [Va], and discrepancy [MWW].

1.4.1 Examples

(i) S = (Ed; B), whereB is the set of all closed balls inEd
(ii) S = (Ed; P ), whereP is the set of all polytopes inEd

We will come back to these examples when we introduce the VC-dimension of a range space.
Another example of a range space is the description of cells of H+. The underlying set isH and the ranges are the labels of the cells ofA(H+). A range space arising in this way will be

calledgeometric, if A(H+) is simple. Geometric spaces will serve as our main example toexplain
the notions we will introduce next.

1.4.2 Definition

Let S = (X;R) be a range space,Y � X. We defineS � Y := (X � Y;R � Y ); whereR� Y := fr � Y j r 2 RgSY := (X � Y;RY ); whereRY := fr 2 R j r \ Y = ;; r [ Y 0 2 R 8Y 0 � Y gSjY := (Y;RjY ); whereRjY := fr \ Y j r 2 Rg�S := (X;�R); where�R := 2X �R
We refer toS � Y , SY andSjY assubspacesof S. �S is called thedual ofS (note that this range space duality has nothing to do with thegeometric duality

introduced in the second section of this chapter and is also different from the standard
range space duality, as defined, for example, in [CW]).
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The case whereY is a singleton will be of special interest in the sequel, and this case is basic
in the sense that any subspace can equivalently be defined using only subspaces determined by a
single element:

if in generaly1; :::; yk is any ordering of the elements ofY , clearlyS � Y = (:::(S � fy1g)� :::) � fykg,SjY = (:::(Sjfy1g)j:::)jfykg.
Via an easy induction, part (i) of the following lemma also impliesSY = (:::(Sfy1g):::)fykg.

1.4.3 Lemma

Let S = (X;R) be a range space,x; y 2 X;Y � X. Then the following holds:

(i) (RY )fxg = RY [fxg; x 62 Y
(ii) jRj = jR� fxgj + jRfxgj
(iii) R� Y = RjX�Y
(iv) Rfxg � fyg � (R� fyg)fxg
(v) �(R� Y ) = (�R)Y
(vi) �(RY ) = (�R)� Y

Proof:
(i) r 2 (RY )fxg , r; r[fxg 2 RY , r[Y 0; r[fxg[Y 0 2 R for all Y 0 � Y , r[Y 0 2 R

for all Y 0 � Y [ fxg , r 2 RY [fxg.
(ii) By deletingx from the ranges ofR to obtainR � fxg, exactly the pairs of ranges(r; r0)

with x 62 r andr0 = r[fxg collapse to one range. Since there arejRfxgj such pairs, we conclude
that jR � fxgj = jRj � jRfxgj.

(iii) It suffices to observe thatr � Y = r \ (X � Y ), for all r 2 R.

(iv) If r 2 Rfxg � fyg, thenr 2 Rfxg or r [ fyg 2 Rfxg, which meansr; r [ fxg 2 R orr [ fyg; r [ fx; yg 2 R. In both cases we haver; r [ fxg 2 R� fyg, sor 2 (R � fyg)fxg.
(v) r 2 �(R � Y ) , r 62 R � Y , 8Y 0 � Y : r [ Y 0 62 R, 8Y 0 � Y : r [ Y 0 2 �R, r 2 (�R)Y :
(vi) similar to (v). �
When we considerS := C(H+) andh 2 H, thenS � fhg arises fromS by removingh from

the label of every cell. SoS � fhg is simply the description of cells we get after removing the
halfspaceh+ fromH+. Consequently,S � Y is the description of cells ofH+ � Y +.Sfhg describes exactly the cells who are not inh+ but are separated only byh from a cell inh+. Clearly, these are the cells ofh� incident toh; the remaining halfspaces induce a(d � 1)-
dimensional arrangement of halfspaces inh, and there is a one-to-one correspondence between the
cells of this subarrangement and the cells described bySfhg; it follows thatSfhg can be regarded
as the description of cells of the subarrangement.

In general,SY corresponds to the(d�jY j) - dimensional subarrangement induced in
Th2Y h

byH+ � Y + (figure 1.4)
Finally, if G � H, C(H+)jG describes the cells of the arrangementA(G+) , so it is equal toC(G+).
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Figure 1.4:Sfhg andS � fhg for description of cellsS, h = 3
1.5 VC-dimension

As already mentioned, a range spaceS = (X;R) can be assigned a dimension, the so-called
Vapnik-Chervonenkis Dimension[VC71]; we sayY � X is shatteredin R, iff SjY = (Y; 2Y ),
i.e. every subset ofY can be obtained by intersectingY with a range fromR. This leads to the
following

1.5.1 Definition

Let S = (X;R) be a range space. The number

VC-dim(S) := 8>>><>>>: �1 if R = ;;k if k is the cardinality of the largest
subset ofX that is shattered inR1 if arbitrarily large subsets are shattered

is called theVapnik-Chervonenkis dimensionor VC-dimensionof S.

Clearly, in a finite range space the VC-dimension is bounded by jXj.
Now we will give the VC-dimensions of the examples from 1.4.1:

(i) The VC-dimension of this space isd+ 1. To see this, note first that the set of balls shatters
anyd+ 1 points which form a simplex inEd. If on the other hand a setA of at leastd+ 2 points
is given, then Radon’s theorem [Ed] ensures that there is a partition of A into subsetsA1 andA2,
such that conv(A1)\ conv(A2) 6= ;. AssumeA is shattered; then there are ballsB1; B2 withB1 \A = A1 andB2 \A = A2. Leth be a hyperplane separatingB1�B2 fromB2 �B1. If the
balls are disjoint or have just one point in common, such a hyperplane trivially exists – otherwise
we chooseh to be the hyperplane spanned by the sphere that is the intersection of the boundaries
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of B1 andB2. Clearly,B1 \ B2 contains no element ofA, soh also separatesA1 from A2, a
contradiction to the fact that the convex hulls intersect. Hence it follows thatA is not shattered.

(ii) This space has VC-dim(S) =1: LetA be a set of points on a sphere andA0 an arbitrary
subset ofA. Clearly conv(A0) is a polytope containing exactly the elements fromA0, soA is
shattered, wherejAj can be arbitrarily large.

We will simplify notation and refer to the VC-dimension simply as the dimension of a range
spaceS and write dim(S) instead of VC-dim(S).

1.5.2 Remark

If S = (X;R) is of dimensiond, thenSfxg is of dimension at mostd� 1, for allx 2 X.

Proof:
AssumeY � X � fxg is shattered inRfxg. We show thatY [ fxg is shattered inR; let Y 0

be a subset ofY [ fxg.
If Y 0 � Y , there isr 2 Rfxg � R with r \ (Y [ fxg) = r \ Y = Y 0.
Otherwise there isr 2 Rfxg with r \ Y = Y 0 � fxg. But then(r [ fxg) \ (Y [ fxg) = Y 0,

wherer [ fxg 2 R. SinceS is of dimensiond, jY [ fxgj � d, so jY j � d � 1, and this proves
the remark. �

Of course, now we are interested in the dimension of our description of cellsC(H+):
1.5.3 Theorem

Let H+ be a set ofn halfspaces, defining a simpled-dimensional arrangement.
Then the following holds:

(i) C(H+) has�d(n) ranges, where�d(n) :=Pdi=0 �ni�
(ii) C(H+) has dimensiond

Proof:
(i) The number ofk-faces of a simple arrangement ofn hyperplanes inEd isfk(n) := kXi=0 d� ik � i! nd� i!;
as shown in [Ed]. This impliesfd(n) = �d(n), so the arrangementsA(H) andA(H+)

contain�d(n) cells. Since we have already observed that different cells are mapped to different
ranges ofC(H+), the first part of the theorem follows.

(ii) Let G be a subset ofH. Recall thatC(H+)jG is the description of cells ofG+. Hence,
using part (i) of the lemma,C(H+)jG has�d(jGj) ranges. IfjGj = d, this number equals2d,
i.e. G is shattered. IfG hask > d elements,�d(jGj) is smaller than2k, soG is not shattered.
VC-dimensiond is immediate from this. �



Chapter 2

Complete Range Spaces

2.1 The Defining Property

Surprisingly, it turns out that�d(n) is an upper bound on the number of ranges that a range space
of dimensiond with n elements can have, and the existence ofC(H+) shows that this bound is
tight. The class of range spaces who reach this number of ranges, has very interesting properties
and will be the subject of this chapter.

First we give the�d(n)-bound that was independently proved in [Sa] and [VC74]. Forthe
following we define��1(n) := 0.

2.1.1 Theorem

Let S = (X;R) be a range space of dimensiond with jXj = n elements. ThenjRj � �d(n).
Proof:
The assertion is true ford = �1, d = 0 and forn = d � 0, since in this casejRj = 2d =�d(n); now letS = (X;R) be a range space of dimensiond � 1, jXj = n > d, and assume

the theorem holds for any range space of dimension at mostd � 1 and for any range space of
dimensiond with at mostn� 1 elements.

Choosex 2 X. Clearly, the subspaceS � fxg is of dimension at mostd, sojR� fxgj � �d(n� 1)
by hypothesis. From 1.5.2 we know thatSfxg is of dimension at mostd� 1, which meansjRfxgj � �d�1(n� 1):

SincejRj = jR � fxgj + jRfxgj (1.4.3 (ii)), we concludejRj � �d(n� 1) + �d�1(n� 1).
Using the equality

�ni� = �n�1i �+ �n�1i�1� we easily obtain�d(n� 1) +�d�1(n� 1) = �d(n),
and the theorem is established. �
2.1.2 Definition

A range spaceS = (X;R) of dimensiond with jXj = n elements is called
complete(of dimensiond), iff jRj = �d(n).

15
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2.2 Characterizations and Duality

It will be useful to have some equivalent characterizationsof a complete range space. This is given
in the following

2.2.1 Theorem

Let S = (X;R) be a range space of dimensiond � 1 with n := jXj > d. Then
the following statements are equivalent:

(i) S is complete of dimensiond
(ii) 8x 2 X : Sfxg is complete of dimensiond�1; S�fxg is complete

of dimensiond
(iii) 8x 2 X : Sfxg is complete of dimensiond� 1
(iv) 9x 2 X : Sfxg is complete of dimensiond�1; S�fxg is complete

of dimensiond
(v) jRAj = 1 for all A � X; jAj = d

Proof:
(i) ) (ii) Since dim(Sfxg) � d� 1 (1.5.2) and dim(S � fxg) � d, we have�d(n) = jRj = jRfxgj+ jR� fxgj � �d�1(n� 1) + �d(n� 1) = �d(n);

so we conclude thatjRfxgj = �d�1(n� 1) andjR � fxgj = �d(n� 1).
We are done, if we can show thatSfxg is of dimensiond � 1 andS � fxg is of dimensiond;

sincen > d > 0, we know that�d�1(n� 1) > �d0�1(n � 1);�d(n � 1) > �d0(n� 1) for anyd0 < d, which means thatSfxg andS�fxg contain too many ranges to be of dimensions less thand� 1 andd, resp., and this proves the implication.

(ii) ) (iii), (iv) trivial

(iii) ) (i) We proceed by induction onn. If n = d + 1, let A be a set of cardinalityd
shattered inR. There is exactly onex 2 X � A, andA is also shattered inR � fxg. Clearly,R � fxg contains exactly all the subsets ofA, so jR � fxgj = 2d = �d(n � 1), which impliesjRj = jRfxgj+ jR� fxgj = �d�1(n� 1) + �d(n� 1) = �d(n).

Now assumen > d + 1. Again choosex 2 X, such thatS � fxg is of dimensiond. For allz 2 X � fxg, (S � fxg)fzg is of dimensions at mostd� 1, so�d�1(n� 2) � j(R � fxg)fzgj � jRfzg � fxgj = �d�1(n� 2);
sinceSfzg is complete of dimensiond � 1, which – using (i)) (ii) – implies completeness forSfzg � fxg. This showsj(R� fxg)fzgj = �d�1(n� 2) for all z 2 X � fxg.

Using the same argument as in (i)) (ii) we see that(S � fxg)fzg is of dimensiond � 1 and
hence complete of dimensiond� 1 for all z 2 X �fxg, so by hypothesisS�fxg is complete of
dimensiond, and we concludejRj = jR� fxgj+ jRfxgj = �d(n� 1) + �d�1(n� 1) = �d(n);
soS is complete.



2.2. CHARACTERIZATIONS AND DUALITY 17

(iv) ) (i) jRj = jRfxgj + jR � fxgj = �d�1(n � 1) + �d(n � 1), sinceSfxg andS � fxg
are complete, sojRj = �d(n).

(i) , (v) To see that ”)” holds, iterate (i))(iii) and observe that�0(n) = 1. For the inverse
implication we proceed by induction ond, noting that ford = 1 the assertion is equivalent to
implication (iii))(i).

If d > 1, considerSfxg, x 2 X. Remark 1.5.2 implies that0 = dim(SA) � dim(Sfxg)� (d� 1)
for jAj = d; x 2 A, soSfxg is of dimensiond � 1. Furthermore,j(Rfxg)B j = jRB[fxgj = 1 forB � X�fxg; jBj = d�1, soSfxg is complete by hypothesis. This holds for allx 2 X, so again
implication (iii))(i) shows thatS is complete. �

One could conjecture that we might leave out the global assumption thatS is of dimensiond
– but then the theorem gets false: if we have a range space satisfying statement (iv) of the theorem
for a certaind, S itself does not have to be of dimensiond. For an example, considerX =f1; 2; 3g; R1 := f;; f1; 2g; f2; 3g; f1; 2; 3gg; R2 := f;; f2g; f2; 3g; f1; 2; 3gg. S1 := (X;R1) is
of dimension2 and non-complete, whileS2 := (X;R2) is complete of dimension1. Since we

haveRf1g1 = Rf1g2 = ff2; 3gg andR1 � f1g = R2 � f1g = f;; f2g; f2; 3gg, bothS1 andS2
satisfy statement (iv).

2.2.2 Remark

Characterization (v) shows that a complete space of dimension d shatters any
subset of cardinalityd: Given jAj = d, consider the unique ranger in RA. From the
definition ofRA we know thatr [ A0 2 R for all A0 � A, andA0 = A \ (r [ A0)
shows thatA is shattered.r is called avertexof S, and later on we will be able to show that a complete range
space is completely determined by its vertices.

2.2.3 Corollary

Let S = (X;R) be a complete range space,x; y 2 X. ThenSfxg � fyg = (S � fyg)fxg:
Proof:
The assertion is easily seen to hold if dim(S) � 0 or jXj =dim(S). Otherwise we know

from 1.4.3 (iv) thatRfxg � fyg � (R � fyg)fxg; using the preceeding theorem it follows thatjRfxg � fygj = j(R� fyg)fxgj, and this impliesSfxg � fyg = (S � fyg)fxg. �
The property that subspaces of complete spaces are completeturns out to be very important; it

enables us to perform inductive proofs, whenever we have a statement involving complete range
spaces.

As far asC(H+) is concerned, this is not very surprising, since we have already seen that
the subspaces ofC(H+) correspond to arrangements that are obtained by deleting some of the
halfspaces fromH+ or to lower-dimensional subarrangements on the hyperplanes h 2 H, whose
descriptions of cells, of course, are complete, too.
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A nice and useful statement involving the dual range space isthe following

2.2.4 TheoremS = (X;R) is complete of dimensiond, iff �S is complete of dimensionjXj �d� 1.

Proof:
It suffices to prove one implication; ford = �1 andd = n := jXj the theorem is easily seen

to be valid. Now assume0 � d < n. Because of2n � �d(n) = �n�d�1(n) it remains to show
that�S is of dimension at mostn� d� 1.

Assume on the contrary, there isA � X, jAj = n�d shattered in�R. ThenjX�Aj = d, and
theorem 2.2.1(v) states that there is a unique ranger 2 RX�A. Sincer � A, there isr0 2 �R,
such thatA \ r0 = r. This implies thatr0 is a superset ofr andr0 � r contains no element ofA.
But thenr0 is of the formr0 = r [ B;B � X � A, which is a contradiction, sincer 2 RX�A
implies that all the ranges of this form are contained inR. �
2.3 The Distance-1-graph and Swapping

In order to find out more about the structure of a complete range space, we introduce a graph onS, called the distance-1-graph ofS. To this end we define a distance function onR by

dist(r1; r2) := jr14r2j;
wherer14r2 is the symmetric difference ofr1 andr2 (Note that(R;dist) is a metric space).

2.3.1 Definition

Let S = (X;R) be a range space; the undirected edge-labelled graphD1(S) := (R;E); whereE := ffr1; r2g � R j dist(r1; r2) = 1g
is called thedistance-1-graphof S.

The label�(e) of an edgee = fr1; r2g 2 E is defined as the unique element inr14r2.
So theD1-Graph ofS joins two ranges ofR with an edge, when they differ by exactly one

elementx 2 X, andx is the label of this edge.

For an example consider the geometric range spaceS = C(H+). An edge ofD1(S) joins
two ranges, when they are the labels of adjacent cells of the arrangementA(H+). The label of
the edge is the hyperplane separating the two cells (figure 2.1). We remark that theD1-graph is
invariant under changingH+, i.e. each of the2jHj arrangements of halfspaces that come from
an arrangement of hyperplanesA(H) define the sameD1-graph. To facilitate our further con-
siderations, we will generalize this statement to arbitrary range spaces, introducing the notion of
swappinga range space.

Let us consider the effect of interchanging the positive andthe negative halfspace of a hyper-
planeh 2 H. A cell, that previously was contained inh+ is now contained inh� and vice versa,
i.e. its new label is the symmetric difference of its old label andfhg. Motivated by this we give
the following
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Figure 2.1:D1-graph of a geometric range space

2.3.2 Definition

Let S = (X;R) be a range space,D � X. The range spaceS 4D := (X;R4D); whereR4D := fr4D j r 2 Rg;
is calledS swappedD.

Clearly jRj = jR 4 Dj; Note that the distance-1-graph is invariant under swapping, sincer4r0 = (r4D)4(r04D), for all r; r0 2 R.
Furthermore, swapping does not change the dimension ofS: ConsiderA � X. Observing

that A \ r = A \ r0 , A \ (r4D) = A \ (r04D);
we see thatjfA\ r j r 2 Rgj = jfA\ (r4D) j r 2 Rgj, i.e.A is shattered inR4D if and only
if A is shattered inR. This immediately leads to the following

2.3.3 Observation

Let S = (X;R) be a range space,D � X. S is complete of dimensiond, if and
only if S 4D is complete of dimensiond.

The invariance of the completeness-property under swapping will be an important tool in the
sequel. Whenever it is convenient, we may assume that a fixed range is equal to a certain subset ofX, which simplifies many proofs. A phrase like ”by swapping assumer = ;” means that we swap



20 CHAPTER 2. COMPLETE RANGE SPACESS in such a way thatr is mapped to;, and work with the swapped space instead of the original
one. As far as theD1-graph and similar concepts are concerned, this is no loss ofgenerality.

Now we are able to prove a fundamental result about the distance-1-graph of a complete range
space of dimensiond � 0, namely that it is connected. We actually derive a stronger result: Given
two rangesr; r0 2 R, there exists a path fromr to r0 in D1(S) with length dist(r; r0), and this path
is shortest possible, since at least every element fromr4r0 must occur as the label of an edge on
the path.

First we need a lemma:

2.3.4 Lemma

Let S = (X;R) be complete of dimensiond � 1, X 2 R, r 6= X a range ofS.
Then there existsz 2 X, such thatr 2 Rfzg.

Proof:
We proceed by induction onn := jXj. Forn = d, any subset ofX is a range, so the lemma

holds in this case.
Now assumen > d, and let the assertion be true for all complete spaces of lessthenn ele-

ments.
Considerr 2 R; r 6= X. Then there isx 2 X, such thatx 62 r. If r = X � fxg, we are

done. Otherwise we know thatr 2 R � fxg, and by hypothesis there existsz 2 X � fxg withr 2 (R � fxg)fzg = Rfzg � fxg (2.2.3). So eitherr 2 Rfzg or r [ fxg 2 Rfzg, which impliesr 2 Rfxg. �
2.3.5 Theorem

LetS = (X;R) be a complete range space,r; r0 2 R; r 6= r0. Then there is a path
of lengthD :=dist(r; r0) betweenr andr0 in D1(S).

Proof:
By swapping we can assume thatr0 = X.
Now apply the preceeding lemma tor0 := r, and supposer0 2 Rfz0g. Thenr1 := r0 [ fz0g

is a range inR. Analogously defineri := ri�1 [ fzi�1g, i > 1; since dist(ri; r0) decreases by one
in every step, we conclude thatrD = r0, and theri; 0 � i � D define the desired path. �

If S is complete of dimension1, theD1-graph is of a special structure:

2.3.6 Theorem

LetS = (X;R) be a complete range space of dimension1. ThenD1(S) is a tree,
and everyx 2 X occurs exactly once as an edge label ofD1(S).

Proof:Sfxg is complete of dimension0, so jRfxgj = �0(jXj � 1) = 1, for all x 2 X. Clearly the
number of edges labelled withx equalsjRfxgj, so there is exactly one edge labelled withx, for allx 2 X.

It follows thatD1(S) hasjXj edges.
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Assume,D1 contains a cycle of edgese1; :::; ek. It is clear that the label ofei has to occur an
even number of times on this cycle, for alli, i.e. at least twice, which is a contradiction, so there
is no cycle.D1(S) has�1(jXj) = jXj+ 1 nodes andjXj edges and contains no cycle, so it is a tree.�

The fact that any two ranges of a complete range spaceS are joined by a (shortest possible)
path inD1(S), will turn out to be a key theorem in the sequel. A trivial consequence is that any
range has at least one neighbour inD1(S). This can be used to prove the following easy

2.3.7 Lemma

Let S = (X;R) be complete of dimensiond � 1. Then any range has at leastd
neighbours inD1(S).

Proof:
Clearly, the lemma holds ford = 1. If d > 1, r 2 R, let r0 be a neighbour ofr in D1(S).

By swapping assumer0 = r [ fxg, x 2 X. Thenr 2 Rfxg, and by hypothesisr hasd � 1
neighbours inD1(Sfxg). These are neighbours also inD1(S), so together withr0 this sums up tod neighbours. �

A more interesting consequence is the next theorem that we have already mentioned:

2.3.8 Theorem

Let S = (X;R) be complete of dimensiond � 0. ThenS is completely deter-
mined by its vertices, i.e.R = [jAj=dfrA [A0 j A0 � Ag;
whererA is the vertex inRA.

Proof:
Recall that the vertices are the unique rangesv 2 RA, jAj = d. A is said to determine the

vertexv.
We show that for anyr 2 R there isjAj = d such thatr = v [ A0 for someA0 � A, v the

vertex determined byA. Since on the other hand all the sets of the formv [ A0 are ranges ofR,
the theorem follows.

We use induction ond, noting that ford = 0 the theorem holds; now assumed > 0 and letr 2 R be given. Letr0 be a neighbour ofr in D1(S), x 2 X the label of the edge(r; r0). Letu be the one ofr; r0 that is contained inRfxg; by hypothesis there isB � X � fxg, such thatu = v [ B0, B0 � B, v the vertex ofRfxg determined byB. v is also a vertex ofR, determined
by B [ fxg; clearly, the theorem holds ifr = u. If r0 = u, thenr = v [ (B0 [ fxg), and sinceB0 [ fxg � B [ fxg, v is an appropriate vertex forr also in this case. �
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Chapter 3

Pseudogeometric Range Spaces

3.1 The Defining Property

Up to now we have shown that the description of cells of a set ofhalfspaces inEd is a complete
range space of VC-dimensiond, and we have given some basic properties of complete spaces.
Now it is natural to ask, whether to a given complete spaceS there exists a set of halfspaces, such
thatS is its description of cells – or equivalently: is every complete space geometric?

To attack this question, consider a setH+ of halfspaces inE1, i.e. on the line. A hyperplaneh is a point on the line, the halfspaceh+ is one of the two rays starting ath.
The cells of the corresponding1-dimensional arrangement are ordered along the line and their

labels are joined by theD1-graph ofC(H+) in this order. This means, theD1-graph is not only a
tree (as shown in theorem 2.3.6), but a path (figure 3.1).

So we have established a necessary condition that a geometric space of dimension1 has to
fulfill, and there are1-dimensional complete spaces who violate this condition (the smallest ex-
ample isS = (X;R) with X = f1; 2; 3g andR = f;; f1g; f2g; f3gg, where; is of degree three
in D1(S)).

There is an analogous condition ford-dimensional geometric spaces,d > 1. Recall thatC(H+)Y corresponds to thed � jY j- dimensional subarrangement induced in
Th2Y h by the

remaining halfspacesH+ � Y +. In the case wherejY j = d � 1, this subarrangement is of
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Figure 3.1: geometric and non-geometric complete space of dimension1
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dimension1, so theD1-graph ofC(H+)Y again is a path.
This necessary condition can be used as a defining property ofa subclass of the complete

spaces, called pseudogeometric range spaces, which are thesubject of this chapter.

3.1.1 Definition

Let S = (X;R) be complete of dimensiond. S is calledpseudogeometricorPG-space, iffd � 0 or – in cased � 1, if D1(SY ) is a path, for allY � X,jY j = d� 1.

Note that since pseudogeometric spaces are determined by properties of the distance�1�graph,
there is an equivalent to observation 2.3.3 also forPG-spaces, so swapping is a useful tool here
either.

3.2 Characterizations and Duality

In theorem 2.2.1 we have given five characterizations of complete spaces; equivalents of state-
ments (i) - (iii) are easily seen to hold also in the context ofpseudogeometric spaces; this is shown
in the following theorem, where two additional characterizations are given.

Unfortunately statement 2.2.1 (iv) cannot be added to the list, i.e. if for a spaceS of dimensiond there existsx 2 X, such thatSfxg andS � fxg are pseudogeometric of dimensionsd � 1 andd resp.,S itself does not have to be pseudogeometric. We give a2-dimensional counterexample:S = (X;R) withX = f1; 2; 3; 4g; R = f;; f1g; f2g; f3g; f4g; f1; 2g; f1; 3g; f1; 4g; f2; 3g; f2; 4g; f2; 3; 4gg:S is of dimension2 and complete, since allRfxg are complete of dimension1. NowR� f4g = f;; f1g; f2g; f3g; f1; 2g; f1; 3g; f2; 3gg; Rf4g = f;; f1g; f2g; f2; 3gg;
it is easy to check, thatS�f4g andSf4g are both pseudogeometric, butS is not pseudogeometric,
sinceRf1g = f;; f2g; f3g; f4gg shows thatD1(Sf1g) is not a path.

Furthermore, it is clear that an equivalent to 2.2.1(v) cannot hold for pseudogeometric spaces,
since the0-dimensional subspaces do not carry any structural information.

Note that the following theorem is stated ford � 2 – if d = 1, the implications (iii))(i),(ii)
as well as (ii))(i) may not hold! However, the proof shows that (i),(iv),(v) as well as (i))(ii)
holds also ford = 1.

3.2.1 Theorem

Let S = (X;R) be a complete of dimensiond � 2 and jXj > d. Then the
following statements are equivalent:

(i) S is pseudogeometric of dimensiond
(ii) 8x 2 X : Sfxg is pseudogeometric of dimensiond� 1, S�fxg is

pseudogeometric of dimensiond
(iii) 8x 2 X : Sfxg is pseudogeometric of dimensiond� 1
(iv) 8Y � X; jY j = d+ 2, SjY is pseudogeometric of dimensiond
(v) 8Y � X; jY j = d+ 2, SjY is geometric of dimensiond
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Proof:
(i) ) (ii) Consider a fixedx 2 X, Y � X � fxg; jY j = d � 2. Clearly,D1((Sfxg)Y ) is a

path, sinceS is pseudogeometric and(Sfxg)Y = SY [fxg (1.4.3 (i)), soSfxg is PG.
If D1(SY ) is a path, this is also the case forD1(SY � fxg) = D1((S � fxg)Y ) (2.2.3), soS � fxg is pseudogeometric of dimensiond.

(ii) ) (iii) trivial

(iii) ) (i) Let Y be a subset ofX, jY j = d � 1; x 2 Y . ThenSY = (Sfxg)Y�fxg, and
sinceSfxg is pseudogeometric of dimensiond � 1, D1((Sfxg)Y�fxg) is a path, soS itself is
pseudogeometric.

(i) , (iv) The implication ”)” follows by iterating the second part of (i)) (ii). To prove the
other one, assumeS is non-PG. Then there isZ � X; jZj = d� 1, such that there is a ranger of
degree at least three inSZ . Let a; b; c denote the labels of three edges incident tor in D1(SZ).

Then a node of degree three is still present inSZ jfa;b;cg = (SjZ[fa;b;cg)Z . This shows thatSjY is non-PG, whereY = Z [ fa; b; cg, jY j = d+ 2.

(iv) , (v) We will show that there is only ”one” pseudogeometric space withd+ 2 elements,
i.e. up to swapping and relabelling the elements allPG-spaces withd + 2 elements are equal.
From this it follows that an arrangement ofd + 2 halfspaces inEd generates any desiredPG-
space withd + 2 elements after renaming the hyperplanes and interchangingsome positive with
negative halfspaces in a suitable way. Hence thePG-space must be geometric.

The proof is based on the duality theorem for pseudogeometric spaces and is given as a corol-
lary to the theorem. �
3.2.2 TheoremS = (X;R) is pseudogeometric of dimensiond, iff �S is pseudogeometric of

dimensionn� d� 1.

Proof:
If d = �1 or d = 0, then�S is complete of dimensionn := jXj or n � 1. Since the

1-dimensional subspaces(�S)Y contain2 or 3 ranges in this case, the correspondingD1-graph
must be a path.

Forn = d or n = d + 1, �R is empty or contains one range, so�S is PG of dimension�1
or 0 by definition.

Now assumed � 1, n � d + 2. If S is PG, then following 3.2.1(i))(iv), SjY is PG for allY � X; jY j = d + 2, andT := (SjY )Z = (S � (X � Y ))Z consists of exactly three elements
and four ranges which form a path in the correspondingD1-graph, for alljZj = d� 1.

Then also�T has this property. Since�T = �((S � (X � Y ))Z) = ((�S) � Z)X�Y ,
wherejX � Y j = n � d � 2 =dim(�S) � 1, we know that(�S) � Z = (�S)jX�Z is PG,jX�Zj = n�d+1 =dim(�S)+2. Now 3.2.1 (iv)) (i) shows that�S itself is pseudogeometric.�
3.2.3 Corollary

Up to swapping and relabelling the elements, allPG-spacesS = (X;R) of di-
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mensiond � 1 with jXj = d+ 2 elements are equal.

Proof: We equivalently show that there is only ”one” dual space. Letx1; :::; xn be an ordering
of X. The theorem shows that�S is PG of dimension1. TheD1-graph is a path, and after
swapping with a range on one end of the path, the ranges are ordered by inclusion, starting with the
empty set. By appropriate relabelling we obtainR = f;g [ fRi j 1 � i � ng, Ri = fx1; :::; xig:�

We remark that in any dimensiond � 1 there exist complete spaces that are not pseudogeo-
metric: Forn � d letX be a set withn elements and defineR to be the set of all subsets ofX with
at mostd elements. Clearly,Sd(X) := (X;R) is of dimensiond. Furthermore, since there are

�ni�
subsets withi elements,Sd(X) has

Pdi=0 �ni� = �d(n) ranges, which means that it is complete.Sd(X) is called thecanonicalcomplete space of dimensiond overX.
ConsiderY � X, jY j = d� 1.
It is an easy observation thatRY = f;g [ ffzg j z 2 X � Y g. This shows that; has degreejX � Y j in D1(Sd(X)Y ), soSd(X) is not pseudogeometric ifjXj � d+ 2.
Since the structure ofSd(X) depends only on the cardinality of the setX, we defineSd(n) :=Sd(f1; :::; ng).

3.3 Levi-type Theorems

The two theorems in this section are inspired by Levi’s lemmafor arrangements of pseudolines
[Le], [Gr], and with the interpretation of geometric spacesin terms of arrangements of halfspaces
in mind, the definition of asegmentand aline that we give next, will be quite intuitive. Note that
for non-PG-spaces the following won’t work anymore; the canonical complete spaceS1(3) is an
easy counterexample.

3.3.1 Definition

Let S = (X;R) be pseudogeometric of dimensiond � 1. The set of ranges on
a path inD1(S) is called asegment, iff no x 2 X occurs more than once as an edge
label on the path. Ifr; r0 are the ranges on both ends of the path, the segment is said
to join r andr0.

A line is a segment joining rangesr;X � r 2 R (figure 3.2).

From 2.3.5 we know that for any pair of rangesr; r0 there is a segment joining them; the
segment has dist(r; r0) + 1 elements and the edge labels on the segment are exactly the elements
from r4r0. Note that a subsegment between rangesu andu0 can be replaced by any other segment
joining u; u0 – the result again is a valid segment forr; r0.

We say that a set of rangesR0 � R admitsa segment, iff there is a segment containingR0.
We will show that in the case of pseudogeometric spaces any two ranges admit a line and give
necessary and sufficient conditions under which an arbitrary set of ranges admits a line. Before
that we prove a more technical lemma to facilitate the following considerations.

3.3.2 Lemma

Let S = (X;R) be pseudogeometric of dimensiond � 1.
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   S’
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Figure 3.2: segmentS, lineL in geometric space.S0 is not a segment

(i) If R0 � R is a segment,jR0j � 2, then(X;R0) is of dimension1.
(ii) R0 � R admits a segment iff there isY � X, such that the ele-

ments fromR04Y can be linearly ordered by inclusion (and occur on the
segment in this order).

(iii) r; r0 2 R admit a line, iff there aret;X�t 2 R, such thatr�r0 � t
andr0 � r � X � t (t; r; r0;X � t occur in this order on the line).

Proof:
(i) Assume thatA := fx; yg � X is shattered inR0. Then there isU � R0; jU j = 4, which

shattersA. Let u1; :::; u4 be the elements ofU in the order in which they occur on the segment.
The segment property requires the setsui4ui+1; i = 1; 2; 3 to be pairwise disjoint. On the other
hand, each of these sets contains a non-empty subset ofA, so eitherx or y must be contained in
two of the sets, which is a contradiction, soR0 is of dimension1.

(ii) If R0 admits a segment, letr1; :::; rk be an ordering of the elements ofR0 along the segment.
Similar to (i), this means(r14ri) \ (ri4ri+1) = ;; i < k. Now swap withY := r1 and letr0i
denoteri4Y . Thenr0i \ (r0i4r0i+1) = ;, which impliesr0i � r0i+1.

Now supposeR0 = fri j i � kg and swapping withY � X yieldsr01 � ::: � r0k, r0i = ri4Y .
Clearly thenDi := r0i4r0i+1 = r0i+1 � r0i, soDi \ Di+1 = ;. This means, by piecing together
segments joiningr0i andr0i+1 inD1(S4Y ) we obtain a segment containingR04Y in S4Y . Since
the distance-1-graph is invariant under swapping this shows thatR0 admits a segment inS.

(iii) If r; r0 admit a line then there are rangest;X � t, such thatX is the disjoint union oft4r, r4r0 and r04(X � t). We show thatr � r0 � t (symmetric argumentation works forr0 � r � X � t): assumex 2 r � r0 � r4r0; this impliesx 62 t4r. Sincex 2 r, we conclude
thatx 2 t.
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Figure 3.3: Constructing a line containingr; r0 by induction

If on the other handr � r0 � t, r0 � r � X � t, then easy calculation showsr4t � r04t, so
we have; = t4t � r4t � r04t � (X � t)4t = X; following part (ii) of the lemma this means
thatt; r; r0;X � t admit a segment, and this segment is a line containingr; r0. �

Now we are ready to prove

3.3.3 Theorem

Let S = (X;R) be pseudogeometric of dimensiond � 1. Then any two rangesr; r0 admit a line.

Proof:
The assertion is true ford = 1, since in this caseR itself is a line. Furthermore, if dist(r; r0) =0, i.e. r = r0, then part (iii) of the lemma shows that it is sufficient to findone pair of complemen-

tary rangest;X � t. Such a pair always exists, as follows by easy induction ond: Ford = 1, take
the ranges on both ends ofD1(S). If d > 1; x 2 X, there are rangest;X � (t [ fxg) 2 Rfxg by
hypothesis, which impliest;X � t 2 R.

Now letS = (X;R) be pseudogeometric of dimensiond > 1, r; r0 2 R with distanceD :=
dist(r; r0) > 0 and assume the theorem holds for anyPG-space of dimension less thand and any
pair of ranges with distance less thanD in R.

Consider a segment joiningr andr0 and letu be the range followed byr0 on this segment
(figure 3.3). By swapping withfxg, if necessary, we can assumer0 = u [ fxg for somex 2 X.
Since dist(r; u) = D � 1, r andu admit a lineL by hypothesis, so there are rangest;X � t withr�u � t; u�r � X� t. If x 2 X� t, then we obtainr�r0 � t; r0�r � X� t, so we are done.
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Otherwisex 2 t, and sincex 62 r, by traversingL from r to t, we encounter a ranges 2 Rfxg. By
hypothesiss andu admit a line inSfxg, so we havet0;X � (t0 [ fxg) 2 Rfxg with s � u � t0,u� s � X � (t0 [ fxg), which yieldss� r0 � t0, r0� s � X � t0. Now s can be replaced withr
in this formula, since we haver � r0 � s� r0, r0 � r � r0 � s, which follows from the fact thats; r andu = r0 � fxg appear on the original lineL in this order.

Together with the fact thatX � t0 is a range inR, this shows thatr andr0 admit a line inS. �
3.3.4 Corollary

Let S = (X;R) be pseudogeometric of dimensiond � 1, x 2 X.
If ;;X � fxg 2 R, thenfxg 2 R orX 2 R.

We will use the theorem to prove the following generalization of it:

3.3.5 Theorem

Let S = (X;R) be pseudogeometric of dimensiond � 1, R0 � R, jR0j � 4. The
following statements are equivalent:

(i) R0 admits a line
(ii) Any four ranges fromR0 admit a line
(iii) Any three ranges fromR0 admit a line and(X;R0) is of dimension1

Proof:
(i)) (ii) trivial
(ii)) (iii) Suppose,(X;R0) is of dimensiond � 2; then(X;U) is of dimension2 for someU � R0, jU j = 4. Now part (i) of the lemma shows thatU cannot admit a line.
(iii)) (i): theorem 3.3.3 can equivalently be expressed as follows: any segment can be ex-

tended to a line. This means, it suffices to show thatR0 admits a segment. To this end consider
rangesr; r0 2 R0 with maximal distance. After swapping assumer = ;. We show that now
the ranges fromR0 are linearly ordered by inclusion, so part (ii) of the lemma yields the desired
conclusion.

Consideru; u0 2 R0. We have to showu � u0 or u0 � u. fr; u; r0g as well asfr; u0; r0g admit
a segment, and sincer andr0 have maximal distance, these segments joinr andr0. r = ; then
implies r � u; u0 � r0. If u andu0 are not comparable with respect to�, there isx 2 u � u0,y 2 u0 � u. r = ; contains neitherx nor y, while r0 contains both of them. This means,fx; yg is
shattered infr; u; u0; r0g, a contradiction to the assumption thatR0 is of dimension1. �
3.4 Closure and Boundary

We have already introduced certain subspaces associated with a range space; now we will define
two more spaces, namely theclosureand theboundaryof a range space. Although these two
spaces can be derived from any range space, they have interesting properties and a geometric
interpretation especially in the context of pseudogeometric spaces.
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3.4.1 Definition

Let S = (X;R) be a range space. The spacesS = (X;R); whereR := R [ fX � r j r 2 Rg
and �S = (X; �R); where�R := fr 2 R j X � r 2 Rg
are called the(complementary) closureand the(complementary) boundaryof S.

When we consider thePG-spaceC(H+), the ranges of�C(H+) are exactly the labels of the
unbounded cells of the arrangementA(H+). The geometric interpretation ofC(H+) is not so
obvious; it will be given in the next chapter, where we introduce arrangements of hemispheres.

3.4.2 Lemma

Let S = (X;R) be a range space. Then for allx 2 X
(i) (�S)fxg = �(Sfxg)
(ii) S � fxg = S � fxg

and

(iii) ��S = �S
(iv) �S = �(�S)

Proof:
(i) r 2 (�R)fxg , r; r [ fxg 2 �R, r;X � r; r [ fxg;X � (r [ fxg) 2 R, r;X � (r [ fxg) 2 Rfxg , r 2 �(Rfxg).
(ii) similar to (i)

(iii) r 2 ��R, r 62 �R, r 62 R _X � r 62 R, r 2 �R _X � r 2 �R, r 2 �R
(iv) similar to (iii) �
Surprisingly, corresponding statements(�S) � fxg = �(S � fxg) andSfxg = Sfxg do not

hold for general range spaces – not even for complete spaces (once more an easy counterexample
is S1(3)), but using corollary 3.3.4 we are able to prove that these equalities hold for pseudogeo-
metric range spaces. This is the following

3.4.3 Lemma

Let S = (X;R) be a pseudogeometric range space of dimensiond � 1. Then for
all x 2 X

(i) (�S)� fxg = �(S � fxg)
(ii) Sfxg = Sfxg

Proof:
(i) r 2 (�R)�fxg , r 2 �R_ r[fxg 2 �R, r;X� r 2 R_ r[fxg;X� (r[fxg) 2 R) r;X � (r [ fxg) 2 R� fxg , r 2 �(R � fxg).
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So far this is true for any range space; forPG-spaces, however, the" ) " becomes a", ":
Assumer;X � (r [ fxg) 2 R � fxg. If r;X � r 2 R or r [ fxg;X � (r [ fxg) 2 R, we are
done, so the critical cases are (a)r;X � (r [ fxg) 2 R or (b) r [ fxg;X � r 2 R.

Consider case (a): after swapping withr, 3.3.4 shows thatr [ fxg 2 R or X � r 2 R, sor;X � r 2 R or r [ fxg;X � (r [ fxg) 2 R must hold, and this proves the" ( ". Case (b) is
treated analogously.

(ii) We use duality: �(Sfxg) = (�S) � fxg = �(�S) � fxg = �((�S) � fxg) =�(�(Sfxg)) = �Sfxg: �
3.4.4 Remark

The proof shows that(�R)� fxg � �(R� fxg) andRfxg � Rfxg
for any range

space. This fact will be useful later.

3.5 A Characterizing Maximality Condition

Recall that�C(H+) contains the labels of the unbounded cells of the arrangementA(H+). Clearly,
an arrangement of halfspaces always has unbounded cells, sothe set of ranges ofC(H+) is non-
empty. We will show that this is the case for all pseudogeometric range spaces of dimensiond � 1,
moreover: allPG-spaces of a fixed dimensiond and a fixed number of elementsn have the same
number of ranges in their boundary (from this it follows thatthey also have the same number of
ranges in their closures)

3.5.1 Theorem

Let S = (X;R) be a pseudogeometric range space of dimensiond � 1 withjXj = n elements. Then

(i) j�Rj = 2�d�1(n� 1)
(ii) jRj = 2�d(n� 1).

Proof:
(i) We proceed by induction; ford = 1, the edges fromD1(S) form a path of lengthn, and

eachx 2 X occurs as a label on the path (2.3.6, 3.1.1). Hence there are complementary rangesr
andX � r only on both ends of this path, so there are2 = 2�0(n � 1) ranges in the boundary.
Furthermore, ifn = d, thenj�Rj = jRj = 2d = 2 � 2d�1 = 2�d�1(n� 1). So the theorem holds
for d = 1 andn = d.

Now assume (i) holds for anyPG-space of dimensiond�1 or dimensiond andn�1 elements,
and considerS = (X;R), pseudogeometric of dimensiond � 2, jXj = n > d.

Thenj�Rj = j(�R) � fxgj+ j(�R)fxgj (1.4.3), and using 3.4.3 we obtainj�Rj = j�(R � fxg)j + j�(Rfxg)j= 2�d�1(n� 2) + 2�d�2(n� 2) by hypothesis= 2�d�1(n� 1):
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(ii) Evidently jRj = 2jRj� j�Rj, which yieldsjRj = 2�d(n)� 2�d�1(n� 1) = 2�d(n� 1):�
While complete spaces reach the maximal number of ranges that a range space of fixed dimen-

sion and a fixed number of elements can have, the pseudogeometric range spaces maximize the
number of ranges in the boundary. Moreover, among the complete spaces they are characterized
by this property.

First of all we show that any range space of dimensiondwith n elements has at most2�d�1(n�1) ranges in its boundary. This implies the claimed maximalityof thePG-spaces.

3.5.2 Theorem

Let S = (X;R) be a range space of dimensiond � 1 with n := jXj elements.
Thenj�Rj � 2�d�1(n� 1).

Proof:
We proceed by induction; LetS be of dimension1 and suppose,�S has more than2�0(n �1) = 2 ranges. Then there are at least four ranges in the boundary, and by swapping we can assume

that for somer � X we havef;;X; r;X �rg � R. Choosex 2 r, y 2 X�r. fx; yg is shattered
in f0;X; r;X � rg, soS is not of dimension1, which is a contradiction. So the theorem holds ford = 1. Furthermore it is true forn = d, since in this casej�Rj = jRj = 2d = 2�d�1(n� 1).

Now consider a range spaceS of dimensiond > 1 andn > d elements and assume the
theorem holds for all spaces of dimension less thand or dimensiond and less thann elements.

Remark 3.4.4 shows thatj(�R) � fxgj � j�(R � fxg)j; furthermore, from 3.4.2 it followsj(�R)fxgj = j�(Rfxg)j, soj�Rj = j(�R) � fxgj+ j(�R)fxgj� j�(R � fxg)j + j�(Rfxg)j� 2�d�1(n� 2) + 2�d�2(n� 2) by hypothesis= 2�d�1(n� 1): �
Now we are able to extend Theorem 3.2.1 and give a few more characterizations of pseudoge-

ometric spaces:

3.5.3 Theorem

Let S = (X;R) be a range space of dimensiond � 1 with jXj = n elements.
Then the following statements are equivalent:

(i) S is pseudogeometric of dimensiond
(ii) S is complete of dimensiond andj�Rj = 2�d�1(n� 1)
(iii) S is complete of dimensiond andjRj = 2�d(n� 1)
(iv) j�Rj = 2�d�1(n� 1), jRj = 2�d(n� 1)

Proof:
(i) ) (ii) has already been shown; For the inverse implication we use induction ond. If d = 1

andj�Rj = 2�0(n� 1) = 2, then there is a path of lengthn in D1(S) connecting the two ranges
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in the boundary (2.3.5). SinceD1(S) itself has onlyn edges (2.3.6), it is identical with this path,
soS is pseudogeometric.

Now assumed > 1; similar as in 3.5.2 we obtain2�d�1(n� 1) = j�Rj = j(�R) � fxgj+ j(�R)fxgj� 2�d�1(n� 2) + 2�d�2(n� 2)= 2�d�1(n� 1);
so in particular2�d�2(n � 2) = j(�R)fxgj = j�(Rfxg)j (3.4.2), which by hypothesis shows
thatSfxg is pseudogeometric of dimensiond � 1 > 0, for all x 2 X. This means,S itself is
pseudogeometric (3.2.1).

(ii) , (iii) , (iv) We know thatjRj = 2jRj � j�Rj, and easy calculation shows that two of
the quantities determine the third one in the way it was claimed. �

Finally, we give the dimensions of closure and boundary of aPG-space:

3.5.4 Lemma

Let S = (X;R) be pseudogeometric of dimensiond. Then

(i) dim (�S) = d, if d � 1
(ii) dim (S) = ( d if S = S(, jXj = d)d+ 1 otherwise

, if d � 0
Proof:

(i) Clearly, �S has dimension at mostd. S is pseudogeometric of dimensiond � 1, soj�Rj = 2�d�1(jXj � 1) (3.5.1). If on the other handS is of dimensiond0 � d, then it follows
from theorem 3.5.2 that�S has at most2�d0�1(jXj � 1) ranges, which impliesd = d0, if d � 1.

(ii) We show thatS has dimension at mostd + 1: If d = 0, thenS = (X; frg); r � X, soS = (X; fr;X � rg) is of dimension1. If jXj = d, thenS = S, so in this caseS is of dimensiond. Now letS = (X;R) be pseudogeometric of dimensiond > 0 with n := jXj > d and assume
the assertion is true for allPG-spaces of dimension less thand or dimensiond and less thann
elements. Choosex 2 X. ThenSfxg; S � fxg are pseudogeometric of dimensionsd � 1 andd,
repectively, for allx 2 X, soSfxg is of dimension at mostd andS � fxg is of dimension at mostd+ 1 by hypothesis.

Let d0 denote the dimension ofS. If n > d0, letA � X be a set of cardinalityd0 shattered inR, and considery 2 X, such thaty 62 A. ThenA is shattered already inR � fyg = R� fyg
(3.4.2), sod0 = jAj � d+ 1.

If n = d0, then each subset ofX is a range ofS. This implies that forx 2 X each subset ofX � fxg is a range ofSfxg = Sfxg (3.4.3). Sfxg is of dimension at mostd, so jX � fxgj can
have at mostd elements. Thusd0 = n � d+ 1.

The desired conclusion is immediate from this: ifS = S, dimensiond is obvious. OtherwisejRj > jRj, and sinceS is complete of dimensiond, S must be of higher dimension. �
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Chapter 4PG-spaces

4.1 Definition and a Characterizing Maximality Condition

We have seen that the boundary and the closure are important concepts to characterizePG-spaces,
and we have already given a geometric interpretation of the boundary in the case where thePG-
space is the description of cells of an arrangement of halfspaces. Now we will take a closer look at
the closure and give an interpretation in terms of arrangements of hemispheres. To allow a more
formal treatment, we give the following definition:

4.1.1 Definition

Let S = (X;R) be a range space of dimensiond � 1. S is called aPG-space, if
there exists a pseudogeometric range spaceT , T 6= S, such thatS = T ,T is called anunderlyingspace ofS.

The underlying space of aPG-space of dimensiond is not unique, but from lemma 3.5.4 it
follows that any underlying space has dimensiond� 1.

We have seen that complete and pseudogeometric range spacescan be characterized by cer-
tain maximality conditions: complete spaces by defintion maximize the total number of ranges,
while among the complete spaces exactly thePG-spaces maximize the number of ranges in the
boundary. This characterization is very useful in decidingwhether a given complete spaceS is
pseudogeometric, because it is a ”top-level-criterion”, i.e. unlike the defining characterization ofPG-spaces (3.1.1) it does not require any knowledge about subspaces ofS.

Our first theorem in this section shows that a characterizingmaximality condition can also be
found forPG-spaces. As a corollary we obtain the result that the boundary of aPG-space is the
closure of some lowerdimensionalPG-space. The proof of the theorem will be much clearer with
the following geometric interpretation in mind:

LetH be a set of hyperplanes inEd with corresponding set of halfspacesH+. The description
of cellsC(H+) is a (geometric)PG-space. We have shown that the boundary of this space contains
the labels of the unbounded cells of the arrangement. In order to obtain a geometric interpretation
of its closure, we make use of a different representation of the d-dimensional euclidean space:
think of Ed as the tangential hyperplane touching the unit sphereSd � Ed+1 in the north pole.
NowEd can be mapped bijectively to the open northern hemisphere ofSd using central projection.

35
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Figure 4.1: mapping an arrangement of hyperplanes to an arrangement of great spheres

This transformation takes a hyperplaneh of Ed to a relatively open great halfsphere of dimensiond� 1.
In a unique way this halfsphere can be continued to a full great (d � 1)-sphere inSd, so an

arrangement of hyperplanes inEd induces an arrangement of great spheres inSd; moreover, if
we have positive and negative halfspaces associated with the hyperplanes, this information in an
obvious way determines positive and negative hemispheres associated with the great spheres, so
that we obtain anarrangement of hemispheresin Sd (figure 4.1).

We can define the description of cells of this arrangement analogously to the one of a set of
halfspaces: each cellc is labelled with the set of great spheres, whose positive hemispheres containc; assuming the great sphere generated by the hyperplaneh is also calledh, this description of cells
is the closure of thePG-spaceC(H+). This is easy to see, since by extending the arrangement
of halfspaces in the open northern hemisphere to an arrangement of hemispheres we generate an
antipodal cell with complementary label for each cell in thenorthern hemisphere.

So if S is a pseudogeometric space arising from a set of halfspaces in Ed, thePG-spaceS
arises from the set of hemispheres inSd, that can be obtained by mapping the halfspaces to the
northern hemisphere ofSd and extending them to full hemispheres.

A PG-space arising in this way from a geometric space will be called ageometricPG-space.

We come back to arrangements of hemispheres when we introduce oriented matroids.
Now we can establish the anounced theorem: A few notions are necessary: A range spaceS = (X;R) is calledclosed, if S = S = �S; theorem 3.5.2 says thatS of dimensiond � 1 can

have at most2�d�1(jXj � 1) ranges in this case, so we callS maximal closedof dimensiond, ifS reaches this maximal number of ranges.
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4.1.2 Theorem

Let S = (X;R) be a range space,d � 1. S is maximal closed of dimensiond, if
and only ifS is aPG-space of dimensiond.

Proof:
If S is PG of dimensiond, thenS is the closure of a(d � 1)-dimensionalPG-spaceT withS 6= T . S = T has2�d�1(jXj � 1) ranges (3.5.1 (ii)), soS is maximal closed of dimensiond.

To obtain the inverse implication, we proceed by induction on d. If S is maximal closed of
dimension1, this meansS = (X; fr;X � rg); r � X. NowT = (X; frg) is of dimension0 and
hence pseudogeometric withS = T .

Now supposed > 1 and letS = (X;R) be maximal closed of dimensiond, n := jXj.
Considerx 2 X. It is easy to see thatSfxg andS � fxg are closed of dimensions at mostd � 1
andd, respectively, so we have2�d�1(n� 1) = jRj = jRfxgj+ jR� fxgj� 2�d�2(n� 2) + 2�d�1(n� 2)= 2�d�1(n� 1):
This especially showsjRfxgj = 2�d�2(n� 2), soSfxg is maximal closed of dimensiond� 1. By
hypothesis there exists aPG-spaceSx = (X � fxg; Rx) of dimensiond� 2 with Sfxg = Sx.

Let x+ denote the set of all ranges ofS that containx, i.e. x+ := fr 2 R j x 2 rg. Now we
construct the range space T = (X;Rx [ x+)
and we claim thatT is pseudogeometric of dimensiond � 1 with closureS, which proves the
theorem.

Obviously,S = T . The number of ranges ofT isjRxj+ jx+j = �d�2(n� 1) + 122�d�1(n� 1) = �d�1(n):
Furthermore,T has2jRxj = 2�d�2(n � 1) ranges in the boundary. If we can show thatT is of
dimensiond� 1, then theorem 3.5.3 ensures thatT is pseudogeometric.

From the number of ranges ofT it is clear thatT is of dimension at leastd � 1; to prove that
it is of dimension at mostd � 1, we considerA � X, such thatA is shattered inRx [ x+. We
distinguish two cases:

(a)x 62 A:
SinceRx � Rfxg, we haver[fxg 2 x+ for all r 2 Rx, and because ofA\r = A\(r[fxg)

we know thatA is already shattered inx+. In the remarks to definition 2.3.2 we have shown
that the property of being shattered is invariant under swapping, soA is also shattered inx� :=R � x+ = x+4X. This implies thatA [ fxg is shattered inR: x+ generates all subsets that
containx, while the subsets not containingx are obtained by intersectingA[fxg with the ranges
from x�. S is of dimensiond, sojAj � d� 1.

(b) x 2 A:
By intersectingA with the ranges fromx+ we only get subsets ofA that containx. This

means,A� fxg is shattered inRx. Sx is of dimensiond� 2, so againjAj � d� 1.

We have shown that ifA is shattered inRx[x+, thenjAj � d�1, soT is of dimensiond�1,
which completes the proof. �
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4.1.3 Corollary

Let S = (X;R) be pseudogeometric of dimensiond � 1. Then�S is PG of
dimensiond.

Proof:
From lemma 3.5.4 we know that�S is of dimensiond. Moreover,�S has2�d�1(jXj � 1)

ranges (3.5.1), so it is maximal closed of dimensiond and hencePG by the theorem. �
4.1.4 Remark

The proof of the theorem shows how to obtain an underlying space of aPG-spaceS from the
underlying space of someSfxg: If Sx = (X � fxg; Rx) is an underlyingPG-space of thePG-
spaceSfxg, thenT = (X;x+ [ Rx) is an underlying space ofS. Because of symmetry this
especially shows: Given aPG-space(X;R) and somex 2 X, there is an underlyingPG-space
containingx+ and another one containingx� := R� x+. x+ andx� are called thehalfspacesofx in R.

4.2 More Characterizations and Duality

The following theorem that establishes a few equivalent chacterizations ofPG-spaces is of a kind
that should be familiar by now:

4.2.1 Theorem

Let S = (X;R) be closed of dimensiond � 2; jXj > d. Then the following
statements are equivalent:

(i) S is aPG-space of dimensiond
(ii) S is maximal closed of dimensiond
(iii) 8x 2 X : Sfxg is PG of dimensiond � 1, S � fxg is PG of

dimensiond.
(iv) 8x 2 X : Sfxg is PG of dimensiond� 1
(v) 9x 2 X : Sfxg is PG of dimensiond � 1, S � fxg is PG of

dimensiond
(vi) jRAj = 2 for all A � X; jAj = d� 1.

Proof:
(i) , (ii) is theorem 4.1.2. Once we have this first characterization, we can use the proof

of theorem 2.2.1 (which is the equivalent of this theorem forcomplete spaces) to obtain char-
acterizations (iii) to (vi) by simply changing ”complete” to ”maximal closed” and ”�d(n)” to
”2�d�1(n�1)”. We need only to observe that ifS is closed, then for allx 2 X;Sfxg andS�fxg
are also closed.

Note that the theorem is stated ford � 2, because aPG-space must be of dimension at least1
by definition. �

We conclude this chapter with a duality theorem forPG-spaces that slightly differs from the
ones given for complete andPG-spaces with respect to dimension:
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4.2.2 Theorem

Let S = (X;R) bePG, n := jXj >dim(S)d. Then�S is PG of dimensionn� d.

Proof:
Let T be an underlyingPG-space ofS. T is of dimensiond� 1, so�T is PG of dimensionn� d � 1 by the duality theorem for pseudogeometric spaces 3.2.2.
Furthermore,�S = �T = �(�T ), so�S is the boundary of�T and hencePG of dimensionn� d by corollary 4.1.3. �
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Chapter 5

Oriented Matroids and PG-spaces

5.1 Introduction

We have started this paper with the consideration of arrangements of halfspaces and the description
of cells of such an arrangement. In order to investigate the description of cells we have introduced
the notion of range spaces.

A simple arrangement of halfspaces determines a complete range space, but the converse was
easily seen to be false. This led to the concept of pseudogeometric spaces, a subclass of the com-
plete spaces defined by an additional property of arrangements of halfspaces that is not satisfied
by complete spaces in general.

While arrangements of halfspaces determinePG-spaces, arrangements of hemispheres definePG-spaces, which is the third class of range spaces we have introduced so far (like in the other
chapters, we speak of simple arrangements here, but do not always mention it explicitly).

Now the same question we have asked in the context of completespaces comes up again here:
is it true that anyPG-space is the description of cells of an arrangement of halfspaces, and that
anyPG-space determines an arrangement of hemispheres?

Once more we give a negative answer – nevertheless,PG- andPG-spaces seem to be the
most appropriate approach to arrangements: in this chapterwe show thatPG- andPG-spaces
correspond toarrangements of pseudohalfspacesand arrangements of pseudohemispheres, re-
spectively.

An exact definition of these objects is postponed to the end ofthis chapter – intuitively, such
arrangements consist of ”distorted” halfspaces or hemispheres, which intersect in the same way as
straight halfspaces or hemispheres do.

From a topological point of view there is no difference – the notion of ”straightness” that dis-
tinguishes halfspaces and hemispheres from pseudohalfspaces and pseudohemispheres is purely
geometric.

A well-studied case is the2-dimensional one, and there is a lot of literature concerning ar-
rangements of pseudolines (for a survey of the subject up to 1972 see [Gr]; new results can be
found in [GP80b], [GP82], [GP85]).

A remarkable result is the existence of arrangements of pseudolines which are notstretchable,
i.e. which are not equivalent to any straight arrangement ina certain sense [Ed], [Ri] – translated
to the terminology of range spaces this means: there exist pseudogeometric spaces which are not
the description of cells of any arrangement of halfspaces. An example of a simple, non-stretchable
arrangement of pseudolines can be found in [Ri].

41
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It is common to all known combinatorial structures encodingarrangements, that they can-
not ”recognize” straight arrangements, and this especially holds for a very powerful and general
structure, namelyoriented matroids.

Folkman and Lawrence [FL] have shown that an arrangement of pseudohemispheres deter-
mines an oriented matroid; moreover, every oriented matroid comes from such an arrangement.
Later A.Mandel [Ma] gave an alternative proof of this result.

We show thatPG-spaces are exactly simple oriented matroids, and this implies the correspon-
dences we have anounced above.

We proceed as follows: First we introduce oriented matroidsusing the terminology of A.Mandel
and prove some of their basic properties. Then we establish the relation toPG-spaces. Finally, we
give definitions of arrangements of pseudohalfspaces and -hemispheres and show howPG- andPG-spaces are related to these structures.

We remark that although the axioms for an oriented matroid used by Mandel are different
from the ones used in [FL] and [BL], both axiomatizations canbe shown to be equivalent. For
our purposes Mandel’s terminology is more convenient, so wehave decided to use his approach
instead of the one from the standard papers on the subject.

5.2 Definition and Basics on Oriented Matroids

Let X be a finite set. Asigned vectoronX is a mappingF : X ! f0;+1;�1g. F (x) will be
denoted byFx. Thesupportof F is defined as the setF := fx 2 X j Fx 6= 0g. F 0 := X � F is
called thezerosetof F .

In the context of signed vectors0 is the vector satisfying0x = 0 for all x 2 X. �F is
defined by(�F )x := �(Fx). If F andG are signed vectors, then we declare theproductF �G by(F �G)x := Fx, if Fx 6= 0; Gx otherwise. ForY � X, F jY denotes the restriction ofF to Y .

Finally we sayx 2 X separatesF andG, iff Fx = �Gx 6= 0.
Note that(F �G)x = (G � F )x iff x does not separateF andG.

5.2.1 Definition

LetX be a finite set,V a set of signed vectors onX satisfying

(OM1) 0 2 V
(OM2) F 2 V implies�F 2 V
(OM3) If F;G 2 V, thenF �G 2 V
(OM4) If F;G 2 V, such thatx separatesF andG, then there isH 2 V, such thatHx = 0 andHy = (F � G)y = (G � F )y for eachy not

separatingF andG (we sayH results from theeliminationof x betweenF andG).

Then the pair(X;V) is called anoriented matroid.

The axioms are inspired by properties of vector spaces:

5.2.2 Example

For x 2 Ed, define a signed vector�(x) onD := f1; :::; dg by �(x)i := +1; 0
or�1 depending on whetherxi > 0;= 0 or< 0. Let V be a linear subspace ofEd.
Then the pair(D; f�(x) j x 2 V g) is an oriented matroid.
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Proof:
Properties (OM1) and (OM2) are obviously satisfied. To provethe other two, considerX =�(x); Y = �(y) and letg be the relatively open line segment connectingx andy. If X is the

support ofX, there is an open neighbourhoodU of x, such that8u 2 U;m 2 X : �(u)m =�(x)m. Let z be any element inU \ g. ThenZ := �(z) is the product ofX andY .
If i 2 D separatesX andY , theng intersects the hyperplanexi = 0 in a unique pointz, andZ := �(z) results from the elimination ofi betweenX andY . �
Similar argumentation works for an arrangement of hemispheres:

5.2.3 Example

Let S be a set of great(d � 1)-spheress with positive and negative hemispheress+ ands� in the unit sphereSd. For x 2 Sd the signed vector�(x) is defined by�(x)s := +1; 0 or �1, depending on whetherx is contained ins+; s or s�. Then(S; f0g [ f�(x) j x 2 Sdg is an oriented matroid.

Proof:
Again the first two properties are obviously satisfied; forX = �(x); Y = �(y) we now letg

be the relatively open shortest circular arc joiningx andy. The product ofX andY is obtained by
defining a neighbourhoodU as above and choosing a point inU \g; if the great spheres separatesX andY , the signed vectorZ required by (OM4) is�(z), wherez is the intersection point ofg
ands. �

An oriented matroid arising in this way from an arrangement of hemispheres is calledlinear.
It is clear that the signed vectors of this linear oriented matroid correspond to the faces of the
arrangement.

If f andg are faces of the arrangement with corresponding signed vectorsF andG, thenf is
a subface ofg, iff F arises fromG by changing some components ofG to zero.

This observation motivates us to introduce a partial order on signed vectors on a setX: We
defineF � G :, 8x 2 X : Fx = 0 or Fx = Gx, so in the case where we have a linear oriented
matroid, this order is isomorphic to the usual incidence order among the faces of the corresponding
arrangement of hemispheres.

This leads to general terminology: IfM = (X;V) is an oriented matroid, then the elements
of V are calledfacesof M . If F � G, F is asubfaceof G. The subface relation isproper, iffF < G, i.e.F � G andF 6= G.

The maximal vectors in the order� are calledtopes, while we refer to the minimal nonzero
vectors asverticesof M .

Note thatF � F �G, for all F;G 2 V, soF is always a subface of its product with any other
face.

The vertices are not only the basic vectors in the order�, they also completely determine the
oriented matroid. This follows from the fact that the product of faces is a face together with the
following

5.2.4 Theorem

Let M = (X;V) be an oriented matroid. Every nonzero faceF of M is the
product of its vertices (i.e. the vertices dominated byF in the order�).
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Proof:
Note first, that the order in which the vertices are multiplied is irrevelant in this case, since

subfaces ofF are never separated by an element, in which case the product is commutative.
Now assume there is a faceF contradicting the theorem; chooseF minimal with respect to

this property. LetB be a vertex ofF . SinceB is nonzero,F and�B are separated by at least one
elementx. Eliminatingx betweenF and�B yields a faceG 6= F with Gy = (F � (�B))y = Fy
for all y 2 B0. ChooseG 6= F with this property, such thatG is separated fromF by as few
elements as possible. Then no element separatesF andG, otherwise eliminating this element
betweenF andG yields a faceG0 6= F that is separated fromF by fewer elements thanG, while
maintainingG0y = Fy for all elements in the zeroset ofB, contradicting the choice ofG.

But now we know thatG < F : Fy = 0 impliesy 2 B0, soGy = 0, while Fy 6= 0 impliesGy = Fy or 0, sincey does not separateF andG.F cannot be a vertex itself, so there isz 2 B0 with Gz = Fz 6= 0, which shows thatG is
nonzero. Due to the minimality ofF , G is the product of its vertices. Furthermore,F = B � G,
and since the vertices ofG are also vertices ofF , F is the product of some of its vertices, a
contradiction. �

We now come back to the consideration of the order�; The pair(V;�) is called thecomplex
of M ; it is a poset which is in a certain sense well-behaved:

5.2.5 Proposition

Let (V;�) be the complex of an oriented matroid. Then the following holds:

(i) For anyF 2 V, all saturated�-chains from0 to F have the same
length (and this length is called therankof F , denoted byr(F ). Note thatr(0) = 0)

(ii) All topes have the same rank

A poset with property (i) is said to satisfy theJordan - Dedekind chain condition; if in addition to
(i), (ii) also holds, the poset is calledpure-dimensional.

5.2.6 Definition

LetM be an oriented matroid,F a face ofM . Thedimensionof F is defined asd(F ) := r(F ) � 1. The dimension ofM is d(M) := d(T ), whereT is a tope ofM
(sod(M) is the length of a chain from a vertex to a tope).

Following this definition, the linear oriented matroid fromexample 5.2.3 has the same dimen-
sion as its generating arrangement.

The proof that the complex of an oriented matroid is pure-dimensional can be found in A.Mandel’s
thesis [Ma]; it relies on properties of the underlying matroid, which exists for any oriented matroid:

5.2.7 Definition

Let X be a finite set,S a collection of subsets ofX. The pair(X;S) is called a
matroidonX, iff
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(M1) X 2 S
(M2) A;B 2 S impliesA \B 2 S
(M3) If A 2 S with x; y 62 A and there existsB 2 S containingA [ fxg but notfyg, then there existsC 2 S containgA [ fyg but notfxg

5.2.8 Lemma

For an oriented matroidM = (X;V), let V0 denote the collection of all zerosets
of faces ofM .(X;V0) is a matroid onX. It is called theunderlying matroidof M .

Proof:
Since0 2 V, (M1) is clear. To see that (M2) holds, it suffices to observe that if F andG are

faces ofM with zerosetsF 0 andG0, then their productF �G has zerosetF 0 \G0.
It remains to prove (M3): LetF;G be faces,x; y 2 X, such thatx; y 62 F 0 andF 0 [ fxg �G0 63 y. Clearly,Fx; Fy andGy are nonzero, whileGx = 0. AssumeFy = �Gy (which can be

achieved by substitutingG with �G, if necessary) and letH be a face resulting from elimination
of y betweenF andG.

SinceFz = Gz = 0 8z 2 F 0, this is also true forH. Furthermore,H satisfiesHy = 0, and
(sincex does not separateF andG),Hx = (F �G)x 6= 0. This meansH0 containsF 0 [ fyg, but
notfxg, as required. �
5.3 Simplicity

At the beginning of this chapter we have said that there is a correspondence betweenPG-spaces
andsimpleoriented matroids, so a definition of simplicity is what we give next.

This definition will be quite clear, when we figure out what it means in the case of linear
oriented matroids (example 5.2.3).

Recall that an arrangement of (at leastd) halfspaces inEd (hemispheres inSd resp.) is simple,
iff any d of the underlying hyperplanes (great spheres resp.) meet ina common vertex (0-sphere
resp.), and anyd + 1 have empty intersection (section 1.3). There also exists anequivalent,
dimension-independent characterization for arrangements of great spheres, which uses the fact
that great spheres cannot be parallel: aflat of the arrangement is the intersection of great spheres;
now the arrangement is simple, iff no nonempty flat containedin a great sphere is the intersection
of some of the remaining great spheres.

A similar notion can be introduced for oriented matroids:

5.3.1 Definition

LetM = (X;V) be an oriented matroid. ForY � X, defineVY := fF 2 V j Fy = 0 8y 2 Y g:
If Y is the zero set of some face ofM , VY is called aflat of M . M is simple, iff for
anyx 2 X, no nonzero flat contained inVfxg is the intersection of the members of a
(possibly empty) subset offVfyg j y 2 X � fxgg.
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So a linear oriented matroid is simple, iff its generating arrangement of hemispheres is simple.
(Mandel uses the termgeneral positioninstead ofsimpleand reserves the wordsimpleto describe
another property of oriented matroids, which we don’t need here).

As it turns out,VY is a flat for anyY � X, which simplifies the following considerations. To
prove this we have to find for a givenY a faceF , such thatVY = VF 0 . This is done by definingF to be the product (in some order) of all members ofVY . Clearly,F 2 VY , soVF 0 � VY . On
the other hand, ifG 2 VY , thenF 0 � G0, sinceF 0 = TH2VY H0, soG 2 VF 0 , which meansVY � VF 0 ; henceVY = VF 0 .

Simple oriented matroids have a very regular structure, andin the following we give two
equivalent characterizations of simplicity, which are less abstract then the definition using flats.

5.3.2 Theorem

LetM = (X;V) be an oriented matroid of dimensiond � 0. M is simple, iff

(i) The topes ofM have support setX.
(ii) If F;G are inV, such that0 6= F < G and there is noH 2 V withF < H < G (we say,G coversF ), thenF results fromG by changing

exactly one component to zero.

Proof:
LetM be simple; we show that (i) and (ii) hold:
(i) AssumeTx = 0 for some topeT . Then we know thatFx = 0 for all faces F (otherwiseT < T �F for someF 2 V, which is a contradiction toT being a tope). SinceVfxg containsT 6= 0,

we have thatVfxg is a nonzero flat withVfxg = V = Ty2; Vfyg, contradicting the simplicity ofM .

(ii) Assume on the contrary thatG coversF , andjF 0�G0j � 2 for the corresponding zerosets.
Choosex 2 F 0 � G0. ThenHx = 0 for every faceH in the flatVF 0�fxg – otherwise for someH eitherF � H or F � (�H) would lie properly betweenF andG in the order�, which cannot
happen.

But thenVF 0 is a nonzero flat contained inVfxg with VF 0 = VF 0�fxg = Ty2F 0�fxg Vfyg, soM is non-simple.

Now letM be non-simple; it has to be shown thatM cannot satisfy both (i) and (ii).
There existsx 2 X and a subsetY 63 x of X, such that a nonzero flat contained inVfxg is

equal to
Ty2Y Vfyg = VY . Fix x and choose a minimalY having this property.

If VY = V, thenV � Vfxg, soFx = 0 for all faces ofM , which means that (i) does not hold.
Otherwise we know thatY 6= ;; VY is nonzero, so let0 6= F be a maximal face ofVY .

Clearly, Fx = 0. If F is a tope, (i) is violated, so assume there exists a faceG coveringF .
From the maximality ofF it follows thatGz 6= 0 for somez 2 Y . If Gz0 6= 0 for some otherz 6= z0 2 Y , (ii) does not hold, so we may assumeG 2 VY�fzg.

We claim that this finally impliesGx 6= 0. To prove this, we assume on the contrary thatGx =0. From the minimality ofY we know thatVY�fzg 6� Vfxg, so there exists a faceH 2 VY�fzg
with Hx 6= 0. By replacingH with G � H we can assume thatH dominatesG. Now we know
that x; z 62 H0 andG0 containsH0 [ fxg but notfzg. Hence there exists a faceE such thatE0 containsH0 [ fzg but notfxg. SinceY � H0 [ fzg � E0, we haveE 2 VY , which is a
contradiction tox 62 E0.
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It follows thatGx 6= 0, which shows thatF andG violate (ii), and this completes the proof.�
The next characterization is strongly related to the original definiton of simplicity for arrange-

ments:

5.3.3 Corollary

LetM = (X;V) be an oriented matroid of dimensiond � 0. M is simple, iff all
vertices have zerosets of cardinalityd.

Proof:
The vertices are the minimal nonzero vectors ofV, so they are exactly the faces of dimension0. If M is simple of dimensiond, the theorem implies that a face of dimensionk � 0 has zeroset

of cardinalityd� k, which proves one implication. IfM is non-simple, then there is some length-d-chain from a vertex to a tope, where the tope has not full support set or two consecutive faces in
the chain differ by more than one element in their zerosets. In both cases, the vertex in question
has more thand elements in its zeroset. �
5.3.4 Theorem

A simple oriented matroid is completely determined by the set of topes.

Proof:
LetM = (X;V) be a simple oriented matroid of dimensiond. If d = �1, i.e.V = f0g, there

is nothing to prove, so assumed � 0.
We will show that a signed vectorF with zeroset of cardinalityk is in V if and only if all the2k signed vectorsG � F with support setX are inV. Clearly, this implies the theorem.
We proceed by induction onk, noting that fork = 0 the theorem holds. Fork > 0 let F be

a face ofM with jF 0j = k. F is not a tope, so there isG 2 V coveringF with jG0j = k � 1.
Furthermore,H := F � (�G) 2 V with H0 = G0; If x denotes the unique element inF 0 � G0,
we haveGx = �Hx 6= 0. By hypothesis, all2k�1 full-support-vectors dominatingG are inV,
and the same holds forH. Sincex separatesG andH, no signed vector can dominate bothG andH, which means that there are2 � 2k�1 = 2k full-support-vectors inV dominatingF .

Conversely, assume that for givenF with zeroset of cardinalityk all 2k full-support-vectors
are inV. Choosex 2 F 0 and letG andH be signed vectors obtained fromF by switchingFx to+1 and�1 respectively. Clearly there are in each case2k�1 full-support-vectors inV dominatingG andH, soG andH are inV by hypothesis. SinceGy = Hy for all y 6= x, eliminatingx
betweenG andH yieldsF 2 V. �

We have seen that a non-simple oriented matroid can be obtained from a non-simple arrange-
ment of hemispheres, but there are other instances of non-simplicity that do not occur in a linear
oriented matroid as defined up to now. However, by slightly extending the definition of arrange-
ments we can produce two more kinds of degeneracies, namelyloopsandcoincident elements.
We don’t need this in the sequel, but we want to point out that simplicity is a stronger constraint
for oriented matroids than it is for arrangements as we have defined them here.

An arrangement of hemispheres has an underlying arrangement of great spheres. Assume that
we allow the great spheres to occur more than once in the arrangement, i.e. the set of great spheres
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becomes a multiset. An arrangement of hemispheres based on this multiset produces an oriented
matroidM = (X;V), which can containcoincident elements: x; y 2 X are called coincident, iff
either8F 2 V : Fx = Fy or 8F 2 V : Fx = �Fy. Clearly,Vfxg = Vfyg in this case, and if these
flats are nonzero,M is non-simple.

If we allow the arrangement to contain degenerate great spheres equal to the whole sphere
which carries the arrangement (the hemispheres of such great spheres are empty), then a corre-
sponding oriented matroidM may containloops, which are elementsx 2 X, such thatFx = 0
for all F 2 V. From 5.3.2 (i) it follows thatM is non-simple also in this case.

5.4 RepresentingPG-spaces as Simple Oriented Matroids

To prepare the proof of the correspondence betweenPG-spaces and simple oriented matroids we
now introduceminorsof an oriented matroidM , which play the same role forM as the subspacesSY andS � Y do for a range spaceS.

5.4.1 Lemma

LetM = (X;V) be an oriented matroid,Y � X. The pairsM ctr Y := (X � Y;V ctr Y ),
whereV ctr Y := fF jX�Y j F 2 V; Fy = 0 8y 2 Y g, andM delY := (X � Y;V delY ),
whereV delY := fF jX�Y j F 2 Vg, are again oriented matroids. They are said to
arise fromM by contractingresp.deletingY .

Contractions and deletions are common operations in the theory of oriented matroids, and it
is a very simple straightforward exercise to check that contracting or deleting an arbitrary subset
yields an oriented matroid – we leave this to the reader.

It is not surprising that for a linear oriented matroid theseminors have an interpretation in terms
of the generating arrangement. This interpretation equalsthe one for subspaces of a geometric
range space: Given the arrangement of hemispheres corresponding toM , M del Y occurs after
deleting the hemispheres spanned by the great spheres inY , while M ctr Y corresponds to the
lower-dimensional subarrangement in the sphere that is theintersection of the great spheres inY .
Note that whileM itself does not have coincident elements, in case of a non-simple arrangement a
certainM ctrY might; so in some settings it may be useful to extend the definition of arrangements
in the way we have shown above. However, since we are only interested in the simple case anyway,
we do not consider this any further.

5.4.2 Theorem

LetM = (X;V) be simple of dimensiond � 0, jXj > d+ 1, x 2 X. Then

(i) M ctr fxg is simple of dimensiond� 1
(ii) M delfxg is simple of dimensiond
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Proof:
(i) Dimensiond � 1 follows, if we can show that a maximal faceF in Vfxg is covered by a

tope ofM . LetF be such a maximal face. SinceF does not have support setX, it is not a tope,
so there existsG > F . Assume thatG is not a tope, i.e. there isH > G. F is maximal inVfxg, sox 62 G0. On the other hand there must be some elementy 2 G0 �H0. This means,G0 containsH0 [ fyg but notfxg, so from 5.2.8 we know that there is a zerosetE0 containingH0 [ fxg but
notfyg. Sincey 2 F 0, this impliesF < F � E 2 Vfxg, contradicting the maximality ofF .

Simplicity immediately follows from 5.3.3: the vertices ofM ctr fxg are exactly the signed
vectorsF jX�fxg, whereF is a vertex inVfxg. M is simple, sojF 0j = d for all these, which
implies jF j0X�fxgj = d� 1.

(ii) Let T be a tope ofM . SinceTx 6= 0 andT is the product of its vertices, there is a vertexF � T of M with Fx 6= 0. F has zeroset of cardinalityd, and sincejXj > d+ 1, there is another
elementz 6= x with Fz 6= 0. Consider a length-d-chain fromF to T . Deletingx maps this chain
to a length-d-chain fromF jX�fxg 6= 0 to T jX�fxg in M del fxg, soM del fxg is of dimensiond.

Simplicity follows becauseM delfxg again satisfies properties 5.3.2 (i) and (ii). �
Recall how a simpled-dimensional arrangement of hemispheres determines ad + 1- dimen-

sionalPG-space: take a cell of the arrangement and label it with the set of great spheres whose
hemispheres contain the cell. The set of all such labels defines the range space. In a very similar
fashion the oriented matroid of dimensiond determined by the arrangement is obtained: take a
face of the arrangement and label it with a signed vector on the set of great spheres, where the
component corresponding to a certain great sphere is0;+1 or�1 depending on whether the face
is contained in the great sphere, in its positive or its negative hemisphere.

The difference is that while we consider only the cells, i.e.the full-dimensional faces to define
the range space, all faces are needed to get the oriented matroid. However, a simple arrangement
yields a simple oriented matroid, which is determined by itsset of topes, as we have shown. Since
the topes are exactly the labels of the cells of the arrangement, we conclude that a simple linear
oriented matroid is uniquely defined by the cells of its generating arrangement.

This observation immediately yields a correspondence between simple linear oriented ma-
troids and geometricPG-spaces on a setX: If 	 : f+1;�1gX ! 2X is the canonical bijection
defined by	(F ) := fx 2 X j Fx = +1g, thenT is the set of topes of a unique simple linear
oriented matroid of dimensiond � 0 onX if and only if (X;	(T )) is a geometricPG-space of
dimensiond+ 1.

What we want to show is that this statement holds even if we leave out the words ”geomet-
ric” and ”linear”, i.e. if we do not have a generating, well-behaved arrangement of hemispheres
indirectly relating the range space to the oriented matroid.

The following two theorems establish a direct correspondence; they are based on the equiva-
lence theorem 4.2.1 forPG- spaces:

5.4.3 Theorem

Let M = (X;V) be a simple oriented matroid of dimensiond � 0 with set of
topesT . Then(X;	(T )) is aPG-space of dimensiond+ 1.

Proof:
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We proceed by induction ond; if d = 0, thenM has exactly two topesT and�T . To see this,
assume there exists a third oneU . Because of simplicity all of them have full support set. SinceU 6= T;�T , there isx separatingU andT andy not separatingU andT . Hence elimination ofx betweenU andT yields a nonzero face which has not full support set, so it is not a tope. Sinced = 0 implies that every nonzero vector is a tope, this is a contradiction. So ifT = fT;�Tg, then	(T ) = fr;X � rg for somer � X, so(X;	(T )) is PG of dimension1.

Now assume,M is of dimensiond > 0. ThenM ctr fxg is simple of dimensiond� 1 for allx 2 X (5.4.2); letT fxg denote the set of topes ofM ctr fxg. By hypothesis(X �fxg;	(T fxg))
is aPG-space of dimensiond for all x 2 X (note that we are a bit sloppy about	 by assuming
that it automatically adapts to the domain of its argument).

Furthermore it is an easy observation that if	(T ) = R, then	(T fxg) = Rfxg. This follows
from the fact that the topes ofM ctr fxg correspond to the maximal faces ofVfxg in M , and
because of simplicityF is such a maximal face, iff there are topesG;G0 := F � (�G) coveringF
in M , such thatG andG0 are separated byfxg but coincide in every other component.

Together this show that	(T ) determines a range spaceS, whereSfxg is PG of dimensiond,
for all x 2 X. If we can show thatS is of dimensiond+1, then it follows from 4.2.1 thatS itself
is aPG-space.

Clearly,S is of dimension at leastd+ 1. Now assume there isA � X, jAj � d+ 2 shattered
in 	(T ). This immediately implies that any signed vector inf+1;�1gA is a tope ofM del(X �A). Repetetive application of the elimination axiom (OM4) easily shows that in this caseM
del (X �A) consists of all signed vectors onA (and is called thefreeoriented matroid onA), so
the dimension, i.e. the length of a maximal chain from a vertex to a tope isjAj�1 � d+1, which
is a contradiction, since deleting a subset clearly cannot increase the dimension of an oriented
matroid. �
5.4.4 Theorem

Let (X;R) be aPG-space of dimensiond � 1. Then	�1(R) is the set of topes
of a simple oriented matroid of dimensiond� 1 onX.

Proof:
We construct the oriented matroid itself. To this end we introduce auxiliary mappings�A :RA ! f+1; 0;�1gX defined by�A(r)x := 8><>: 0; if x 2 A+1; if x 2 r�1; otherwise

ThenM := (X; f0g [ SjAj�d�1 �A(RA)) is a simple oriented matroid of dimensiond � 1.
Its set of topes clearly is�;(R) = 	�1(R).

We have to show thatM satisfies the axioms of an oriented matroid.
(OM1) is true by definition ofM ; (OM2) follows from the fact that the subspacesRA are

againPG-spaces and therefore closed.
To see that (OM3) is satisfied, choose facesF andG of M . We can assumeF 6= 0. SinceF � F � G, it suffices to show that for a given faceF with zerosetA all the3jAj signed vector

dominatingF are faces ofM .
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Assume,F = �A(r); r 2 RA. From the definition ofRA, r \ A = ; andr [ B 2 RC for
all C � A, B � A � C. Clearly, all the�C(r [ B) are distinct and dominateF . Furthermore,#(f�C(r [B) j C � A;B � A� Cg) =PjAji=0 �jAji � � 2jAj�i = (1 + 2)jAj = 3jAj, which means
that any signed vector dominatingF is of the form�C(r0); r0 2 RC and therefore is a face ofM .

Finally, it remains to prove (OM4); letF andG be faces ofM which are separated byx.
W.l.o.g. we can assume thatFy = Gy, for all y not separatingF andG (this can be achieved by
replacingF andG with F �G andG �F , respectively, which are faces ofM again; furthermore, a
face resulting from the elimination ofx betweenF �G andG � F will be a proper choice also forF andG).F andG have the same zeroset, soF = �A(r), G = �A(r0) for someA � X, r; r0 2 RA. Ifr andr0 are complementary ranges inRA, then0 results from the elimination ofx betweenF andG (this covers the case wherejAj = d� 1, in which caser; r0 with r = (X �A)� r0 are the only
two ranges in the1-dimensionalPG-spaceRA).

Now assumer 6= (X � A) � r0. Then there isy 2 X � A, such thatr and r0 are in a
common halfspace ofy in RA and therefore in a commonPG-spaceS underlyingRA (see 4.1.4).x separatesF andG, so assumex 62 r, x 2 r0. Corollary 2.3.5 shows that there is a path betweenr and r0 in theD1-graph ofS, where the edge labels on this path are exactly the elements inr4r0. Let u andu0 be the two ranges on this path withu0 = u [ fxg. Thenu 2 RA[fxg.
ConsiderH := �A[fxg(u); clearlyHx = 0, and ify does not separateF andG, thenFy = Gy,
which meansy 2 r iff y 2 r0, soy 62 r4r0. Hencey 2 u iff y 2 r; r0, and we conclude thatHy = Fy = Gy = (F �G)y, soH results from the elimination ofx betweenF andG.

Dimensiond � 1 is immediate from the definition ofM – the vertices ofM are the vectors�A(r), wherejAj = d�1; r 2 RA. Sincer 2 RB for all B � A, a descending length-d�1-chain
fromA to ; in the inclusion order� yields an ascending length-d�1-chain from the vertex�A(r)
to the tope�;(r).

Simplicity also follows, since�A(r) has zerosetA, which has cardinalityd�1 for any vertex.�
5.5 Arrangements of Pseudohemispheres and -halfspaces

To conclude this chapter, we give a formal definition of arrangements of pseudohemispheres and
arrangements of pseudohalfspaces and show how these structures correspond toPG- andPG-
spaces. We do not go into the details concerning the arrangements – they can be found in [Ma],
[FL].

A (topological) sphereis a topological space homeomorphic to the unit sphereSd for somed.
A hyperpsphereof a sphere is the image of a great sphere ofSd under some homeomorphism. The
hemispheresof a hyperspheres, denoted bys+ ands� are the images of the two open hemispheres
of the great sphere.

5.5.1 Definition

A simple arrangement of pseudohemispheresis a triple(S;E;H), whereS is a
topological sphere,E a finite index set andH = Se2Efse; s+e ; s�e g a collection of
subsets ofS, such that

(i) for e 2 E, se is a hypersphere with hemispheress+e ; s�e
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(ii) for every ; 6= A � E,
Te2A se is a sphere (possibly empty). This

is called aflat of the arrangement
(iii) For every flatF ande 2 E, eitherF � se or F \ se is a hyper-

sphere ofF with hemispheresF \ s+e andF \ s�e
(iv) No nonempty flat contained in somese; e 2 E is the intersection

of some of the remainingsf ; f 2 E � feg
The original definition by [FL] contains another axiom, the so-calledball axiom, which is

redundant, as shown by Mandel. This is a non-trivial result.
We restrict the definition to simple arrangements, because only these are needed here; further-

more, property (i) becomes more complicated in the general case.
Property (iii) intuitively says that a flat that is not contained in one of the hyperspheres, must

cross it.

Mandel has shown that there is a one-to-one correspondence between the simple arrangements
of pseudohemispheres and the simple oriented matroids of the same dimension; the oriented ma-
troid is obtained from the arrangement in the same manner as in example 5.2.3: every pointp in
the underlying sphereS is labelled with a signed vector�(p) onE, where�(p)e is +1; 0 or �1
depending on whetherp 2 s+e ; se or s�e .

Together with our result this shows thatPG-spaces exactly represent simple arrangements of
pseudohemispheres. (Mandels’s result is much more general- he doesn’t need simplicity; so what
we use here is only a special case of his correspondence).

An arrangement of pseudohalfspaces can now be defined as the cell complex in one of the
hemispheres of an arrangement of pseudohemispheres. Formally Mandel gives the following

5.5.2 Definition

A simple arrangement of pseudohalfspacesis a triple (K;E;L), whereK is a
toplogical space homeomorphic toEd for somed, E a finite index set andL =Se2Efhe; h+e ; h�e g a collection of subsets ofK, such that there exists an arrangement
of pseudohemispheres(S;E [ fxg;H), x 62 E satisfying

(i) K = s�x
(ii) he = se \ s�x , h�e = s�e \ s�x , � 2 f+;�g.

Arrangements of pseudohalfspaces correspond to so-calledaffine matroids, which are related
to oriented matroids in the following way:

5.5.3 Definition

A simple affine matroidon E is a pair (E [ fxg; B), x 62 E, whereB is a
collection of signed vectors onE [ fxg, such that there exists a simple oriented
matroid(E [ fxg;V) with B = fF 2 V j Fx = �1g.

The dimension of an affine matroid is defined as the dimension of the related oriented matroid.
Affine matroids are studied in detail by Mandel. What we need here to show thatPG-spaces
correspond to simple arrangements of pseudohalfspaces, isthe following theorem that finishes
this section:



5.5. ARRANGEMENTS OF PSEUDOHEMISPHERES AND -HALFSPACES 53

5.5.4 Theorem

There is a one-to-one correspondence between thePG-spaces of dimensiond and
the affine matroids of dimensiond.

Proof:
Clearly, an affine matroid onE and its corresponding oriented matroid onE[fxg are uniquely

deducible from each other, so for fixedE andx 62 E there is a one-to-one correspondence between
thed-dimensional affine matroids onE and thed-dimensional oriented matroids onE [ fxg.

It remains to prove that such a correspondence exists between thed-dimensionalPG- spaces
onE and thed+ 1-dimensionalPG-spaces onE [ fxg.

To see this, map aPG-spaceS = (E;R) to the spacêS = (E [ fxg; R̂), whereR̂ =R [ f(E [ fxg) � r j r 2 Rg. ThenjR̂j = 2jRj = 2�d(jEj). Furthermore,̂S is of dimensiond + 1: if A � E [ fxg is shattered inR̂, there are two cases: ifx 2 A, then it is an easy
observation thatA� fxg is shattered inR, sojAj � d + 1. If x 62 A, thenA is already shattered
in R̂ � fxg = R, and sinceS is of dimension at mostd + 1 (3.5.4), we know thatjAj � d + 1
also in this case.

Together this shows that̂S is maximal closed of dimensiond+ 1, which means that̂S is PG
by theoerem 4.1.2.

To obtain aPG-space from a(d + 1)-dimensionalPG-space, we proceed as follows: GivenŜ = (E [ fxg; R̂), we know from remark 4.1.4 that there exists an underlyingd-dimensionalPG-spaceS0 = (E [ fxg; R0) with x� = fr 2 R̂ j x 62 rg � R0. jE [ fxgj is at leastd+ 1, soS := S0 � fxg is the desiredPG-space of dimensiond onE.

It remains to show that both mappings are inverse to each other: if we start withS = (E;R),
the first mapping gives uŝS = (E [ fxg; R [ f(E [ fxg) � r j r 2 Rg). If we apply the second
mapping to this space, we first obtainS0 = (E [ fxg; R0) and by constructionR0 containsR.
Clearly, then alsoR0 � fxg containsR, andjR0 � fxgj = jRj shows thatR0 � fxg = R, which
means that we have obtained the same space we have started with. �.

As a summary of this chapter we have the following

5.5.5 Result

There exist one-to-one correspondences between

(i) PG-spaces of dimensiond + 1 and simpled-dimensional arrange-
ments of pseudohemispheres

(ii) PG-spaces of dimensiond and simpled-dimensional arrangements
of pseudohalfspaces
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Chapter 6

Geometric Embeddability

6.1 Basics

In this chapter we introduce the geometric notion ofm-embeddabilityof a range space, which can
be regarded as a generalization of planarity with two more degrees of freedom.m-embeddability is an interesting subject of its own, but beyond it sheds some light on geo-
metric features of range spaces, which contrasts to the previous chapter, where topological aspects
were placed into the foreground.

The main theorem in this chapter, a characterization of the complete range spaces which arem-embeddable for a certainm, reveals an interesting relation between topologic and geometric
properties of complete spaces.

Moreover, embeddability is related to thek-set problem, which in fact is the main motivation
for this concept.

6.1.1 Definition

LetS = (X;R) be a range space,m � 0. S is calledm-embeddable, if X can be
mapped tom-dimensional euclidean space by a functionf : X ! Em, such that8r; r0 2 R : conv(f(r � r0)) \ conv(f(r0 � r)) = ;:

Note thatf is not an embedding in the usual sense, since it need not be injective. Nevertheless,
we do not lose generality by assumingf to be injective, ifm > 0. We can even requiref(X)
to be a simple configuration of points as defined in section 1.3, i.e. anym points define a unique
non-vertical hyperplane and no hyperplane containsm+ 1 of the points.

To see this, assume someY � X, jY j � 2 is mapped byf to a single pointp. LetD(r; r0)
denote the minimal distance between conv(f(r � r0)) and conv(f(r0 � r)) (D(r; r0) := 1, if
one of r � r0, r0 � r is empty), and defineD := minfD(r; r0) j r; r0 2 Rg. Clearly,D is
some positive constant. LetB(p) be the ball with centerp and radiusD, and modifyf in such
a way that the elements ofY are mapped to distinct points inB(p), which are not yet inf(X).
Assume that now there are rangesr; r0 violating the embeddability-condition. Clearly then, oneofr�r0; r0�r must contain an element ofY – in any other case nothing would have changed. W.l.o.g.Y \ (r� r0) 6= ;. This impliesY \ (r0� r) = ;, otherwisep 2 conv(f(r� r0))\ conv(f(r0� r))
for the originalf , a contradiction. By construction, the replacement ofp with jY j distinct points
blows up conv(f(r � r0) only by such a small amount that it cannot hit conv(f(r0 � r)), which

55
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remains unchanged; this shows that the pairr; r0 does not exist, so the modifiedf again induces
anm-embedding. Step by step every point that is the image of morethan onex 2 X can be
replaced in this way, finally ending up withf being injective. By again slightly perturbing the
(now distinct) points without changing the embeddability condition we can makef(X) a simple
configuration of points inEm.

The definition ofm-embeddability is somewhat non-obvious at first sight, and to make it a
little clearer, we show how this can be seen to generalize planarity: note that a graph is simply
a range space, where every range has cardinality exactly two. Now the graph is planar, iff it is2-embeddable according to our definition. Observe that this is true, because a planar graph can be
embedded in the plane in the ordinary sense in such a way, thatall edges are mapped to straight
line segments [Fá].

We proceed as follows: First we give an obvious lower bound onm, if S is of fixed dimension,
and then show that geometric range spaces (under a certain constraint) arem-embeddable, wherem matches the lower bound. This will lead to a short excurse concerning thek-set problem.

After having handled this special case, we consider generalcomplete spaces and characterize
the subclass of spaces that as well as geometric spaces arem- embeddable with optimalm. This
will be a proper subclass of the complete spaces and a proper superclass of the geometric spaces.

6.1.2 Lemma

Let S = (X;R) of dimensiond � 1 bem-embeddable. Thenm � d� 1.

Proof:
If m = 0, it is easy to see thatS can be embedded inE0 if and only if the ranges are pairwise

comparable with respect to inclusion; this is not the case, if d � 2.
Now assume0 < m � d�2; letA be a set of cardinalityd that is shattered inR. After applying

an appropriate injective embedding function we can assume thatA � Em. Radon’s theorem [Ed]
says thatA can be partioned into setsA1; A2 in such a way that conv(A1)\ conv(A2) 6= ;. Letr1; r2 be ranges withA \ r1 = A1; A \ r2 = A2. Then we haver1 � r2 � A1 andr2 � r1 � A2,
which shows that conv(r1 � r2)\conv(r2 � r1) 6= ;, a contradiction to embeddability. It follows
thatm � d� 1. �

The lemma shows that(d� 1)-embeddability is the best we can hope for ifS is of dimensiond, and the following theorem shows that this bound is tight:

6.2 Embedding Geometric Range Spaces

6.2.1 Theorem

Let S = (X;R) be a geometric range space of dimensiond � 1, ;;X 2 R (we
say,S is in standard position). ThenS is (d� 1)-embeddable.

Proof:
Recall that a geometric range space of dimensiond is the description of cellsC(H+) of some

simple arrangement of halfspacesA(H+) in Ed. ;;X 2 R shows that there is an unbounded cellc; contained in none of the halfspaces and another onecX contained in all of them. It follows that
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ĝ

Figure 6.1: configuration of directed points inE3 and its2-embedding

the arrangement can be rotated in such a way that the positivehalfspaceh+ is the halfspace belowh for all hyperplanesh 2 H.
In the first chapter we have shown how, by invoking duality, one can obtain this geometric

space also from a simple configuration of directed points, and it is this point of view that we are
taking here. A directed point can be visualized as a point inEd with a ray attached to it that points
either up or down.

Dualize every halfspaceh+ to a directed point in the way described in section 1.2. Sincewe
know thath+ = hbelow for all h 2 H, all the rays of these directed points go upwards.

We have seen that the description of cells can now equivalently be obtained as follows: Label
every non-vertical hyperplane ofEd with the set of points whose rays stab the hyperplane; then
the collection of labels of all hyperplanes containing noneof the points determinesC(H+).

So assume thatX is the configuration of directed points dual toA(H+). LetP be a horizontal
hyperplane that is not stabbed by any of the rays, and projectthe points ofX vertically ontoP .
Let f(x) denote the image ofx 2 X under this projection. We claim that the mappingf defines a
legal(d�1)-embedding. To see this, letr; r0 be ranges fromR. There are non-vertical hyperplanesh(r); h(r0) definingr andr0, i.e. h(r) is stabbed by exactly the rays of the points inr, and the
same holds forh(r0) andr0. The two hyperplanes can be chosen to be non-parallel and hence
intersect in a common(d� 2)-flat g. The projection ofg ontoP is a hyperplanêg in P . Consider
the two open halfspaces defined byĝ. With respect to one of themh(r) lies always aboveh(r0),
while for the other oneh(r0) lies aboveh(r). Since the rays of all the directed points go upwards,r�r0 is the set of points that lie belowh(r) but aboveh(r0), while the points fromr0�r lie belowh(r0) but aboveh(r). From what we have just said it follows thatr� r0 andr0� r are projected to
different open halfspaces ofĝ, so ĝ separates the convex hulls off(r � r0) andf(r0 � r), which
means thatf is a(d� 1)-embedding (figure 6.1).
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The reader might have noted that this argumentation fails for d = 1 – therefore this case needs
a special treatment. Recall that theD1-graph (2.3.1) of a geometric space of dimension1 is a path
(figure 3.1); this fact has motivated us to introduce pseudogeometric spaces (3.1.1). It is an easy
observation that if;;X 2 R, then the ranges must be ordered by inclusion along the path,and in
the proof of lemma 6.1.2 we have already remarked that in thiscaseS is 0-embeddable. �

Note that the proof does not use the fact that the configuration of points is simple. This is
not surprising, since we have already seeen in observation 1.3.1 that the set of ranges defined by
a non-simple configuration of directed points is always a subset of the set of ranges determined
by an appropriate simple one. This means that – as far as embeddability is concerned – simple
configurations are the most difficult ones.

One might conjecture that by some additional effort the condition ”;;X 2 R” could be elimi-
nated: a geometric space can always be swapped in such a way that standard position is achieved,
so why should it not work for any geometric space?

The answer is that standard position is necessary for(d�1)-embeddability of complete spaces
in general. This is somewhat surprising, because up to now all the properties of range spaces we
have considered were invariant under swapping – moreover, swapping was a useful technical tool
to facilitate most of the proofs.

By taking a look at thek-set problem the reader might get an idea why embeddability is
different from the other concepts with respect to swapping.

6.3 Thek-set Problem

LetX be a configuration of points inEd, h a hyperplane (disjoint fromX) with open halfspacesh+ andh�. The setsh+ \X andh� \X are calledsemispacesof X. A semispace of cardinalityk is called ak-set.
Thek-set problem is simply posed as follows:

Given a configurationX of n points and a natural number0 � k � n, how manyk-sets are defined byX?

Despite of its simple formulation, thek-set problem turns out to be very difficult. For everyk-set there is a unique(n � k)-set, so it suffices to consider the range0 � k � n2 , and in some
sense the most interesting case isk = n2 ; there is an easy upper bound ofO(nd) on the number
of all semispaces [Ed], but a first non-trivial upper bound (i.e. a bound better thanO(n3)) on the
number ofn2 -sets ford = 3 has only recently been developed [BFL]. The currently best bound is
given by [ACEGSW].

Even ford = 2 there is a wide gap between the best known lower and upper bound [Ed], [EW]
and nothing is known about good bounds in dimensiond � 4.

In order to establish the correspondence between thek-set problem and embeddability we
classify the semispaces of a configuration in the following way: A semispace is called alower
semispace, if it is the set of pointsbelowone of its defining hyperplanes. Anuppersemispace is
defined analogously. Note that a semispace can be lower and upper at the same time.

Now we have the following easy
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6.3.1 Observation

LetX be a configuration of points and letRl; Ru denote the set of lower and upper
semispaces,Sl = (X;Rl), Su = (X;Ru).

Then

(i) �Sl = �Su = (X;Rl \Ru)
(ii) Sl = Su = (X;Rl [Ru)

Proof:
Observe that the complement of a lower (upper) semispace is an upper (lower) semispace, soRl = fX � r j r 2 Rug. The assertions are immediate from this. �
The next lemma relates semispaces of a configuration to geometric spaces, and by using duality

this correspondence is more or less obvious.

6.3.2 Lemma

Let S = (X;R) be a range space.S is geometric of dimensiond � 1 in standard
position, if and only ifX can be identified with a simple configuration of points inEd in such a way thatR is the set of lower semispaces ofX.

Proof:
If S is geometric in standard position this equivalently means thatS is the description of cells

of a simple arrangement of halfspacesA(H+) with h+ = hbelow for all h 2 H (see the proof of
theorem 6.2.1). By dualityS corresponds to a simple configuration~X of directed points with all
rays going upwards, and in this dual setting a ranger of S is the set of directed points stabbing a
certain non-vertical hyperplanehr disjoint from the points.

If we consider only the underlying points, this means thatr corresponds to the lower semispace
of ~X defined byhr (see figure 6.1).

Furthermore, every lower semispace of~X is obtained in this way: Given a lower semispace,
dualize its defining hyperplane (which can be choosen to be non-vertical) to a point, which lies in
some cell ofA(H+). It follows that the semispace is equal to the label of this cell.

If we are given a simple configuration of points, then it can beseen to determine the required
geometric space by simply applying the inverse duality: Addan upwards ray to each point and
dualize the corresponding configuration of directed pointsto an arrangement of halfspaces, which
by construction is simple and in standard position. Clearly, again the lower semispaces will corre-
spond to the labels of the cells of the arrangement. �

Now we are able to show how thek-set problem is related to embeddability:
Let X be a fixed configuration of points inEd, k a natural number.Rl(k) denotes the set of

lower semispaces of cardinalityk (the lowerk-sets),R(k) is the set of allk-sets. We are interested
in an upper bound onR(k), so we can assume thatX is simple, which can only increasejR(k)j.Rl(k) is a subset of the set of all lower semispacesRl, and since by the lemma(X;Rl) is
geometric in standard position, we know that(X;Rl) and therefore also(X;Rl(k)) is (d � 1)-
embeddable (theorem 6.2.1).
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Now assume that there is an upper boundBk on the number of sets of cardinalityk that can
be embedded intoEd�1 in a legal way, i.e.Bk � maxfjRj j (X;R) (d� 1)� embeddable; R � 2X ; jrj = k for all r 2 Rg:

Clearly then, the boundBk holds for the numberjRl(k)j of lowerk-sets. Furthermore, we can
bound the overall numberjR(k)j of k-sets (lowerandupper ones) by2Bk.

To see this, observe that the upperk-sets correspond to the lower(n � k)-sets. It is an easy
observation thatBk is also an upper bound for the number of sets of cardinalityn � k which
are embeddable in a legal way (this follows from the general fact that(X;R) is m-embeddable
if and only if (X; fX � r j r 2 Rg) is m-embeddable, which can be proved using the equalityr�r0 = (X�r0)� (X�r)). Since everyk-set ofX determines a unique lowerk- or (n�k)-set,(d� 1)-embeddability of(X;Rl(k)) implies that there are at most2Bk k-sets ofX.

As an example we can give an upper bound of6n� 12 on the number of2-sets ofn points inE3, using the fact that at most3n�6 sets of cardinality2 can be embedded inE2 without intersec-
tions – this is the relation to planarity given at the beginning of this chapter (using this technique,
the bound can be adjusted to the real upper bound of3n � 6 by some additional considerations;
we don’t do this here).

Unfortunately, nothing is known about bounds of this kind for cardinality and dimension more
than2; from what we have just said, non-trivial boundsBk immediately imply non-trivial bounds
for thek-set problem.

6.4 Embeddability of Complete Range Spaces

Before we continue with embeddability of complete spaces wegive an interesting lemma that
holds for arbitrary range spaces:

6.4.1 Lemma

Let S = (X;R) bem-embeddable with embedding functionf , m � 1, x 2 X.
Then

(i) S � fxg ism-embeddable.
(ii) Sfxg is (m� 1)-embeddable, iff(x) is extreme inf(X).

Proof:
Part (i) of the lemma is easy. Simply takef jX�fxg, which is a legal embedding function forS � fxg. To see that (ii) holds, consider a hyperplaneh separatingf(x) from f(X � fxg), and

projectf(y), y 6= x ontoh using central projection with centerf(x). Let g(y) denote the image
of f(y) under this projection.

Now considerr; r0 2 Rfxg and assume that conv(g(r � r0))\ conv (g(r0 � r)) contains a
point p 2 h. Consider the rayl throughp starting fromf(x). l stabs conv(f(r � r0)) and
conv(f(r0 � r)) in a well-defined order, since these two sets are disjoint. Let q be a point ofEm contained in conv(f(r � r0)), which we assume to be hit byl first. But then we haveq 2
conv(f(r � (r0 [ fxg)))\ conv(f((r0 [ fxg)� r)), a contradiction tom-embeddability ofS. �

Now we come to the main result of this chapter, which is a characterization of the complete
spaces of dimensiond that are(d� 1)-embeddable:
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6.4.2 Theorem

Let S = (X;R) be complete of dimensiond � 1. S is (d � 1)-embeddable, if
and only if

(i) S is pseudogeometric in standard position
(ii) �S is the closure of a geometric space of dimensiond� 1

Proof:
First assume,S is (d � 1)-embeddable. Ifd = 1, then0-embeddability implies that the

ranges ofS are linearly ordered by inclusion. It follows that theD1-graph ofS (definition 2.3.1)
is not only a tree, but a path with ranges; andX on both ends of it. By definition 3.1.1S is
pseudogeometric in standard position, and�S = (X; f;;Xg) clearly satisfies condition (ii). If on
the other handS satisfies condition (i), then its ranges are linearly ordered by inclusion, soS will
be0-embeddable.

If d > 1, then after applying an appropriate injective embedding function we can assume thatX is a simple configuration of points inEd�1.
We claim thatR contains all semispaces ofX. To see this assume on the contrary that there

is a semispacer of X not contained inR. Let hr be its defining hyperplane. W.l.o.gr is a lower
semispace with respect tohr.

Let r0 be any subset ofX. Clearly thenr � r0 � r lies belowhr, while r0 � r � X � r lies
abovehr. It follows thatr can be added toR without violating the embeddability condition. This
means,(X;R[frg) is again(d�1)-embeddable. But sinceS = (X;R) is complete,(X;R[frg)
must be of dimension more thand, which is a contradiction to lemma 6.1.2.

We conclude thatr is already a range ofS, soR contains all the semispaces ofX. The set of
lower semispaces ofX � Ed�1 determines a geometric spaceS0 = (X;R0) of dimensiond� 1,
as shown in lemma 6.3.2. The set of all semispaces is the closure of the set of lower semispaces
and is contained in the boundary ofS, so it follows thatR0 � �R; sinceS0 is maximal closed of
dimensiond (theorem 4.1.2), we know thatR0 = �R, soS has the maximum number of ranges in
its boundary. By theorem 3.5.3S is pseudogeometric; standard position follows from the fact that; as well asX are semispaces ofX.

An underlying geometric space of�S as required by (ii) has already been found: it isS0 =(X;R0), with R0 equal to the set of lower semispaces ofX.

Now assume,S satisfies conditions (i) and (ii). Consider�S. If �S is the closure of a geo-
metric space of dimensiond � 1, �S can be visualized as the description of cells of some simple
arrangement of hemispheres in the unit sphereSd�1 (see section 4.1). Clearly,;;X 2 �R, so there
are antipodal cells of the arrangement labelled with; andX. Choose the equator in such a way
that it cuts through these cells. Then the labels of the cellsin the northern hemisphere determine
a geometric spaceS0 = (X;R0) of dimensiond� 1 in standard position withS0 = �S. Again we
use lemma 6.3.2, which shows thatX can be identified with a point set inEd�1 in such a way thatR0 is the set of lower semispaces ofX. Consequently,R = �R is the set of all semispaces ofX.

To see thatS is (d � 1)-embeddable, considerr; r0 2 R. S is pseudogeometric, sor andr0 admit a line (theorem 3.3.3), which due to lemma 3.3.2 is equivalent to the existence of rangest;X�t 2 Rwith r�r0 � t, r0�r � X�t. t andX�t are boundary ranges, so they correspond to
complementary semispaces ofX, which clearly implies that conv(t)\ conv(X � t) = ;. Clearly,
conv(r� r0) � conv(t) and conv(r0 � r) � conv(X � t), and this yields conv(r� r0)\ conv(r0 �r) = ;. �
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Chapter 7

Elementary Transformations and
Simplices

7.1 Basics

In this chapter we discusselementary transformations, which take a complete range spaceS to
another complete spaceS0 with the same number of ranges by performing a local modification ofS.

We have already seen another transformation that maintainscompleteness, namely the swap-
operation defined in 2.3.2. Swapping is a global operation inthe sense that it affects all the ranges;
on the other hand, swapping does not ”really” change the structure of a range space – the distance-
1-graph which reflects many structural properties remains unchanged.

Elementary transformations are more interesting with respect to this point.

7.1.1 Definition

Let S = (X;R) be a range space,r 2 R, r0 62 R. We defineS [ fr0g = (X;R [ fr0g),S � fr0g = (X;R � fr0g),S4fr; r0g = (X;R4fr; r0g).
The operationS ! S4fr; r0g is called alocal swap. If S is complete of dimen-

sion d � 0, the local swap is called anelementary transformation, iff S4fr; r0g is
again complete of dimensiond.

The notion of elementary transformations is motivated by properties of simple arrangements
of pseudohalfspaces, which – as we know from chapter 5 – correspond to pseudogeometric spaces.
Figure 7.1 shows an example of an elementary transformationin the 2-dimensional case: a pseu-
doline is moved across a vertex of the arrangement, destroying one cell and generating a new one.
Note that both cells are simplicial cells.

The reader can check that this operation does not affect thePG-property of the description of
cells, which might be obvious for this example, but is not that intuitive for higher dimensions.

In the sequel we will formally define what we mean by a simplex in the setting of range spaces
and show that simplices in complete (and pseudogeometric) spaces give rise to an elementary
transformation of the kind shown by the example.
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Figure 7.1: elementary transformation;R0 = R4ff1; 2g; f2; 3; 4gg
7.2 Characterizing Elementary Transformations

Local swaps of simplices are not the only possible elementary transformations, and we will give a
characterization of the pairs of rangesfr; r0g, which define an elementary transformation.

To begin with, we need one more

7.2.1 Definition

LetX be fixed and considerR � 2X , r 2 R. Theincidence setof r with respect
toR is defined by IR(r) := f� 2 X j r4f�g 2 Rg:

If jIR(r)j = k, thenr is called ak-range.
If r is a(d+1)-range, thenr is called asimplex, iff r4B 2 R, for allB $ IR(r).

As an example letS = (X;R) be the description of cells of the original arrangement in figure
7.1,r = f1; 2g, r0 = f2; 3; 4g, R0 = R4fr; r0g. ThenIR(r) = IR0(r0) = f1; 3; 4g. Furthermore,r is a simplex inR as well asr0 is a simplex inR0. f1; 2; 3g is a3-range but not a simplex.

The fact thatIR(r) = IR0(r0) is not at all accidental. We will show that this is a necessaryand
sufficient condition forr; r0 to determine an elementary transformation.

7.2.2 Lemma

Let S = (X;R) be a range space of dimensiond � 0, r0 62 R.
If jIR[fr0g(r0)j > d+ 1, thenS [ fr0g is of dimensiond.

Proof:
Assume on the contrary thatS[fr0g is of dimension at leastd+1, and letA � X, jAj = d+1

be shattered inR [ fr0g. A is not shattered inR, and this impliesA \ r0 6= A \ r, for all r 2 R.
Especially,A \ r0 6= A \ (r04f�g), which shows that� 2 A, for all � 2 IR[fr0g(r0).
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HenceIR[fr0g(r0) � A, sojIR[fr0g(r0)j � d+1, a contradiction to the assumption. It follows
thatS [ fr0g is again of dimensiond. �

Now we are able to establish the characterization that we have already announced above:

7.2.3 Theorem

Let S = (X;R) be complete of dimensiond � 0, r 2 R; r0 62 R.S ! S0 := S4fr; r0g is an elementary transformation, if and only ifIR(r) = IR0(r0);
whereR0 = R4fr; r0g.

Proof:
If S ! S0 is an elementary transformation, then clearlyjRfxgj = jR0fxgj for all x 2 X. This

immediately impliesIR(r) = IR0(r0).
Now assumeIR(r) = IR0(r0). We show thatS0 = (X;R0) is of dimensiond, which proves

the theorem.
Assume on the contrary, there isjAj > d shattered inR0 � R [ fr0g. From the proof of the

lemma it follows that then IR(r) = IR0(r0) � IR[fr0g(r0) � A:
By swapping assumer = ;. We know thatA \ r0 6= A \ r = ;, and every range inR� frg also
has nonempty intersection withA. To see this, recall that a ranges from R � frg is connected
with r by a shortest possible path inD1(S) (theorem 2.3.5). Clearly, the label of the edge incident
to r on this path must be some� contained inIR(r) � A, and because ofr = ; this implies� 2 s;
thereforeA \ s 6= ;.

Together this shows thatA \ s 6= ;, for all s 2 R0, which means thatA is not shattered inR0,
a contradiction.

It follows thatS0 must be of dimensiond. �
As a corollary we get the following result, which shows that we have to search only among the

ranges with small incidence set to find the ones that can be replaced in an elementary transforma-
tion:

7.2.4 Corollary

Let S = (X;R) be complete of dimensiond, r 2 R. If there existsr0 62 R, such
thatS ! S4fr; r0g is an elementary transformation, thend � jIR(r)j � d+ 1:

Proof:
Lemma 2.3.7 shows thatjIR(r)j is at leastd for any range inR, which proves the lower bound

on jIR(r)j.
Now considerr0 62 R, such that the replacement ofr by r0 is an elementary transformation.S

is complete, soS [ fr0g is of dimension more thand. Then lemma 7.2.2 showsd+ 1 � jIR[fr0g(r0)j � jIR4fr;r0g(r0)j = jIR(r)j;
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and this gives the desired upper bound. �
7.3 Simplex Transformations

If S is a pseudogeometric space, one may ask whether this property is invariant under elementary
transformations. In general, this is not the case – in figure 7.2 we present a one-dimensional
counterexample. The reader can check that also the originalspace in figure 7.1 can be transformed
into a non-PG-space by applying the elementary transformationS ! S4ff1; 2; 3; 4g; f2; 3; 4gg.

On the other hand, there is one important type of elementary transformations that maintains
the pseudogeometric property, namelysimplex transformations. An example of a simplex trans-
formation has already been given in figure 7.1.

7.3.1 Theorem

Let S = (X;R) be complete of dimensiond, r 2 R a simplex ofS. Then

(i) r0 := r4IR(r) 62 R
(ii) S ! S0 := S4fr; r0g is an elementary transformation
(iii) r0 is a simplex inS0S ! S0 is called asimplex transformation.

Proof:
(i) By swapping we may assumer = ;. The simplex property impliesA 2 R for all A $IR(r). Assumer0 2 R. Then we haveA 2 R for all subsets ofIR(r), soIR(r) is shattered inR,

which cannot be the case, sinceS is of dimensiond, while jIR(r)j = d+ 1.
(ii) We have to show thatIR(r) = IR0(r0). Again assumer = ;. SinceA 2 R0 for all A �IR(r), jAj = d, we know thatIR0(r0) � IR(r). From lemma 7.2.2 it follows thatjIR0(r0)j � d+1,

soIR0(r0) = IR(r).
(iii) If r = ;, thenA 2 R0 for all ; $ A � IR0(r0), which is the simplex property forr0 = IR0(r0) in S0. �
In order to show that the pseudogeometric property is invariant under simplex transformations,

it will be useful to have an equivalent, more intuitive characterization of a simplex in this case:
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7.3.2 Theorem

Let S = (X;R) be pseudogeometric of dimensiond � 1. r 2 R is a simplex, if
and only if

(i) r is a(d+ 1)-range
(ii) r 62 �R

Proof:
First assume,r is a simplex. (i) is satisfied by definition. To see that (ii) holds, by swapping

assumer = ;. If r 2 �R, thenX 2 R, and similar to the proof of 7.3.1 (i) this implies thatIR(r)
is shattered inR, a contradiction.

Now let r satisfy (i) and (ii); by swappingr = ;. It is an easy observation that the simplex
condition is equivalent tor 2 RA for all A � IR(r), jAj = d.

Assume there exists such anA with r 62 RA. Because ofjRAj = 1, there must be somer0 6= ;
with r0 2 RA.

Let a denote the unique element inIR(r) � A. We claim thatr0 containsa. To see this,
consider a shortest path fromr0 to r in D1(S). r0 2 RA impliesA \ (r4r0) = ;, so the labels of
the edges on the path must be fromX � A. It follows that the label of the edge incident tor = ;
is a, which shows thata 2 r0.

Fromr0 2 RA we furthermore concluder0 [ A 2 R, soIR(r) = fag [ A � r0 [ A, which
means(r0 [A) \ IR(r) = IR(r). HenceIR(r) 2 RjIR(r).

On the other hand we haver = ; 2 RjIR(r), which impliesr 2 �(RjIR(r)). But this is a
contradiction tor 62 �R – to show this it suffices to prove thatr 62 �R impliesr 62 �(R�fxg) forx 62 IR(r); by iterating we obtain the desired contradiction.

So assumex 62 IR(r), which is equivalent tofxg 62 R. Hencer = ; 62 (�R) � fxg =�(R � fxg) due to lemma 3.4.3.

It follows thatr must be the unique range inRA for all A � IR(r), jAj = d, sor is a simplex.�
Now it is very easy to see that thePG-property is invariant under simplex transformations:

7.3.3 Theorem

Let S = (X;R) be pseudogeometric of dimensiond � 1, S ! S4fr; r0g
a simplex transformation. ThenS4fr; r0g is again pseudogeometric, and�S =�(S4fr; r0g).

Proof:
The simplexr is not a boundary range, so�R = �(R � frg) � �(R4fr; r0g). By theorem

3.5.3�R is maximal for a space of dimensiond, so�R = �(R4fr; r0g), and by the same theoremS4fr; r0g is pseudogeometric. �
Using a result of Ringel [Ri], we can prove a theorem that demonstrates the power of simplex

transformations in the2-dimensional case:
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7.3.4 Theorem

Given two pseudogeometric spacesS andT of dimensiond = 2, there is a finite
number of simplex transformations that takeS to a spaceS0, which – up to swapping
and relabelling the elements – is equal toT .

Proof:�S and�T are the closures ofPG-spaces of dimension1 (corollary 4.1.3), which are equal up
to swapping and relabelling (cf. corollary 3.2.3), so we mayassume that�S = �T .

Ringel has defined set systems similar toPG-spaces of dimension2, which we will call
Ringel-schemeshere. Translated to our terminology, a Ringel-scheme is a finite range spaceS = (X;R) with the following properties:

(i) jRjY j = 7 for all Y � X, jY j = 3
(ii) j(�R)jY j = 6 for all Y � X, jY j = 3
(iii) S is maximal with respect to property (i), i.e. adding one morerange toR

destroys this property
(iv) If jXj = 4, S is the description of cells of an arrangement of4 halfplanes

(and is therefore unique up to swapping and relabelling, as shown again in 3.2.3)

Ringel has shown that these schemes characterize the simplearrangements of pseudohalf-
planes, where he needs property (iv) to rule out one type of scheme that satisfies (i) through (iii)
but is not the description of cells of any arrangement.

If S is a Ringel-scheme, atriangular cell is a ranger 2 R with r 62 �R and jIR(r)j = 3.
Ringel shows that a triangular cellr can be replaced byr4IR(r), again resulting in a valid Ringel-
scheme (he calls such an operation atriangle transformation), and he derives the following result:

Let S andT be Ringel-schemes with�S = �T . ThenS can be transformed intoT by a finite number of triangle transformations.

To make this result valid forPG-spaces of dimension2, it remains to show that these spaces
are Ringel-schemes. Clearly then, triangle transformations by theorem 7.3.2 correspond to our
simplex transformations.

To see that a2-dimensionalPG-space satisfies (i) and (ii) is easy by using the counting results
for complete and pseudogeometric spaces from chapters 2 and3.

Property (iii) follows from completeness: Adding one more range causes a setY � X, jY j =3 to be shattered, which means thatjRjY j = 8.
Property (iv) finally is simply characterization (v) of theorem 3.2.1. �
This theorem does not generalize to higher dimensions. Ifd � 3, then�S and�T are the

closures of2-dimensionalPG-spaces, which are not necessarily equal up to swapping and re-
labelling. Since simplex transformations do not affect theboundary,S andT cannot obey the
theorem in this case.

Even if �S = �T , it is not clear whether there is a theorem of this kind. Ringel’s methods are
limited to dimension2, and we cannot even prove the existence of a simplex in aPG-space of
dimension more than2.

A crucial feature of the planar case seems to be the followingproperty that is best explained in
geometric terms: if a triangle is cut by a line, then one of thetwo pieces is again a triangle. Ringel
uses an equivalent to this property for his schemes to perform an inductive proof that deduces the



7.3. SIMPLEX TRANSFORMATIONS 69

existence of a triangular cell in the schemeS from the existence of such a cell in the subschemeS � fxg.
Ford � 3, however, this property is lost. It is always possible to cuta tetrahedron (or a general

simplex) with a plane (or a hyperplane) in such a way that noneof the two resulting pieces is a
tetrahedron (or a general simplex).

So we doubt, whether simplex transformations in higher dimensions are as basic as in the2-dimensional case.
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[Gr] B.GRÜNBAUM , Arrangements and spreads, CBMS Regional Conference Series in Mathe-
matics, No.10, Amer. Math. Soc., Providence, R.I., 1972.

[Ha] H.HARBORTH, Konvexe F̈unfecke in ebenen Punktmengen, Elem. Math.33 (1978), 116-118

[Ho] J.D.HORTON, Sets with no empty convex 7-gon, Canad. Math. Bull26 (1983), 482-484

[HW] D.H AUSSLERand E.WELZL, �-nets and simplex range queries, Discrete Comp. Geometry
2 (1987), 127-151

[Le] F.LEVI, Die Teilung der projektiven Ebene durch Gerade oder Pseudogerade, Ber. Math.-
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