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Chapter 1Introduction
1.1 Geometric OptimizationIn all generality, a geometric optimization problem consists in �nding a geometric objectof some type which is optimal according to some criterion, among all objects of this typethat satisfy a certain geometric condition. Let's consider some examples.Smallest enclosing ball. Given n points in IRd, �nd the ball of smallest volume thatcontains all the points (Figure 1.1).

Figure 1.1: Smallest enclosing ball of point setSmallest enclosing ellipsoid. Given n points in IRd, �nd the ellipsoid of smallestvolume that contains all the points (Figure 1.2).Distance of polytopes. Given two polytopes P1; P2 in IRd, de�ned by n1 resp. n2points, �nd the shortest line segment connecting P1 and P2 (Figure 1.3).3



Figure 1.2: Smallest enclosing ellipse of point setSmallest enclosing annulus. Given n points in the plane, �nd the annulus of smallestarea (or width) that contains all the points (Figure 1.4).Largest ball in polyhedron. Given a polyhedron de�ned by n halfspaces in IRd, �ndthe largest ball contained in the polyhedron (Figure 1.5).All these problems have the property in common that they are de�ned by n objects insome dimension d (where d = 2 in case of the smallest enclosing annulus problem). Thescenario in which these problems are typically studied in computational geometry is thatn is large while d is small or even constant. After all, computational geometry �nds itsapplications in computer graphics, CAD etc. where the dimension is usually two or three.In this scenario, the above mentioned problems have something more in common,namely that the optimal solution is de�ned by only few of the input objects { most ofthem are redundant. To make it more formal, the optimal object is de�ned by a set ofinput objects whose size is only a function of d. Let's check this for one speci�c example,namely the smallest enclosing ellipsoid, for the case d = 2.It is quite obvious that points which do not lie on the optimal ellipse can be removedfrom the point set without changing the optimal ellipse. This means, the optimal ellipseis already determined by the points that lie on it. Still, this might be all (or nearly all)points if we have bad luck. But recall from the talk of J�urgen Richter-Gebert that �vepoints already determine a unique conic. This means, if more than �ve points lie on theellipse, we can remove all but �ve, and still the ellipse will not change, because there is onlyone ellipse through the �ve points. This means, the smallest enclosing ellipse of n pointsis already determined by at most �ve points. If we only knew them, then the problemwould be easy, but of course, the main problem is to �nd this subset of the n points that4



Figure 1.3: Distance of polytopes

Figure 1.4: Smallest enclosing annulus of point setsdetermine the solution.In case of the other examples we have given above, it is also easy to determine thenumber of input objects which are necessary to de�ne the optimal solution, and you cancheck that this number is indeed only a function of d.It turns out that quite a number of geometric optimization problems can be solved byformulating them as problems of optimizing some objective function over a polyhedron, andif the function is reasonably well-behaved, existing and well-studied algorithms for solvingsuch problems can be applied. For example, the Largest Ball in Polyhedron problem is ofthis type: we want to �nd a point in the polyhedron such that its distance to the boundaryis maximized. In this case, the function to optimize (in fact, maximize) assigns to everypoint in the polyhedron the distance to the boundary.We can also formulate the problem in another way, obtaining a simpler objective func-5



Figure 1.5: Largest ball in polyhedrontion: �nd the maximum value of r such that there exists a point in the polyhedron whichhas distance at least r to the boundary. To write out this problem formally, let's assumethe polyhedron is given as the intersection of halfspacesfx j aTj x � bjg;j = 1; : : : n. The vectors aj are normal vectors of the hyperplanes that delimit the half-spaces. Moreover, after scaling aj; bj accordingly, we can assume the aj are unit vectors.Now consider a point ~x in the polyhedron, i.e. ~x satis�es aTj ~x � bj for all j. It is well-known that the distance of ~x to the hyperplane aTj x = bj is given by bj � aTj ~x. Then theLargest Ball in Polyhedron problem can be written in the form(LBIP) maximize rsubject to bj � aTj x � r: (1.1)This is now a problem of maximizing a linear function in d + 1 variables x; r over apolyhedron in IRd+1, de�ned by the halfspacesfx j aTj x + r � big:Such problems are known as Linear Programming problems, and a particularly nice ande�cient method exists for solving them, namely the Simplex Method.Let's look at another example, the Distance of polytopes. Assume the polytopes P1; P2are speci�ed as the convex hulls of n1 points fp1; : : : pn1g resp. n2 points fq1; : : : ; qn2g.Then we can formulate the problem as follows.(DOP) minimize kp� qksubject to p = Pn1i=1 xipi;q = Pn2j=1 yjqj;Pn1i=1 xi = 1;Pn2j=1 yj = 1;xi; yj � 0; 8i; j:6



The constraints of this problem just encode the requirement that p is in the convex hull ofthe fpig, and q is in the convex hull of the fqjg. The problem has 2d+ n1 + n2 variables,and the subset of IR2d+n1+n2 de�ned by the (in)equalities of the problem does again forma polyhedron. The objective function can { without changing the optimal points p and q{ be replaced bykp� qk2 = (p� q)T (p� q);and this is a quadratic function. Problems of this type are called Quadratic Program-ming problems, and an adaptation of the simplex method exists that can also solve theseproblems.As it turns out, the Smallest enclosing annulus problem (area version) can also beformulated as a linear programming problem (exercise), while the Smallest enclosing ballproblem is a quadratic programming problem again, which we will only be able to proveat the end of this manuscript.The Smallest enclosing ellipse problem does not quite �t in here. It is neither aninstance of linear nor of quadratic programming. This also explains the fact that in di-mensions higher than two, this problem is not solvable as easily as our other exampleproblems are.In the following chapters we will introduce the by now classical simplex method forlinear programming which has just celebrated the 50th anniversary of its invention byGeorge Dantzig back in 1947. We will then describe the above mentioned adaptationof it to quadratic programming. This adaptation relies on the important Kuhn-Tuckeroptimality conditions for minimzing convex functions over a polyhedron. We will provethese conditions here.Finally, we go back to our example problems and brie
y discuss how the methods wehave developed so far can e�ciently be applied to them.1.2 Linear ProgrammingLinear Programming (LP) in a quite general form is the problem of minimizing a linearfunction in n variables subject to m linear inequalities. If, in addition, we require allvariables to be nonnegative, we have an LP in standard form which can be written asfollows.(LP) minimize Pnj=1 cjxjsubject to Pnj=1 aijxj � bi (i = 1; : : : ; m);xj � 0 (j = 1; : : : ; n); (1.2)where the cj, bi and aij are real numbers. By de�ningx := (x1; : : : ; xn)T ;c := (c1; : : : ; cn)T ; 7



b := (b1; : : : ; bm)T ;A := 0BB@ a11 � � � a1n... ...am1 � � � amn 1CCA ;(1.2) can be written in more compact form as(LP) minimize cTxsubject to Ax � b;x � 0; (1.3)where the relations � and � hold for vectors of the same length if and only if they holdcomponentwise.The vector c is called the cost vector of the LP, and the linear function z : x 7! cTx iscalled the objective function. The vector b is referred to as the right-hand side of the LP.The inequalities Pnj=1 aijxj � bi, for i = 1; : : : : ; m and xj � 0, for j = 1; : : : ; n are theconstraints of the linear program. (Due to their special nature, the constraints xj � 0 aresometimes called nonnegativity constraints or restrictions).The LP is called feasible if there exists a nonnegative vector ~x satisfying A~x � b(such an ~x is called a feasible solution); otherwise the program is called infeasible. Ifthere are feasible solutions with arbitrarily small objective function value, the LP is calledunbounded; otherwise it is bounded. A linear program which is both feasible and boundedhas a unique minimum value cT ~x attained at a (not necessarily unique) optimal feasiblesolution ~x. Solving the LP means �nding such an optimal solution ~x (if it exists).Geometric interpretation. For each constraintnXj=1 aijxj � bi orxj � 0;the points ~x 2 IRn satisfying the constraint form a closed halfspace in IRn. The points forwhich equality holds form the boundary of this halfspace, the constraint hyperplane.The set of feasible solutions of the LP is therefore an intersection of halfspaces, whichis by de�nition a (possibly empty) polyhedron P . The facets of P are induced by (notnecessarily all) constraint hyperplanes. The nonnegativity constraints xj � 0 restrict P tolie inside the positive orthant of IRn.Let us do an example and consider the problemminimize �x1 � x2subject to �x1 + x2 � 1;x1 � 3;x2 � 2;x1; x2 � 0: (1.4)8



PSfrag replacementsx2 � 0
x2 � 2x1 � 3x1 � 0 �x1 + x2 � 1

Figure 1.6: Geometric interpretation of LPFigure 1.6 shows the feasible region of this LP. The fat arrow indicates the vector �cT =(1; 1), the so-called optimization direction. The objective is to �nd a feasible point thatis extreme in the optimization direction. In the example, a unique such point exists,namely the upper right corner of the feasible region. It is easy to see that this corner hascoordinates (3; 2) and therefore objective function value �5. We will come back to thisexample in the next chapter where we show how the simplex method gets to this optimalcorner.1.3 Quadratic ProgrammingAs the name suggests, the objective function in a quadratic program is no longer linearbut quadratic, of the general formnXj=1 cjxj + X1�i�j�ndijxixj:The constraints and nonnegativity restrictions are as before. De�ning a symmetric matrixD := 0BBBB@ d11 d12=2 � � � d1n=2d12=2 d22 � � � d2n=2... ...d1n=2 d2n=2 � � � dnn 1CCCCA ;we can write a quadratic programming problem in the form(QP) minimize cTx+ xTDxsubject to Ax � b;x � 0: (1.5)In this manuscript, we restrict our attention to a special class of QP problems, de�ned bymatrices D which are positive semide�nite. This means thatxTDx � 0; 8x 2 IRn: 9



As we will see later, this condition ensures that { like (LP) { problem (QP) has at mostone local minimum which is at the same time a global minimum.An example for an interesting quadratic programming problem is obtained when c =0; D = E, E the n� n-unit matrix. In this case, the function to minimize is xTx = kxk2.The problem is then to �nd the minimum-norm point in the polyhedron de�ned by theconstraints of the problem.
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Chapter 2Linear Programming and theSimplex MethodIn this chapter, we describe the standard and the revised simplex method for solvingLP problems. We proceed by explaing the standard simplex method, by example. Thispresentation is very informal but covers all the basic aspects of the method. The revisedsimplex method is then just a view from a slightly di�erent perspective.2.1 The Standard Simplex Method2.1.1 TableausWhen confronted with an LP in standard form (1.2), the simplex method starts o� byintroducing slack variables xn+1; : : : ; xn+m to transform the inequality system Ax � b intoan equivalent system of equalities and additional nonnegativity constraints on the slackvariables. The slack variable xn+i closes the gap between the left-hand side and right-handside of the i-th constraint, i.e.xn+i := bi � nXj=1 aijxj;for all i = 1; : : : ; m. The i-th constraint is then equivalent toxn+i � 0;and the linear program can be written as(LP) minimize Pnj=1 cjxjsubject to xn+i = bi �Pnj=1 aijxj (i = 1; : : : ; m);xj � 0 (j = 1; : : : ; n+m); (2.1)11



or in a more compact form as(LP) minimize cTxsubject to Ax+ Ex0 = b;x; x0 � 0; (2.2)where x0 is the vector of slack variables.Together with the objective function, the m equations for the xn+i in (2.1) contain allthe information about the LP. Following tradition, we will represent this information intableau form where the objective function { denoted by z { is written last and separatedfrom the other equations by a solid line. (The restrictions xj � 0 do not show up in thetableau but represent implicit knowledge.) In this way we obtain the initial tableau for theLP. xn+1 = b1 �a11x1 � � � � �a1nxn...xn+m = bm �am1x1 � � � � �amnxnz = c1x1 + � � � +cnxn (2.3)Let's illustrate the process of getting the initial tableau from an LP in standard formfor our initial example (1.4).After introducing slack variables x3; x4; x5, the LP in equality form isminimize �x1 � x2subject to x3 = 1 + x1 � x2;x4 = 3 � x1;x5 = 2 � x2;x1; : : : ; x5 � 0: (2.4)From this we obtain the initial tableaux3 = 1 + x1 � x2x4 = 3 � x1x5 = 2 � x2z = � x1 � x2 (2.5)Abstracting from the initial tableau (2.3), a general tableau for the LP is any systemT of m + 1 linear equations in the variables x1; : : : ; xn+m and z, with the properties that(i) T expresses m left-hand side variables xB and z in terms of the remaining n right-hand side variables xN , i.e. there is an m-vector �, a n-vector 
, an m� n-matrix �and a real number z0 such that T (written in compact form) is the systemxB = � � �xNz = z0 + 
TxN (2.6)12



(ii) Any solution of (2.6) is a solution of (2.3) and vice versa.By property (ii), any tableau contains the same information about the LP but rep-resented in a di�erent way. All that the simplex algorithm is about is constructing asequence of tableaus by gradually rewriting them, �nally leading to a tableau in which theinformation is represented in such a way that the desired optimal solution can be read o�directly. We will immediately show how this works in our example.2.1.2 PivotingHere is the initial tableau (2.5) to (1.4) again.x3 = 1 + x1 � x2x4 = 3 � x1x5 = 2 � x2z = � x1 � x2By setting the right-hand side variables x1; x2 to zero, we �nd that the left-hand sidevariables x3; x4; x5 assume nonnegative values x3 = 1; x4 = 3; x5 = 2. This means, thevector x = (0; 0; 1; 3; 2) is a feasible solution of (2.4) (and the vector x0 = (0; 0) is a feasiblesolution of (1.4)). The objective function value z = 0 associated with this feasible solutionis computed from the last row of the tableau. In general, any feasible solution that canbe obtained by setting the right-hand side variables of a tableau to zero is called a basicfeasible solution (BFS). In this case we also refer to the tableau as a feasible tableau. Theleft-hand side variables of a feasible tableau are called basic and are said to constitute abasis, the right-hand side ones are nonbasic. The goal of the simplex algorithm is noweither to construct a new feasible tableau with a corresponding BFS of smaller z-value, orto prove that there exists no feasible solution at all with smaller z-value. In the latter casethe BFS obtained from the tableau is reported as an optimal solution to the LP; in theformer case, the process is repeated, starting from the new tableau.In the above tableau we observe that increasing the value of x1 (i.e. making x1 positive)will decrease the z-value. The same is true for x2, and this is due to the fact that bothvariables have negative coe�cients in the z-row of the tableau. Let us arbitrarily choosex2. By how much can we increase x2? If we want to maintain feasibility, we have to becareful not to let any of the basic variables go below zero. This means, the equationsdetermining the values of the basic variables may limit x2's increment. Consider the �rstequationx3 = 1 + x1 � x2: (2.7)Together with the implicit constraint x3 � 0, this equation lets us increase x2 up to thevalue x2 = 1 (the other nonbasic variable x1 keeps its zero value). The second equationx4 = 3� x1 13



does not limit the increment of x2 at all, and the third equationx5 = 2� x2allows for an increase up to the value x2 = 2 before x5 gets negative. The most stringentrestriction therefore is x3 � 0, imposed by (2.7), and we will increase x2 just as much aswe can, so we get x2 = 1 and x3=0. From the remaining tableau equations, the values ofthe other variables are obtained asx4 = 3� x1 = 3;x5 = 2� x2 = 1:To establish this as a BFS, we would like to have a tableau with the new zero variablex3 replacing x2 as a nonbasic variable. This is easy { the equation (2.7) which determinedthe new value of x2 relates both variables. This equation can be rewritten asx2 = 1 + x1 � x3;and substituting the right-hand side for x2 into the remaining equations gives the newtableaux2 = 1 + x1 � x3x4 = 3 � x1x5 = 1 � x1 + x3z = �1 � 2x1 + x3with corresponding BFS x = (0; 1; 0; 3; 1) and objective function value z = �1. Thisprocess of rewriting a tableau into another one is called a pivot step, and it is clear byconstruction that both systems have the same set of solutions. The e�ect of a pivot stepis that a nonbasic variable (in this case x2) enters the basis, while a basic one (in this casex3) leaves it. Let us call x2 the entering variable and x3 the leaving variable.In the new tableau, we can still increase x1 and obtain a smaller z-value. x3 cannotbe increased since this would lead to larger z-value. The �rst equation puts no restrictionon the increment, from the second one we get x1 � 3 and from the third one x1 � 1. Sothe third one is the most stringent, will be rewritten and substituted into the remainingequations as above. This means, x1 enters the basis, x5 leaves it, and the tableau we obtainis x2 = 2 � x5x4 = 2 � x3 + x5x1 = 1 + x3 � x5z = �3 � x3 + 2x5with BFS x = (1; 2; 0; 2; 0) and z = �3. Performing one more pivot step (this time withx3 the entering and x4 the leaving variable), we arrive at the tableaux2 = 2 � x5x3 = 2 � x4 + x5x1 = 3 � x4z = �5 + x4 + x5 (2.8)14



with BFS x = (3; 2; 2; 0; 0) and z = 5. In this tableau, no nonbasic variable can increasewithout making the objective function value larger, so we are stuck. Luckily, this meansthat we have already found an optimal solution. Why? Consider any feasible solution~x = (~x1; : : : ; ~x5) for (2.4), with objective function value z0. This is a solution to (2.5) andtherefore a solution to (2.8). Thus,z0 = �5 + ~x4 + ~x5must hold, and together with the implicit restrictions x4; x5 � 0 this implies z0 � �5.The tableau even delivers a proof that the BFS we have computed is the unique optimalsolution to the problem: z = �5 implies x4 = x5 = 0, and this determines the values ofthe other variables. Ambiguities occur only if some of the nonbasic variables have zerocoe�cients in the z-row of the �nal tableau. Unless a speci�c optimal solution is required,the simplex algorithm in this case just reports the optimal BFS it has at hand.What do the algebraic manipulations we have just done correspond to in the geometricpicture as given in Figure 1.6? The following fact helps us to understand this.Fact 2.1 Consider a standard form LP with feasible polyhedron P . The point ~x0 =(~x1; : : : ; ~xn) is a vertex of P if and only if the vector ~x = (~x1; : : : ; ~xn+m) with~xn+i := bi � nXj=1 aij~xj; i = 1; : : : ; mis a basic feasible solution of the LP.This means that the simplex method only works on vertices (`corners') of the feasibleregion P , and it traverses a sequence of vertices until an optimal one is found.Two consecutive tableaus constructed by the simplex method have n � 1 nonbasicvariables in common. Their BFS thus share n� 1 zero variables. Equivalently, the corre-sponding vertices lie on n � 1 common constraint hyperplanes, and this means that theyare adjacent in P . The feasible solutions obtained in the process of continuously increasingthe value of a nonbasic variable until it becomes basic correspond to the points on the edgeof P connecting the two vertices. Establishing these facts formally requires at least somebasic polyhedra theory.Here we are content with checking the correlations in case of Example 1.4. The LPconsists of �ve constraints over two variables, therefore the feasible region is a polygon inIR2. Every constraint hyperplane de�nes a facet, so we get a polygon with �ve edges and�ve vertices. In the previous subsection we were going through a sequence of four tableausuntil we discovered an optimal BFS. The picture below shows how this corresponds toa sequence of adjacent vertices. Since the objective function value gets smaller in everyiteration, the path of vertices is monotone in the optimization direction �c.15



BFS vertex z = x1 + x2(0; 0; 1; 3; 4) (0; 0) 0(0; 1; 0; 3; 1) (0; 1) 1(1; 2; 0; 2; 0) (1; 2) 3(3; 2; 2; 0; 0) (3; 2) 5
PSfrag replacements

x2 � 0
x2 � 2x1 � 3x1 � 0 �x1 + x2 � 1

(0; 0)(0; 1) (1; 2) (3; 2)
2.2 Exception HandlingSo far our outline of the simplex method went pretty smooth. This is in part due to thefact that we have only seen one very small and trivial example of the way it works. On theother hand, the method is simple, and we will just incorporate some `exception handling'and do a little �ne tuning, again basically by example.2.2.1 UnboundednessDuring a pivot step, we make the value of a nonbasic variable just large enough to get thevalue of a basic variable down to zero. This, however, might never happen. Consider theexample minimize �x1subject to x1 � x2 � 1;�x1 + x2 � 2;x1; x2 � 0:with initial tableaux3 = 1 � x1 + x2x4 = 2 + x1 � x2z = � x1

PSfrag replacementsx1 � x2 � 1x2 � 0
x1 � 0�x1 + x2 � 2

After one pivot step with x1 entering the basis we get the tableaux1 = 1 + x2 � x3x4 = 3 � x3z = �1 � x2 + x3If we now try to bring x2 into the basis by increasing its value, we notice that noneof the tableau equations puts a limit on the increment. We can make x2 arbitrarily largeand z arbitrarily small { the problem is unbounded. By letting x2 go to in�nity we get afeasible hal
ine { starting from the current BFS { as a witness for the unboundedness. Inour case this is the set of feasible solutionsf(1; 0; 0; 3) + x2(1; 1; 0; 0) j x2 � 0g: 16



Such a hal
ine will typically be the output of the algorithm in the unbounded case. Thus,unboundedness can quite naturally be handled with the existing machinery. In the geo-metric interpretation it just means that the feasible polyhedron P is unbounded in theoptimization direction.2.2.2 DegeneracyWhile we can make some nonbasic variable arbitrarily large in the unbounded case, just theother extreme happens in the degenerate case: some tableau equation limits the incrementto zero so that no progress in z is possible. Consider the LP
PSfrag replacementsx2 � 0

�x1 + x2 � 0x1 � 1x1 � 0 minimize �x2subject to �x1 + x2 � 0;x1 � 2;x1; x2 � 0; (2.9)with initial feasible tableaux3 = x1 � x2x4 = 2 � x1z = � x2The only candidate for entering the basis is x2, but the �rst tableau equation showsthat its value cannot be increased without making x3 negative. This may happen wheneverin a BFS some basic variables assume zero value, and such a situation is called degenerate.Unfortunately, the impossibility of making progress in this case does not imply optimality,so we have to perform a `zero progress' pivot step. In our example, bringing x2 into thebasis results in another degenerate tableau with the same BFS.x2 = x1 � x3x4 = 2 � x1z = � x1 + x3Nevertheless, the situation has improved. The nonbasic variable x1 can be increasednow, and by entering it into the basis (replacing x4) we already obtain the �nal tableaux1 = 2 � x4x2 = 2 � x3 � x4z = �2 + x3 + x4with optimal BFS x = (x1; : : : ; x4) = (2; 2; 0; 0).In this example, after one degenerate pivot we were able to make progress again. Ingeneral, there might be longer runs of degenerate pivots. Even worse, it may happen thata tableau repeats itself during a sequence of degenerate pivots, so the algorithm can gothrough an in�nite sequence of tableaus without ever making progress. This phenomenonis known as cycling. If the algorithm does not terminate, it must cycle. This follows fromthe fact that there are only �nitely many di�erent tableaus.17



Fact 2.2 The LP (1.2) has at most �m+nm � tableaus.To prove this, we show that any tableau T is already determined by its basis variables.Write T asxB = � � �xNz = z0 + 
TxN ;and assume there is another tableau T 0 with the same basic and nonbasic variables, i.e.T 0 is the systemxB = � 0 � �0xNz = z00 + 
0TxN ;By the tableau properties, both systems have the same set of solutions. Therefore(� � � 0)� (�� �0)xN = 0 and(z0 � z00) + (
T � 
0T )xN = 0must hold for all n-vectors xN , and this implies � = � 0;� = �0; 
 = 
0 and z0 = z00. HenceT = T 0.There are two standard ways to avoid cycling:� Bland's smallest subscript rule: If there is more than one candidate xk for enter-ing the basis (or more than one candidate for leaving the basis, which is anothermanifestation of degeneracy), choose the one with smallest subscript k.� Avoid degeneracies altogether by symbolic perturbation.By Bland's rule, there is always a way of escaping from a sequence of degenerate pivots.For this, however, one has to give up the freedom of choosing the entering variable. This isunfavourable in many instances, and one resorts to the method of symbolic perturbationinstead, although this requires more computational e�ort. The method { also known as thelexicographic method { perturbs the right-hand side vector b of the LP by adding powersof a symbolic constant " (assumed to be in�nitesimally small). The LP then becomesminimize Pnj=1 cjxjsubject to Pnj=1 aijxj � bi + "i (i = 1; : : : ; m);xj � 0 (j = 1; : : : ; n); (2.10)and if the original LP (1.2) is feasible, so is (2.10). A solution to (1.2) can be obtained froma solution to (2.10) by ignoring the contribution of ", i.e. by setting " to zero. Moreover,any valid tableau for (2.10) reduces to a valid tableau for (1.2) when the terms involvingpowers of " are disregarded.In case of (2.9), the initial tableau of the perturbed problem isx3 = " + x1 � x2x4 = 2 + "2 � x1z = � x2 18



Pivoting with x2 entering the basis gives the tableaux2 = " + x1 � x3x4 = 2 + "2 � x1z = �" � x1 + x3 (2.11)This is no longer a degenerate pivot, since x2 (and z) increased by ". Finally, bringingx1 into the basis gives the tableaux1 = 2 + "2 � x4x2 = 2 + "+ "2 � x3 � x4z = �2� "� "2 + x3 + x4 (2.12)with optimal BFS x = (2 + "2; 2 + " + "2; 0; 0). The optimal BFS for (2.9) is recoveredfrom this by ignoring the additive terms in ". In general, the following holds, which provesnondegeneracy of the perturbed problem.Fact 2.3 In any BFS of 2.10, the values of the basic variables are nonzero polynomials in", of degree at most m. The tableau coe�cients at the nonbasic variables are una�ected bythe perturbation.To �nd the leaving variable, polynomials in " have to be compared. This is done lexico-graphically, i.e.mXk=1�k"k < mXk=1�0k"kif and only if (�1; : : : ; �m) is lexicographically smaller than (�01; : : : ; �0m). The justi�cationfor this is that one could actually assign a very small numerical value to " (dependingon the input numbers of the LP), such that comparing lexicographically is equivalent tocomparing numerically, for all polynomials that turn up in the algorithm.In the perturbed problem, progress is made in every pivot step. Cycling cannot occurand the algorithm terminates after at most �m+nm � pivot steps.In the feasible polyhedron, degeneracies correspond to `overcrowded vertices', whichare vertices where more than n of the constraint hyperplanes meet. There are several waysto represent the same vertex as an intersection of exactly n hyperplanes, and a degeneratepivot switches between two such representations. The perturbation slightly moves thehyperplanes relative to each other in such a way that any degenerate vertex is split into acollection of nondegenerate ones very close together.2.2.3 InfeasibilityTo start o�, the simplex method needs some feasible tableau. In all examples consideredso far such a tableau was readily available since the initial tableau was feasible. We saythat the problem has a feasible origin. This is equivalently expressed by the fact that theright-hand side vector b of the LP is nonnegative. If this is not the case, we �rst solve an19



auxiliary problem that either constructs a BFS to the original problem or proves that theoriginal problem is infeasible. The auxiliary problem has an additional variable x0 and isde�ned asminimize x0subject to Pnj=1 aijxj � x0 � bi (i = 1; : : : ; m);xj � 0 (j = 0; : : : ; n):This problem is feasible (choose x0 big enough), and it is clear that the original problemis feasible if and only if the optimum value of the auxiliary LP is zero. Let us do an exampleand consider the problemminimize x2subject to �x1 � x2 � �2;x1 � x2 � �1;x1; x2 � 0:with initial tableaux3 = �2 + x1 + x2x4 = �1 � x1 + x2z = x2 PSfrag replacementsx2 � 0�x1 � x2 � �2x1 � 0x1 � x2 � �1This problem has an infeasible origin, because setting the right-hand side variables tozero gives x3 = �2; x4 = �1. The auxiliary problem (with the objective function called win the tableau to avoid confusion) isminimize x0subject to �x1 � x2 � x0 � �2;x1 � x2 � x0 � �1;x0; x1; x2 � 0:with initial tableaux3 = �2 + x1 + x2 + x0x4 = �1 � x1 + x2 + x0w = + x0The auxiliary problem has an infeasible initial tableau, too, but we can easily constructa feasible tableau by performing one pivot step. We start increasing the value of x0, thistime not with the goal of maintaining feasibility but with the goal of reaching feasibility.To get x3 � 0, x0 has to increase by at least 2, and this also makes x4 positive. By settingx0 := 2 we get x3 = 0 and x4 = 1. Solving the �rst tableau equation for x0 and substitutingfrom this into the remaining equations as usual gives a new feasible tableau with x0 basicand x3 nonbasic.x0 = 2 � x1 � x2 + x3x4 = 1 � 2x1 + x3w = 2 � x1 � x2 + x3 20



The simplex method can now be used to solve the auxiliary problem. In our case, bychoosing x2 as the entering variable, we accomplish this in one step. The resulting tableauis x2 = 2 � x1 + x3 � x0x4 = 1 � 2x1 + x3w = x0Since all coe�cients of nonbasic variables in the w-row are nonnegative, this is anoptimal tableau with BFS x = (x0; : : : ; x4) = (0; 0; 2; 0; 1). The associated zero w-valueasserts that the LP we originally wanted to solve is actually feasible, and we can evenconstruct a feasible tableau for it from the �nal tableau of the auxiliary problem by ignoringx0 and expressing the original objective function z in terms of the nonbasic variables; fromthe �rst tableau equation we get in our case z = x2 = 2 � x1 + x3, and this gives a validfeasible tableaux2 = 2 � x1 + x3x4 = 1 � 2x1 + x3z = 2 � x1 + x3with corresponding BFS x = (x1; : : : ; x4) = (0; 2; 0; 1) for the original LP. For this to work,x0 should be nonbasic in the �nal tableau of the auxiliary problem which is automaticallythe case if the problem is nondegenerate. (To guarantee this in the general situation,choose x0 as the leaving variable whenever this is a possible choice.)If the optimum value of the auxiliary problem is nonzero, we can conclude that theoriginal LP is infeasible and simply report this fact.2.3 The Revised Simplex MethodIn the preceding sections we have quite informally covered all the basics one would need tocome up with an actual implementation of the simplex method. Let us do a brief analysisof the runtime in terms of arithmetic operations. To �nd the entering variable, at mostn entries of the tableau's z-row need to be examined, contributing time O(n). Searchingfor the leaving variable takes constant time per basic variable, for a total of O(m) time.Finally, the tableau update can be done at constant cost per entry, requiring time O(mn).This means, the tableau update is the dominationg operation.Considering this, you might wonder whether you really need to store and update thewhole tableau in each iteration. Namely, if you search for an entering variable, you onlyneed the z-row of the tableau, and for �nding the leaving variable, all tableau columnsexcept the one corresponding to the entering variable are irrelevant, so why do you needto keep them?You would prefer to have a method that generates tableau entries `on the 
y', just whenyou need them. There is hope for such a method, because the argument explaining Fact21



2.2 shows that the tableau is uniquely determined by the basic variables, so the tableauhas a compact representation in form of the subscript set B. We just need to make thisrelationship between B and the tableau explicit in the sense that we get formulas to obtainthe tableau entries from B.The revised simplex method is centered around such formulas. It works on an implicitrepresentation of the tableau and completely saves the tableau update. At the same time,the relationship between consecutive tableaus and their connection to the original databecome clearer.To describe the revised simplex method, let us now consider an LP in equality form,given as(LP) minimize cTxsubject to Ax = b;x � 0; (2.13)with n variables and m equality constraints. In view of the previous sections, this LP maycome from an LP in inequality form (1.3) after adding slack variables, or it might havebeen given to us in this format right from the start. Assume now, we are given a tableauxB = � � �xNz = z0 + 
TxN (2.14)to (2.13), its entries �; 
;� and z0 being determined by the choice of the basic variablesxB.For subscript set G � [n] := f1; : : : ; ng let AG collect the columns corresponding tothe variables with subscripts in G. Then the equations of (2.13) read asABxB + ANxN = b: (2.15)Since (2.14) has by de�nition of a tableau the same set of solutions as (2.15), the formeris obtained by simply solving (2.15) for xB, which givesxB = A�1B b� A�1B ANxN ; (2.16)and therefore� = A�1B b;� = A�1B AN : (2.17)By similar reasoning we compute 
 and z0. As before, let cG collect the entries of ccorresponding to variables with subscripts in G. Then the equation for z in (2.13) readsas z = cTBxB + cTNxN : (2.18)Again by the tableau property, the last row of (2.14) is equivalent to (2.18), and theformer is obtained by simply substituting from (2.16) into (2.18), which givesz = cTBA�1B b + (cTN � cTBA�1B AN)xN ; (2.19)22



and thereforez0 = cTBA�1B b;
T = cTN � cTBA�1B AN : (2.20)Rather than maintaining the tableau (2.14) explicitly, the revised simplex methodmaintains only the current BFS, the basic subscript set B as well as the inverse of thematrix AB. Note that if (2.13) has been obtained by adding slack variables to (1.3), thenbefore the �rst iteration, AB = A�1B = E, E the unit matrix. How to obtain a �rst basisB in case the LP is directly given in the format (2.13) is an exercise.Let us now recall the details of the pivoting step and see how they are realized in therevised simplex method. It is important to note that we are not going to see anythingnew, we are just taking a look from a di�erent angle.The substeps of the revised simplex method have certain historical names. The processof �nding the entering variable is known as pricing, to �nd the leaving variable, we performa ratio test, and the process of going from B to B0 and A�1B to A�1B0 , B0 the new basis, isknown as the update.2.3.1 PricingTo �nd the entering variable, we evaluate 
T according to (2.20), i.e. setyT := cTBA�1B (2.21)and 
T = cTN � yTAN : (2.22)This takes O(m2) time to compute yT , given that A�1B is available, and O(m) time for everyentry of 
T . A variable xj may enter the basis if its corresponding 
-entry is negative.Thus, to �nd an entering variable, we do not necessarily have to evaluate all the entries of
T , we may stop as soon as we have found a negative one. This observation is a potentialsource of major savings in comparison with the standard simplex method, although inthe worst case all entries of 
 may have to be evaluated, leading to O(mn) arithmeticoperations again.2.3.2 Ratio TestFrom (2.14) we immediately see that if we increase the value of the entering variable xj tosome value t � 0, the values of the basic variables change according to the formulaxB(t) = � � �jt = � � A�1B Ajt: (2.23)Recall that the leaving variable was a variable xi; i 2 B which becomes zero �rst whenincreasing t. For each i 2 B, the value ti such that xi(ti) = 0 is the solution of the linearequation�i = �ijti; 23



equivalentlyti = �i�ij ; (2.24)�i and �ij the components of � resp. �j corresponding to variable xi. Equation (2.24)explains the term ratio test.While the BFS � is assumed to be available, te column �j of the tableau matrix �corresponding to the entering variable xj is computed according to (2.17), i.e. by setting�j := A�1B Aj: (2.25)Again, since A�1B is available, this can be done in time O(m2).The leaving variable and the new BFS are easily computed from this (and the old BFS)in time O(m), just like the standard simplex method does it from the explicit tableaurepresentation. One remark is in order. If we apply the method of symbolic perturbationto cope with degeneracies, this step gets more expensive. In order to obtain the newBFS, in the worst case n polynomials of degree up to n in " have to be compared andupdated (consider the step from (2.11) to (2.12) in Subsection 2.2.2). This takes timeO(m2) rather than O(m) when only actual numbers are involved. Luckily, this does notintroduce asymptotic overhead, since the previous steps already take O(m2) time.2.3.3 UpdateThe tableau update is replaced by an update of the set B and the matrix A�1B . ConsideringB as an ordered set, B0 arises from B by replacing the leaving index i at some position kwith the entering index j. This means, AB0 arises from AB by replacing the k-th column,and the new column is exactly the column Aj. Invoking (2.25), we getAB0 = AB 0BBBBB@ 1 � � � �1j � � � 0. . . ...... . . .0 � � � �nj � � � 1
1CCCCCA ; (2.26)so AB is updated by multiplying with a unit matrix whose k-th column is replaced by thecolumn �j already computed in (2.25). Such a matrix is known as an eta matrix. (2.26)now impliesA�1B0 = 0BBBBBBBB@ 1 � � � ��1j=�kj � � � 0. . . ...1=�kj... . . .0 � � � ��nj =�kj � � � 1
1CCCCCCCCAA�1B ;
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and this multiplication can be performed in time O(m2).As a consequence, a pivot step in the revised simplex method can be done in timeO(mn), as before. However, the dominating step is now the pricing, where savings arepossible. Moreover, the revised simplex method has less space reqirements because onlyan m�m-matrix rather than the whole tableau of size O(mn) needs to be stored. If n isquite large, this makes a tremendous di�erence.2.4 ComplexityIt is clear from the previous discussions that the worst-case complexity of the simplexmethod is O(mnI), where I is the number of iterations. This number I can be almostanything, and it crucially depends on the problem and on the way the entering variable ischosen in case there is more than one choice. The rule according to which the selection isthen made is called a pivot rule.The pivot rule originally proposed by Dantzig for his method is the following: choosethe variable j with the smallest value of 
j. The intuition is that by bringing this variableinto the basis, the objective function decreases most rapidly. Namely, if variable xj is setto t � 0, the objective function value changes from z0 to z0 + 
jt.Under this rule, also known as Dantzig's rule, the typical number of iterations of thesimplex method only depends on m. This means, if m is a constant, the simplex algorithmwill in many cases be a linear time algorithm. But beware: there are examples where thenumber of iterations is much larger, even exponential in m. However, for the applicabilityof the simplex method in practice, such examples are not too relevant, and the linearbehaviour is usually observed in most cases.Whenever we apply the simplex method (and its quadratic-programming counterpartin Chapter 4) in computational geometry, we have the situation that n � m, where mis very small or constant. From what we have just said, we then expect fast linear-timealgorithms for the problems we consider.If you really want provable results, there exist (randomized) pivot rules which guaranteean expected runtime of O(n). Their drawback is that they are not that e�cient in practice.What is still missing is a practically fast implementation which is provably good.
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Chapter 3Convex Programming and theKuhn-Tucker ConditionsIn the previous chapter we have considered linear programs, i.e. problems of minimizinga linear function cTx in n variables x, subject to constraintsAx � b;x � 0(inequality form) orAx = b;x � 0(equality form). The simplex method actually works with problems in equality form, butthe inequality form is a convenient starting point, because after introducing slack variables,an initial tableau (although not necessarily a feasible one) is readily available. As one formmay be more convenient than the other in some considerations, we will keep using bothconstraint formats.In this chapter, the objective function will no longer be restricted to be a linear function.As indicated in the introduction, our ultimate goal is to minimize quadratic functionscTx + xTDx, where D is a symmetric, positive semide�nite matrix, but for this chapter,we focus on the even more general class of continuosly di�erentiable convex functions (weomit the condition `continuosly di�erentiable' in all subsequent statements).This means, we consider problems of minimizing a convex function subject to linear(in)equality and nonnegativity constraints. Such problems are referred to as Convex Pro-gramming (CP). For any n-vector c and any symmetric, positive semide�nite n�n-matrixD, the quadratic functioncTx+ xTDxis such a convex function. 26



3.1 Basics about Convex FunctionsFirst of all, what is a convex function? Here is the formal de�nition.De�nition 3.1 f : IRn 7! IR is convex if and only if for all x; x0 2 IRn and all t 2 [0; 1],f((1� t)x + tx0) � (1� t)f(x) + tf(x0) (3.1)holds.This means, a convex function looks like a `bowl': whenever you connect two pointsf(x); f(x0) by a line segment, this line segment lies above the graph of the function. Notethat we do not require strict convexity, so a linear function is convex, too, although it doesnot quite look like a bowl. An alternative de�nition of a convex function is obtained byrequiring the regionf+ := f(x; xn+1) 2 IRn+1 j xn+1 � f(x)gabove the graph of f to be a convex set, meaning that with any two points x; x0 2 f+,their convex combination (1� t)x+ tx0; t 2 [0; 1] is also in f+.The following lemma explains why convex functions are `nice': over a convex domain,they do not have any proper local minima in which one might get stuck during the opti-mization process.Lemma 3.2 Let C � IRn be convex. x 2 C is a (global) minimum of f over C if and onlyif rf(x)(x0 � x) � 0for all x0 2 C, whererf(x) :=  @f(x)@x1 ; : : : ; @f(x)@xn !is the gradient of f at x.Proof. Consider the convex combination x(t) of x and x0, given asx(t) := (1� t)x + tx0; t 2 [0; 1]:Because C is a convex set, x(t) is again in C, and@@tf(x(t))jt=0 � 0must hold, otherwise we had@@tf(x(t))jt=0 = limt!0 f(x(t))� f(x)t < 0;27



and f(x(t)) < f(x) would hold for some small t. On the other hand,@@tf(x(t))jt=0 = rf(x)(x0 � x);by the chain rule.If x is not a minimum, let x0 be any better solution. By convexity we can then arguethat f(x(t))� f(x)t � f(x0)� f(x) = � < 0;for all t 2 [0; 1]. This impliesrf(x)(x0 � x) = limt!0 f(x(t))� f(x)t � � < 0:
3.2 Kuhn-Tucker TheoremsNow we are ready to prove the so-called Kuhn-Tucker conditions which provide optimalitycriteria for exactly the class of problems we are interested in. Let us start with problemsin inequality form.Theorem 3.3 (Kuhn-Tucker conditions for inequality constraints.) Consider the problem(CP) minimize f(x)subject to Ax � b;x � 0; (3.2)x an n-vector, A an m � n-matrix, b an m-vector, f : IRn 7! IR a convex function. Afeasible solution ~x 2 IRn is optimal for CP if and only if there is an m-vector � � 0 andan n-vector � � 0 such that(i) rf(~x) = ��TA+ �,(ii) �T (A~x� b) = 0,(iii) �T ~x = 0.Before we give a proof of this result, let us discuss its geometric interpretation. Formulatedin a complicated way, condition (i) means that the gradient vector of f at the point ~x isa negative linear combination of the rows of A and the rows of the negative n � n-unitmatrix �E. These rows are exactly the normal vectors of the hyperplanes that delimit theconstraint halfspacesAx � b;�x � 0; 28



PSfrag replacements
f = constf = constf = const

aTi x � bi aTj x � bjaj ai~x
�rf(~x)Figure 3.1: The Kuhn-Tucker optimality conditionwhere each normal vector `points away' from its halfspace. Conditions (ii) and (iii) saythat only those constraints contribute to the linear combination that are binding at ~x, i.e.that hold with equality at ~x. Thus, ~x is optimal if and only if �rf(~x) lies in the conespanned by the normal vectors of the binding constraints (Figure 3.1).The Theorem will be a corollary of the following statement about equality-constrainedCP.Theorem 3.4 (Kuhn-Tucker conditions for equality constraints.) Consider the problem(CP) minimize f(x)subject to Ax = b;x � 0; (3.3)x an n-vector, A an m � n-matrix, b an m-vector, f : IRn 7! IR a convex function. Afeasible solution ~x 2 IRn is optimal for CP if and only if there is an m-vector � and ann-vector � � 0 such that(i) rf(~x) = ��TA+ �,(ii) �T ~x = 0.Unlike in Theorem 3.3, we no longer require nonnegativity of �. Moreover, the condition�T (A~x�b) = 0 does not appear here, because it is trivially satis�ed by all feasible solutions~x. 29



Proof. (Kuhn-Tucker conditions for equality constraints.) The proof is based on Lemma3.2 and the simplex method. First, let us assume that ~x is optimal. From the Lemma weget rf(~x)~x � rf(~x)x;for all feasible x. This means, ~x is an optimal solution to the linear programming problem(CP) minimize cTxsubject to Ax = b;x � 0; (3.4)with cT = rf(~x).Let ~X = ( ~X1; : : : ; ~Xn) be an optimal basic feasible solution to (3.4), associated with abasis B � [n]. We have cT ~x = cT ~X, but not necessarily ~x = ~X. The tableau associatedwith B isxB = � � �xNz = z0 + 
TxN ;where
T = cTN � yTAN ; yT = cTBA�1B ; (3.5)with 
 � 0 because B was an optimal basis, see (2.21), (2.22).Now de�ne� := �y;�i := ( 0 if i 2 B
i if i 2 N ; i = 1; : : : ; n:We claim that the vectors � and � satisfy the requirements of the Theorem. We alreadyknow that � � 0. Moreover, by (3.5),cTB = yTAB = yTAB + �TB;cTN = yTAN + 
T = yTAN + �TN ;so rf(~x) = cT = yTA+ � = ��TA+ �:Finally, we need to show that �T ~x = 0. For this, we recall that the z-row of the tableauexpresses the objective function value z = cTx in terms of the nonbasic variables. Thuswe getcT ~x = z0 + 
T ~xN = z0 + �T ~x;cT ~X = z0; 30



because ~XN = 0 by de�nition of a basic feasible solution. From cT ~x = cT ~X, �T ~x = 0follows.For the other direction let us assume that vectors �; � exist that satisfy the requirementsof the Theorem. We claim that in this case ~x is an optimal solution of the linear problem(3.4). Via Lemma 3.2, this also implies that ~x is an optimal solution to the original problem(3.3).To show that ~x optimally solves (3.4), we prove that the inequality cT ~x � cTx followsfrom Ax = b; x � 0. First note that the latter conditions (using � � 0) imply��TAx = ��T b;�Tx � 0;so (��TA + �)x � ��T b: (3.6)This further givescTx = rf(~x)x = (��TA+ �)x (3:6)� ��T b = ��TA~x + �T ~x = rf(~x)~x = cT ~x:To prove Theorem 3.3, convert the inequalities Ax � b into equalities by introducingslack variables. Then apply Theorem 3.4.Finally, here is another Kuhn-Tucker theorem, this time for problems with generalequality and inequality constraints.Theorem 3.5 (Kuhn-Tucker conditions with general constraints.) Consider the problem(CP) minimize f(x)subject to Ax = b;Cx � d; (3.7)x an n-vector, A an m1�n-matrix, b an m1-vector, C an m2� n-matrix, d an m2-vector,f : IRn 7! IR a convex function. A feasible solution ~x 2 IRn is optimal for CP if and onlyif there is an m1-vector � and an m2-vector � � 0 such that(i) rf(~x) = ��TA+ �TC,(ii) �T (C~x� d) = 0.Proof. Substitute x = y�z; y; z � 0 and introduce slack variables to turn the inequalitiesCx � d into equalities. Then apply Theorem 3.4.
31



Chapter 4Quadratic ProgrammingIn this chapter, we consider quadratic programming problems, i.e. problems of the type(QP) minimize cTx+ xTDxsubject to Ax = b;x � 0; (4.1)where c is an n-vector, A an m � n-matrix, b an m-vector and D a symmetric, positivesemide�nite n� n-matrix, i.e. xTDx � 0 holds for all x.Of course, we would like to apply the machinery of the previous chapter, so we shouldmake sure that such problems are in the class CP.Lemma 4.1 f(x) = cTx + xTDx is a convex function.To solve problem QP, we will try to stick to the simplex method as close as we can.There is, however, one major obstacle. In case of LP, there is always an optimal solutionwhich is a vertex of the feasible region. In QP, this is not necessarily the case. As a trivialexample, consider the problem of minimizing the function x2 subject to the constraints�1 � x � 1. The feasible region is a polytope in 1-space with vertices �1 and 1, but theunique optimal solution occurs in the interior, at the point 0. Therefore, while for LP, thesimplex method can restrict its attention to basic feasible solutions, this is not possiblefor QP; in fact, every feasible solution can appear as the optimal solution for a suitableobjective function.However, with an appropriate generalization of the concept of a basis, we will be backin a �nite space of solutions we need to consider. To motivate this concept, let us derivean alternative de�nition of an LP basis.4.1 LP Bases ReviewedConsider the LP in equality form(LP) minimize cTxsubject to Ax = b;x � 0 (4.2)32



B � [n] is a basis if and only if there exists a feasible tableauxB = � � �xNz = z0 + 
TxN :Via the tableau, the values of the nonbasic variables xN uniquely determine the values ofthe basic variables xB. In particular, the current BFS ~x is determined by ~xN = 0. In otherwords, ~x is the unique feasible (and therefore optimal) solution to the problem(LP(B)) minimize cTxsubject to Ax = b;xB � 0;xN = 0: (4.3)Moreover, because ~x is unique anyway, the constraints xB � 0 are redundant, and ~x iseven an optimal solution to the `unconstrained' problem(ULP(B)) minimize cTxsubject to Ax = b;xN = 0: (4.4)In order for the simplex algorithm really to work, we have required the LP to benondegenerate, and this meant that we do not allow any BFS � = A�1B b to have zeroentries. In Subsection 2.2.2, we have achieved this by symbolically perturbing the right-hand side b, with the e�ect that the following stronger property holds, which we wouldlike to assume for the rest of the manuscript.Assumption 4.2 The system Ax = b; xN = 0 has solutions only for sets N with N �n�m. Equivalently, the system ABxB = b has solutions only for sets B with jBj � m.Under this assumption, an LP basis can be de�ned in yet another way: let z(G) bethe optimum value of LP(G), G � [n] (we set z(G) := �1 if the problem is unbounded).Let z0 6= �1 be some value. Then we can say that a basis is an inclusion-minimal setB such that z(B) = z0. Considering all possible values z0 = z(G); G � [n], we obtain allpossible bases B. Why? First of all, nondegeneracy implies jBj � m, while minimalityimplies jBj � m, so B has the right size by this de�nition. Moreover, AB must be regular,otherwise the system ABxB = b would have at least a one-dimensional solution space,which in particular means that a solution exists with xi = 0 for some i 2 B. But thiscontradicts the nondegeneracy.4.2 Pivoting in Quadratic ProgrammingTo generalize the simplex method to quadratic programming problems (4.1), we start o�with a de�nition of a basis which coincides with the basis concept of LP in case the matrixD vanishes. Throughout this section, it is always useful to see what happens if D = 0and check whether in this case, familiar statements about LP arise (needless to say, theyshould, otherwise something is wrong). 33



4.2.1 BasesConsider the problem(QP(B)) minimize cTx+ xTDxsubject to Ax = b;xB � 0;xN = 0; (4.5)and let z(B) denote the objective function value of an optimal solution of QP(B). (Thisproblem may be unbounded in which case we have z(B) = �1.)De�nition 4.3 A basis of QP is an inclusion-minimal set B such that z(B) = z0, forsome �xed value z0 6= �1.A few facts follow from this de�nition. As before, nondegeneracy implies jBj � m, butwe do not necessarily have jBj = m. In fact, jBj can be as large as n. Beyond that, thefollowing statements hold.Lemma 4.4 Let B be a basis of QP.(i) Any optimal solution ~x to QP(B) satis�es ~xB > 0.(ii) QP(B) has a unique optimal solution ~x.(iii) ~x is at the same time an optimal solution to the unconstrained problem(UQP(B)) minimize cTx + xTDxsubject to Ax = b;xN = 0: (4.6)Proof. (i) follows from the minimality of B. To see (iii), apply the Kuhn-Tucker Theorem3.5 to QP(B). Because of ~xB > 0, the vector � in this theorem vanishes. Then, however,~x is an optimal solution to UQP(B) by the same Theorem. To prove (ii), let us write outthe conditions of Theorem 3.5 explicitly, for problem UQP(B). We get that x is optimalfor UQP(B) if and only if an m-vector � and n-vector � with �B = 0 exists such thatAx = b;xN = 0;cT + xTD = ��TA+ �T : (4.7)This means, the (x; �; �) de�ning optimal solutions form an a�ne space L. We claimthat this a�ne space is a single point, proving (ii) (because L in particular contains theoptimal solutions to QP(B)) and uniqueness of the vectors �; �. First assume, we hadoptimal solutions (~x; �; �), (~x0; �0; �0) with ~x 6= ~x0, where ~x is assumed to be any optimalsolution to QP(B). Then fx j (x; �; �) 2 Lg contains a line. Moving from ~x along this line,34



we can reach an optimal solution ~x00 to QP(B) with ~x00i = 0 for some i 2 B, contradictingthe minimality of B. This means, we must have x = ~x for all (x; �; �) 2 L. Then, however,� must be unique as well, because the nondegeneracy assumption implies that the rows ofAB are linearly independent (exercise), so that � is already uniquely computed from thesubsystem of equationscTB + ~xTBD(B) = ��TAB;D(B) being the quadratic submatrix of D correspodning to rows and columns with indicesin B. Finally, it also follos that � is unique.This means, just like in LP, a basis B determines a unique optimal solution ~x to a`subproblem' QP(B). While for LP, this uniqueness already follows from the uniquenessof a feasible solution, in case of QP we need the additional equations imposed by theKuhn-Tucker optimality conditions.4.2.2 Optimality conditionGiven an optimal solution ~x to some basic problem QP(B) which is then also a solution toUQP(B), we would { like in the LP case { like to �nd a variable xj; j 62 B whose increasewould lead to a smaller objective function value. Equivalently, we would like to �nd anindex j such that z(B [ fjg) < z(B) or certify that no such index exists. The followingLemma characterizes the set of improving indices.Lemma 4.5 Let B be a basis of QP with associated optimal solution ~x and vectors �; �,�B = 0 such thatcT + ~xTD = ��TA+ �T : (4.8)(By the previous lemma, ~x; � and � are unique.) Then z(B [ fjg) < z(B) holds if andonly if �j < 0.Proof. QP(B[fjg) di�ers from QP(B) only by the fact that the equality xj = 0 has beenreplaced by the inequality xj � 0. In the corresponding Kuhn-Tucker conditions accordingto Theorem 3.5, this replaces the previously unrestricted variable �j by a restricted variable�j � 0. It follows that ~x is optimal for QP(B [fjg) if and only if �j � 0 really holds. TheLemma follows.Note that if �j � 0 for all j 62 B, then ~x is an optimal solution to the whole problem.4.2.3 The Pivot StepHow do we actually �nd the improved solution z(B [ fjg) and a corresponding basis B0 ?In LP, this was easy, we just needed to increase xj until some other variable xi got down tozero. At that point, B0 = B [ fjg � fig is the desired new basis with z(B0) = z(B [ fjg).In case of QP, it's not that simple, because of three reasons.35



(i) What does `increasing xj' mean? In case of LP, a unique feasible solution to theproblem LP(B[fjg) is associated with each possible value of xj (and these solutionstaken together form an edge of the feasible region which is traversed as xj increases).In case of QP(B), many feasible solutions may correspond to a �xed value of xj.(ii) Although it is feasible to increase xj until some xi; i 2 B goes down to zero, itmay not be pro�table. In other words, the objective function value might reach aminimum before any other constraints become binding. In case of a linear objectivefunction, of course, this can not happen.(iii) Even if xj pro�tably increases until some basic variable reaches zero, the feasiblesolution we have at this point is not necessarily the desired optimal solution toQP(B [ fjg). In LP we are only allowed to argue in that way because xj cannotbe increased further without violating feasibility. In QP, it may well be possibleto `change' the direction in which we move our solution (because this direction isin general not unique, see item (i)) and still keep improving the objective functionfurther without leaving the feasible region.Item (i) can easily be dealt with if we consider for �xed value t of xj the unique optimalsolution of the problem QP(B [ fjg) subject to the additional constraint xj = t. Why isthis solution unique and how do we get it?Let ~x be the optimal solution to QP(B) and UQP(B) and rewrite the optimalityconditions (4.7) in matrix form. We get that ~x is obtained from the uniquely solvablesystem of equations0B@ D AT �E(N)TA 0 0�E(N) 0 0 1CA0B@ x�� 1CA = 0B@ �cb0 1CA ; (4.9)E(N) the n� n-matrix whose j-th column Ej satis�esEj := ( ej; if j 2 N;0; if j 62 NNow de�ne B̂ := B [ fjg and consider the problemUQPfxj=tg(B̂) minimize cTx + xTDxsubject to Ax = b;xN�fjg = 0;xj = t; (4.10)which arises from UQP(B) by replacing equality xj = 0 with xj = t. The Kuhn-Tuckerconditions do not change at all, and we get that the optimal solution ~x to (4.10) is obtainedby solving the system0B@ D AT �E(N)TA 0 0�E(N) 0 0 1CA0B@ x�� 1CA = 0B@ �cb�tej 1CA (4.11)36



for x; �; �. If (4.9) is uniquely solvable, so is (4.11) because both systems only di�er intheir right-hand side. As long as the solution ~x of (4.11) is feasible for QP(B̂), it is alsoan optimal solution toQPfxj=tg(B̂) minimize cTx + xTDxsubject to Ax = b;xB � 0;xN�fjg = 0;xj = t; (4.12)
Now we have { just like in LP { the situation that a unique point ~x(t) is associated toeach value xj = t.Let's consider item (ii) above. How large should we let xj get? In LP, our only worrywas that at some point, the solution ~x(t) becomes infeasible, and that's where we had tostop. Of course, then we also have to stop here, and computing for each variable xi; i 2 Bthe value ti at which it becomes zero, is just a classical case of the ratio test as we had itbefore in LP (see Subsection 2.3.2).But we may have to stop earlier, namely when the objective function reaches a minimumbefore any basic variable has become zero. How do we notice this? That's easy: as soonas we get �j = 0 from (4.11), we know that the current solution is optimal not only forQPfxj=tg(B̂) but also for QP(B̂). Namely, in this case the Kuhn-Tucker conditions implythat the current solution is optimal for the problemminimize cTx + xTDxsubject to Ax = b;xB � 0;xN�fjg = 0;and because we know that xj � 0 also holds, we have the desired optimum for QP(B̂).Moreover, B̂ is a basis (exercise). Finding the time tj at which �j becomes zero is just aseasy as �nding the times ti before.Concerning item (iii), we still need to discuss what happens at the point where thecurrent solution ~x(t) is about to become infeasible for QP(B̂), satisfying ~xi(t) = 0 forsome i 2 B. Then ~x is not only the unique optimal solution to the problem QPfxj=tg(B̂)that we currently handle, but also the unique optimal solution for QPfxj=tg(B̂ n fig). Ifwe just update B̂ to B̂ n fig, we are back in the situation where we have problem (4.10)and a unique optimal solution to it. Then we just repeat the preceding steps. Because B̂gets smaller in every such `subiteration', we must sooner or later end up in the situationthat �j becomes zero, in which case we have found our new basis, and the pivot step is�nished. 37



4.3 Size of a BasisIn an implementation, we really need to solve the linear system (4.11), but in the formwe have written it down, it is a system in 2n +m equations in 2n +m unknowns, whichis not feasible to solve for large n. In contrast, for LP, the linear systems we needed tosolve were of order m�m. In particular, their sizes are independent of n. Luckily, we donot need to solve the large system (4.11), there is an equivalent smaller one. To see this,we rewrite problem UQPfxj=tg(B̂) (whose optimal solution is characterized by (4.11)) as aproblem over only jB̂j variables, namely asUQPfxj=tg(B̂) minimize cT̂BxB̂ + xT̂BD(B)xB̂subject to AB̂xB̂ = b;xj = t: (4.13)Considering the Kuhn-Tucker conditions for this problem, we get a system in only jB̂j +m + 1 variables. This means, if B̂ is su�ciently small, we deal with small systems again.Since jB̂j is always at most jBj + 1, B the basis we have started with, we would like tohave a bound on the maximum basis size. As the next Lemma shows, this bound dependson the rank of D.Lemma 4.6 Let ~x be an optimal solution to (QP). If r denotes the rank of D, then anoptimal solution ~x0 to (CP) exists such thatjfj : ~x0j > 0gj � m + r:In case of LP, i.e. if D is the zero matrix of rank 0, we recover the statement that theoptimal solution is a BFS, w.l.o.g. For QP it follows that any basis has size at most m+ r.Proof. By Theorem 3.5, there are vectors �; � such thatcT + ~xTD = ��TA+ �:It follows that any y in the a�ne spaceL = fy j yTD = xTDg \ fy j Ay = bgis also optimal. We havedim(L) � dim(fy j yTD = xTDg) + dim(fy j Ay = bg)� n� (n� r) + (n�m)� n= n�m� r:This means, the set of optimal solutions contains the n � m � r-dimensional polytopeL \ fx j x � 0g. A vertex ~x0 of this polytope has the required property.
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Chapter 5Some ApplicationsIn this �nal chapter we come back to the examples of geometric optimization problems in-troduced back in the �rst section of the �rst chapter, and see how the previously developedalgorithms can e�ciently be applied to them.Look at the Largest ball in polyhedron problem (LBIP) as de�ned in (1.1). In thisformulation, the problem is LP with n inequality constraints but only d + 1 variables.Recall that our scenario was that d is small but n quite large. If we would just applythe simplex method to this problem, we would introduce n slack variables to turn theinequalities into equalities; subsequently we would then work with bases B of size n,involving the computations of inverses A�1B of n�n-matrices. Computing the inverse takesO(n3) time if done with Gaussian elimination, and this is just too much.We would rather have the problem the other way round, featuring many variables butonly few constraints. Then the simplex method would work with small basis matrices andcan be expected to be e�cient.Luckily, there is something called duality in linear programming. Consider the problem(LP) minimize cTxsubject to Ax � b: (5.1)(This is the situation in (LBIP)). One can prove that if (LP) has an optimal solution, thenalso the problem(LP') minimize bTysubject to ATy = �c;y � 0 (5.2)has an optimal solution, and the optimal solutions coincide. Moreover, from an optimalBFS to (5.2), an optimal BFS to (5.1) can easily be reconstructed. In case of (LBIP), (5.2)has only d+1 equality constraints (and n variables); it can therefore e�ciently be handledusing the simplex method, i.e. usually in time O(n) if d is assumed to be a constant, seeSection 2.4.The LP arising from the Smallest enclosing annulus problem (area version) is alsotransformed to a problem with few constraints, using the same kind of duality, againleading to an algorithm which we expect to be an O(n) algorithm.39



There are several versions of the duality theorem, depending on whether the problemhas equality or inequality constraints, nonnegativity restrictions or not etc., but all theseversions are essentially equivalent.The version which is easiest to prove using the material of this manuscript is probablythe following.Consider the problems(LP) minimize cTxsubject to Ax � b;x � 0 (5.3)and (LP') maximize bTysubject to ATy � c;y � 0: (5.4)If (5.3) has an optimal solution, so has (5.4), and both optimal values coincide.The Distance of polytopes problem (DOP) as de�ned in (1.1) is directly solvable withinour framework in an e�cient manner, because it only has 2d + 2 equality constraints.Moreover, the objective function was(p� q)T (p� q) = (p� q)T  E �E�E E ! (p� q);which is a positive de�nite matrix; consequently, the matrix D in the objective functionhas only rank 2d (recall that this was important to have only small systems of equationsto solve). As for the simplex method itself, the variant for quadratic programming is alsoexpected to be fast in practice, if at each stage, the variable xj is entered which has thesmallest value of �j, see Subsection 4.2.2. As for the problems before, we expect an O(n)algorithm for (DOP) in case the dimension is constant.Finally, we have the Smallest enclosing ball problem. Why is this a quadratic program-ming problem? Let p1; : : : ; pn be the input points. Now we claim that the problem can beformulated in the form(SEB) minimize pTp� pTi pixi;subject to p = Pni=1 xipi;Pni=1 xi = 1;x � 0; (5.5)and the optimal point p is the center of the smallest enclosing ball of the points. To provethis is the `master exercise'.Problem (SEB) has d + 1 equality constraints, and the rank of the matrix D in theobjective function { when formulated as QP { is d. Thus, the problem can e�ciently besolved using the adaptation of the simplex method for quadratic programming.40


