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Introduction

A classical problem in combinatorial geometry is to find a bamatorial characterization of
arrangements of hyperplanes (or configurations of pointsgtware dual to arrangements, as we
will see in chapter 1), i.e. establish a scheme that mapsthété number of arrangements into
finitely many classes in such a way that arrangements wittsdinge image can be regarded as
equal with respect to some property one is interested in.

J.E.Goodman and R.Pollack [GP80a] have given an examplehvehxiplains the usefulness
of such a classification scheme: LE{n) be the smallest natural number, such that every set of
H (n) points in the plane (no three of them collinear) containsviigices of an empty convex
n-gon. Itis known that (5) = 10 [Ha] and thatH (7) does not exist [Ho]. WhetheH (6) exists,
is still an open problem. Suppose you want to attack thistarealgorithmically and test each
configuration of a given number of points whether it containempty convex hexagon. Besides
from the immense complexity for large configurations, howyda generate all "essentially dis-
tinct” configurations? A classification that reflects corityeproperties could solve this problem
in principle.

In fact, there exists a combinatorial structure that reflezany interesting properties of planar
configurations, namelgircular sequenceswhich were introduced by Perrin [Pe] and treated in
detail by Goodman and Pollack [GP80a], [GP84]. An overvigwiven in [Ed].

Another representation &-dimensional arrangements was given by Ringel [Ri]; both ap
proaches work only for nondegenerate arrangements andjaoatfons.

A very powerful and general classification @fdimensional arrangements (which need not
even be in general position) in terms of so-caltegbnted matroidswas intended by J.Folkman
and J.Lawrence [FL] and reproved by A.Mandel [Ma]. A new amgoh to the 2-dimensional case
was given by R.Cordovil [Co].

It was first observed by Ringel in his paper that the strudgreises to characterize arrange-
ments of lines actually covers a larger class of arrangesneamely arrangements pgeudolines
which are topologically similar to straight arrangemeims. shows that there are simple arrange-
ments of pseudolines which are rgitetchablei.e. whose cell complex is not equivalent to that
of any arrangement of lines.

Ringel's observation has an equivalent for any combinaltstructure encoding arrangements
— so it seems that straightness cannot be recognized by mambinatorial means.

In this paper we develop a characterization of simpldimensional arrangements of pseu-
dohyperplanes in terms of certain set systems of Vapnika@nenkis dimensionl. These set
systems are callegseudogeometric range spaaas were introduced by E.Welzl [We], who has
observed that every simple arrangement determines suclye space.

We show that the converse is also true; as a tool, we introdaceteresting new class of
range spaces derived from the pseudogeometric spacesgeaithvacterize both classes by simple
maximality conditions. Our technigues are then appliedetiveé some results on two more topics
related to arrangements.

Given a set of hyperplaned in d-space, where one of the open halfspaces of éachH
is called thepositive halfspacef h (denoted bys™), we obtain anarrangement of halfspaces



A(H™), which consists of the same faces as the underlying arragmgenh hyperplanes together
with the information, which of the positive halfspaces @imta given point.

Now every celk of the arrangement can be labelled with the set of hyperplameose positive
halfspaces contaie; the collection of the labels of all cells determines tr@scription of cellof
A(H™), denoted by’ (H ) (figure 1.1). FormallyC(H ") is a pair(H, R), whereH is the set of
hyperplanes an® a subset o2 . Such a pair is called @nge spaceWe refer toH as the set of
elementof the range space, whilg is the set ofangesof C(H ™).

If the arrangement has at least one vertex, theii*) is a range space of Vapnik-Chervonenkis
dimensiond. Furthermore, if the arrangement sample (or in general positioly, thenC(H™)
reaches the maximum number of ranges that a range space dinv&siond can have. Welz|
calls a range space with this propectympleteof dimensiond.

Chapter 2 studies complete range spaces and develops dk@irdroperties. Besides from a
new concept ofange space dualitgand a corresponding duality theorem, all the concepts sf thi
chapter are taken directly or in a slightly modified form framunpublished manuscript of Welzl
[We]. Some of them have already appeared in literature.

If we are given a one-dimensional arrangement of halfspéces an arrangement of rays
on the line), and we connect two ranges of the correspondasgribtion of cells by an edge
whenever they differ by a single element, we obtain distance-1-graph which in this case
has the structure of a path. In a general complete space aivi€nsion 1 this graph is only a
tree, which gives a necessary condition for a complete sjpdoe the description of cells of some
arrangement. This necessary condition generalizes tehdimensions and leads to the definition
of pseudogeometric range spacesich are the subject of chapter 3 (figure 3.1).

The basic properties and characterizations are again fedkar[\We].

We prove two theorems motivated by Levi's Enlargement Lenfwnarrangements of pseu-
dolines [Le], [Gr] and newly introduce the conceptsatdsure and boundaryof a range space.
This leads to an interesting characterization of pseudetrrspaces by a maximality condition
for the number of ranges in the boundary. Furthermore, tiaditduheorem for complete spaces
is shown to hold also for pseudogeometric spaces.

In chapter 4 we discuss a third class of range spaces, dalledpaces, which are spaces that
arise as the closure of some pseudogeometric space.

PG-spaces can be obtained as the description of cells of &dcairangements of hemi-
spheresand as well as complete and pseudogemetric spaces theg chafacterized by a certain
maximality condition. Once more a duality theorem is esshleld for PG-spaces.

In chapter 5 we show thaPG-spaces correspond to simple oriented matroids, and thiis wi
lead to a major result of the paper, namely tiaF-spaces characterize simperangements
of pseudohemispheresd pseudogeometric spaces corresporatiangements of pseudohalfs-
paces

The terminolgy and the basic properties of oriented matreié develop in section 5.2 are
taken from [Ma] as well as the formal definitions of arrangatmeof pseudohemispheres and
pseudohalfspaces in section 5.5.

The last two chapters abogéometric embeddabiligndelementary transformationsf com-
plete range spaces were inspired by conjectures and sigympest Welzl. These chapters should
be seen from the point of view of chapter 5, for they are mtgndy properties of arrangements.

Chapter 6 generalizes planarity to range spaces by intimgllan embedding scheme that



avoids intersections of certain convex hulls. A main matiafor this embeddability concept is
the k-set problem, and we show how embeddability is related td:thet problem. Furthermore,
we characterize the complete spaces, which allow a gooddafirizein a certain sense.

Finally, chapter 7 discusses the problem of replacing agarfiga complete space by another
one in such a way that the completeness-property is magtaifhis is motivated bgimplex
transformationsin arrangements of pseudohyperplanes. We characterizeriges that can be
replaced and show that simplex transformations have awagot in complete and pseudogeo-
metric spaces.

Using a result of Ringel [Ri] we show that any two pseudogegdmspaces of VC-dimension 2
and the same boundary can be transformed into each othemugyardy simplex transformations,
a result that does not generalize to higher dimensions.

Chapters 1 through 4 should be read in consecutive ordele wiapters 5, 6 and 7 are inde-
pendent from each other, but are based on the first four alsapte

Throughout the paper, some details and proofs are omittethid case they either are easily
obtained in a straightforward manner or the reader is redeiw the literature.

Furthermore, some set operations as well as the concelpiadify occur in a double meaning.
As an example, consider the symmetric difference, denoged blf we have sets?, R’ which
are subsets of the same domaih then RAR' is the usual symmetric difference defined by
RAR :=(RUR')— (RNR).

If we haveR C 2X, ' C X, then the set operations should be applied to the elemetits of
i.e. RAr := {rAr' | r € R} in this case. Whenever we refer to this non-standard definitve
explicitly mention it the first time it occurs. Usually, it @dear from the context which meaning is
currently valid.

As far as duality is concerned, there exisgge@metric dualityand arange space dualityboth
concepts do not occur very often in this paper, and againlibeiclear from the context to which
concept we refer.
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Chapter 1

Arrangements of Halfspaces

1.1 The Description of Cells

Consider a finite sefl of n hyperplanes ini-dimensional Euclidean spade’. H defines an
arrangement of hyperplaned(H), i.e. a dissection of2¢ into connected pieces of various di-
mensions, callelicesof the arrangement, such that the disjoint union of all fasgs?. A face

of dimensionk is called ak-face 0-faces areverticesof the arrangement/-faces are calledells
Observe that each facgis open in the affine subspace (dff, where afff) denotes the affine
hull of the points inf. Cells are open i (for a more formal and detailed treatment of arrange-
ments see [Ed]). In the sequel we will always assume thatuheer of hyperplanes is at least
otherwiseA(H) is equivalent to a lower-dimensional arrangement.

Every hyperplané € H defines two open halfspaces, and by arbitrarily choosingbtiese
two halfspaces to be calléd" or thepositive halfspacef 4, (and the other onk~ or the negative
halfspace of:), we get ararrangement of halfspaced(H ), whereH* := {h* | h € H}.

In this way an arrangement of hyperplanes determifésarrangements of halfspaces.

A(H™) is defined to consist of the same faces/d#7) together with the information, which
of the halfspaces fronf+ contain a given poinp € E¢. This information enables us to define
the description of cellof a set of halfspaces4(H ™) contains several cells, and every celan
be labelled with the set(c) of all h € H, such that is contained in the positive halfspace/of

1.1.1 Definition

Let H* be a finite set of halfspaces. The ordered pair
C(H') := (H,{v(c) | ccellof A(H1)}),
wherev(c) := {h € H | ¢ C h"}, is called thedescription of cellof H.

Itis clear thaw(c) # v(c), if ¢ # ¢, sincec andc’ are separated by at least one hyperplane
and therefore lie in different halfspacesrof(figure 1.1).

The description of cells can as well be obtained by labekiagh point € E? with the set of
hyperplanes whose positive halfspaces congaaimd then considering the collection of labels of
all points which do not lie on any of the hyperplanes. CledHgse are exactly the points which
lie in the cells of the arrangement.

7



8 CHAPTER 1. ARRANGEMENTS OF HALFSPACES

Figure 1.1: Description of cells of an arrangement of haltgs

The concept of the description of cells is similar to thaposition vectorgyiven by Edels-
brunner: Lethy, ..., h, be the hyperplanes froiif. Now every facef of A(H™) is labelled with
ann-dimensional vectoA(f), where);(f) is +1, 0 or —1, depending on whethef is contained
in b, b orh;.

At first glance it seems that this labelling contains morerimfation than our description of
cells, since every face is assigned a position vector, widléabel the cells only. But it is easy to
see, that the position vectors of &lifaces, wheré < d, are determined by the position vectors
of the cells.

Ringel [Ri] has studied the description of cellssflimensional arrangements, and in chapter
7 we will use one of his results.

1.2 Geometric Duality

By using a geometric duality it is possible to obt&i(H *) from a set ofdirected pointinstead
of halfspaces. Assume that no hyperplane H is vertical! We define a duality transform that
maps hyperplanes to points and vice versa. It is well knowhadtyperplané can be written in
the form

h:a=a1z1+ ... + agzy,

i.e. h is the set of points satisfying this equation for appropristalar valueg;, a1, ...,aq. The
two halfspaces of are obtained by changing="to " <” and ">", respectively. A hyperplane is
vertical, iffa; = 0.

Given a pointp = (p1, ..., pq) € E?, its dual is defined as the hyperplane

Pipd =2p171 + ... + 2p4—1Td—1 — Tq-

Conversely, given a hyperplaihe: « = a1z + ... + aqz4, its dual point is

a1 ag—1 (67

., )
( 2ad 2ad Qq

!This does not mean that the vertical direction is distinigeikin some way; the assumption is made simply in order
to apply a convenient duality transform. At the cost of mgkilhings a little harder to visualize, we could use another
duality that works also for vertical hyperplanes.
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This shows that the duality is self-inverse, but is not defifoe vertical hyperplanes.

Using this duality we can map an arrangement of non-vertigakrplanes to aonfiguration
of points (and vice versa).

The duality is incidence-preserving in the following sense

1.2.1 Observation

Pointp lies on (above, below) hyperplarie iff point % lies on (above, below)
hyperplanep.

Details concerning this duality transform can be found id][E

We extend the correspondence to halfspaces and directeis pothe following obvious way:
a directed pointis a pair (p, dir), wherep € E? anddir € {up,down}. We can visualize a
directed point as a point with a ray attached to it that pdimis the direction given byfir. For
a non-vertical hyperplang let k.., denote the halfspace beldw Ao the one abové. We
dualize hpen to the directed pointh, up) and hgpeve t0 (A, down). How a directed point is
dualized to a halfspace is immediate from this.

Now the following holds and is an easy consequence of theeabloservation:

1.2.2 Observation

Pointp is contained in halfspackt, iff 1 ¢ p and the ray emanating fromat
stabs hyperplang.

This observation yields the dual approach to the descripifccells: given a configuration of
directed points in¢, label each non-vertical hyperplaheof E¢ with the set of all points whose
rays stabh. Then the collection of labels of all hyperplanes contajmione of the points is the
description of cells of the dual arrangement of halfspafigaré 1.2).

1.3 Simplicity

So far we have considered arbitrary arrangements of hakspabut in the following we will
restrict ourselves to the simple case: an arrangement tfplaaks inE? is calledsimple iff
the underlying arrangement of hyperplanes is simple, whielans that any hyperplanes have
a unique point in common and amy+ 1 have empty intersection. This translates to the dual
space in the following way: a configuration of directed pwimt E¢ is simple, iff the underlying
configuration of points is simple, and this is the case if dmppoints lie on a unique non-vertical
hyperplane and there is no hyperplane containirg 1 of the points. Note that this implies that
no line through two of the points is vertical.

The reason to deal with simple arrangements only is theviotig

1.3.1 Observation

Let A(H™) be an arrangement of halfspaces with description of cel§ H ).
Then there exists a simple arrangemdiiG ™) of n halfspaces, such th@(H ") C
C(G™T).
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Figure 1.2: arrangement of halfspaces and dual configarafidirected points

To see that this is true, observe that there is only a finitebaurof cells in an arrangement and
each of them has non-vanishing volume. It follows that theenglanes can be slightly perturbed
without destroying any of the cells. This perturbation canperformed in such a way that all
degeneracies disappear, i.e. the arrangement becomés.siBmthis simplification transform
(figure 1.3) generates some new cells and hence some newilaliet description of cells without
changing the old ones.

This shows that simple arrangements maximize the desamigt cells and this fact is rea-
son enough for us to rule out non-simplicity in the sequel,ifaurns out that only a maximal
description of cells gives rise to a well-behaved strucimreur approach.

We will use the dual view in terms of a configuration of direcigoints in chapter 6. In
the other chapters all the concepts are motivated and erplaising the primal arrangement of
halfspaces; this turns out to be more handy in what followavéler, we encourage the reader to
visualize a newly introduced notion also in the dual space.

For a finite set of halfspaces we now want to work out the basipeyties ofC(H '), intro-
ducing as the main tool the conceptrahge spaces

1.4 Range Spaces

If X is a set andr a collection of subsets of (possibly empty), the pai$ = (X, R) is called a
range spaceX is theunderlying sebf S, consisting of theelementf S, the elements oR are
calledrangesof S. If X is a finite set,S is calledfinite. With the exception of examples, all the
range spaces in this paper are assumed to be finite, so thisagyays mentioned explicitly.
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T

e

Figure 1.3: simplifying an arrangement of halfspaces — nellg are generated

When geometric concepts are absent, the teypergraphis more commonly used to denote
(X, R). By talking of range spaces we usually have in mind tkids some set of points anl a
collection of geometric ranges (like in the following exdes).

Range spaces (especially of finite VC-dimension, a combirzparameter that we introduce
in the next section) play an important role in connectionhwgeometric range queries;nets
[HW], [CW], concept learning [Fd], [BEHW], [Va], and disgpancy [MWW].

1.4.1 Examples

(i) S = (E?, B), whereB is the set of all closed balls i&¢
(i) S = (E“, P), whereP is the set of all polytopes if?

We will come back to these examples when we introduce the M@iaksion of a range space.

Another example of a range space is the description of célE©. The underlying set is
H and the ranges are the labels of the cellsi¢ff ). A range space arising in this way will be
calledgeometrigif A(H ™) is simple. Geometric spaces will serve as our main exam@ekain
the notions we will introduce next.

1.4.2 Definition
Let S = (X, R) be arange spac¥, C X. We define

S-Y = (X-Y,R-Y), whereR-Y :={r—Y |r € R}
sY = (X -Y,RY), whereRY .= {r cR|rnNY =0,rUY' € RVY' C Y}
Sly = (Y,R|y), whereR|y :={rnY |r € R}
-8 := (X,-R), where—R:=2" — R

We refer toS — YV, SY and S|y assubspace®f S. —S is called thedual of
S (note that this range space duality has nothing to do withgg@metric duality
introduced in the second section of this chapter and is édffewveht from the standard
range space duality, as defined, for example, in [CW]).
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The case wher¥ is a singleton will be of special interest in the sequel, dmisl ¢ase is basic
in the sense that any subspace can equivalently be definegl ardly subspaces determined by a
single element:

if in generaly, ..., y; is any ordering of the elements b, clearly

§=V = (S —{yi}) =) = {u},
Sly = (Sl - yey-

Via an easy induction, part (i) of the following lemma alsqiias
SY = (..(§Mh)..)wd,

1.4.3 Lemma

Let S = (X, R) be arange space,y € X,Y C X. Then the following holds:
i) (RM)" =R 2 g Y
(i) R = |R — {z}| + |R]]
(i) R—Y =R|x_v
(V) RY™ — {y} C (R — {y}) "}
V) ~(R—Y)=(-R)"
(Vi) =(RY) = (-R) - Y

Proof.
(i) r € (R o rru{z} € RY & rUuY',rU{z}UY' € RforallY' CcY © rUY' € R
forall Y/ c Y U{z} & r € RYV{=},

(i) By deleting z from the ranges oR to obtainR — {z}, exactly the pairs of rang€s, ')
with z ¢ r andr’ = r U {z} collapse to one range. Since there [@&"}| such pairs, we conclude
that|R — {z}| = |R| — |R{"}|.

(iii) It suffices to observe that— Y =rN (X —Y), forallr € R.

(iv) If € R1#} — {y}, thenr € R®} orr U {y} € R{#}, which means,r U {z} € Ror
rU{y},r U{z,y} € R. In both cases we haver U {z} € R — {y}, sor € (R — {y}){*}.

Wre—(R-Y)ordR-Y oV CY:rUY' ¢RaVY' CY:rUY € —R
sre(-R)Y.

(vi) similar to (v). [ ]

When we conside$ := C(H*) andh € H, thenS — {h} arises fromS by removingh from
the label of every cell. S& — {h} is simply the description of cells we get after removing the
halfspaceh™ from H*. ConsequentlyS — Y is the description of cells df = — Y.

S{h} describes exactly the cells who are notih but are separated only byfrom a cell in
h*. Clearly, these are the cells bf incident toh; the remaining halfspaces inducéda— 1)-
dimensional arrangement of halfspaces jand there is a one-to-one correspondence between the
cells of this subarrangement and the cells describeiiBy; it follows that S{"} can be regarded
as the description of cells of the subarrangement.

In general,SY" corresponds to thel — |Y'|) - dimensional subarrangement induce@i.- &
by Ht — YT (figure 1.4)

Finally, if G ¢ H, C(H™")|s describes the cells of the arrangemg{G") , so it is equal to
C(GT).
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Figure 1.4:5{"} andS — {h} for description of cellsS, » = 3

1.5 VC-dimension

As already mentioned, a range spa&e= (X, R) can be assigned a dimension, the so-called
Vapnik-Chervonenkis DimensigdC71]; we sayY C X is shatteredin R, iff S|y = (Y,2Y),

i.e. every subset of can be obtained by intersectingwith a range fromR. This leads to the
following

1.5.1 Definition
Let S = (X, R) be arange space. The number

—1 if R =0;

k  if kis the cardinality of the largest
subset ofX that is shattered i

oo if arbitrarily large subsets are shattered

VC-dim(S) :=

is called thevapnik-Chervonenkis dimensionVC-dimensiorof S.

Clearly, in a finite range space the VC-dimension is boundeldkh.
Now we will give the VC-dimensions of the examples from 1:4.1

(i) The VC-dimension of this space ds+ 1. To see this, note first that the set of balls shatters
anyd + 1 points which form a simplex if?. If on the other hand a set of at leastd + 2 points
is given, then Radon’s theorem [Ed] ensures that there istaiga of A into subsetsd; and A,,
such that cond;)N conMA;) # . AssumeA is shattered; then there are baBs, B, with
BinNA=AandB;NA = A,. Leth be a hyperplane separatifity — B, from By — By. If the
balls are disjoint or have just one point in common, such afylpne trivially exists — otherwise
we choosé to be the hyperplane spanned by the sphere that is the ictiersef the boundaries
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of By and By. Clearly, By N By contains no element od, soh also separated; from A,, a
contradiction to the fact that the convex hulls interseanéet it follows thatd is not shattered.

(i) This space has VC-di(i%) = oo: Let A be a set of points on a sphere a#dan arbitrary
subset ofA. Clearly conyA’) is a polytope containing exactly the elements fraif) so A is
shattered, wherpd| can be arbitrarily large.

We will simplify notation and refer to the VC-dimension silpas the dimension of a range
spaceS and write dim@) instead of VC-dim§).

1.5.2 Remark
If S = (X, R) is of dimensiond, thenS{#} is of dimension at most — 1, for all
rz e X.
Proof:

AssumeY C X — {z} is shattered iR{*}. We show that” U {z} is shattered irR; let Y”
be a subset of U {z}.

If Y/ CY,thereisr € R} c Rwithrn (Y U {z}) =rNnY =Y".

Otherwise there is € R} withr N Y =Y’ — {z}. Butthen(r U {z}) N (Y U {z}) = Y,
wherer U {z} € R. SinceS is of dimensiord, |Y U {z}| < d, so|Y| < d — 1, and this proves
the remark. [ |

Of course, now we are interested in the dimension of our gesur of cellsC(H):

1.5.3 Theorem

Let H be a set ofx halfspaces, defining a simpledimensional arrangement.
Then the following holds:

(i) C(H*) has®,(n) ranges, wheré@(n) := 7 (7)
(i) C(H™) has dimensior

Proof:
(i) The number of:-faces of a simple arrangementohyperplanes ¢ is

. i d—i)( n >

as shown in [Ed]. This impliegy(n) = ®4(n), so the arrangementd(H) and A(H™)
contain®,(n) cells. Since we have already observed that different cedisreapped to different
ranges of’(H ™), the first part of the theorem follows.

(ii) Let G be a subset of. Recall thatC(H )| is the description of cells off*. Hence,
using part (i) of the lemma;(H")|s has®4(|G|) ranges. If|G| = d, this number equalg?,
i.e. G is shattered. If7 hask > d elements®,(|G|) is smaller thar*, soG is not shattered.
VC-dimensiond is immediate from this. [ |



Chapter 2

Complete Range Spaces

2.1 The Defining Property

Surprisingly, it turns out thad,(n) is an upper bound on the number of ranges that a range space
of dimensiond with n elements can have, and the existenc€ @ +) shows that this bound is
tight. The class of range spaces who reach this number oésatgs very interesting properties
and will be the subject of this chapter.

First we give thed,(n)-bound that was independently proved in [Sa] and [VC74]. tRer
following we define®_;(n) := 0.

2.1.1 Theorem

Let S = (X, R) be arange space of dimensidwith |X| = n elements. Then
|R| < ®g(n).

Proof:

The assertion is true fat = —1, d = 0 and forn = d > 0, since in this cas¢r| = 2¢ =
®4(n); now letS = (X, R) be a range space of dimensidn> 1, |[X| = n > d, and assume
the theorem holds for any range space of dimension at mhestl and for any range space of
dimensiond with at mostn — 1 elements.

Chooser € X. Clearly, the subspacg — {z} is of dimension at most, so

R —{z}| < ®4(n—1)
by hypothesis. From 1.5.2 we know th&t*} is of dimension at most — 1, which means
IRY < ®y_1(n —1).

Since|R| = |R — {z}| + |R{"}| (1.4.3 (ii)), we concludéR| < ®y(n — 1) + &4 (n —1).
Using the equality) = ("7") + (=) we easily obtairdy(n — 1) + @41 (n — 1) = &4(n),

and the theorem is established. | |

2.1.2 Definition

A range spaces = (X, R) of dimensiond with |X| = n elements is called
completeg(of dimensiond), iff |R| = ®4(n).
15
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2.2 Characterizations and Duality

It will be useful to have some equivalent characterizatioines complete range space. This is given
in the following

2.2.1 Theorem

Let S = (X, R) be a range space of dimensién> 1 with n := | X| > d. Then
the following statements are equivalent:

(i) S is complete of dimensiod

(i) Vz € X : S1#} is complete of dimensiod—1, S — {z} is complete
of dimensiond

(i) Vz € X : St} is complete of dimensiod — 1

(iv) 3z € X : S{=}is complete of dimensiod—1, S—{z} is complete
of dimensiond

(V) |[RY =1forall AC X,|A| =d

Proof:
(i) = (i) Since dim(S{*}) < d — 1 (1.5.2) and din(S — {z}) < d, we have

®q(n) = |R| = |R| + |R — {&}| < ®g1(n — 1) + Ba(n — 1) = By(n),

so we conclude thaR{?}| = ®,_;(n — 1) and|R — {z}| = Bg(n — 1).

We are done, if we can show th&t*} is of dimensiond — 1 andS — {z} is of dimension;
sincen > d > 0, we know that®y_(n — 1) > ®g_1(n — 1), P4(n — 1) > &z (n — 1) for any
d' < d, which means tha§{*} andS — {z} contain too many ranges to be of dimensions less than
d — 1 andd, resp., and this proves the implication.

(i) = (iii), (iv) trivial

(i) = (i) We proceed by induction on. If n = d + 1, let A be a set of cardinality/
shattered inR. There is exactly one € X — A, and A is also shattered if® — {z}. Clearly,
R — {z} contains exactly all the subsets 4f So|R — {z}| = 2¢ = ®4(n — 1), which implies
IR = |RWH + |R — {z}] = Bg_1(n— 1) + By(n — 1) = By(n).

Now assume: > d + 1. Again chooser € X, such thatS — {z} is of dimensiond. For all
z € X —{z}, (S — {z})1*} is of dimensions at most— 1, so

®4-1(n—2) > |(R— {z}) ] > [RP} — {a}] = By_1(n — 2),
sinceS{#} is complete of dimensiod — 1, which — using (i} (ii) — implies completeness for
s{z} — {z}. This showg(R — {z})¥}| = ®y_1(n — 2) forall z € X — {z}.
Using the same argument as in+) (i) we see that(S — {z}){*} is of dimensiond — 1 and

hence complete of dimensieh- 1 for all z € X — {z}, so by hypothesi§ — {z} is complete of
dimensiond, and we conclude

IR| = |R — {z}| + R} = Ba(n — 1) + @41 (n — 1) = By(n),

so S is complete.
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(iv) = () |R| = |R"H + |R — {z}] = B4 1(n — 1) + Bg(n — 1), sinceS{*} andS — {z}
are complete, spR| = ®4(n).

(i) & (v) To see that =" holds, iterate (i}=(iii) and observe tha®,(n) = 1. For the inverse
implication we proceed by induction af) noting that ford = 1 the assertion is equivalent to
implication (iii)=-(i).

If d > 1, considerS{*}, 2 € X. Remark 1.5.2 implies that

0 = dim($4) < dim(${*}) — (d — 1)

for |[A| = d,z € A, soS{#} is of dimensiond — 1. Furthermore|(R{#})5| = |RP{#}| = 1 for
B C X —{z},|B| = d—1, s0S7} is complete by hypothesis. This holds foralE X, so again
implication (iii)=-(i) shows thatS is complete.

|

One could conjecture that we might leave out the global apgomthats is of dimensiond
— but then the theorem gets false: if we have a range spasé/sajistatement (iv) of the theorem
for a certaind, S itself does not have to be of dimensiah For an example, conside¥ =
{1,2,3}, Ry := {0,{1,2},{2,3},{1,2,3}}, R := {0,{2},{2,3},{1,2,3}}. S1 := (X, Ry) is
of dimension2 and non-complete, whil§y := (X, Ry) is complete of dimensiof. Since we
haveR!" = RIY = {{2,3}} andR, — {1} = R, — {1} = {0,{2},{2,3}}, both S; and S,
satisfy statement (iv).

2.2.2 Remark

Characterization (v) shows that a complete space of dimensishatters any
subset of cardinalityl: Given|A| = d, consider the unique rangen R4. From the
definition of R4 we know thatr U A’ € Rforall A’ C A, andA’ = An (ruU A’)
shows thatd is shattered.

r is called avertexof S, and later on we will be able to show that a complete range
space is completely determined by its vertices.

2.2.3 Corollary
Let S = (X, R) be a complete range spaaey € X. Then

St —{y} = (5 - {yp .

Proof:

The assertion is easily seen to hold if di$n < 0 or | X| =dim(S). Otherwise we know
from 1.4.3 (iv) thatR{*} — {y} c (R — {y}){*}; using the preceeding theorem it follows that
[RUY —{y}| = [(R — {y})1"}], and this impliesst} — {y} = (5 — {y}){]. u

The property that subspaces of complete spaces are coryleteout to be very important; it
enables us to perform inductive proofs, whenever we havatarsent involving complete range
spaces.

As far asC(H™) is concerned, this is not very surprising, since we haveadjreseen that
the subspaces @f(H ) correspond to arrangements that are obtained by deletimg 86 the
halfspaces fron#/ * or to lower-dimensional subarrangements on the hyperplare H, whose
descriptions of cells, of course, are complete, too.
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A nice and useful statement involving the dual range spatteeifollowing

2.2.4 Theorem

S = (X, R) is complete of dimensiod, iff —S is complete of dimensiohX | —
d—1.

Proof:

It suffices to prove one implication; fat= —1 andd = n := | X| the theorem is easily seen
to be valid. Now assume < d < n. Because 02" — ®4(n) = ®,_4_1(n) it remains to show
that—S is of dimension at most — d — 1.

Assume on the contrary, thereAsC X, |A| = n—d shattered in-R. Then|X — A| = d, and
theorem 2.2.1(v) states that there is a unique rangeR* ~*. Sincer C A, there isr’ € —R,
such thatd N v’ = r. This implies that’ is a superset of andr’ — r contains no element of.
But thenr' is of the formr’ = r U B, B ¢ X — A, which is a contradiction, since e RX~4
implies that all the ranges of this form are containedin ]

2.3 The Distancet-graph and Swapping

In order to find out more about the structure of a completegapgce, we introduce a graph on
S, called the distance-1-graph 8f To this end we define a distance function Bioy

diSt(’l"l, 7"2) = |7’1A7"2|,

wherer; Ary is the symmetric difference of andr, (Note that(R,dist) is a metric space).

2.3.1 Definition
Let S = (X, R) be a range space; the undirected edge-labelled graph
DY(S) := (R, E), whereE := {{r;,r;} C R | dist(r;,ry) =1}

is called thedistance-1-graptof S.
The label\(e) of an edgez = {r,r2} € E is defined as the unique element in
T1A7"2.

So theD'-Graph of S joins two ranges of2 with an edge, when they differ by exactly one
elementz € X, andz is the label of this edge.

For an example consider the geometric range sgaee C(HT). An edge ofD'(S) joins
two ranges, when they are the labels of adjacent cells ofla@gementA(H ). The label of
the edge is the hyperplane separating the two cells (figue Ve remark that thé@'-graph is
invariant under changing/*, i.e. each of the!| arrangements of halfspaces that come from
an arrangement of hyperplang /) define the samé'-graph. To facilitate our further con-
siderations, we will generalize this statement to arbjtrange spaces, introducing the notion of
swappinga range space.

Let us consider the effect of interchanging the positive thiechegative halfspace of a hyper-
planeh € H. A cell, that previously was contained & is now contained ik~ and vice versa,
i.e. its new label is the symmetric difference of its old lledéwed {h}. Motivated by this we give
the following
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3

Figure 2.1:D'-graph of a geometric range space

2.3.2 Definition
Let S = (X, R) be arange spac® C X. The range space

SAD:=(X,RAD), whereRAD:={rAD |r € R},
is calledS swappedD.

Clearly |R| = |R A D|; Note that the distance-1-graph is invariant under swappsince
rAr' = (rAD)A(r'AD), forall r,7" € R.
Furthermore, swapping does not change the dimensidit @onsiderA C X. Observing
that
Anr=Anr" & An(rAD)= AN (r'AD),

weseethat{ANr|r e R} =|{AN(rAD) | r € R}|,i.e. Ais shattered iR A D if and only
if A is shattered irR. This immediately leads to the following

2.3.3 Observation

Let S = (X, R) be arange spacé) C X. S is complete of dimensiod, if and
only if S A D is complete of dimensiod.

The invariance of the completeness-property under swgppith be an important tool in the
sequel. Whenever it is convenient, we may assume that a fixegbris equal to a certain subset of
X, which simplifies many proofs. A phrase like "by swappinguaser = ()" means that we swap
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S in such a way that is mapped td), and work with the swapped space instead of the original
one. As far as th&'-graph and similar concepts are concerned, this is no logeradrality.

Now we are able to prove a fundamental result about the distédrgraph of a complete range
space of dimensiod > 0, namely that it is connected. We actually derive a stronggult: Given
two ranges-, v’ € R, there exists a path fromto ' in D' (S) with length distr, r'), and this path
is shortest possible, since at least every element fr&m must occur as the label of an edge on
the path.

First we need a lemma:

2.3.4 Lemma

Let S = (X, R) be complete of dimensioh > 1, X € R, r # X arange ofS.
Then there exists € X, such that € R{?}.

Proof:

We proceed by induction om := | X|. Forn = d, any subset o is a range, so the lemma
holds in this case.

Now assumen > d, and let the assertion be true for all complete spaces othess: ele-
ments.

Considerr € R,r # X. Then there isc € X, such thatz ¢ r. If r = X — {z}, we are
done. Otherwise we know thate R — {z}, and by hypothesis there existsc X — {z} with
re (R—{z})19 = R — {2} (2.2.3). So either € R} orr U {z} € R{*}, which implies
r e Rl#H, [ |

2.3.5 Theorem

LetS = (X, R) be a complete range spaeey’ € R,r # r'. Then there is a path
of length D :=dist(r, ') between andr’ in D' ().

Proof:

By swapping we can assume that= X.

Now apply the preceeding lemmartg := r, and suppose, € R{?0}. Thenr; := o U {%}
is a range inRk. Analogously define; := r; 1 U{z;_1},i > 1; since disr;, ') decreases by one
in every step, we conclude thab = »’, and ther;, 0 < i < D define the desired path. [ |

If Sis complete of dimensioh, the D'-graph is of a special structure:

2.3.6 Theorem

LetS = (X, R) be a complete range space of dimensiofhenD'(5) is a tree,
and everyr € X occurs exactly once as an edge labeDd{.S).

Proof:

5=} is complete of dimensiofl, so|R{*}| = ®y(|X| — 1) = 1, forallz € X. Clearly the
number of edges labelled withequals| R{*}|, so there is exactly one edge labelled wittor all
r e X.

It follows that D' (S) has| X | edges.
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Assume,D'! contains a cycle of edges, ..., e;.. It is clear that the label of; has to occur an
even number of times on this cycle, for glli.e. at least twice, which is a contradiction, so there
is no cycle.

D'(S) has®;(|X|) = | X| + 1 nodes andX| edges and contains no cycle, so it is a tra.

The fact that any two ranges of a complete range spaaee joined by a (shortest possible)
path inD'(S), will turn out to be a key theorem in the sequel. A trivial cegsence is that any
range has at least one neighbourh(S). This can be used to prove the following easy

2.3.7 Lemma

Let S = (X, R) be complete of dimensioth > 1. Then any range has at leaist
neighbours inD!(S).

Proof:

Clearly, the lemma holds faf = 1. If d > 1, r € R, letr’ be a neighbour of in D'(S).
By swapping assume = r U {z}, 2 € X. Thenr € R{*}, and by hypothesis hasd — 1
neighbours inD'(S517}). These are neighbours alsolit (S), so together with” this sums up to
d neighbours. [ |

A more interesting consequence is the next theorem that weedieeady mentioned:

2.3.8 Theorem

Let S = (X, R) be complete of dimensiod > 0. ThenS is completely deter-
mined by its vertices, i.e.

R= [J {rauA'| A C 4},
|A|=d

wherer 4 is the vertex inR*.

Proof:

Recall that the vertices are the unique ranges R*, |A| = d. A is said to determine the
vertexwv.

We show that for any € R there is|A| = d such thatr = v U A’ for someA’ C A, v the
vertex determined byl. Since on the other hand all the sets of the fartm A’ are ranges oRz,
the theorem follows.

We use induction ol, noting that ford = 0 the theorem holds; now assurde> 0 and let
r € R be given. Letr’ be a neighbour of in D!(S), z € X the label of the edgér,r’). Let
u be the one of-, ' that is contained iR{}; by hypothesis there i ¢ X — {z}, such that
uw=vU B', B' C B, v the vertex ofR{*} determined byB. v is also a vertex oR, determined
by B U {z}; clearly, the theorem holds if = u. If ¥’ = u, thenr = v U (B’ U {z}), and since
B'U{z} c BuU{z},vis an appropriate vertex feralso in this case. [



22

CHAPTER 2. COMPLETE RANGE SPACES



Chapter 3

Pseudogeometric Range Spaces

3.1 The Defining Property

Up to now we have shown that the description of cells of a séatfspaces irE? is a complete
range space of VC-dimensiaf) and we have given some basic properties of complete spaces.
Now it is natural to ask, whether to a given complete spaitieere exists a set of halfspaces, such
that S is its description of cells — or equivalently: is every costplspace geometric?

To attack this question, consider a $&t of halfspaces ir!, i.e. on the line. A hyperplane
h is a point on the line, the halfspagée is one of the two rays starting At

The cells of the correspondirigdimensional arrangement are ordered along the line amd the
labels are joined by th®'-graph ofC(H™) in this order. This means, th@'-graph is not only a
tree (as shown in theorem 2.3.6), but a path (figure 3.1).

So we have established a necessary condition that a georspéite of dimensioih has to
fulfill, and there arel-dimensional complete spaces who violate this conditibe @mallest ex-
ample isS = (X, R) with X = {1,2,3} andR = {0, {1}, {2}, {3}}, where( is of degree three
in D1(9)).

There is an analogous condition fdrdimensional geometric spaces,> 1. Recall that
C(H*)Y corresponds to thé — |Y|- dimensional subarrangement induced(p., h by the
remaining halfspace#f™ — Y. In the case wheréy’| = d — 1, this subarrangement is of

{1,5} {1,5,6}

{3.6}

{3,4,6}

Figure 3.1: geometric and non-geometric complete spacarargionl
23
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dimensiont, so theD!-graph ofC(H*)Y again is a path.
This necessary condition can be used as a defining properysabclass of the complete
spaces, called pseudogeometric range spaces, which anelfleet of this chapter.

3.1.1 Definition

Let S = (X, R) be complete of dimensiod. S is calledpseudogeometrior
PG-space, iffd < 0 or —in cased > 1, if D'(SY) is a path, for ally’ c X,
Y|=d-1.

Note that since pseudogeometric spaces are determinedjgries of the distaneel —graph,
there is an equivalent to observation 2.3.3 alsoR6f-spaces, so swapping is a useful tool here
either.

3.2 Characterizations and Duality

In theorem 2.2.1 we have given five characterizations of ¢etmspaces; equivalents of state-
ments (i) - (iii) are easily seen to hold also in the contepsdudogeometric spaces; this is shown
in the following theorem, where two additional charactatians are given.

Unfortunately statement 2.2.1 (iv) cannot be added to thele. if for a spaceé of dimension
d there exists: € X, such thats1#} andS — {z} are pseudogeometric of dimensiahs- 1 and
d resp.,S itself does not have to be pseudogeometric. We gi%edamensional counterexample:
S = (X, R) with

X ={1,2,3,4}, R = {0,{1},{2}, {3}, {4}, {1,2},{1,3},{1,4},{2,3},{2,4},{2,3,4} }.

S is of dimensior2 and complete, since alt{”} are complete of dimensioh Now

R— {4} = {@, {1}7 {2}a {3}3 {17 2}v {L 3}7 {2, 3}}7 R = {@, {1}7 {2}a {2a 3}};

it is easy to check, that — {4} andS{*} are both pseudogeometric, tits not pseudogeometric,
sinceRM'} = {0, {2}, {3}, {4}} shows thatD'(S{'}) is not a path.

Furthermore, it is clear that an equivalent to 2.2.1(v) catold for pseudogeometric spaces,
since thed-dimensional subspaces do not carry any structural infooma

Note that the following theorem is stated fbr> 2 — if d = 1, the implications (iii}=-(i), (i)
as well as (iiy=-(i) may not hold! However, the proof shows thatifiv) < (v) as well as (i} (ii)
holds also ford = 1.

3.2.1 Theorem

Let S = (X, R) be a complete of dimensio#h > 2 and|X| > d. Then the
following statements are equivalent:

(i) S'is pseudogeometric of dimensidn

(i) Vo € X : $17} is pseudogeometric of dimensidn- 1, S — {z} is
pseudogeometric of dimensiah

(i) Vz € X : 517} is pseudogeometric of dimensidn- 1

(iv) VY C X,|Y| = d+ 2, S|y is pseudogeometric of dimensidn

(V) VY C X,|Y| =d+ 2, S|y is geometric of dimensiot
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Proof:

(i) = (i) Consider a fixedr € X,Y C X — {z},|Y| = d — 2. Clearly, D' ((S¥*})Y) is a
path, sinceS is pseudogeometric ar{@{*})Y = sYU{=} (1.4.3 (i), sos{*} is PG.

If D'(SY) is a path, this is also the case B (SY — {z}) = D'((S — {z})¥) (2.2.3), so
S — {z} is pseudogeometric of dimensidn

(i) = (iii) trivial
(i) = (i) Let Y be a subset ok, |[Y| = d — 1,z € Y. ThenSY = (St=hY—{=} and

since $1#} is pseudogeometric of dimensiah— 1, D'((S{#})Y—{#}) is a path, saS itself is
pseudogeometric.

(i) & (iv) The implication =" follows by iterating the second part of @- (ii). To prove the
other one, assumgis nonG. Then there isZ C X, |Z| = d — 1, such that there is a rangef
degree at least three BY. Leta, b, c denote the labels of three edges incident o D' (S%).

Then a node of degree three is still presensﬁ{a,b,c} = (S|Zu{a,b,c})z. This shows that
Sly is nonPG, whereY = Z U {a,b,c}, |Y|=d+ 2.

(iv) < (v) We will show that there is only "one” pseudogeometriccpwithd + 2 elements,
i.e. up to swapping and relabelling the elementsFali-spaces withi 4+ 2 elements are equal.
From this it follows that an arrangement @f+ 2 halfspaces in£? generates any desirdeG-
space withd 4+ 2 elements after renaming the hyperplanes and intercharsgimg positive with
negative halfspaces in a suitable way. HenceRliespace must be geometric.

The proof is based on the duality theorem for pseudogeatrsieces and is given as a corol-
lary to the theorem. [ |

3.2.2 Theorem

S = (X, R) is pseudogeometric of dimensiah iff —S is pseudogeometric of
dimensiomn — d — 1.

Proof:

If d = —1 ord = 0, then—S is complete of dimensiom := |X| or n — 1. Since the
1-dimensional subspac¢s-S)Y contain2 or 3 ranges in this case, the corresponding-graph
must be a path.

Forn =dorn =d+ 1, —R is empty or contains one range, s& is PG of dimension—1
or 0 by definition.

Now assumel > 1,n > d + 2. If S'is PG, then following 3.2.1(i(iv), S|y is PG for all
Y C X,|Y| =d+2,andT := (S|y)? = (S — (X — Y))Z consists of exactly three elements
and four ranges which form a path in the correspondirggraph, for all| Z| = d — 1.

Then also—T has this property. SinceT = —((S — (X = Y))?) = ((=8) — 2)X 7Y,
where|X — Y| = n —d — 2 =dim(-S) — 1, we know that(—S) — Z = (-S)|x_z is PG,
| X —Z| = n—d+1 =dim(—S)+2. Now 3.2.1 (iv)=- (i) shows that- S itself is pseudogeometric.
|

3.2.3 Corollary
Up to swapping and relabelling the elements,fad¥-spacesS = (X, R) of di-
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mensiond > 1 with | X | = d + 2 elements are equal.

Proof: We equivalently show that there is only "one” dual space.aéet.., z,, be an ordering
of X. The theorem shows thatS is PG of dimensionl. The D'-graph is a path, and after
swapping with a range on one end of the path, the ranges argedrtly inclusion, starting with the
empty set. By appropriate relabelling we obtén= {0} U{R; | 1 <i < n}, R; = {z1,...,z;}.

[ |

We remark that in any dimensiah> 1 there exist complete spaces that are not pseudogeo-
metric: Forn > d let X be a set witm elements and defink to be the set of all subsets &f with
at mostd elements. Clearlys;(X) := (X, R) is of dimensiond. Furthermore, since there af§
subsets with elements,Sy(X) hasy %, () = ®4(n) ranges, which means that it is complete.
S4(X) is called thecanonicalcomplete space of dimensiarover X .

ConsiderY C X, |Y|=d— 1.

It is an easy observation th&" = {#} U {{z} | z € X — Y'}. This shows thaf) has degree
|X —Y|in D'(S4(X)Y), s0S4(X) is not pseudogeometric [if| > d + 2.

Since the structure df;(X) depends only on the cardinality of the séfwe defineSy(n) :=
Sa({1,...,n}).

3.3 Levi-type Theorems

The two theorems in this section are inspired by Levi's lenforaarrangements of pseudolines
[Le], [Gr], and with the interpretation of geometric spageserms of arrangements of halfspaces
in mind, the definition of aegmentnd aline that we give next, will be quite intuitive. Note that
for non-PG-spaces the following won't work anymore; the canonical ptate space (3) is an
easy counterexample.

3.3.1 Definition

Let S = (X, R) be pseudogeometric of dimensidn> 1. The set of ranges on
a path inD'(S) is called asegmentiff no z € X occurs more than once as an edge
label on the path. If,r’ are the ranges on both ends of the path, the segment is said
to join r andr’.

A line is a segment joining rangesX — r € R (figure 3.2).

From 2.3.5 we know that for any pair of ranges’ there is a segment joining them; the
segment has digt, ') + 1 elements and the edge labels on the segment are exactlyethergb
from rAr’. Note that a subsegment between rangasdw’ can be replaced by any other segment
joining u, u’ — the result again is a valid segment for’.

We say that a set of rangd® C R admitsa segment, iff there is a segment containik'g
We will show that in the case of pseudogeometric spaces anyanges admit a line and give
necessary and sufficient conditions under which an arpisat of ranges admits a line. Before
that we prove a more technical lemma to facilitate the folfm\considerations.

3.3.2 Lemma

Let S = (X, R) be pseudogeometric of dimensidrn> 1.
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Figure 3.2: segmerf, line L in geometric spaces’ is not a segment

(i) If R' C Ris asegment,R'| > 2, then(X, R') is of dimensionl.

(i) R' ¢ R admits a segment iff there I C X, such that the ele-
ments fromR’'AY can be linearly ordered by inclusion (and occur on the
segment in this order).

(i) ,7' € Radmitaline, iff there aré, X —t € R, suchthat—r' C ¢
andr’ —r Cc X —t (t,r,7', X — t occur in this order on the line).

Proof:

(i) Assume thatd := {z,y} C X is shattered ilR’. Then there id/ C R',|U| = 4, which
shattersA. Letu,,...,us be the elements d¥ in the order in which they occur on the segment.
The segment property requires the sgtdu;. 1,7 = 1,2, 3 to be pairwise disjoint. On the other
hand, each of these sets contains a non-empty subsgtsuf eitherz or y must be contained in
two of the sets, which is a contradiction, Bbis of dimensionl.

(i) If R' admits a segment, let, ..., 7, be an ordering of the elementsBfalong the segment.
Similar to (i), this meangr Ar;) N (riArip1) = 0,4 < k. Now swap withY := r; and letr]
denoter; AY'. Thenr; N (r;Ar;,,) = 0, which impliesr; C rj_,.

Now suppose?’ = {r; | i < k} and swapping wity” C X yieldsr] C ... C r}, 7l = r;AY.
Clearly thenD; := riAr;,, = ri ; —r;, S0D; N D;;; = (. This means, by piecing together
segments joining; andr/, , in D'(SAY') we obtain a segment containi@AY in SAY. Since
the distance-graph is invariant under swapping this shows tRaadmits a segment ifi.

(ii) If r,r' admit a line then there are rangesX — ¢, such thatX is the disjoint union of
tAr, rAr' andr’A(X — t). We show that- — ' C ¢ (symmetric argumentation works for
r'—r C X —t): assumer € r —r’ C rAr’; this impliesz ¢ t/Ar. Sincex € r, we conclude
thatz € t.
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segment joining r, r*

extended to a line

containing r and u

line containing s
and u in sub—
space

C—— lineforr,r

Figure 3.3: Constructing a line containing’ by induction

If on the other hana — ' C t,r' — r C X —t, then easy calculation showsa\t C r'At, so
we have)) = tAt C rAt C r'At C (X —t)At = X; following part (i) of the lemma this means
thatt, r,r’, X — t admit a segment, and this segment is a line containing ]

Now we are ready to prove

3.3.3 Theorem

Let S = (X, R) be pseudogeometric of dimensidn> 1. Then any two ranges
r,r’ admit a line.

Proof:

The assertion is true faf = 1, since in this cas® itself is a line. Furthermore, if digt, ') =
0,i.e.r = r/, then part (iii) of the lemma shows that it is sufficient to fimke pair of complemen-
tary rangeg, X — t. Such a pair always exists, as follows by easy inductiod.dford = 1, take
the ranges on both ends bf'(S). If d > 1,z € X, there are rangels X — (t U {z}) € R{*} by
hypothesis, which implieg X — ¢ € R.

Now let S = (X, R) be pseudogeometric of dimensidn> 1, r,r' € R with distanceD :=
dist(r,7') > 0 and assume the theorem holds for dh§-space of dimension less thdrand any
pair of ranges with distance less thann R.

Consider a segment joiningandr’ and letu be the range followed by’ on this segment
(figure 3.3). By swapping witz}, if necessary, we can assumie= v U {2} for somez € X.
Since distr,u) = D — 1, » andu admit a lineL by hypothesis, so there are rangeX — ¢ with
r—ucCtiu—rC X—t Ifx € X—t thenweobtaim—r' C t,r' —r C X —t, S0 we are done.
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Otherwiser € t, and since: ¢ r, by traversingl. from r to ¢, we encounter a rangec R{"}. By
hypothesiss andw admit a line inS{}, so we have’, X — (# U {z}) € R\ with s —u C ¢,
u—s C X — (' U{z}), whichyieldss — ' c ', 7" —s C X —t'. Now s can be replaced with
in this formula, since we have— ' C s — ', v — r C r' — s, which follows from the fact that
s,r andu = r’' — {z} appear on the original lin& in this order.

Together with the fact thaX — ¢’ is a range inR, this shows that andr’ admit a line inS. ®

3.3.4 Corollary

Let S = (X, R) be pseudogeometric of dimensidr> 1, z € X.
If ), X —{z} € R,then{z} € Ror X € R.

We will use the theorem to prove the following generalizatid it:

3.3.5 Theorem

LetS = (X, R) be pseudogeometric of dimensidr®> 1, R' C R, |R'| > 4. The
following statements are equivalent:

() R’ admits a line
(i) Any four ranges fromk’ admit a line
(iii) Any three ranges fronR?’ admit a line and X, R’) is of dimension

Proof:

(@i)= (ii) trivial

(i) = (iii) Suppose,(X, R') is of dimensiond > 2; then (X, U) is of dimension2 for some
U C R, |U| = 4. Now part (i) of the lemma shows th&t cannot admit a line.

(iii) = (i): theorem 3.3.3 can equivalently be expressed as follamy segment can be ex-
tended to a line. This means, it suffices to show tRaadmits a segment. To this end consider
rangesr,r’ € R’ with maximal distance. After swapping assume= (). We show that now
the ranges fron?’ are linearly ordered by inclusion, so part (ii) of the lemnields the desired
conclusion.

Consideru, v’ € R'. We have to show C «' oru' C u. {r,u,r'} as well as{r, ', r'} admit
a segment, and sineeandr’ have maximal distance, these segments joamdr’. » = () then
impliesr C u,u’ C »'. If w andu' are not comparable with respectdqg there isz € v — o/,

y € u' — u. r = () contains neitheg nory, while ' contains both of them. This mears;, y} is
shattered ifr, u,u’, r'}, a contradiction to the assumption tttis of dimensionl. [ |

3.4 Closure and Boundary

We have already introduced certain subspaces associdtied wange space; now we will define
two more spaces, namely tibosureand theboundaryof a range space. Although these two
spaces can be derived from any range space, they have iimgrpeoperties and a geometric
interpretation especially in the context of pseudogeamspaces.
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3.4.1 Definition

Let S = (X, R) be arange space. The spaces
S =(X,R), whereR:= RU{X —r | r € R}

and
6S = (X,0R), wheredR:={r e R| X —r € R}

are called th¢complementary) closur@nd the(complementary) boundaigf S.

When we consider th€G-spaceC(H ™), the ranges ofC(H ™) are exactly the labels of the

unbounded cells of the arrangemettH ™). The geometric interpretation ¢f H+) is not so
obvious; it will be given in the next chapter, where we intiod arrangements of hemispheres.

3.4.2 Lemma

Let S = (X, R) be arange space. Then forale X
(i) (891 = o(5t)
(i) S —{z} =5 — {«}
and
(iiiy —6S = -8
(iv) =S = 6(—9)

Proof:
yre R o rru{z}edRer, X —rrU{z}, X —(rU{z})€R
s rX - (ru{z}) € R?" o r c (R,
(i) similar to (i)
(i) re Rer¢/Rer¢dRVX —rgRerc —RVX—re—-R&ere—R
(iv) similar to (iii) [ |

Surprisingly, corresponding stateme(s) — {z} = (S — {z}) andS'"' = 5T7 do not
hold for general range spaces — not even for complete spages nore an easy counterexample
is S1(3)), but using corollary 3.3.4 we are able to prove that thesml@ges hold for pseudogeo-
metric range spaces. This is the following

3.4.3 Lemma

Let S = (X, R) be a pseudogeometric range space of dimensionl. Then for
allz € X
(i) (05) —{z} = 0(S — {z})
(i) §' = sfa}

Proof:
()r€ (0R)—{z} & redéRVrU{z} € 0R<r X —re RVru{z}, X —(ru{z}) € R
=rX—(ru{z}) e R—{z} &red(R—{z}).
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So far this is true for any range space; fo&z-spaces, however, thie=- ” becomes 8 < ”:
Assumer, X — (rU{z}) e R—{z}. fr, X —re RorrU{z},X — (rU{z}) € R, we are
done, so the critical cases arefaX — (ruU{z}) € Ror(b)r U{z}, X —r € R.

Consider case (a): after swapping with3.3.4 shows that U {z} € Ror X —r € R, sO
r, X —r € RorrU{z}, X — (rU{z}) € R must hold, and this proves tfie<= ”. Case (b) is
treated analogously.

(i) We use duality: —(5™) = (=8) — {2} = 6(=8) — {z} = §((—S) — {&}) =
5(—(8(7h)) = 5t "

3.4.4 Remark

The proof shows thaWR) — {z} C 6(R — {z}) andR{*} C R for any range
space. This fact will be useful later.

3.5 A Characterizing Maximality Condition

Recall thatC(H ) contains the labels of the unbounded cells of the arranger@i*). Clearly,

an arrangement of halfspaces always has unbounded cetl® set of ranges @f(H ") is non-
empty. We will show that this is the case for all pseudogedmednge spaces of dimensidn> 1,
moreover: allPG-spaces of a fixed dimensiehand a fixed number of elemenishave the same
number of ranges in their boundary (from this it follows thay also have the same number of
ranges in their closures)

3.5.1 Theorem

Let S = (X, R) be a pseudogeometric range space of dimengion 1 with
| X| = n elements. Then

() |0R] = 2B, 1(n — 1)
(i) |R| = 2®4(n — 1).

Proof:

(i) We proceed by induction; fa# = 1, the edges fronD! (S) form a path of length, and
eachx € X occurs as a label on the path (2.3.6, 3.1.1). Hence thereoarplementary ranges
and X — r only on both ends of this path, so there are- 2®,(n — 1) ranges in the boundary.
Furthermore, ifv = d, then|0R| = |R| = 2¢ = 2- 29" = 2&, |(n — 1). So the theorem holds
ford =1andn = d.

Now assume (i) holds for anfGG-space of dimensiod— 1 or dimensiond andn — 1 elements,
and consideS = (X, R), pseudogeometric of dimensiadn> 2, | X| =n > d.

Then|dR| = |(6R) — {z}| + |(6R){#}| (1.4.3), and using 3.4.3 we obtain

6R| = [6(R—{z})| +|6(RI")|
= 2%, 1(n—2)+2®,; 5(n — 2) by hypothesis
= 2<I>d,1(n - 1)
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(i) Evidently | R| = 2|R| — |0 R|, which yields|R| = 2®4(n) —2®4 1 (n—1) = 2®4(n — 1).
|

While complete spaces reach the maximal number of rangea thage space of fixed dimen-
sion and a fixed number of elements can have, the pseudogéonagige spaces maximize the
number of ranges in the boundary. Moreover, among the cdepfgces they are characterized
by this property.

First of all we show that any range space of dimengiernth n elements has at madd,; | (n—

1) ranges in its boundary. This implies the claimed maximalftthe PG-spaces.

3.5.2 Theorem

Let S = (X, R) be a range space of dimensidr> 1 with n := | X| elements.
Then|0R| <2®4_1(n —1).

Proof:

We proceed by induction; Lef be of dimensionl and suppose&jS has more thad®,(n —
1) = 2ranges. Then there are at least four ranges in the boundaysswapping we can assume
that for some: C X we have{), X,r, X —r} C R. Chooser € r,y € X —r. {z,y} is shattered
in {0, X,r, X —r}, soS is not of dimensiori, which is a contradiction. So the theorem holds for
d = 1. Furthermore it is true fon = d, since in this cas@R| = |R| = 2% = 2®, ((n — 1).

Now consider a range spaceof dimensiond > 1 andn > d elements and assume the
theorem holds for all spaces of dimension less #handimensiond and less than elements.

Remark 3.4.4 shows thitdR) — {z}| < [0(R — {=z})|; furthermore, from 3.4.2 it follows
(6R)1H| = |5(RI)], so

|0R]

|(6R) — {a}| + |(6R) "]

[6(R — {a})| + |6(RI™)]

20, 1(n—2) 4+ 2®, 5(n — 2) by hypothesis
2(I>d,1(n - 1)

ININA

Now we are able to extend Theorem 3.2.1 and give a few moractegizations of pseudoge-
ometric spaces:

3.5.3 Theorem

Let S = (X, R) be a range space of dimensidr> 1 with | X| = n elements.
Then the following statements are equivalent:

(i) S is pseudogeometric of dimensidn

(i) S'is complete of dimensiod and|dR| = 2P, 1(n — 1)
(iii) S is complete of dimensiod and|R| = 2®4(n — 1)
(V) [0R| = 2®q_1(n — 1), [R| = 2®4(n — 1)

Proof:
(i) = (ii) has already been shown; For the inverse implication sesinduction onl. If d = 1
and|dR| = 2®y(n — 1) = 2, then there is a path of lengthin D'(S) connecting the two ranges
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in the boundary (2.3.5). Sinde!(S) itself has onlyn edges (2.3.6), it is identical with this path,
s0 S is pseudogeometric.
Now assumel > 1; similar as in 3.5.2 we obtain

6R| = |(6R) — {z}| + [(6R) 1"}
< 2Pg1(n —2) + 204 2(n —2)
= 204 1(n—1),

20q_1(n—1)

so in particular2®,_o(n — 2) = |(6R){*}| = |§(R{*})| (3.4.2), which by hypothesis shows
that $1z} is pseudogeometric of dimensieh— 1 > 0, for all x € X. This meansS$ itself is
pseudogeometric (3.2.1).

(i) & (iii) & (iv) We know that|R| = 2|R| — |§R|, and easy calculation shows that two of
the quantities determine the third one in the way it was ataim [ ]

Finally, we give the dimensions of closure and boundary Bi&aspace:

3.5.4 Lemma

Let S = (X, R) be pseudogeometric of dimensidnThen

(i) dim (8S) =d,ifd > 1

e ) od ifS=S(e|X|=d) .

(i dim () = { d+1 otherwise ifd =0
Proof:

(i) Clearly, S has dimension at most S is pseudogeometric of dimensieh > 1, so

|0R| = 2®,4 1(|X| — 1) (3.5.1). If on the other hanf is of dimensiond’ < d, then it follows
from theorem 3.5.2 thakS has at mos2® (| X| — 1) ranges, which implied = d', if d > 1.

(ii) We show thatS has dimension at mogt+ 1: If d = 0, thenS = (X, {r}),r C X, so
S = (X,{r, X —r}) is of dimensioni. If | X| = d, thenS = S, so in this casé is of dimension
d. Now letS = (X, R) be pseudogeometric of dimensidn> 0 with n := | X| > d and assume
the assertion is true for alPG-spaces of dimension less thdror dimensiond and less tham
elements. Choose € X. ThenS{#}, S — {z} are pseudogeometric of dimensiahs- 1 andd,
repectively, for alk: € X, soS{z} is of dimension at most andS — {z} is of dimension at most
d 4 1 by hypothesis.

Let d’' denote the dimension &. If n > d’, let A C X be a set of cardinality’ shattered in
R, and considey € X, such thaty ¢ A. ThenA is shattered already iR — {y} = R — {y}
(3.4.2),sad' = |A| < d+ 1.

If n = d', then each subset df is a range ofS. This implies that forzr € X each subset of
X — {z} is arange of5'" = STo} (3.4.3). SV is of dimension at most, so|X — {z}| can
have at most elements. Thugd' =n < d + 1.

The desired conclusion is immediate from thisSit= S, dimensiond is obvious. Otherwise
|R| > |R|, and sinceS is complete of dimensiod, S must be of higher dimension. [ |
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Chapter 4

PG-spaces

4.1 Definition and a Characterizing Maximality Condition

We have seen that the boundary and the closure are impootacets to characterizeG-spaces,
and we have already given a geometric interpretation of dumdiary in the case where tiig=-
space is the description of cells of an arrangement of hadfsgp Now we will take a closer look at
the closure and give an interpretation in terms of arrangésngf hemispheres. To allow a more
formal treatment, we give the following definition:

4.1.1 Definition

LetS = (X, R) be a range space of dimensidr> 1. S is called aPG-space, if
there exists a pseudogeometric range sflacg # S, such thats =T,
T is called arunderlyingspace ofS.

The underlying space of BG-space of dimensiod is not unique, but from lemma 3.5.4 it
follows that any underlying space has dimension 1.

We have seen that complete and pseudogeometric range s@acbe characterized by cer-
tain maximality conditions: complete spaces by defintiorximé&e the total number of ranges,
while among the complete spaces exactly B&-spaces maximize the number of ranges in the
boundary. This characterization is very useful in decidivtgether a given complete spafeis
pseudogeometric, because it is a "top-level-criterior€, unlike the defining characterization of
P@G-spaces (3.1.1) it does not require any knowledge aboupagbs ofS.

Ouir first theorem in this section shows that a characterimagimality condition can also be
found for PG-spaces. As a corollary we obtain the result that the boynofea PG-space is the
closure of some lowerdimensionBIG-space. The proof of the theorem will be much clearer with
the following geometric interpretation in mind:

Let H be a set of hyperplanes i with corresponding set of halfspacEs". The description
of cellsC(H ™) is a (geometric)’G-space. We have shown that the boundary of this space centain
the labels of the unbounded cells of the arrangement. I dodebtain a geometric interpretation
of its closure, we make use of a different representatiorhetitdimensional euclidean space:
think of £ as the tangential hyperplane touching the unit spis¢rec E4*+! in the north pole.
Now E“ can be mapped bijectively to the open northern hemisphe$é o$ing central projection.
35
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1
3
N
‘ X ]
Figure 4.1: mapping an arrangement of hyperplanes to angamaent of great spheres

This transformation takes a hyperplamef E¢ to a relatively open great halfsphere of dimension
d—1.

In a unique way this halfsphere can be continued to a fulltgi@a- 1)-sphere inS¢, so an
arrangement of hyperplanes Ef induces an arrangement of great sphereS%nmoreover, if
we have positive and negative halfspaces associated veithyiherplanes, this information in an
obvious way determines positive and negative hemisphexssciamted with the great spheres, so
that we obtain amrrangement of hemispheresS? (figure 4.1).

We can define the description of cells of this arrangemenibgoasly to the one of a set of
halfspaces: each celis labelled with the set of great spheres, whose positivasmrares contain
c¢; assuming the great sphere generated by the hyperplisradso called:, this description of cells
is the closure of the?G-spaceC(H*). This is easy to see, since by extending the arrangement
of halfspaces in the open northern hemisphere to an arraamgeshhemispheres we generate an
antipodal cell with complementary label for each cell in tlogthern hemisphere.

So if S is a pseudogeometric space arising from a set of halfspacB$,ithe PG-spaceS
arises from the set of hemispheresdfy, that can be obtained by mapping the halfspaces to the
northern hemisphere & and extending them to full hemispheres.

A PG-space arising in this way from a geometric space will beedadigeometricPG-space

We come back to arrangements of hemispheres when we ingadisnted matroids.

Now we can establish the anounced theorem: A few notions ezessary: A range space
S = (X, R) is calledclosed if S = S = §5; theorem 3.5.2 says tha&tof dimensiond > 1 can
have at mos2®, (| X| — 1) ranges in this case, so we c8llmaximal closeaf dimensiond, if
S reaches this maximal number of ranges.
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4.1.2 Theorem

Let S = (X, R) be arange spacé,> 1. S is maximal closed of dimensiod if
and only if S is aPG-space of dimensiod.

Proof:
If Sis PG of dimensiond, thenS is the closure of 4d — 1)-dimensionalPG-spacel” with
S #T.S=Thas2®, (|X| — 1) ranges (3.5.1 (ii)), s& is maximal closed of dimensiah

To obtain the inverse implication, we proceed by inductiondo If S is maximal closed of
dimensionl, this meansS = (X, {r, X —r}),r C X. NowT = (X, {r}) is of dimensior) and
hence pseudogeometric with=T.

Now supposel > 1 and letS = (X, R) be maximal closed of dimensiafy n := |X]|.
Considerz € X. Itis easy to see tha#{*} andS — {z} are closed of dimensions at mast- 1
andd, respectively, so we have

20, 1(n—1)=|R| = |R™|+|R-{z}|
S 2<I>d_2(n - 2) + 2<I>d_1(n - 2)
= 2B,_i(n—1).

This especially showR{#}| = 2&,_,(n —2), soS{*} is maximal closed of dimensiah— 1. By
hypothesis there existsiaG-spaceS, = (X — {z}, R,) of dimensiond — 2 with §{#} =5,

Letz" denote the set of all ranges §fthat containz, i.e. z* := {r € R| z € r}. Now we
construct the range space

T=(X,R,Uz")

and we claim thafl" is pseudogeometric of dimensieh— 1 with closureS, which proves the
theorem.
Obviously,S = T. The number of ranges @f is

1
|RI| + |ZE+| = @d_g(’n - 1) + 52@d_1(n - 1) = @d_l(n).

Furthermore’ has2|R,;| = 2®,_»(n — 1) ranges in the boundary. If we can show tifais of
dimensiond — 1, then theorem 3.5.3 ensures tffais pseudogeometric.

From the number of ranges @fit is clear thatT" is of dimension at least — 1; to prove that
it is of dimension at mosf — 1, we considerd C X, such that4 is shattered ik, U z*. We
distinguish two cases:

@z ¢ A:

SinceR, ¢ R}, we haverU{z} € z* forall € R,, and because of Nr = AN (rU{z})
we know thatA is already shattered int. In the remarks to definition 2.3.2 we have shown
that the property of being shattered is invariant under givap soA is also shattered im~ :=
R —zt = ztAX. This implies thatd U {z} is shattered inR: z* generates all subsets that
containz, while the subsets not containiagare obtained by intersectingu {x} with the ranges
from z~. S'is of dimensiond, so|A| < d — 1.

(b)z € A:

By intersectingA with the ranges fromx™ we only get subsets ofl that containz. This
meansA — {z} is shattered iR,. S, is of dimensiond — 2, so againA4| < d — 1.

We have shown that ifl is shattered iR, Uz ™, then|A| < d — 1, soT is of dimensiond — 1,
which completes the proof. ]
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4.1.3 Corollary
Let S = (X, R) be pseudogeometric of dimensidn> 1. ThendS is PG of

dimensiond.
Proof:
From lemma 3.5.4 we know thafS is of dimensiond. Moreover,§S has2®,_;(|X| — 1)
ranges (3.5.1), so it is maximal closed of dimensicand hencePG by the theorem. ]
4.1.4 Remark

The proof of the theorem shows how to obtain an underlyingemd a PG-spaceS from the
underlying space of somt*}: If S, = (X — {z}, R,) is an underlyingPG-space of thePG-
spaceS{z}, thenT = (X,zT U R,) is an underlying space . Because of symmetry this
especially shows: Given RG-space(X, R) and somer € X, there is an underlyind®G-space
containingz™ and another one containing := R — 2. 2™ andz~ are called thdalfspaceof
zin R.

4.2 More Characterizations and Duality

The following theorem that establishes a few equivalentihizations ofPG-spaces is of a kind
that should be familiar by now:

4.2.1 Theorem

Let S = (X, R) be closed of dimensiod > 2,|X| > d. Then the following
statements are equivalent:

(i) S is aPG-space of dimensiod

(i) S'is maximal closed of dimensiah

(iiy Vo € X : ${#} is PG of dimensiond — 1, S — {z} is PG of
dimensiond.

(iv) Vz € X : S17} is PG of dimensiond — 1

(v) 3z € X : S{#} is PG of dimensiond — 1, S — {z} is PG of
dimensiond

(vi) |[RA =2forall A C X,|A| =d 1.

Proof:

() < (ii) is theorem 4.1.2. Once we have this first charactedgrative can use the proof
of theorem 2.2.1 (which is the equivalent of this theoremdomplete spaces) to obtain char-
acterizations (jii) to (vi) by simply changing "completed tmaximal closed” and ®,(n)” to
"2®,_,(n—1)". We need only to observe thatsfis closed, then for alt € X, $1*} andS — {z}
are also closed.

Note that the theorem is stated o> 2, because #G-space must be of dimension at least
by definition. [ |

We conclude this chapter with a duality theorem fai-spaces that slightly differs from the
ones given for complete andG-spaces with respect to dimension:
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4.2.2 Theorem

Let S = (X, R) be PG, n := |X| >dim(S)d. Then—S is PG of dimension
n —d.

Proof:

Let T be an underlying?G-space ofS. T is of dimensiornd — 1, so—T' is PG of dimension
n — d > 1 by the duality theorem for pseudogeometric spaces 3.2.2.

Furthermore—~S = —T = d(—T), so—Sis the boundary of-T and hencePG of dimension
n — d by corollary 4.1.3. [ |
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Chapter 5

Oriented Matroids and PG-spaces

5.1 Introduction

We have started this paper with the consideration of arraegés of halfspaces and the description
of cells of such an arrangement. In order to investigate éseription of cells we have introduced
the notion of range spaces.

A simple arrangement of halfspaces determines a comple¢ge igpace, but the converse was
easily seen to be false. This led to the concept of pseudogfeicrapaces, a subclass of the com-
plete spaces defined by an additional property of arrangenoéalfspaces that is not satisfied
by complete spaces in general.

While arrangements of halfspaces determit@-spaces, arrangements of hemispheres define
PG-spaces, which is the third class of range spaces we haweelirted so far (like in the other
chapters, we speak of simple arrangements here, but dowegsamention it explicitly).

Now the same question we have asked in the context of congpates comes up again here:
is it true that anyPG-space is the description of cells of an arrangement of pedtss, and that
any PG-space determines an arrangement of hemispheres?

Once more we give a negative answer — neverthelBss, and PG-spaces seem to be the
most appropriate approach to arrangements: in this chameshow thatPG- and PG-spaces
correspond tarrangements of pseudohalfspacasd arrangements of pseudohemisphenss
spectively.

An exact definition of these objects is postponed to the entisfchapter — intuitively, such
arrangements consist of "distorted” halfspaces or hereigsh which intersect in the same way as
straight halfspaces or hemispheres do.

From a topological point of view there is no difference — tlséion of "straightness” that dis-
tinguishes halfspaces and hemispheres from pseudohafsgad pseudohemispheres is purely
geometric.

A well-studied case is the-dimensional one, and there is a lot of literature conceyrir
rangements of pseudolines (for a survey of the subject u®1@ %ee [Gr]; new results can be
found in [GP80b], [GP82], [GP85]).

A remarkable result is the existence of arrangements ofdodiees which are nditretchable
i.e. which are not equivalent to any straight arrangemeatdartain sense [Ed], [Ri] — translated
to the terminology of range spaces this means: there exasidogeometric spaces which are not
the description of cells of any arrangement of halfspacesexample of a simple, non-stretchable
arrangement of pseudolines can be found in [Ri].

41
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It is common to all known combinatorial structures encodamgangements, that they can-
not "recognize” straight arrangements, and this espgdmillds for a very powerful and general
structure, hamelgriented matroids

Folkman and Lawrence [FL] have shown that an arrangemensafignhemispheres deter-
mines an oriented matroid; moreover, every oriented nthitomes from such an arrangement.
Later A.Mandel [Ma] gave an alternative proof of this result

We show thatPG-spaces are exactly simple oriented matroids, and thidésfie correspon-
dences we have anounced above.

We proceed as follows: First we introduce oriented matrogisg the terminology of A.Mandel
and prove some of their basic properties. Then we estalbléshetation taPG-spaces. Finally, we
give definitions of arrangements of pseudohalfspaces ardidpheres and show halRG- and
PG-spaces are related to these structures.

We remark that although the axioms for an oriented matroat usy Mandel are different
from the ones used in [FL] and [BL], both axiomatizations t&nshown to be equivalent. For
our purposes Mandel’s terminology is more convenient, stvae decided to use his approach
instead of the one from the standard papers on the subject.

5.2 Definition and Basics on Oriented Matroids

Let X be a finite set. Asigned vectoon X is a mappingF' : X — {0,+1,—1}. F(z) will be
denoted byF,. Thesupportof F is defined as the sét := {x € X | F, #0}. F*:= X — Fis
called thezerosebf F'.

In the context of signed vectofsis the vector satisfying, = 0 forall z € X. —F is
defined by(—F'),, := —(F,). If F andG are signed vectors, then we declare pheduct# - G by
(F - Q) = Fy, if F, #0,G, otherwise. FolY” C X, F|y denotes the restriction df to Y.

Finally we sayr € X separates’ andG, iff F,, = —G,, # 0.

Note that(F' - G), = (G - F), iff  does not separaté andG.

5.2.1 Definition

Let X be a finite set)’ a set of signed vectors ok satisfying

(OM1)0 € V

(OM2) F € Vimplies—F € V

(OM3) If F,G € V,thenF -G €V

(OM4) If F,G € V, such thatx separated’ and (G, then there is
H €V, such thatf, = 0 andH, = (F' - G), = (G - F), for eachy not
separatingt’ andG (we sayH results from theeliminationof = between
F and@G).

Then the paif X, V) is called aroriented matroid

The axioms are inspired by properties of vector spaces:

5.2.2 Example

Forz € E¢, define a signed vecter(z) on D := {1,...,d} by o(z); := +1,0
or —1 depending on whether; > 0,= 0 or < 0. LetV be a linear subspace &“.
Then the pai{D, {o(z) | z € V'}) is an oriented matroid.
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Proof:

Properties (OM1) and (OM2) are obviously satisfied. To prilmeother two, considek =
o(z),Y = o(y) and letg be the relatively open line segment connectingndy. If X is the
support of X, there is an open neighbourhoédof z, such thatvu € Uym € X : o(u),, =
o(x)m. Letz be any element i N g. ThenZ := o(z) is the product ofX andY'.

If i € D separatesX’ andY’, theng intersects the hyperplang = 0 in a unique point, and
7 := o(z) results from the elimination afbetweenX andY. [ |

Similar argumentation works for an arrangement of hemisgshe

5.2.3 Example

Let S be a set of greatd — 1)-spheress with positive and negative hemispheres
sT ands™ in the unit spheres?. Forz € S? the signed vector (z) is defined by
o(z)s := +1,0 or —1, depending on whether is contained ins™, s or s~. Then
(S,{0} U {o(z) | = € S?} is an oriented matroid.

Proof:

Again the first two properties are obviously satisfied; ¥or= o(z),Y = o(y) we now letg
be the relatively open shortest circular arc joiningndy. The product ofX andY is obtained by
defining a neighbourhooll as above and choosing a pointim g; if the great sphere separates
X andY, the signed vectoZ required by (OM4) is7(z), wherez is the intersection point qf
ands. [ |

An oriented matroid arising in this way from an arrangemdrtiamispheres is callelihear.

It is clear that the signed vectors of this linear orientedraid correspond to the faces of the
arrangement.

If fandg are faces of the arrangement with corresponding signedrgEtandG, thenf is
a subface of, iff F' arises fromG by changing some components@®@fto zero.

This observation motivates us to introduce a partial oraesigned vectors on a séf: We
defineFF < G: & Vx e X : F, =0or F, = G, so in the case where we have a linear oriented
matroid, this order is isomorphic to the usual incidenceepainong the faces of the corresponding
arrangement of hemispheres.

This leads to general terminology: M = (X, V) is an oriented matroid, then the elements
of V are calledfacesof M. If FF < G, F is asubfaceof G. The subface relation igroper, iff
F<G,ie.F<GandF #G@.

The maximal vectors in the ordet are calledtopes while we refer to the minimal nonzero
vectors averticesof M.

Note thatF’ < F' - G, for all F,G € V, soF is always a subface of its product with any other
face.

The vertices are not only the basic vectors in the ordethey also completely determine the
oriented matroid. This follows from the fact that the prodotfaces is a face together with the
following

5.2.4 Theorem

Let M = (X,V) be an oriented matroid. Every nonzero faceof M is the
product of its vertices (i.e. the vertices dominatedmin the order<).



44 CHAPTER 5. ORIENTED MATROIDS ANDPG-SPACES

Proof:

Note first, that the order in which the vertices are multgblis irrevelant in this case, since
subfaces of” are never separated by an element, in which case the predtmmnimutative.

Now assume there is a fade contradicting the theorem; choogeminimal with respect to
this property. LetB3 be a vertex of’’. SinceB is nonzeroF and—B are separated by at least one
elementz. Eliminatingz between/’ and—B yields a facei # F with G, = (F - (=B)), = Fy
for all y € BY. ChooseG # F with this property, such thaf is separated fron¥ by as few
elements as possible. Then no element sepafatasd G, otherwise eliminating this element
betweenF andG yields a faces’ # F that is separated frorR by fewer elements thaf¥, while
maintainingG; = F, for all elements in the zeroset &f, contradicting the choice af.

But now we know thati < F: F, = 0 impliesy € B°, soG, = 0, while F,, # 0 implies
Gy = F, or 0, sincey does not separat€ andG.

F cannot be a vertex itself, so therezisce BY with G, = F, # 0, which shows thaty is
nonzero. Due to the minimality of, G is the product of its vertices. Furthermoié,= B - G,
and since the vertices d@f are also vertices of’, F' is the product of some of its vertices, a
contradiction. ]

We now come back to the consideration of the ordef he pair(V, <) is called thecomplex
of M; itis a poset which is in a certain sense well-behaved:

5.2.5 Proposition

Let (V, <) be the complex of an oriented matroid. Then the followinglkol

() Forany F' € V, all saturated<-chains from0 to F' have the same
length (and this length is called thenk of 7', denoted by-(F’). Note that
r(0) = 0)

(i) All topes have the same rank

A poset with property (i) is said to satisfy tderdan - Dedekind chain conditioif in addition to
(i), (ii) also holds, the poset is callgriire-dimensional

5.2.6 Definition

Let M be an oriented matroidi’ a face ofAM. Thedimensionof F' is defined as
d(F) := r(F) — 1. The dimension o\l is d(M) := d(T), whereT is a tope ofM
(sod(M) is the length of a chain from a vertex to a tope).

Following this definition, the linear oriented matroid frawample 5.2.3 has the same dimen-
sion as its generating arrangement.

The proof that the complex of an oriented matroid is pureettigional can be found in A.Mandel’'s
thesis [Ma]; it relies on properties of the underlying matrevhich exists for any oriented matroid:
5.2.7 Definition

Let X be a finite setS a collection of subsets of. The pair(X, S) is called a
matroidon X, iff
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ML) X eS

(M2) A,B € SimpliesANBeS

(M3) If A € Swith z,y ¢ A and there exist§3 € S containing
A U {z} but not{y}, then there exist§’ € S containgA U {y} but not

{z}

5.2.8 Lemma

For an oriented matroid/ = (X, V), let V° denote the collection of all zerosets
of faces of M.
(X, V) is a matroid onX. It is called theunderlying matroicof M.

Proof:

Since0 € V, (M1) is clear. To see that (M2) holds, it suffices to obsehat tf /' andG are
faces ofM with zerosets° andG?, then their producF - G has zerosef N G°.

It remains to prove (M3): LeF, G be facesg,y € X, such thatr,y ¢ F° andF° U {z} C
G° # y. Clearly, F,, F, andG, are nonzero, whilé7, = 0. AssumeF, = —G,, (which can be
achieved by substituting’ with —G, if necessary) and letf be a face resulting from elimination
of y betweenF andG.

SinceF, = G, = 0Vz € F°, this is also true fo{. Furthermore H satisfiesH, = 0, and
(sincez does not separaté andG), H, = (F - G), # 0. This meangi° containsF° U {y}, but
not{z}, as required. [

5.3 Simplicity

At the beginning of this chapter we have said that there isr@spondence betwedPG-spaces
andsimpleoriented matroids, so a definition of simplicity is what weeghext.

This definition will be quite clear, when we figure out what ieams in the case of linear
oriented matroids (example 5.2.3).

Recall that an arrangement of (at ledshalfspaces iz? (hemispheres i resp.) is simple,
iff any d of the underlying hyperplanes (great spheres resp.) meetinmmon vertex0tsphere
resp.), and anyl + 1 have empty intersection (section 1.3). There also existecaivalent,
dimension-independent characterization for arrangesnehgreat spheres, which uses the fact
that great spheres cannot be paralldlabof the arrangement is the intersection of great spheres;
now the arrangement is simple, iff no nonempty flat containexigreat sphere is the intersection
of some of the remaining great spheres.

A similar notion can be introduced for oriented matroids:

5.3.1 Definition
Let M = (X, V) be an oriented matroid. F&f C X, define
VW :={FeV|F,=0VyeY}

If Y is the zero set of some face bf, Vy is called aflat of M. M is simple iff for
anyz € X, no nonzero flat contained W, is the intersection of the members of a
(possibly empty) subset ¢y, | y € X — {x}}.
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So a linear oriented matroid is simple, iff its generatinggagement of hemispheres is simple.
(Mandel uses the terigeneral positiorinstead osimpleand reserves the wosimpleto describe
another property of oriented matroids, which we don't neeidh

As it turns out,Vy is a flat for anyY” C X, which simplifies the following considerations. To
prove this we have to find for a givén a faceF, such that’y = Vpo. This is done by defining
F to be the product (in some order) of all memberd’pt Clearly, F' € Vy, SOVro C Vy. On
the other hand, if? € Vy, thenF® c G°, sinceF° = Ny¢y, H’, SOG € Vyo, Which means
Vy C Vro; henceVy = Vyo.

Simple oriented matroids have a very regular structure, iarttie following we give two
equivalent characterizations of simplicity, which areslabstract then the definition using flats.

5.3.2 Theorem

Let M = (X, V) be an oriented matroid of dimensidn> 0. M is simple, iff

(i) The topes of\f have support seX'.

(i) If F,G areinV, suchthat) # F < G and there is ndf € V with
F < H < G (we say,G coversF), thenF results fromG by changing
exactly one component to zero.

Proof:

Let M be simple; we show that (i) and (ii) hold:

(i) AssumeT; = 0 for some topel’. Then we know tha#, = 0 for all faces F (otherwise
T < T-F forsomeF €V, whichis a contradiction t@ being a tope). Sincg,, containsT" # 0,
we have tha¥r,, is a nonzero flat with,, =V = ¢y Vy,y, contradicting the simplicity of
M.

(ii) Assume on the contrary thét coversF', and|F° —G°| > 2 for the corresponding zerosets.
Chooser € F* — G°. ThenH, = 0 for every faceH in the flatVpo_y,) — otherwise for some
H eitherF - H or F - (—H) would lie properly betweer” andG in the order<, which cannot
happen.

But thenVro is a nonzero flat contained W,y with Vpo = Vpo 43 = Nyepo— {2} Viy}» SO
M is non-simple.

Now let M be non-simple; it has to be shown thdt cannot satisfy both (i) and (ii).

There existsr € X and a subseY # z of X, such that a nonzero flat containedum} is
equal to,cy Vyy) = Vy. Fixz and choose a minimal having this property.

If Vy =V, thenV C V(,, soF, = 0 for all faces ofM, which means that (i) does not hold.

Otherwise we know thal” # (; Vy is nonzero, so leb # F be a maximal face oy
Clearly, F, = 0. If F is a tope, (i) is violated, so assume there exists a {aamvering F'.
From the maximality off’ it follows thatG, # 0 for somez € Y. If G, # 0 for some other
z # 2" € Y, (i) does not hold, so we may assuifiec Vy_¢.}.

We claim that this finally impliegs,, # 0. To prove this, we assume on the contrary that=
0. From the minimality ofY” we know thatVy-_ ., ¢ V(,,, so there exists a fack € Vy_,
with H, # 0. By replacingH with G - H we can assume thal dominates5. Now we know
thatz, 2 ¢ H® andG° containsH® U {x} but not{z}. Hence there exists a fadé such that
EP containsH® U {2} but not{z}. SinceY ¢ H° U {z} C E°, we haveE € Vy, which is a
contradiction tar ¢ E°.
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It follows that G, # 0, which shows thaF’ andG violate (ii), and this completes the prodi.

The next characterization is strongly related to the oalitefiniton of simplicity for arrange-
ments:

5.3.3 Corollary

Let M = (X, V) be an oriented matroid of dimensidn> 0. M is simple, iff all
vertices have zerosets of cardinality

Proof:

The vertices are the minimal nonzero vectord’ofo they are exactly the faces of dimension
0. If M is simple of dimensionl, the theorem implies that a face of dimensiot» 0 has zeroset
of cardinalityd — k, which proves one implication. B/ is non-simple, then there is some length-
d-chain from a vertex to a tope, where the tope has not full sim®t or two consecutive faces in
the chain differ by more than one element in their zerosetfioth cases, the vertex in question
has more thad elements in its zeroset. ]

5.3.4 Theorem

A simple oriented matroid is completely determined by theoéopes.

Proof:

Let M = (X, V) be a simple oriented matroid of dimensiénlf d = —1, i.e.V = {0}, there
is nothing to prove, so assurde> 0.

We will show that a signed vectdr with zeroset of cardinality is in V if and only if all the
2% signed vectorss > F with support sefX are in). Clearly, this implies the theorem.

We proceed by induction ok, noting that fork = 0 the theorem holds. Fdr > 0 let F' be
a face ofM with |F°| = k. F is not a tope, so there § € V coveringF' with |G°| = k — 1.
Furthermore H := F - (—G) € V with H° = G?; If = denotes the unique elementi — G,
we haveG, = —H, # 0. By hypothesis, alR*~! full-support-vectors dominating' are inV,
and the same holds fdf. Sincez separate&’ and H, no signed vector can dominate bathand
H, which means that there a2e 2¥~! = 2 full-support-vectors irv’ dominatingF'.

Conversely, assume that for givéhwith zeroset of cardinality: all 2* full-support-vectors
are inV. Chooser € F" and letG and H be signed vectors obtained frafhby switching F, to
+1 and—1 respectively. Clearly there are in each case! full-support-vectors i’ dominating
G andH, soG and H are inV by hypothesis. Sinc&', = H, for all y # z, eliminatingz
between and H yields F' € V. [ |

We have seen that a hon-simple oriented matroid can be eltfiom a non-simple arrange-
ment of hemispheres, but there are other instances of ngplisity that do not occur in a linear
oriented matroid as defined up to now. However, by slightierding the definition of arrange-
ments we can produce two more kinds of degeneracies, ndowdg and coincident elements
We don't need this in the sequel, but we want to point out thmpkcity is a stronger constraint
for oriented matroids than it is for arrangements as we hafieetl them here.

An arrangement of hemispheres has an underlying arrangexhgreat spheres. Assume that
we allow the great spheres to occur more than once in thegamaent, i.e. the set of great spheres
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becomes a multiset. An arrangement of hemispheres basdiksanultiset produces an oriented
matroid M = (X, V), which can contaircoincident elements:, y € X are called coincident, iff
eithervVF € V: F, = F, orVF € V : F, = —F,. Clearly,V,; = Vy,, in this case, and if these
flats are nonzeral/ is non-simple.

If we allow the arrangement to contain degenerate greatraplexjual to the whole sphere
which carries the arrangement (the hemispheres of such gpbares are empty), then a corre-
sponding oriented matroi@i/ may containoops which are elements € X, such thatF,, = 0
forall FF € V. From 5.3.2 (i) it follows that\/ is non-simple also in this case.

5.4 RepresentingPG-spaces as Simple Oriented Matroids

To prepare the proof of the correspondence betwe@rspaces and simple oriented matroids we
now introduceminorsof an oriented matroid/, which play the same role fav/ as the subspaces
SY andS — Y do for a range spac§.

54.1 Lemma

Let M = (X, V) be an oriented matroid; C X. The pairs
MectrY .= (X -Y,VctrY),
whereV ctrY := {F|x_y | F € V,F, =0Vy € Y}, and
M delY := (X =Y,V delY),

whereV delY := {F|x_y | F' € V}, are again oriented matroids. They are said to
arise fromM by contractingresp.deletingY'.

Contractions and deletions are common operations in trathad oriented matroids, and it
is a very simple straightforward exercise to check thatraating or deleting an arbitrary subset
yields an oriented matroid — we leave this to the reader.

It is not surprising that for a linear oriented matroid thegrors have an interpretation in terms
of the generating arrangement. This interpretation edgi@one for subspaces of a geometric
range space: Given the arrangement of hemispheres candisgao M, M del Y occurs after
deleting the hemispheres spanned by the great sphedésvimile M ctr Y corresponds to the
lower-dimensional subarrangement in the sphere that imtlesection of the great spherestin
Note that whileM itself does not have coincident elements, in case of a mopisiarrangement a
certainM ctrY might; so in some settings it may be useful to extend the disiindf arrangements
in the way we have shown above. However, since we are onlgested in the simple case anyway,
we do not consider this any further.

5.4.2 Theorem
Let M = (X, V) be simple of dimensiod > 0, | X| >d+ 1,z € X. Then

(i) M ctr {z} is simple of dimensiod — 1
(i) M del{z} is simple of dimensiow
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Proof:

(i) Dimensiond — 1 follows, if we can show that a maximal faéein Vy,, is covered by a
tope of M. Let F' be such a maximal face. Sinéeédoes not have support s&t, it is not a tope,
so there exist&/ > F'. Assume thats is not a tope, i.e. there B > G. F'is maximal inVy,,, so
z ¢ G°. On the other hand there must be some elementG® — H°. This meansG® contains
H° U {y} but not{z}, so from 5.2.8 we know that there is a zerok&tcontainingH° U {z} but
not {y}. Sincey € FO, thisimpliesF < F- E € Vi}, contradicting the maximality of".

Simplicity immediately follows from 5.3.3: the vertices df ctr {«} are exactly the signed
vectorsF| x_(,}, whereF is a vertex inV,;. M is simple, so/F°| = d for all these, which
implies|F|S (4] =d — 1.

(i) Let T be a tope of\/. SinceT, # 0 andT is the product of its vertices, there is a vertex
F < T of M with F,, # 0. F has zeroset of cardinalit, and since X'| > d + 1, there is another
elementz # z with F, # 0. Consider a lengtld-chain fromF' to T'. Deletingz maps this chain
to a lengthd-chain fromF|x_,, # 010 T|x_¢,) in M del {z}, soM del{z} is of dimension
d.

Simplicity follows becausé/ del {z} again satisfies properties 5.3.2 (i) and (ii). [ ]

Recall how a simple-dimensional arrangement of hemispheres determinkg d- dimen-
sional PG-space: take a cell of the arrangement and label it with thefsgreat spheres whose
hemispheres contain the cell. The set of all such labelsakeflre range space. In a very similar
fashion the oriented matroid of dimensidrdetermined by the arrangement is obtained: take a
face of the arrangement and label it with a signed vector ers#t of great spheres, where the
component corresponding to a certain great sphebetig or —1 depending on whether the face
is contained in the great sphere, in its positive or its riegditemisphere.

The difference is that while we consider only the cells, the. full-dimensional faces to define
the range space, all faces are needed to get the orientediagnaddiowever, a simple arrangement
yields a simple oriented matroid, which is determined bgdisof topes, as we have shown. Since
the topes are exactly the labels of the cells of the arrangeme conclude that a simple linear
oriented matroid is uniquely defined by the cells of its gatieg arrangement.

This observation immediately yields a correspondence dmtwsimple linear oriented ma-
troids and geometri®G-spaces on a sef: If ¥ : {+1,—1}* — 2% is the canonical bijection
defined by¥ (F) := {z € X | F, = +1}, thenT is the set of topes of a unique simple linear
oriented matroid of dimensios > 0 on X if and only if (X, ¥ (7)) is a geometrid®G-space of
dimensiond + 1.

What we want to show is that this statement holds even if weeleat the words "geomet-
ric” and "linear”, i.e. if we do not have a generating, wedHaved arrangement of hemispheres
indirectly relating the range space to the oriented matroid

The following two theorems establish a direct correspondgthey are based on the equiva-
lence theorem 4.2.1 fdPG- spaces:

5.4.3 Theorem

Let M = (X,V) be a simple oriented matroid of dimensidn> 0 with set of
topesT . Then(X, ¥(T)) is aPG-space of dimensiod + 1.

Proof:
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We proceed by induction af if d = 0, thenM has exactly two topes and—T'. To see this,
assume there exists a third obie Because of simplicity all of them have full support set. cgin
U # T,—T, there isz separating/ andT andy not separating/ and7T. Hence elimination of
z betweenJ andT yields a nonzero face which has not full support set, so ibtsartope. Since
d = 0 implies that every nonzero vector is a tope, this is a coittiad. So if7 = {T',—T'}, then
U(T) = {r,X —r} for somer C X, so(X,¥(T)) is PG of dimension.

Now assume)M is of dimensiond > 0. ThenM ctr {z} is simple of dimensior — 1 for all
z € X (5.4.2); let7{=} denote the set of topes 81 ctr {z}. By hypothesig X — {z}, ¥ (71#}))
is a PG-space of dimensiod for all z € X (note that we are a bit sloppy abolitby assuming
that it automatically adapts to the domain of its argument).

Furthermore it is an easy observation that {fT) = R, then¥ (7 {=}) = R{#}, This follows
from the fact that the topes dff ctr {=} correspond to the maximal faces ¥f,, in M, and
because of simplicity” is such a maximal face, iff there are toggsG’ := F - (—G) coveringF’
in M, such thatiZ andG’ are separated by} but coincide in every other component.

Together this show thak (7") determines a range spaSewhereS{*} is PG of dimensiond,
for all z € X. If we can show that is of dimensiond + 1, then it follows from 4.2.1 tha$ itself
is aPG-space.

Clearly, S is of dimension at least + 1. Now assume there id C X, |A| > d + 2 shattered
in ¥(7). This immediately implies that any signed vector{im1, —1}* is a tope of M del
(X — A). Repetetive application of the elimination axiom (OM4)ieshows that in this casg/
del (X — A) consists of all signed vectors oh(and is called théree oriented matroid o), so
the dimension, i.e. the length of a maximal chain from a wetdea tope i§A| —1 > d+ 1, which
is a contradiction, since deleting a subset clearly camrmotease the dimension of an oriented
matroid. ]

5.4.4 Theorem

Let (X, R) be aPG-space of dimensiod > 1. Then¥ ~!(R) is the set of topes
of a simple oriented matroid of dimensidn- 1 on X.

Proof:
We construct the oriented matroid itself. To this end weoiditice auxiliary mappingb 4 :
R4 — {+1,0, -1} defined by

0,ifxe A
Ca(r)y:==¢ +1,ifzer
—1, otherwise

ThenM := (X, {0} UUjaj<a—1 I'4(RA)) is a simple oriented matroid of dimensidn- 1.
Its set of topes clearly By(R) = V~!(R).

We have to show that/ satisfies the axioms of an oriented matroid.

(OM1) is true by definition ofd/; (OM2) follows from the fact that the subspacBs' are
againPG-spaces and therefore closed.

To see that (OM3) is satisfied, choose faé¢eandG of M. We can assumé& # 0. Since
F < F - G, it suffices to show that for a given fade with zerosetA all the 314/ signed vector
dominatingF are faces of\f.
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Assume,F = T'4(r),r € R*. From the definition oR*, r N A = () andr U B € R for
allC c A, B C A—C. Clearly, all thel'«(r U B) are distinct and dominatg. Furthermore,
#({Te(ruB) | C C A,BC A—C}) =S4, (Ml 2l41-i — (1 4 2)l41 — 3141, which means
that any signed vector dominatirgis of the formI'c(+'), " € R® and therefore is a face a1l

Finally, it remains to prove (OM4); let’ and G be faces ofM which are separated by.
W.l.o.g. we can assume th&}, = G, for all y not separating” andG (this can be achieved by
replacingF’ andG with F' - G andG - F, respectively, which are faces df again; furthermore, a
face resulting from the elimination afbetweenF' - G andG - F' will be a proper choice also for
F andQ).

F andG have the same zeroset, Bo=T'4(r), G = T4 (r') for somed C X, r,7' € RA. If
r andr’ are complementary rangesitt, then0 results from the elimination of betweenF and
G (this covers the case whelé| = d — 1, in which caser, ' with r = (X — A) — »’ are the only
two ranges in the-dimensionalPG-spaceR4).

Now assume: # (X — A) —r’. Then there iy € X — A, such that- andr’ are in a
common halfspace aofin R4 and therefore in a commaRG-spaceS underlyingR4 (see 4.1.4).
x separateg’ andG, so assume ¢ r, z € r'. Corollary 2.3.5 shows that there is a path between
r andr’ in the D'-graph of S, where the edge labels on this path are exactly the elements i
rAr'. Letw andu' be the two ranges on this path with = « U {z}. Thenu e RAV{z}
ConsiderH := T 4y, (u); clearly H, = 0, and ify does not separaté andG, thenF,, = G,
which meangy € r iff y € v/, soy & rAr'. Hencey € u iff y € r,/, and we conclude that
H,=F, =G, = (F-G)y soH results from the elimination of between/’ andG.

Dimensiond — 1 is immediate from the definition af/ — the vertices of\/ are the vectors
TA(r), where|A| = d— 1,7 € R”. Sincer € RE forall B C A, a descending lengithi— 1-chain
from A to () in the inclusion order yields an ascending length— 1-chain from the verteX' 4 (r)
to the topel'y(r).

Simplicity also follows, sincé& 4(r) has zerose#i, which has cardinalityl — 1 for any vertex.
[ |

5.5 Arrangements of Pseudohemispheres and -halfspaces

To conclude this chapter, we give a formal definition of agements of pseudohemispheres and
arrangements of pseudohalfspaces and show how theseustaicbrrespond t&G- and PG-
spaces. We do not go into the details concerning the arragiggsm they can be found in [Ma],
[FL].

A (topological) spherés a topological space homeomorphic to the unit spi$éréor somed.
A hyperpspheref a sphere is the image of a great spher8%finder some homeomorphism. The
hemispheresf a hypersphere, denoted by+ ands— are the images of the two open hemispheres
of the great sphere.

5.5.1 Definition

A simple arrangement of pseudohemispheres triple (S, E, H), whereS'is a
topological sphereE a finite index set andf = . {s., s, s, } a collection of
subsets of5, such that

(i) for e € E, s, is a hypersphere with hemispheres s,
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(i) for every ) # A C E, N.c4 Se is @ sphere (possibly empty). This
is called &flat of the arrangement

(iii) For every flatF' ande € E, eitherF' C s, or F' N s, is a hyper-
sphere off’ with hemisphere$’ N st andF N s,

(iv) No nonempty flat contained in somg, e € E is the intersection
of some of the remainingy, f € £ — {e}

The original definition by [FL] contains another axiom, treecalledball axiom which is
redundant, as shown by Mandel. This is a non-trivial result.

We restrict the definition to simple arrangements, becanbetbese are needed here; further-
more, property (i) becomes more complicated in the geneaisd.c

Property (iii) intuitively says that a flat that is not comted in one of the hyperspheres, must
cross it.

Mandel has shown that there is a one-to-one correspondetwedn the simple arrangements
of pseudohemispheres and the simple oriented matroide afaime dimension; the oriented ma-
troid is obtained from the arrangement in the same manner esaimple 5.2.3: every poiptin
the underlying spher§ is labelled with a signed vecter(p) on E, whereo(p). is +1,0 or —1
depending on whethere s, s, or s .

Together with our result this shows that7-spaces exactly represent simple arrangements of
pseudohemispheres. (Mandels’s result is much more gerfegadoesn’t need simplicity; so what
we use here is only a special case of his correspondence).

An arrangement of pseudohalfspaces can now be defined aslttmmplex in one of the
hemispheres of an arrangement of pseudohemispheres. Ikokaadel gives the following

5.5.2 Definition

A simple arrangement of pseudohalfspacdesa triple (K, E, L), whereK is a
toplogical space homeomorphic ¢ for somed, E a finite index set and, =
Ueer{he, hd, h, } acollection of subsets dt, such that there exists an arrangement
of pseudohemispherés, E U {z}, H), = ¢ E satisfying

() K =s;
(i) he =seNsy, hi =siNs,, xe{+,—}.

Arrangements of pseudohalfspaces correspond to so-@dfied matroidswhich are related
to oriented matroids in the following way:

5.5.3 Definition

A simple affine matroidon £ is a pair(E U {z},B), x ¢ E, whereB is a
collection of signed vectors o U {z}, such that there exists a simple oriented
matroid(E U {z},V)with B ={F € V | F, = —1}.

The dimension of an affine matroid is defined as the dimendithreaelated oriented matroid.
Affine matroids are studied in detail by Mandel. What we neeteto show thatPG-spaces
correspond to simple arrangements of pseudohalfspacéise fllowing theorem that finishes
this section:
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5.5.4 Theorem

There is a one-to-one correspondence betweeRtheapaces of dimensiathand
the affine matroids of dimensiah

Proof:

Clearly, an affine matroid oR and its corresponding oriented matroidBw/{x} are uniquely
deducible from each other, so for fixédandx ¢ F there is a one-to-one correspondence between
the d-dimensional affine matroids afi and thed-dimensional oriented matroids @hu {z}.

It remains to prove that such a correspondence exists betiied-dimensionalP G- spaces
on E and thed + 1-dimensionalPG-spaces o U {x}.

To see this, map #G-spaceS = (E, R) to the spacéS = (E U {z}, R), whereR =
RU{(EU{z}) —r | r € R}. Then|R| = 2|R| = 2&,(|E|). Furthermore$ is of dimension
d+ 1. if A C EU{z} is shattered ink, there are two cases: if € A, then it is an easy
observation thatl — {z} is shattered ik, so|A| < d + 1. If x ¢ A, thenA is already shattered
in R — {z} = R, and sinceS is of dimension at mos{ + 1 (3.5.4), we know thatA| < d + 1
also in this case.

Together this shows that is maximal closed of dimensiah+ 1, which means tha$ is PG
by theoerem 4.1.2.

To obtain aPG-space from dd + 1)-dimensionalPG-space, we proceed as follows: Given
S = (E U {z}, R), we know from remark 4.1.4 that there exists an underlyirgjmensional
PG-spaceS’ = (EU{z},R)withz~ ={re R|z ¢ r} C R.|EU{z}|is atleast + 1, so
S := 8" — {z} is the desired®G-space of dimensiod on FE.

It remains to show that both mappings are inverse to each:aftvee start withS = (E, R),
the first mapping gives u§ = (E U {z}, RU {(E U {z}) —r | € R}). If we apply the second
mapping to this space, we first obtath = (E U {z}, R") and by constructior?’ containsR.
Clearly, then alsd?’ — {z} containsR, and|R' — {z}| = |R| shows thatR’' — {z} = R, which
means that we have obtained the same space we have statied wit LB

As a summary of this chapter we have the following

5.5.5 Result

There exist one-to-one correspondences between

(i) PG-spaces of dimensioi 4 1 and simpled-dimensional arrange-
ments of pseudohemispheres

(i) PG-spaces of dimensiahand simplel-dimensional arrangements
of pseudohalfspaces
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Chapter 6

Geometric Embeddability

6.1 Basics

In this chapter we introduce the geometric notiomreEmbeddabilityof a range space, which can
be regarded as a generalization of planarity with two mogeas of freedom.

m~embeddability is an interesting subject of its own, butdrey it sheds some light on geo-
metric features of range spaces, which contrasts to théopieehapter, where topological aspects
were placed into the foreground.

The main theorem in this chapter, a characterization of timeptete range spaces which are
m~-embeddable for a certaim, reveals an interesting relation between topologic anangdac
properties of complete spaces.

Moreover, embeddability is related to theset problem, which in fact is the main motivation
for this concept.

6.1.1 Definition

LetS = (X, R) be arange space; > 0. S is calledm-embeddableif X can be
mapped tan-dimensional euclidean space by a functjpnX — E™, such that

Vr.r' € R:conv(f(r —r')) Nnconv(f(r' — 7)) = 0.

Note thatf is not an embedding in the usual sense, since it need notdmiig. Nevertheless,
we do not lose generality by assumirigo be injective, ifm > 0. We can even requirg(X)
to be a simple configuration of points as defined in sectionik3anym points define a unique
non-vertical hyperplane and no hyperplane contains 1 of the points.

To see this, assume soriieC X, |Y| > 2 is mapped byf to a single poinp. Let D(r,r’)
denote the minimal distance between dgftr — ')) and conyf(r’ — r)) (D(r,7’) := oo, if
one ofr — ¢/, ' — r is empty), and defin® := min{D(r,7') | r,»' € R}. Clearly, D is
some positive constant. Lét(p) be the ball with centep and radiusD, and modify f in such
a way that the elements &f are mapped to distinct points iB(p), which are not yet irf (X).
Assume that now there are ranges’ violating the embeddability-condition. Clearly then, mfe
r—r', r’—r must contain an element &f—in any other case nothing would have changed. W.l.0.g.
Y N(r—r") #0. ThisimpliesY N (r' —r) = 0, otherwisep € conV( f(r —r'))N conv(f (' —r))
for the original f, a contradiction. By construction, the replacemenp @fith |Y'| distinct points
blows up conyf(r — r’) only by such a small amount that it cannot hit cofi’ — r)), which

55
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remains unchanged; this shows that the pait does not exist, so the modifigdagain induces
an m-embedding. Step by step every point that is the image of riane onex € X can be
replaced in this way, finally ending up with being injective. By again slightly perturbing the
(now distinct) points without changing the embeddabilipndition we can makg (X) a simple
configuration of points ™.

The definition ofm-embeddability is somewhat non-obvious at first sight, anchake it a
little clearer, we show how this can be seen to generalizeapig: note that a graph is simply
a range space, where every range has cardinality exactly Neav the graph is planar, iff it is
2-embeddable according to our definition. Observe that $hisie, because a planar graph can be
embedded in the plane in the ordinary sense in such a wayaltredges are mapped to straight
line segments [Fa].

We proceed as follows: First we give an obvious lower bounghoif S is of fixed dimension,
and then show that geometric range spaces (under a certatraiat) aren-embeddable, where
m matches the lower bound. This will lead to a short excurse@ming thek-set problem.

After having handled this special case, we consider geweraplete spaces and characterize
the subclass of spaces that as well as geometric spaces ambeddable with optimah. This
will be a proper subclass of the complete spaces and a properciass of the geometric spaces.

6.1.2 Lemma

Let S = (X, R) of dimensiond > 1 bem-embeddable. Them > d — 1.

Proof:

If m =0, it is easy to see thaf can be embedded i if and only if the ranges are pairwise
comparable with respect to inclusion; this is not the cdsé>i 2.

Now assum® < m < d—2; let A be a set of cardinality that is shattered ik. After applying
an appropriate injective embedding function we can asshatedtC £™. Radon’s theorem [Ed]
says thatd can be partioned into set$;, A, in such a way that corfv; )N con(Ay) # 0. Let
r1,7r9 beranges with Nry = A;, ANry = As. Then we have, — ro D Ay andry — 1 D As,
which shows that corfv; — r5)Nconr, — r1) # B, a contradiction to embeddability. It follows
thatm > d — 1. [ |

The lemma shows thdtl — 1)-embeddability is the best we can hope fofifs of dimension
d, and the following theorem shows that this bound is tight:

6.2 Embedding Geometric Range Spaces

6.2.1 Theorem

Let S = (X, R) be a geometric range space of dimension 1, ), X € R (we
say,S is in standard positioh ThenS is (d — 1)-embeddable.

Proof:

Recall that a geometric range space of dimengi@nthe description of cell§(H ™) of some
simple arrangement of halfspacd$H *) in E¢. (), X € R shows that there is an unbounded cell
¢ contained in none of the halfspaces and anothergneontained in all of them. It follows that
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7 h(r)

r={123456} ; T

r=9{1,5,6,9,10,11,12

12

10 f(r-r)
f(r-r) 1

«>

Figure 6.1: configuration of directed points#¥ and its2-embedding

the arrangement can be rotated in such a way that the pdsétifspace: ™ is the halfspace below
h for all hyperplanes. € H.

In the first chapter we have shown how, by invoking dualitye @an obtain this geometric
space also from a simple configuration of directed pointd,itis this point of view that we are
taking here. A directed point can be visualized as a poift4with a ray attached to it that points
either up or down.

Dualize every halfspack™ to a directed point in the way described in section 1.2. Sinee
know thath™ = hyei0 for all h € H, all the rays of these directed points go upwards.

We have seen that the description of cells can now equivglbatobtained as follows: Label
every non-vertical hyperplane @¢ with the set of points whose rays stab the hyperplane; then
the collection of labels of all hyperplanes containing nofithe points determineS(H ).

So assume that is the configuration of directed points dualdgH *). Let P be a horizontal
hyperplane that is not stabbed by any of the rays, and prtfjegboints ofX vertically onto P.

Let f(x) denote the image af € X under this projection. We claim that the mappjhdefines a
legal(d—1)-embedding. To see this, letr’ be ranges fronk. There are non-vertical hyperplanes
h(r),h(r") definingr andr’, i.e. h(r) is stabbed by exactly the rays of the points-jrand the
same holds foi(r') andr’. The two hyperplanes can be chosen to be non-parallel argkhen
intersect in a commof — 2)-flat g. The projection ofy onto P is a hyperplang in P. Consider
the two open halfspaces defined jayWith respect to one of thert(r) lies always aboveé (r’),
while for the other oné(r') lies aboveh(r). Since the rays of all the directed points go upwards,
r —r’is the set of points that lie beloi(r) but above:(r'), while the points from’ — r lie below
h(r") but aboveh(r). From what we have just said it follows that- ' andr’ — r are projected to
different open halfspaces ¢f sog separates the convex hulls pfr — ') and f(r' — r), which
means thaf is a(d — 1)-embedding (figure 6.1).
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The reader might have noted that this argumentation failg fe 1 — therefore this case needs
a special treatment. Recall that thé-graph (2.3.1) of a geometric space of dimensiés a path
(figure 3.1); this fact has motivated us to introduce pseadogetric spaces (3.1.1). It is an easy
observation that i), X € R, then the ranges must be ordered by inclusion along the @athin
the proof of lemma 6.1.2 we have already remarked that irctseS is 0-embeddable.
[ |

Note that the proof does not use the fact that the configuraifgpoints is simple. This is
not surprising, since we have already seeen in observat®h that the set of ranges defined by
a non-simple configuration of directed points is always asstibf the set of ranges determined
by an appropriate simple one. This means that — as far as ealiéty is concerned — simple
configurations are the most difficult ones.

One might conjecture that by some additional effort the @¢@wd”(), X € R” could be elimi-
nated: a geometric space can always be swapped in such aatayahdard position is achieved,
so why should it not work for any geometric space?

The answer is that standard position is necessarfferl )-embeddability of complete spaces
in general. This is somewhat surprising, because up to niaiveaproperties of range spaces we
have considered were invariant under swapping — moreavapEng was a useful technical tool
to facilitate most of the proofs.

By taking a look at thek-set problem the reader might get an idea why embeddabdity i
different from the other concepts with respect to swapping.

6.3 Thek-set Problem

Let X be a configuration of points iff¢, h a hyperplane (disjoint fronX’) with open halfspaces
h* andh~. The setht N X andh™ N X are callecsemispacesf X. A semispace of cardinality
k is called ak-set.

Thek-set problem is simply posed as follows:

Given a configuratiorX of n points and a natural number< k < n, how many
k-sets are defined by ?

Despite of its simple formulation, the-set problem turns out to be very difficult. For every
k-set there is a unique: — k)-set, so it suffices to consider the rargec k& < %, and in some
sense the most interesting casé is= 2; there is an easy upper bound@{n?) on the number
of all semispaces [Ed], but a first non-trivial upper boune. (& bound better thai(n?)) on the
number of3-sets ford = 3 has only recently been developed [BFL]. The currently besti is
given by [ACEGSW].

Even ford = 2 there is a wide gap between the best known lower and uppedtjé&idh, [EW]
and nothing is known about good bounds in dimension 4.

In order to establish the correspondence betweerkibet problem and embeddability we
classify the semispaces of a configuration in the followiraywA semispace is called lawer
semispace, if it is the set of pointelowone of its defining hyperplanes. Amppersemispace is
defined analogously. Note that a semispace can be lower quadl apthe same time.

Now we have the following easy
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6.3.1 Observation

Let X be a configuration of points and 184, R,, denote the set of lower and upper
semispacess; = (X, R;), Sy = (X, Ry).
Then

(i) 6S; = 6S, = (X, R, N Ry)
(i) 5 =5, = (X,RiUR,)

Proof:
Observe that the complement of a lower (upper) semispaaeuper (lower) semispace, so
R, ={X —r|r € R,}. The assertions are immediate from this. [

The next lemma relates semispaces of a configuration to georsigaces, and by using duality
this correspondence is more or less obvious.

6.3.2 Lemma

Let S = (X, R) be a range spacé. is geometric of dimensiod > 1 in standard
position, if and only if X can be identified with a simple configuration of points in
E4in such a way thaR is the set of lower semispaces &t

Proof:

If S'is geometric in standard position this equivalently meaas$ is the description of cells
of a simple arrangement of halfspacééH ™) with ht = hye0, for all h € H (see the proof of
theorem 6.2.1). By duality corresponds to a simple configuratidhof directed points with all
rays going upwards, and in this dual setting a rangé S is the set of directed points stabbing a
certain non-vertical hyperplarig. disjoint from the points.

If we consider only the underlying points, this means thedrresponds to the lower semispace
of X defined byk, (see figure 6.1).

Furthermore, every lower semispaceXfis obtained in this way: Given a lower semispace,
dualize its defining hyperplane (which can be choosen to bevedical) to a point, which lies in
some cell ofA(H ™). It follows that the semispace is equal to the label of thik ce

If we are given a simple configuration of points, then it carséen to determine the required
geometric space by simply applying the inverse duality: Addupwards ray to each point and
dualize the corresponding configuration of directed pdim&n arrangement of halfspaces, which
by construction is simple and in standard position. Cleadin the lower semispaces will corre-
spond to the labels of the cells of the arrangement. ]

Now we are able to show how tlteset problem is related to embeddability:

Let X be a fixed configuration of points ifi¢, k& a natural numberR; (k) denotes the set of
lower semispaces of cardinaliky(the lowerk-sets),R(k) is the set of alk-sets. We are interested
in an upper bound o (%), so we can assume th&tis simple, which can only increas&(k)|.

Ry(k) is a subset of the set of all lower semispaégs and since by the lemm@X, R;) is
geometric in standard position, we know thiaf, R;) and therefore als¢X, R;(k)) is (d — 1)-
embeddable (theorem 6.2.1).
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Now assume that there is an upper bousidon the number of sets of cardinalikythat can
be embedded int&¢~" in alegal way, i.e.

By, > maz{|R| | (X,R) (d—1) — embeddablgR c 2*,|r| = k for all » € R}.

Clearly then, the boun#;, holds for the numbelR; (k)| of lower k-sets. Furthermore, we can
bound the overall numbeéR (k)| of k-sets (lowerandupper ones) b By..

To see this, observe that the upgesets correspond to the lowgt — k)-sets. It is an easy
observation thaiB;, is also an upper bound for the number of sets of cardinality & which
are embeddable in a legal way (this follows from the genexret that(X, R) is m-embeddable
if and only if (X,{X —r | r € R}) is m-embeddable, which can be proved using the equality
r—r' = (X —r')— (X —r)). Since every:-set of X determines a unique lowér or (n — k)-set,
(d — 1)-embeddability of X, R;(k)) implies that there are at mdaB,, k-sets ofX.

As an example we can give an upper boun@of- 12 on the number o2-sets ofn points in
E3, using the fact that at mo8t. — 6 sets of cardinalit2 can be embedded ii? without intersec-
tions — this is the relation to planarity given at the begignof this chapter (using this technique,
the bound can be adjusted to the real upper bourghef 6 by some additional considerations;
we don't do this here).

Unfortunately, nothing is known about bounds of this kinddardinality and dimension more
than2; from what we have just said, non-trivial bounBg immediately imply non-trivial bounds
for the k-set problem.

6.4 Embeddability of Complete Range Spaces

Before we continue with embeddability of complete spacegyive an interesting lemma that
holds for arbitrary range spaces:

6.4.1 Lemma

Let S = (X, R) bem-embeddable with embedding functignm > 1, z € X.
Then

(i) S — {z} is m-embeddable.
(iy S{#}is (m — 1)-embeddable, if (z) is extreme inf (X).

Proof:

Part (i) of the lemma is easy. Simply takey 1,3, which is a legal embedding function for
S — {z}. To see that (ii) holds, consider a hyperplanseparatingf (z) from f(X — {z}), and
projectf(y), y # = ontoh using central projection with centgi(x). Let g(y) denote the image
of f(y) under this projection.

Now considerr,' € R{*} and assume that cofy(r — '))N conv (g(r' — r)) contains a
point p € h. Consider the ray throughyp starting fromf(z). [ stabs conyf(r — r')) and
conv(f(r" — r)) in a well-defined order, since these two sets are disjoint ¢lLlge a point of
E™ contained in conf (r — r')), which we assume to be hit byfirst. But then we have €
con(f(r — (r"U{z})))n conMf((r' U {z}) —r)), a contradiction tan-embeddability of5. m

Now we come to the main result of this chapter, which is a dtar&ation of the complete
spaces of dimensiaofithat are(d — 1)-embeddable:
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6.4.2 Theorem

Let S = (X, R) be complete of dimensiod > 1. S'is (d — 1)-embeddable, if
and only if

(i) S'is pseudogeometric in standard position
(ii) 45 is the closure of a geometric space of dimengien 1

Proof:

First assumeS is (d — 1)-embeddable. 1f/ = 1, then0-embeddability implies that the
ranges ofS are linearly ordered by inclusion. It follows that ti¥ -graph ofS (definition 2.3.1)
is not only a tree, but a path with rangésand X on both ends of it. By definition 3.1.% is
pseudogeometric in standard position, asd= (X, {(), X }) clearly satisfies condition (ii). If on
the other hand satisfies condition (i), then its ranges are linearly orddrginclusion, sa5 will
be0-embeddable.

If d > 1, then after applying an appropriate injective embeddingfion we can assume that
X is a simple configuration of points 4.

We claim thatR contains all semispaces af. To see this assume on the contrary that there
is a semispace of X not contained inR. Let i, be its defining hyperplane. W.l.orgis a lower
semispace with respect Q.

Let r’ be any subset ok. Clearly thenr — 7’ C r lies belowh,., whiler’ —r ¢ X — r lies
aboveh,.. It follows thatr can be added t& without violating the embeddability condition. This
means(X, RU{r}) is again(d—1)-embeddable. But sincgé = (X, R) is complete(X, RU{r})
must be of dimension more thanhwhich is a contradiction to lemma 6.1.2.

We conclude that is already a range &, so R contains all the semispaces ®f The set of
lower semispaces of ¢ E%! determines a geometric spagse= (X, R’) of dimensiond — 1,
as shown in lemma 6.3.2. The set of all semispaces is therelafuhe set of lower semispaces
and is contained in the boundary §f so it follows thatR’ C §R; sinceS’ is maximal closed of
dimensiond (theorem 4.1.2), we know th@' = §R, soS has the maximum number of ranges in
its boundary. By theorem 3.58is pseudogeometric; standard position follows from thé thaat
() as well asX are semispaces df.

An underlying geometric space 6f as required by (ii) has already been found: iSis=
(X, R'), with R equal to the set of lower semispacesiof

Now assumeyS satisfies conditions (i) and (ii). Considéf. If §S is the closure of a geo-
metric space of dimensiath— 1, 4.5 can be visualized as the description of cells of some simple
arrangement of hemispheres in the unit spif#re’ (see section 4.1). Clearlj, X € §R, so there
are antipodal cells of the arrangement labelled Widmd X. Choose the equator in such a way
that it cuts through these cells. Then the labels of the aelise northern hemisphere determine
a geometric spac8’ = (X, R') of dimensiond — 1 in standard position witl$” = §S. Again we
use lemma 6.3.2, which shows thtcan be identified with a point set i~ in such a way that
R'is the set of lower semispaces ¥t ConsequentlyR = §R is the set of all semispaces &f.

To see thatS is (d — 1)-embeddable, considerr’ € R. S is pseudogeometric, soand
r' admit a line (theorem 3.3.3), which due to lemma 3.3.2 is\edint to the existence of ranges
t,X—t e Rwithr—r' C t,r'—r C X —t. tandX —t are boundary ranges, so they correspond to
complementary semispacesX®f which clearly implies that corf¢)n con( X — ¢) = (. Clearly,
con\r — ') C conMt) and conyr’ —r) C con X — t), and this yields conf — )N con\(r’ —
r)=0. [
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Chapter 7

Elementary Transformations and
Simplices

7.1 Basics

In this chapter we discussementary transformationsvhich take a complete range spateo
another complete spac® with the same number of ranges by performing a local modifinaif
S.

We have already seen another transformation that maintaimpleteness, namely the swap-
operation defined in 2.3.2. Swapping is a global operatidharsense that it affects all the ranges;
on the other hand, swapping does not "really” change thetsire of a range space — the distance-
1-graph which reflects many structural properties remanthanged.

Elementary transformations are more interesting witheesi this point.

7.1.1 Definition

LetS = (X, R) be arange space,c R, r' ¢ R. We define
Su{r'}=(X,RU{r'}),
S—{r'} =(X,R-{r'}),
SA{r,r"} = (X, RA{r,r"}).
The operationS — SA{r,r'} is called docal swap If S is complete of dimen-
siond > 0, the local swap is called aglementary transformationff SA{r,r'} is
again complete of dimensiah

The notion of elementary transformations is motivated lmypprties of simple arrangements
of pseudohalfspaces, which — as we know from chapter 5 —sqnel to pseudogeometric spaces.
Figure 7.1 shows an example of an elementary transformatitive 2-dimensional case: a pseu-
doline is moved across a vertex of the arrangement, desgrayie cell and generating a new one.
Note that both cells are simplicial cells.

The reader can check that this operation does not affed®@groperty of the description of
cells, which might be obvious for this example, but is not thauitive for higher dimensions.

In the sequel we will formally define what we mean by a simpiethie setting of range spaces
and show that simplices in complete (and pseudogeomepiges give rise to an elementary
transformation of the kind shown by the example.
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Figure 7.1: elementary transformatioR! = RA{{1,2},{2,3,4}}

7.2 Characterizing Elementary Transformations

Local swaps of simplices are not the only possible elemgmtansformations, and we will give a
characterization of the pairs of ranggs '}, which define an elementary transformation.

To begin with, we need one more

7.2.1 Definition

Let X be fixed and consideR C 2X, r € R. Theincidence sebf r with respect
to R is defined by
Ir(r) :=={X € X | rA{\} € R}.

If |[Ir(r)| = k, thenr is called ak-range.
If ris a(d+ 1)-range, them is called asimplex iff rAB € R, forall B G Ig(r).

As an example lef = (X, R) be the description of cells of the original arrangement inriég
7.1,r ={1,2},r" ={2,3,4}, R' = RA{r,r'}. ThenIg(r) = Ip (') = {1,3,4}. Furthermore,
r is a simplex inR as well ag” is a simplex inR'. {1, 2,3} is a3-range but not a simplex.

The fact thatfz(r) = Iz (r') is not at all accidental. We will show that this is a necessay
sufficient condition for, 7’ to determine an elementary transformation.

7.2.2 Lemma

Let S = (X, R) be a range space of dimensién> 0, ' ¢ R.
If [Ipugry ()| > d + 1, thenS U {r'} is of dimensiond.

Proof:

Assume on the contrary th&tJ {r'} is of dimension at least+ 1, and letA C X, |A| = d+1
be shattered iR U {r'}. A is not shattered ik, and this impliesA N+’ # Anr, forallr € R.
Especially,A N 7" # AN (r'A{A}), which shows thah € A, for all A € T gy (r').
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Hencel gy (r') C A, sO|Igygmy(r')] < d+1, a contradiction to the assumption. It follows
thatS U {r'} is again of dimensiod. [

Now we are able to establish the characterization that we hkeady announced above:

7.2.3 Theorem

Let S = (X, R) be complete of dimensioth > 0, € R, ¢ R.
S — 8" := SA{r,r'} is an elementary transformation, if and only if

Ig(r) = Ip ('),
whereR' = RA{r,r'}.

Proof:
If S — S’ is an elementary transformation, then cledity}| = |R'{*}| for all z € X. This
immediately implied g (r) = I (r').

Now assumdg(r) = Ig (r'). We show thats’ = (X, R’) is of dimensiond, which proves
the theorem.

Assume on the contrary, there|i$| > d shattered ilR’ ¢ R U {r'}. From the proof of the
lemma it follows that then

IR(T’) = I (’I”I) C IRU{TI}(TI) C A.

By swapping assume= (). We know thatd N’ # Anr =, and every range iR — {r} also
has nonempty intersection with. To see this, recall that a rangérom R — {r} is connected
with r by a shortest possible pathin' (S) (theorem 2.3.5). Clearly, the label of the edge incident
to r on this path must be somecontained iz (r) C A, and because of= () this impliesi € s;
therefored N s # ().

Together this shows that N s # (, for all s € R’, which means thatl is not shattered ik,
a contradiction.

It follows that.S” must be of dimensiod. ]

As a corollary we get the following result, which shows thatlave to search only among the
ranges with small incidence set to find the ones that can hecegpin an elementary transforma-
tion:

7.2.4 Corollary

Let S = (X, R) be complete of dimensiod, » € R. If there exists’ ¢ R, such
thatS — SA{r,r'} is an elementary transformation, then

d < |Ip(r)| < d+1.

Proof:

Lemma 2.3.7 shows thkr(r)| is at least for any range inR, which proves the lower bound
on|Ig(r)|.

Now considen”’ ¢ R, such that the replacementoby ' is an elementary transformatiof.
is complete, s& U {r'} is of dimension more tha#. Then lemma 7.2.2 shows

d+1> |IRU{T"}(T,)| > |IRA{T‘,T"}(T,)| = |IR(T)|7
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¢

3 {23 {3}

Pt > - .3} @)

2,3 {13}

R R’ = RA{{2), 0}
Figure 7.2: elementary transformatidh— R’ destroys the?G-property

and this gives the desired upper bound. ]

7.3 Simplex Transformations

If S'is a pseudogeometric space, one may ask whether this pragpérariant under elementary
transformations. In general, this is not the case — in figuBewe present a one-dimensional
counterexample. The reader can check that also the origpaak in figure 7.1 can be transformed
into a nonPG-space by applying the elementary transformaions SA{{1,2,3,4},{2,3,4}}.

On the other hand, there is one important type of elementansformations that maintains
the pseudogeometric property, namsimplex transformationsAn example of a simplex trans-
formation has already been given in figure 7.1.

7.3.1 Theorem

Let S = (X, R) be complete of dimensioth » € R a simplex ofS. Then

(i) r' :=rAIg(r) ¢ R
(i) S = S := SA{r,r'} is an elementary transformation
(ii) ' is a simplex inS’

S — S’ is called asimplex transformation

Proof:

(i) By swapping we may assume= (). The simplex property impliesl € R forall A G
Ir(r). Assumer’ € R. Then we haved € R for all subsets of z(r), SOIr(r) is shattered iR,
which cannot be the case, singes of dimensiond, while |Ir(r)| = d + 1.

(i) We have to show thafg(r) = Ir/(r'). Again assume = (). SinceA € R’ forall A C
Ir(r),|A| = d, we know thatl g (r') D Ix(r). From lemma 7.2.2 it follows thal z (r')| < d+1,
SOIp (’f’l) = IR(’I").

(i) If » = 0, thenA € R forall ) G A C Ir(r'), which is the simplex property for
' =Ir(r')inS". [

In order to show that the pseudogeometric property is iamatinder simplex transformations,
it will be useful to have an equivalent, more intuitive cldeaization of a simplex in this case:
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7.3.2 Theorem

Let S = (X, R) be pseudogeometric of dimensidn> 1. » € R is a simplex, if
and only if

(i) risa(d + 1)-range
(i) r & OR

Proof:

First assumey; is a simplex. (i) is satisfied by definition. To see that (iiJdsy by swapping
assume: = (). If r € R, thenX € R, and similar to the proof of 7.3.1 (i) this implies th&i(r)
is shattered iR, a contradiction.

Now let r satisfy (i) and (ii); by swapping = 0. It is an easy observation that the simplex
condition is equivalent to € R* for all A C Ir(r), |A| = d.

Assume there exists such drwith » ¢ R4. Because ofR*| = 1, there must be somé # ()
with 7' € RA.

Let a denote the unique element iix(r) — A. We claim thatr’ containsa. To see this,
consider a shortest path frorhito r in D*(S). ' € R4 implies A N (rAr') = (), so the labels of
the edges on the path must be fram— A. It follows that the label of the edge incidentste= ()
is a, which shows that € r'.

Fromr' € R4 we furthermore conclude’ U A € R, solx(r) = {a} U A C r' U A, which
meany(r’ U A) N Ir(r) = Ir(r). Hencelg(r) € Rz, (-

On the other hand we have= § € R|r, (), which impliesr € J(R|r,()). But this is a
contradiction ta- ¢ 0 R —to show this it suffices to prove thatZ R impliesr ¢ (R — {z}) for
x ¢ Ir(r); by iterating we obtain the desired contradiction.

So assume: ¢ Ir(r), which is equivalent tdz} ¢ R. Hencer = ) ¢ (0R) — {z} =
d(R — {z}) due to lemma 3.4.3.

It follows thatr must be the unique range B! for all A C Ir(r), |A| = d, sor is a simplex.
[

Now it is very easy to see that tli&G-property is invariant under simplex transformations:

7.3.3 Theorem

Let S = (X, R) be pseudogeometric of dimensiagh> 1, S — SA{r,r'}
a simplex transformation. TheSA{r,r'} is again pseudogeometric, aad =
I(SA{r,r'}).

Proof:

The simplexr is not a boundary range, 8&® = 6(R — {r}) C §(RA{r,r'}). By theorem
3.5.30R is maximal for a space of dimensi@nsodR = §(RA{r,r'}), and by the same theorem
SA{r,r'} is pseudogeometric. [ |

Using a result of Ringel [Ri], we can prove a theorem that destrates the power of simplex
transformations in the-dimensional case:
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7.3.4 Theorem

Given two pseudogeometric spacgandT of dimensiond = 2, there is a finite
number of simplex transformations that takéo a spaces’, which — up to swapping
and relabelling the elements — is equallto

Proof:

0S5 andoT are the closures dPG-spaces of dimensioh(corollary 4.1.3), which are equal up
to swapping and relabelling (cf. corollary 3.2.3), so we raagume thaiS = 4T

Ringel has defined set systems similar R6:/-spaces of dimensiof, which we will call
Ringel-schemebkere. Translated to our terminology, a Ringel-scheme isitefrange space
S = (X, R) with the following properties:

() |Rly|=T7forallY Cc X,|Y|=3

(i) |[OR)|y|=6forallY C X,|Y| =3

(i) S is maximal with respect to property (i), i.e. adding one m@ege toR
destroys this property

(iv) If |X| = 4, S is the description of cells of an arrangementddfialfplanes
(and is therefore unique up to swapping and relabellinghas/s again in 3.2.3)

Ringel has shown that these schemes characterize the sampleggements of pseudohalf-
planes, where he needs property (iv) to rule out one typelarae that satisfies (i) through (iii)
but is not the description of cells of any arrangement.

If S is a Ringel-scheme, @iangular cellis a ranger € R with r ¢ R and|Ig(r)| = 3.
Ringel shows that a triangular celtan be replaced byAT(r), again resulting in a valid Ringel-
scheme (he calls such an operatidniangle transformatiol, and he derives the following result:

Let S andT be Ringel-schemes withS = ¢7. ThenS can be transformed into
T by a finite number of triangle transformations.

To make this result valid foPG-spaces of dimensio?, it remains to show that these spaces
are Ringel-schemes. Clearly then, triangle transformatioy theorem 7.3.2 correspond to our
simplex transformations.

To see that &-dimensionalPG-space satisfies (i) and (ii) is easy by using the countingltes
for complete and pseudogeometric spaces from chapters 2 and

Property (iii) follows from completeness: Adding one moaage causes a SEtC X, |Y| =
3 to be shattered, which means th&ty-| = 8.

Property (iv) finally is simply characterization (v) of tirem 3.2.1. [ |

This theorem does not generalize to higher dimensiongl 3 3, thendS and 4T are the
closures of2-dimensionalPG-spaces, which are not necessarily equal up to swappingeand r
labelling. Since simplex transformations do not affect ble@indary,S andT" cannot obey the
theorem in this case.

Even iféS = §T, it is not clear whether there is a theorem of this kind. Risgeethods are
limited to dimensior2, and we cannot even prove the existence of a simplexitGaspace of
dimension more thag.

A crucial feature of the planar case seems to be the follogingerty that is best explained in
geometric terms: if a triangle is cut by a line, then one oftihe pieces is again a triangle. Ringel
uses an equivalent to this property for his schemes to peréor inductive proof that deduces the
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existence of a triangular cell in the scheidrom the existence of such a cell in the subscheme
S —{z}.

Ford > 3, however, this property is lost. Itis always possible toatdtrahedron (or a general
simplex) with a plane (or a hyperplane) in such a way that rafrtbe two resulting pieces is a

tetrahedron (or a general simplex).
So we doubt, whether simplex transformations in higher disians are as basic as in the

2-dimensional case.
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