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Chapter 1

Introduction

1.1 Geometric Optimization

In all generality, a geometric optimization problem consists in finding a geometric object
of some type which is optimal according to some criterion, among all objects of this type
that satisfy a certain geometric condition. Let’s consider some examples.

Smallest enclosing ball. Given n points in IR¢, find the ball of smallest volume that
contains all the points (Figure 1.1).

Figure 1.1: Smallest enclosing ball of point set
Smallest enclosing ellipsoid. Given n points in IR? find the ellipsoid of smallest
volume that contains all the points (Figure 1.2).

Distance of polytopes. Given two polytopes Pi, P, in IR? defined by n; resp. mns
points, find the shortest line segment connecting P; and P, (Figure 1.3).
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Figure 1.2: Smallest enclosing ellipse of point set

Smallest enclosing annulus. Given n points in the plane, find the annulus of smallest
area (or width) that contains all the points (Figure 1.4).

Largest ball in polyhedron. Given a polyhedron defined by n halfspaces in IR?, find
the largest ball contained in the polyhedron (Figure 1.5).

All these problems have the property in common that they are defined by n objects in
some dimension d (where d = 2 in case of the smallest enclosing annulus problem). The
scenario in which these problems are typically studied in computational geometry is that
n is large while d is small or even constant. After all, computational geometry finds its
applications in computer graphics, CAD etc. where the dimension is usually two or three.

In this scenario, the above mentioned problems have something more in common,
namely that the optimal solution is defined by only few of the input objects — most of
them are redundant. To make it more formal, the optimal object is defined by a set of
input objects whose size is only a function of d. Let’s check this for one specific example,
namely the smallest enclosing ellipsoid, for the case d = 2.

It is quite obvious that points which do not lie on the optimal ellipse can be removed
from the point set without changing the optimal ellipse. This means, the optimal ellipse
is already determined by the points that lie on it. Still, this might be all (or nearly all)
points if we have bad luck. But recall from the talk of Jiirgen Richter-Gebert that five
points already determine a unique conic. This means, if more than five points lie on the
ellipse, we can remove all but five, and still the ellipse will not change, because there is only
one ellipse through the five points. This means, the smallest enclosing ellipse of n points
is already determined by at most five points. If we only knew them, then the problem
would be easy, but of course, the main problem is to find this subset of the n points that
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Figure 1.3: Distance of polytopes

Figure 1.4: Smallest enclosing annulus of point sets

determine the solution.

In case of the other examples we have given above, it is also easy to determine the
number of input objects which are necessary to define the optimal solution, and you can
check that this number is indeed only a function of d.

It turns out that quite a number of geometric optimization problems can be solved by
formulating them as problems of optimizing some objective function over a polyhedron, and
if the function is reasonably well-behaved, existing and well-studied algorithms for solving
such problems can be applied. For example, the Largest Ball in Polyhedron problem is of
this type: we want to find a point in the polyhedron such that its distance to the boundary
is maximized. In this case, the function to optimize (in fact, maximize) assigns to every
point in the polyhedron the distance to the boundary.

We can also formulate the problem in another way, obtaining a simpler objective func-



Figure 1.5: Largest ball in polyhedron

tion: find the maximum value of r such that there exists a point in the polyhedron which
has distance at least r to the boundary. To write out this problem formally, let’s assume
the polyhedron is given as the intersection of halfspaces

{wlajz < by},

J = 1,...n. The vectors a; are normal vectors of the hyperplanes that delimit the half-
spaces. Moreover, after scaling a;, b; accordingly, we can assume the a; are unit vectors.
Now consider a point Z in the polyhedron, i.e. T satisfies a]TJE < b; for all 5. It is well-
known that the distance of Z to the hyperplane ol = b; is given by b; — al . Then the
Largest Ball in Polyhedron problem can be written in the form

(LBIP) maximize r
subject to b; —ajx > 7.

(1.1)

This is now a problem of maximizing a linear function in d + 1 variables z,r over a
polyhedron in IR%*!, defined by the halfspaces

{z | a]T:L"—i-T < b;}.

Such problems are known as Linear Programming problems, and a particularly nice and
efficient method exists for solving them, namely the Simplex Method.

Let’s look at another example, the Distance of polytopes. Assume the polytopes P;, P»
are specified as the convex hulls of n; points {p1,...pn, } resp. no points {qi,...,qn,}-
Then we can formulate the problem as follows.

(DOP) minimize ||p — ¢
subject to p=>", xpi,
q = 2721 Y545,
2?211 r; =1,
Z?; y; =1,
Tiy Yj Z 0, VZ,]



The constraints of this problem just encode the requirement that p is in the convex hull of
the {p;}, and ¢ is in the convex hull of the {g;}. The problem has 2d + n; + ny variables,
and the subset of IR?¢™™1 "2 defined by the (in)equalities of the problem does again form
a polyhedron. The objective function can — without changing the optimal points p and ¢
— be replaced by

lp—all’=w®-a)"(p—q),

and this is a quadratic function. Problems of this type are called Quadratic Program-
ming problems, and an adaptation of the simplex method exists that can also solve these
problems.

As it turns out, the Smallest enclosing annulus problem (area version) can also be
formulated as a linear programming problem (exercise), while the Smallest enclosing ball
problem is a quadratic programming problem again, which we will only be able to prove
at the end of this manuscript.

The Smallest enclosing ellipse problem does not quite fit in here. It is neither an
instance of linear nor of quadratic programming. This also explains the fact that in di-
mensions higher than two, this problem is not solvable as easily as our other example
problems are.

In the following chapters we will introduce the by now classical simplex method for
linear programming which has just celebrated the 50th anniversary of its invention by
George Dantzig back in 1947. We will then describe the above mentioned adaptation
of it to quadratic programming. This adaptation relies on the important Kuhn-Tucker
optimality conditions for minimzing convex functions over a polyhedron. We will prove
these conditions here.

Finally, we go back to our example problems and briefly discuss how the methods we
have developed so far can efficiently be applied to them.

1.2 Linear Programming

Linear Programming (LP) in a quite general form is the problem of minimizing a linear
function in n variables subject to m linear inequalities. If, in addition, we require all
variables to be nonnegative, we have an LP in standard form which can be written as
follows.

(LP) minimize Y7, cjz;

j=1
subject to Z?:l Q5T S bz (’L = 1, .. .,m), (12)
l‘]ZO (jzl,...,n),

where the c¢;, b; and a;; are real numbers. By defining

v = (v1,...,7,)7,

c = (c1,...,¢0),



(1.2) can be written in more compact form as

(LP) minimize ¢’z
subject to Az < b, (1.3)
x>0,

where the relations < and > hold for vectors of the same length if and only if they hold
componentwise.

The vector c¢ is called the cost vector of the LP, and the linear function z :  — ¢’z is
called the objective function. The vector b is referred to as the right-hand side of the LP.
The inequalities 337, a;jz; < b, for i = 1,....,m and z; > 0, for j = 1,...,n are the
constraints of the linear program. (Due to their special nature, the constraints x; > 0 are
sometimes called nonnegativity constraints or restrictions).

The LP is called feasible if there exists a nonnegative vector I satisfying AT < b
(such an Z is called a feasible solution); otherwise the program is called infeasible. If
there are feasible solutions with arbitrarily small objective function value, the LP is called
unbounded; otherwise it is bounded. A linear program which is both feasible and bounded
has a unique minimum value ¢! attained at a (not necessarily unique) optimal feasible
solution Z. Solving the LP means finding such an optimal solution & (if it exists).

Geometric interpretation. For each constraint

n
Zaijxj S bz or
Jj=1

the points T € IR" satisfying the constraint form a closed halfspace in IR". The points for
which equality holds form the boundary of this halfspace, the constraint hyperplane.

The set of feasible solutions of the LP is therefore an intersection of halfspaces, which
is by definition a (possibly empty) polyhedron P. The facets of P are induced by (not
necessarily all) constraint hyperplanes. The nonnegativity constraints z; > 0 restrict P to
lie inside the positive orthant of IR"™.

Let us do an example and consider the problem

minimize —T1 — Xy
subject to —x1 + 9 < 1,
T < 3, (1.4)
re <2,
T1, Ty > 0.
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Figure 1.6: Geometric interpretation of LP

Figure 1.6 shows the feasible region of this LP. The fat arrow indicates the vector —c!' =
(1,1), the so-called optimization direction. The objective is to find a feasible point that
is extreme in the optimization direction. In the example, a unique such point exists,
namely the upper right corner of the feasible region. It is easy to see that this corner has
coordinates (3,2) and therefore objective function value —5. We will come back to this
example in the next chapter where we show how the simplex method gets to this optimal
corner.

1.3 Quadratic Programming

As the name suggests, the objective function in a quadratic program is no longer linear
but quadratic, of the general form

n
Dot Y, dimixg.
=1 1<i<i<n

The constraints and nonnegativity restrictions are as before. Defining a symmetric matrix

dll d12/2 e dln/2
. d12/2 d22 U d2n/2

we can write a quadratic programming problem in the form

(QP) minimize ¢’z + 2" Dx
subject to Az < b, (1.5)
x> 0.

In this manuscript, we restrict our attention to a special class of QP problems, defined by
matrices D which are positive semidefinite. This means that

t'Dx >0, Yo € IR™.



As we will see later, this condition ensures that — like (LP) — problem (QP) has at most
one local minimum which is at the same time a global minimum.

An example for an interesting quadratic programming problem is obtained when ¢ =
0,D = E, E the n x n-unit matrix. In this case, the function to minimize is 'z = ||z[|*.
The problem is then to find the minimum-norm point in the polyhedron defined by the
constraints of the problem.
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Chapter 2

Linear Programming and the
Simplex Method

In this chapter, we describe the standard and the revised simplex method for solving
LP problems. We proceed by explaing the standard simplex method, by example. This
presentation is very informal but covers all the basic aspects of the method. The revised
simplex method is then just a view from a slightly different perspective.

2.1 The Standard Simplex Method

2.1.1 Tableaus

When confronted with an LP in standard form (1.2), the simplex method starts off by
introducing slack variables x, 11, ..., Ty, to transform the inequality system Az < b into
an equivalent system of equalities and additional nonnegativity constraints on the slack
variables. The slack variable xz,,; closes the gap between the left-hand side and right-hand
side of the ¢-th constraint, i.e.

Tni 2= bj — i ATy,
j=1
forall i =1,...,m. The i-th constraint is then equivalent to
Tpyi 2> 0,
and the linear program can be written as

(LP) minimize Y7, ¢;x;

subject to Tny; =0, — X1 ayz; (i=1,...,m), (2.1)
;>0 (j=1,...,n+m),
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or in a more compact form as

(LP) minimize ¢’z
subject to Az + Ez' = b, (2.2)
x,x’ >0,

where 2’ is the vector of slack variables.

Together with the objective function, the m equations for the x,,; in (2.1) contain all
the information about the LP. Following tradition, we will represent this information in
tableau form where the objective function — denoted by z — is written last and separated
from the other equations by a solid line. (The restrictions z; > 0 do not show up in the
tableau but represent implicit knowledge.) In this way we obtain the initial tableau for the
LP.

Tp+1 = by —anr — o =T,

(2.3)
Tp4m = bm —QAm1T1r — o —Ampdp
z = c1ry + - +CnTh,

Let’s illustrate the process of getting the initial tableau from an LP in standard form
for our initial example (1.4).
After introducing slack variables w3, x4, x5, the LP in equality form is

minimize —T] — Xy
subject to r3 = 1 + x1 — 9,
ry = 3 — xp, (2.4)
Ty = 2 — T2,
.1'1,...,.1'520.
From this we obtain the initial tableau
r3 = 1 + ry — X2
Ta = 3 — I
2.
Z = — X1 — I3

Abstracting from the initial tableau (2.3), a general tableau for the LP is any system
T of m + 1 linear equations in the variables x1, ..., 2., and z, with the properties that

(i) T expresses m left-hand side variables 5 and z in terms of the remaining n right-
hand side variables xy, i.e. there is an m-vector (3, a n-vector v, an m X n-matrix A
and a real number z; such that 7 (written in compact form) is the system

rp = B — Azy
z = 2z + Ylay (2.:6)
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(ii) Any solution of (2.6) is a solution of (2.3) and vice versa.

By property (ii), any tableau contains the same information about the LP but rep-
resented in a different way. All that the simplex algorithm is about is constructing a
sequence of tableaus by gradually rewriting them, finally leading to a tableau in which the
information is represented in such a way that the desired optimal solution can be read off
directly. We will immediately show how this works in our example.

2.1.2 Pivoting
Here is the initial tableau (2.5) to (1.4) again.

3 = 1 + 1 — @
Ts = 3 — T3

Ty = 2 — X9
z = — T — X2

By setting the right-hand side variables xy, x5 to zero, we find that the left-hand side
variables x3, x4, x5 assume nonnegative values x3 = 1,24 = 3,25 = 2. This means, the
vector x = (0,0, 1, 3,2) is a feasible solution of (2.4) (and the vector 2’ = (0, 0) is a feasible
solution of (1.4)). The objective function value z = 0 associated with this feasible solution
is computed from the last row of the tableau. In general, any feasible solution that can
be obtained by setting the right-hand side variables of a tableau to zero is called a basic
feasible solution (BFS). In this case we also refer to the tableau as a feasible tableau. The
left-hand side variables of a feasible tableau are called basic and are said to constitute a
basis, the right-hand side ones are nonbasic. The goal of the simplex algorithm is now
either to construct a new feasible tableau with a corresponding BF'S of smaller z-value, or
to prove that there exists no feasible solution at all with smaller z-value. In the latter case
the BFS obtained from the tableau is reported as an optimal solution to the LP; in the
former case, the process is repeated, starting from the new tableau.

In the above tableau we observe that increasing the value of z; (i.e. making x; positive)
will decrease the z-value. The same is true for x5, and this is due to the fact that both
variables have negative coefficients in the z-row of the tableau. Let us arbitrarily choose
2. By how much can we increase z57 If we want to maintain feasibility, we have to be
careful not to let any of the basic variables go below zero. This means, the equations
determining the values of the basic variables may limit x5’s increment. Consider the first
equation

T3y = 1+ Ty — To. (27)

Together with the implicit constraint 3 > 0, this equation lets us increase x5 up to the
value xo = 1 (the other nonbasic variable 1 keeps its zero value). The second equation

.’E4:3—.Z'1
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does not limit the increment of x5 at all, and the third equation
Ty = 2 — T

allows for an increase up to the value xy = 2 before x5 gets negative. The most stringent
restriction therefore is x3 > 0, imposed by (2.7), and we will increase xo just as much as
we can, so we get x9 = 1 and x3=0. From the remaining tableau equations, the values of
the other variables are obtained as

Ty = 3 — T = 3,
Ty = 2 — Ty — 1.

To establish this as a BFS, we would like to have a tableau with the new zero variable
x3 replacing x5 as a nonbasic variable. This is easy — the equation (2.7) which determined
the new value of x5 relates both variables. This equation can be rewritten as

To = 1+ r1 — I3,

and substituting the right-hand side for x, into the remaining equations gives the new
tableau

Ty = I + & — 3
Ty = 3 — el
I = 1 - ry + w3
z = =1 — 2z + x3
with corresponding BFS =z = (0,1,0,3,1) and objective function value z = —1. This

process of rewriting a tableau into another one is called a pivot step, and it is clear by
construction that both systems have the same set of solutions. The effect of a pivot step
is that a nonbasic variable (in this case z3) enters the basis, while a basic one (in this case
x3) leaves it. Let us call o the entering variable and x3 the leaving variable.

In the new tableau, we can still increase x; and obtain a smaller z-value. x3 cannot
be increased since this would lead to larger z-value. The first equation puts no restriction
on the increment, from the second one we get x; < 3 and from the third one z; < 1. So
the third one is the most stringent, will be rewritten and substituted into the remaining
equations as above. This means, x; enters the basis, x5 leaves it, and the tableau we obtain
is

Ty = 2 — T5
Ty = 2 — xz3 + w5
T = 1 + z3 — x5
z = —3 — x3 + 2x5

with BFS = = (1,2,0,2,0) and z = —3. Performing one more pivot step (this time with
x5 the entering and x4 the leaving variable), we arrive at the tableau

Ty = 2 — Ty
T3 = 2 — x4 + x5
6= 3 — oz, (2.8)
z = =5 + x4 + x5

14



with BFS = = (3,2,2,0,0) and z = 5. In this tableau, no nonbasic variable can increase
without making the objective function value larger, so we are stuck. Luckily, this means
that we have already found an optimal solution. Why? Consider any feasible solution
T =(&y,...,T5) for (2.4), with objective function value zy. This is a solution to (2.5) and
therefore a solution to (2.8). Thus,

2’0:—5+£’4+i‘5

must hold, and together with the implicit restrictions x4, x5 > 0 this implies 2y > —5.
The tableau even delivers a proof that the BFS we have computed is the unique optimal
solution to the problem: z = —5 implies 24, = x5 = 0, and this determines the values of
the other variables. Ambiguities occur only if some of the nonbasic variables have zero
coefficients in the z-row of the final tableau. Unless a specific optimal solution is required,
the simplex algorithm in this case just reports the optimal BFS it has at hand.

What do the algebraic manipulations we have just done correspond to in the geometric
picture as given in Figure 1.67 The following fact helps us to understand this.

Fact 2.1 Consider a standard form LP with feasible polyhedron P. The point &' =

(T1,...,Ty) is a vertex of P if and only if the vector T = (T1,...,Tpym) with
n
ii'n+z' = bz — Zaijfj, 1= 1,...,m
j=1

15 a basic feasible solution of the LP.

This means that the simplex method only works on vertices (‘corners’) of the feasible
region P, and it traverses a sequence of vertices until an optimal one is found.

Two consecutive tableaus constructed by the simplex method have n — 1 nonbasic
variables in common. Their BFS thus share n — 1 zero variables. Equivalently, the corre-
sponding vertices lie on n — 1 common constraint hyperplanes, and this means that they
are adjacent in P. The feasible solutions obtained in the process of continuously increasing
the value of a nonbasic variable until it becomes basic correspond to the points on the edge
of P connecting the two vertices. Establishing these facts formally requires at least some
basic polyhedra theory.

Here we are content with checking the correlations in case of Example 1.4. The LP
consists of five constraints over two variables, therefore the feasible region is a polygon in
IR?. Every constraint hyperplane defines a facet, so we get a polygon with five edges and
five vertices. In the previous subsection we were going through a sequence of four tableaus
until we discovered an optimal BF'S. The picture below shows how this corresponds to
a sequence of adjacent vertices. Since the objective function value gets smaller in every
iteration, the path of vertices is monotone in the optimization direction —c.

15



BFS vertex | z = x1 + @9
(0,0,1,3,4) | (0,0) 0
(0,1,0,3,1) | (0,1) 1
(1,2,0,2,0) | (1,2) 3
(3,2,2,0,0) | (3,2) 5

2.2 Exception Handling

[ w3 >0

So far our outline of the simplex method went pretty smooth. This is in part due to the
fact that we have only seen one very small and trivial example of the way it works. On the
other hand, the method is simple, and we will just incorporate some ‘exception handling’

and do a little fine tuning, again basically by example.

2.2.1 Unboundedness

During a pivot step, we make the value of a nonbasic variable just large enough to get the
value of a basic variable down to zero. This, however, might never happen. Consider the

example

minimize —T
subject to T, —
x1, w9 = 0.
with initial tableau
T3 = 1 — Ty + X2
Ty = 2 + ry — T2
z = — I

After one pivot step with z; entering the basis we get the tableau

+ X9

ry = 1 + To — T3
Ty = 3 — XT3
z = =1 — x93 + x3

ININA

—T1 + T2 _{2

LT

T1 — @9 <

o

If we now try to bring x5 into the basis by increasing its value, we notice that none
of the tableau equations puts a limit on the increment. We can make x5 arbitrarily large
and z arbitrarily small — the problem is unbounded. By letting x5 go to infinity we get a
feasible halfline — starting from the current BFS — as a witness for the unboundedness. In
our case this is the set of feasible solutions

{(1707073) +~T2(1, 1,0,0) | To Z 0}
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Such a halfline will typically be the output of the algorithm in the unbounded case. Thus,
unboundedness can quite naturally be handled with the existing machinery. In the geo-
metric interpretation it just means that the feasible polyhedron P is unbounded in the
optimization direction.

2.2.2 Degeneracy

While we can make some nonbasic variable arbitrarily large in the unbounded case, just the
other extreme happens in the degenerate case: some tableau equation limits the increment
to zero so that no progress in z is possible. Consider the LP

— 11 >0 <1 minimize —1
— a’;l < .
- - subject to -1 + 22 < 0,
—] —x1+ 19 <0 J ZUI 2 2 9 (29)
1 = )
x1, 22 2 0,

with initial feasible tableau

T3 = Ty — X2
>
W22 >0 0 9 g
z = — X9

The only candidate for entering the basis is x5, but the first tableau equation shows
that its value cannot be increased without making x3 negative. This may happen whenever
in a BFS some basic variables assume zero value, and such a situation is called degenerate.
Unfortunately, the impossibility of making progress in this case does not imply optimality,
so we have to perform a ‘zero progress’ pivot step. In our example, bringing x5 into the
basis results in another degenerate tableau with the same BFS.

To = ry — X3
Ts = 2 — T
z = — 1 + 3

Nevertheless, the situation has improved. The nonbasic variable z; can be increased
now, and by entering it into the basis (replacing x,) we already obtain the final tableau

Ty = 2 — T4
To = 2 - ry — T4
z = =2 + x3 + 14

with optimal BFS z = (z1,...,24) = (2,2,0,0).

In this example, after one degenerate pivot we were able to make progress again. In
general, there might be longer runs of degenerate pivots. Even worse, it may happen that
a tableau repeats itself during a sequence of degenerate pivots, so the algorithm can go
through an infinite sequence of tableaus without ever making progress. This phenomenon
is known as cycling. If the algorithm does not terminate, it must cycle. This follows from
the fact that there are only finitely many different tableaus.

17



Fact 2.2 The LP (1.2) has at most (m:l”) tableaus.

To prove this, we show that any tableau 7 is already determined by its basis variables.
Write T as
rpg = [ — Az
z = 2 + 7w,

and assume there is another tableau 7' with the same basic and nonbasic variables, i.e.
T is the system

rp = ﬁ, - A,.’EN

_ ! T
zZ =z + 7 TN,

By the tableau properties, both systems have the same set of solutions. Therefore
(B-0)—(A—=A)xy = 0and
(20 = 2) + (7" =7")ay = 0
must hold for all n-vectors xy, and this implies § = ', A = A',v = 7" and 2, = z. Hence
T=T".

There are two standard ways to avoid cycling:

e Bland’s smallest subscript rule: If there is more than one candidate z, for enter-
ing the basis (or more than one candidate for leaving the basis, which is another
manifestation of degeneracy), choose the one with smallest subscript k.

e Avoid degeneracies altogether by symbolic perturbation.

By Bland’s rule, there is always a way of escaping from a sequence of degenerate pivots.
For this, however, one has to give up the freedom of choosing the entering variable. This is
unfavourable in many instances, and one resorts to the method of symbolic perturbation
instead, although this requires more computational effort. The method — also known as the
lexicographic method — perturbs the right-hand side vector b of the LP by adding powers
of a symbolic constant ¢ (assumed to be infinitesimally small). The LP then becomes

minimize Y7, ¢;x;

Jj=1 .
subject to YU ajjz; <bi+e' (i=1,...,m), (2.10)
xj >0 (j=1,...,n),

and if the original LP (1.2) is feasible, so is (2.10). A solution to (1.2) can be obtained from
a solution to (2.10) by ignoring the contribution of ¢, i.e. by setting & to zero. Moreover,
any valid tableau for (2.10) reduces to a valid tableau for (1.2) when the terms involving
powers of ¢ are disregarded.

In case of (2.9), the initial tableau of the perturbed problem is

r3 = E + 1 — T2
Ty = 2 +€2 — I
z = — X9

18



Pivoting with x5 entering the basis gives the tableau

To = E + T — T3
Ty = 2467 — m (2.11)
z = —& — T + T3

This is no longer a degenerate pivot, since x5 (and 2) increased by . Finally, bringing
x1 into the basis gives the tableau

Ty = 2+ 82 — X4
To = 2"—5"—82 — T3 — X4 (212)
2 = —2—c—€> 4+ m3 + @4

with optimal BFS o = (2 +¢%,2 + ¢ + ¢%,0,0). The optimal BFS for (2.9) is recovered
from this by ignoring the additive terms in €. In general, the following holds, which proves
nondegeneracy of the perturbed problem.

Fact 2.3 In any BFS of 2.10, the values of the basic variables are nonzero polynomials in
e, of degree at most m. The tableau coefficients at the nonbasic variables are unaffected by
the perturbation.

To find the leaving variable, polynomials in € have to be compared. This is done lexico-
graphically, i.e.

m m
> et < DTN
k=1 k=1

if and only if (Aq,..., Ay) is lexicographically smaller than (\},..., Al ). The justification
for this is that one could actually assign a very small numerical value to ¢ (depending
on the input numbers of the LP), such that comparing lexicographically is equivalent to
comparing numerically, for all polynomials that turn up in the algorithm.

In the perturbed problem, progress is made in every pivot step. Cycling cannot occur
and the algorithm terminates after at most (m;;") pivot steps.

In the feasible polyhedron, degeneracies correspond to ‘overcrowded vertices’, which
are vertices where more than n of the constraint hyperplanes meet. There are several ways
to represent the same vertex as an intersection of exactly n hyperplanes, and a degenerate
pivot switches between two such representations. The perturbation slightly moves the
hyperplanes relative to each other in such a way that any degenerate vertex is split into a
collection of nondegenerate ones very close together.

2.2.3 Infeasibility

To start off, the simplex method needs some feasible tableau. In all examples considered
so far such a tableau was readily available since the initial tableau was feasible. We say
that the problem has a feasible origin. This is equivalently expressed by the fact that the
right-hand side vector b of the LP is nonnegative. If this is not the case, we first solve an
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auxiliary problem that either constructs a BFS to the original problem or proves that the
original problem is infeasible. The auxiliary problem has an additional variable zy and is
defined as
minimize g
subject to YU ajjr; — w0 <b; (i=1,...,m),
l‘]ZO (]ZO,,N)

This problem is feasible (choose xy big enough), and it is clear that the original problem
is feasible if and only if the optimum value of the auxiliary LP is zero. Let us do an example
and consider the problem

minimize To
subject to -1 — Ty < =2,
Ty — xp < —1,

.’L‘l,.Z'QZO.

with initial tableau

< -1 2 20
r3 = -2 + Ty + T2 T1 =22 % — L1
s = —1 — x1 + X9 |
< = ) xlgo —$1—l’2§—2

This problem has an infeasible origin, because setting the right-hand side variables to
zero gives 3 = —2, x4 = —1. The auxiliary problem (with the objective function called w
in the tableau to avoid confusion) is

minimize To
subject to T — Ty — Ty < =2,
ry — xy — 19 < —1,

Lo, T1, T2 Z 0.

with initial tableau

xr3 = -2 + T + i) + o
re = —1 — x1 + x2 + T
w = + X9

The auxiliary problem has an infeasible initial tableau, too, but we can easily construct
a feasible tableau by performing one pivot step. We start increasing the value of z, this
time not with the goal of maintaining feasibility but with the goal of reaching feasibility.
To get x3 > 0, xy has to increase by at least 2, and this also makes x4 positive. By setting
xo = 2 we get x3 = 0 and x4 = 1. Solving the first tableau equation for xy and substituting
from this into the remaining equations as usual gives a new feasible tableau with z( basic
and 3 nonbasic.

Ty = 2 — ry — X9 + X3
Ty = 1 - 2£U1 + 3
w = 2 — T — I3 + x3
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The simplex method can now be used to solve the auxiliary problem. In our case, by
choosing x5 as the entering variable, we accomplish this in one step. The resulting tableau
is

To = 2 — Ty + T3 — X
e = 1 — 27 + x5
w = Zo

Since all coefficients of nonbasic variables in the w-row are nonnegative, this is an
optimal tableau with BFS x = (z9,...,24) = (0,0,2,0,1). The associated zero w-value
asserts that the LP we originally wanted to solve is actually feasible, and we can even
construct a feasible tableau for it from the final tableau of the auxiliary problem by ignoring
xp and expressing the original objective function z in terms of the nonbasic variables; from
the first tableau equation we get in our case z = x5 = 2 — 1 + x3, and this gives a valid
feasible tableau

To = 2 — Ty + T3
Ty = 1 — 2.1‘1 + a3
z = 2 — r1 4+ z3

with corresponding BFS = = (xy,...,24) = (0,2,0, 1) for the original LP. For this to work,
2o should be nonbasic in the final tableau of the auxiliary problem which is automatically
the case if the problem is nondegenerate. (To guarantee this in the general situation,
choose g as the leaving variable whenever this is a possible choice.)

If the optimum value of the auxiliary problem is nonzero, we can conclude that the
original LP is infeasible and simply report this fact.

2.3 The Revised Simplex Method

In the preceding sections we have quite informally covered all the basics one would need to
come up with an actual implementation of the simplex method. Let us do a brief analysis
of the runtime in terms of arithmetic operations. To find the entering variable, at most
n entries of the tableau’s z-row need to be examined, contributing time O(n). Searching
for the leaving variable takes constant time per basic variable, for a total of O(m) time.
Finally, the tableau update can be done at constant cost per entry, requiring time O(mn).
This means, the tableau update is the dominationg operation.

Considering this, you might wonder whether you really need to store and update the
whole tableau in each iteration. Namely, if you search for an entering variable, you only
need the z-row of the tableau, and for finding the leaving variable, all tableau columns
except the one corresponding to the entering variable are irrelevant, so why do you need
to keep them?

You would prefer to have a method that generates tableau entries ‘on the fly’, just when
you need them. There is hope for such a method, because the argument explaining Fact
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2.2 shows that the tableau is uniquely determined by the basic variables, so the tableau
has a compact representation in form of the subscript set B. We just need to make this
relationship between B and the tableau explicit in the sense that we get formulas to obtain
the tableau entries from B.

The revised simplex method is centered around such formulas. It works on an implicit
representation of the tableau and completely saves the tableau update. At the same time,
the relationship between consecutive tableaus and their connection to the original data
become clearer.

To describe the revised simplex method, let us now consider an LP in equality form,
given as

(LP) minimize Tz
subject to Ax =, (2.13)
x>0,

with n variables and m equality constraints. In view of the previous sections, this LP may
come from an LP in inequality form (1.3) after adding slack variables, or it might have
been given to us in this format right from the start. Assume now, we are given a tableau

rpg = B — Azy
Z = 2 + lzy (2.14)

to (2.13), its entries 3,7, A and z; being determined by the choice of the basic variables
rB.

For subscript set G C [n] := {1,...,n} let Ag collect the columns corresponding to
the variables with subscripts in G. Then the equations of (2.13) read as

AB.Z'B+AN.Z'N =b. (215)

Since (2.14) has by definition of a tableau the same set of solutions as (2.15), the former
is obtained by simply solving (2.15) for x, which gives

rp — Aglb — ABIAN.Z'N, (216)
and therefore
ﬂ = Aglba
Z 2.17
A = ABlAN. ( )

By similar reasoning we compute v and zy. As before, let c¢g collect the entries of ¢
corresponding to variables with subscripts in G. Then the equation for z in (2.13) reads
as

z=chrp +chay. (2.18)

Again by the tableau property, the last row of (2.14) is equivalent to (2.18), and the
former is obtained by simply substituting from (2.16) into (2.18), which gives

z=chAR'b+ (ch — ch A ' An)Ty, (2.19)
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and therefore

2 = ch5AR',

T

_ 2.20
vt o= c%—chBlAN. ( )

Rather than maintaining the tableau (2.14) explicitly, the revised simplex method
maintains only the current BFS, the basic subscript set B as well as the inverse of the
matrix Ap. Note that if (2.13) has been obtained by adding slack variables to (1.3), then
before the first iteration, Ap = A;' = E, E the unit matrix. How to obtain a first basis
B in case the LP is directly given in the format (2.13) is an exercise.

Let us now recall the details of the pivoting step and see how they are realized in the
revised simplex method. It is important to note that we are not going to see anything
new, we are just taking a look from a different angle.

The substeps of the revised simplex method have certain historical names. The process
of finding the entering variable is known as pricing, to find the leaving variable, we perform
a ratio test, and the process of going from B to B’ and Ag' to A,', B’ the new basis, is
known as the update.

2.3.1 Pricing
To find the entering variable, we evaluate 4* according to (2.20), i.e. set

yl = ch AR (2.21)
and

v =k —yT Ay, (2.22)

This takes O(m?) time to compute y”, given that A" is available, and O(m) time for every
entry of 47, A variable z; may enter the basis if its corresponding y-entry is negative.
Thus, to find an entering variable, we do not necessarily have to evaluate all the entries of
7T, we may stop as soon as we have found a negative one. This observation is a potential
source of major savings in comparison with the standard simplex method, although in
the worst case all entries of v may have to be evaluated, leading to O(mn) arithmetic
operations again.

2.3.2 Ratio Test

From (2.14) we immediately see that if we increase the value of the entering variable z; to
some value ¢ > 0, the values of the basic variables change according to the formula

Recall that the leaving variable was a variable x;,7 € B which becomes zero first when
increasing ¢t. For each i € B, the value ¢; such that x;(¢;) = 0 is the solution of the linear
equation
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equivalently

_p

ti_ A
A

(2.24)

3" and A} the components of 3 resp. A; corresponding to variable z;. Equation (2.24)
explains the term ratio test.

While the BFS 3 is assumed to be available, te column A; of the tableau matrix A
corresponding to the entering variable z; is computed according to (2.17), i.e. by setting

Aj = AG A, (2.25)

Again, since Az' is available, this can be done in time O(m?).

The leaving variable and the new BFS are easily computed from this (and the old BFS)
in time O(m), just like the standard simplex method does it from the explicit tableau
representation. One remark is in order. If we apply the method of symbolic perturbation
to cope with degeneracies, this step gets more expensive. In order to obtain the new
BFS, in the worst case n polynomials of degree up to n in € have to be compared and
updated (consider the step from (2.11) to (2.12) in Subsection 2.2.2). This takes time
O(m?) rather than O(m) when only actual numbers are involved. Luckily, this does not
introduce asymptotic overhead, since the previous steps already take O(m?) time.

2.3.3 Update

The tableau update is replaced by an update of the set B and the matrix A5'. Considering
B as an ordered set, B’ arises from B by replacing the leaving index i at some position &
with the entering index j. This means, Ap arises from Apg by replacing the k-th column,
and the new column is exactly the column A;. Invoking (2.25), we get

1
1 -« Al o 0

Ap = Ay o , (2.26)

0 -+ A7 .o 1

so Ap is updated by multiplying with a unit matrix whose k-th column is replaced by the
column A; already computed in (2.25). Such a matrix is known as an eta matriz. (2.26)
now implies

1 ... _A;/Af e 0
Ayl = 1/Ak Agl,
0 ... —A;?/Af |
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and this multiplication can be performed in time O(m?).

As a consequence, a pivot step in the revised simplex method can be done in time
O(mn), as before. However, the dominating step is now the pricing, where savings are
possible. Moreover, the revised simplex method has less space reqirements because only
an m x m-matrix rather than the whole tableau of size O(mn) needs to be stored. If n is
quite large, this makes a tremendous difference.

2.4 Complexity

It is clear from the previous discussions that the worst-case complexity of the simplex
method is O(mnlI), where I is the number of iterations. This number I can be almost
anything, and it crucially depends on the problem and on the way the entering variable is
chosen in case there is more than one choice. The rule according to which the selection is
then made is called a pivot rule.

The pivot rule originally proposed by Dantzig for his method is the following: choose
the variable j with the smallest value of ;. The intuition is that by bringing this variable
into the basis, the objective function decreases most rapidly. Namely, if variable z; is set
to t > 0, the objective function value changes from 2, to zy + ;t.

Under this rule, also known as Dantzig’s rule, the typical number of iterations of the
simplex method only depends on m. This means, if m is a constant, the simplex algorithm
will in many cases be a linear time algorithm. But beware: there are examples where the
number of iterations is much larger, even exponential in m. However, for the applicability
of the simplex method in practice, such examples are not too relevant, and the linear
behaviour is usually observed in most cases.

Whenever we apply the simplex method (and its quadratic-programming counterpart
in Chapter 4) in computational geometry, we have the situation that n > m, where m
is very small or constant. From what we have just said, we then expect fast linear-time
algorithms for the problems we consider.

If you really want provable results, there exist (randomized) pivot rules which guarantee
an expected runtime of O(n). Their drawback is that they are not that efficient in practice.
What is still missing is a practically fast implementation which is provably good.
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Chapter 3

Convex Programming and the
Kuhn-Tucker Conditions

In the previous chapter we have considered linear programs, i.e. problems of minimizing
a linear function ¢’z in n variables x, subject to constraints

Ax < b,
>0

(inequality form) or

Axr =0,
z>0

(equality form). The simplex method actually works with problems in equality form, but
the inequality form is a convenient starting point, because after introducing slack variables,
an initial tableau (although not necessarily a feasible one) is readily available. As one form
may be more convenient than the other in some considerations, we will keep using both
constraint formats.

In this chapter, the objective function will no longer be restricted to be a linear function.
As indicated in the introduction, our ultimate goal is to minimize quadratic functions
c'x + 27 Dx, where D is a symmetric, positive semidefinite matrix, but for this chapter,
we focus on the even more general class of continuosly differentiable conver functions (we
omit the condition ‘continuosly differentiable’ in all subsequent statements).

This means, we consider problems of minimizing a convex function subject to linear
(in)equality and nonnegativity constraints. Such problems are referred to as Convezr Pro-
gramming (CP). For any n-vector ¢ and any symmetric, positive semidefinite n x n-matrix
D, the quadratic function

e+ 2" Dx
is such a convex function.
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3.1 Basics about Convex Functions

First of all, what is a convex function? Here is the formal definition.

Definition 3.1 f: IR" — IR is convex if and only if for all z,2’ € IR™ and all t € [0,1],

f((1=t)x+tz") < (1 —2t)f(x) +tf(z) (3.1)
holds.

This means, a convex function looks like a ‘bowl’: whenever you connect two points
f(z), f(2') by a line segment, this line segment lies above the graph of the function. Note
that we do not require strict convexity, so a linear function is convex, too, although it does
not quite look like a bowl. An alternative definition of a convex function is obtained by
requiring the region

=A@, znn) € R" | 201 > f(2)}

above the graph of f to be a convex set, meaning that with any two points z,2" € fT,
their convex combination (1 — ¢)x + tz',t € [0,1] is also in f¥.

The following lemma explains why convex functions are ‘nice’: over a convex domain,
they do not have any proper local minima in which one might get stuck during the opti-
mization process.

Lemma 3.2 Let C' C IR" be convex. x € C is a (global) minimum of f over C if and only
if

Vi) (z'—z)>0
for all 2" € C, where

Vi) = (agf)@’gf»

is the gradient of f at x.

Proof. Consider the convex combination x(t) of x and 2’ given as
z(t) = (1 —t)x +ta', t €[0,1].
Because C'is a convex set, x(t) is again in C, and

9
ot
must hold, otherwise we had

0 o fx() - flo)
&f(l“(tmt:o = lim

t—0 t

(())li=0 = 0

<0,
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and f(z(t)) < f(z) would hold for some small . On the other hand,

9 ,
o7/ @)= = V(@) (@ = 2),

by the chain rule.
If  is not a minimum, let 2’ be any better solution. By convexity we can then argue
that

fz(t) - f(=z)
t

for all ¢ € [0,1]. This implies
fz(t)) — f(x)
t

< f(a') - fl) =5 <0,

<4 <0.

Vf(z)(z" —z) =lim

t—0

3.2 Kuhn-Tucker Theorems

Now we are ready to prove the so-called Kuhn-Tucker conditions which provide optimality
criteria for exactly the class of problems we are interested in. Let us start with problems
in inequality form.

Theorem 3.3 (Kuhn-Tucker conditions for inequality constraints.) Consider the problem

(CP) minimize f(x)
subject to Az < b, (3.2)
x>0,

x an n-vector, A an m X n-matriz, b an m-vector, f : IR" — IR a convex function. A
feasible solution T € IR"™ is optimal for CP if and only if there is an m-vector A > 0 and
an n-vector > 0 such that

(i) V(@) =-MNA+p,

(ii) NT(Az —b) =0,
(iii) uT'z =0.
Before we give a proof of this result, let us discuss its geometric interpretation. Formulated
in a complicated way, condition (i) means that the gradient vector of f at the point Z is
a negative linear combination of the rows of A and the rows of the negative n x n-unit

matrix —F. These rows are exactly the normal vectors of the hyperplanes that delimit the
constraint halfspaces

Ax < b,
-z < 0,
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—Vf(Z)

Figure 3.1: The Kuhn-Tucker optimality condition

where each normal vector ‘points away’ from its halfspace. Conditions (ii) and (iii) say
that only those constraints contribute to the linear combination that are binding at z, i.e.
that hold with equality at . Thus, Z is optimal if and only if —V f(z) lies in the cone
spanned by the normal vectors of the binding constraints (Figure 3.1).

The Theorem will be a corollary of the following statement about equality-constrained
CP.

Theorem 3.4 (Kuhn-Tucker conditions for equality constraints.) Consider the problem

(CP) minimize f(x)
subject to Az =0, (3.3)
x>0,

x an n-vector, A an m X n-matriz, b an m-vector, f : IR" — IR a convex function. A
feasible solution T € IR™ s optimal for CP if and only if there is an m-vector \ and an
n-vector > 0 such that

(i) V(@) =-MNA+p,
(ii) u'z =0.
Unlike in Theorem 3.3, we no longer require nonnegativity of A\. Moreover, the condition

A'(AZ —b) = 0 does not appear here, because it is trivially satisfied by all feasible solutions
T.
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Proof. (Kuhn-Tucker conditions for equality constraints.) The proof is based on Lemma
3.2 and the simplex method. First, let us assume that z is optimal. From the Lemma we
get

V()i < Vf(T)z,

for all feasible z. This means, T is an optimal solution to the linear programming problem

(CP) minimize ¢’
subject to Az =0, (3.4)
x>0,

with ¢ = V f(). .
Let X = (X1,...,X,) be an optimal basic feasible solution to (3.4), associated with a
basis B C [n]. We have ¢/# = ¢’ X, but not necessarily & = X. The tableau associated

with B is

rp = B — Az

z = 2 + 7w,
where

=y —y AN,y =g AR (3.5)
with v > 0 because B was an optimal basis, see (2.21), (2.22).

Now define
A= =y,
o ifien .,
i =) e N P b

We claim that the vectors A and p satisfy the requirements of the Theorem. We already
know that u > 0. Moreover, by (3.5),

Cg = ?JTAB = yTAB + Mg,

ey = YAy +9" =y Ay + g,

S0
Vi@)=c =yT"A+p=- A+ pu.

Finally, we need to show that p’'Z = 0. For this, we recall that the z-row of the tableau

expresses the objective function value z = ¢’z in terms of the nonbasic variables. Thus
we get

CT.i‘ = 2y+ ')/T.i‘N =2+ /LT.%,

CTX = 20,
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because Xy = 0 by definition of a basic feasible solution. From ¢z = X, uT% = 0
follows.

For the other direction let us assume that vectors A, y exist that satisfy the requirements
of the Theorem. We claim that in this case Z is an optimal solution of the linear problem
(3.4). Via Lemma 3.2, this also implies that Z is an optimal solution to the original problem
(3.3).

To show that & optimally solves (3.4), we prove that the inequality ¢z < ¢!z follows
from Ax = b,x > 0. First note that the latter conditions (using p > 0) imply

~MAz = -\,
e >0,
SO
(=ATA+ )z > —2\"b. (3.6)

This further gives

(3.6)
e =Vf@)r=(NA+pz > Nb=-NA34+ 17 =Vf(@)i =%

H]
To prove Theorem 3.3, convert the inequalities Az < b into equalities by introducing
slack variables. Then apply Theorem 3.4.
Finally, here is another Kuhn-Tucker theorem, this time for problems with general
equality and inequality constraints.

Theorem 3.5 (Kuhn-Tucker conditions with general constraints.) Consider the problem

(CP) minimize f(x)
subject to Az = b, (3.7)
Cx <d,

x an n-vector, A an my X n-matriz, b an my-vector, C' an mo X n-matriz, d an mq-vector,
fIR" — IR a conver function. A feasible solution & € IR" is optimal for CP if and only
if there is an mqy-vector A and an mg-vector p > 0 such that

(i) V(&) = -\TA+u"C,
(ii) uT(C7 —d) = 0.

Proof. Substitute © = y—z,y, 2 > 0 and introduce slack variables to turn the inequalities
Cz < d into equalities. Then apply Theorem 3.4. Hl
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Chapter 4

Quadratic Programming

In this chapter, we consider quadratic programming problems, i.e. problems of the type
(QP) minimize ¢’z + 2" Dx
subject to Ax =0, (4.1)
x>0,

where ¢ is an n-vector, A an m X n-matrix, b an m-vector and D a symmetric, positive
semidefinite n x n-matrix, i.e. 27 Dz > 0 holds for all x.

Of course, we would like to apply the machinery of the previous chapter, so we should
make sure that such problems are in the class CP.

Lemma 4.1 f(x) =clx + 2T Dx is a convexr function.

To solve problem QP, we will try to stick to the simplex method as close as we can.
There is, however, one major obstacle. In case of LP, there is always an optimal solution
which is a vertex of the feasible region. In QP, this is not necessarily the case. As a trivial
example, consider the problem of minimizing the function z? subject to the constraints
—1 < x < 1. The feasible region is a polytope in 1-space with vertices —1 and 1, but the
unique optimal solution occurs in the interior, at the point 0. Therefore, while for LP, the
simplex method can restrict its attention to basic feasible solutions, this is not possible
for QP; in fact, every feasible solution can appear as the optimal solution for a suitable
objective function.

However, with an appropriate generalization of the concept of a basis, we will be back
in a finite space of solutions we need to consider. To motivate this concept, let us derive
an alternative definition of an LP basis.

4.1 LP Bases Reviewed

Consider the LP in equality form

(LP) minimize Tz
subject to Az =0, (4.2)
x>0
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B C [n] is a basis if and only if there exists a feasible tableau

zp = B —  Awy
z =z + 7law.

Via the tableau, the values of the nonbasic variables xy uniquely determine the values of
the basic variables xg. In particular, the current BF'S 7 is determined by 2y = 0. In other
words, T is the unique feasible (and therefore optimal) solution to the problem

(LP(B)) minimize Iz
subject to Az = b,
rp > 0,
IN = 0.

(4.3)

Moreover, because I is unique anyway, the constraints xg > 0 are redundant, and 7 is
even an optimal solution to the ‘unconstrained’ problem

(ULP(B)) minimize c'z
subject to Ax =0, (4.4)
IN — 0.

In order for the simplex algorithm really to work, we have required the LP to be
nondegenerate, and this meant that we do not allow any BFS 8 = A3'b to have zero
entries. In Subsection 2.2.2, we have achieved this by symbolically perturbing the right-
hand side b, with the effect that the following stronger property holds, which we would
like to assume for the rest of the manuscript.

Assumption 4.2 The system Ax = b,xny = 0 has solutions only for sets N with N <
n —m. Equivalently, the system Apxrp = b has solutions only for sets B with |B| > m.

Under this assumption, an LP basis can be defined in yet another way: let 2(G) be
the optimum value of LP(G), G C [n] (we set z(G) := —oo if the problem is unbounded).
Let 2y # —oo be some value. Then we can say that a basis is an inclusion-minimal set
B such that z(B) = 2. Considering all possible values zy = z(G),G C [n], we obtain all
possible bases B. Why? First of all, nondegeneracy implies |B| > m, while minimality
implies |B| < m, so B has the right size by this definition. Moreover, Ap must be regular,
otherwise the system Agxp = b would have at least a one-dimensional solution space,
which in particular means that a solution exists with x; = 0 for some ¢ € B. But this
contradicts the nondegeneracy.

4.2 Pivoting in Quadratic Programming

To generalize the simplex method to quadratic programming problems (4.1), we start off
with a definition of a basis which coincides with the basis concept of LP in case the matrix
D vanishes. Throughout this section, it is always useful to see what happens if D = 0
and check whether in this case, familiar statements about LP arise (needless to say, they
should, otherwise something is wrong).
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4.2.1 Bases

Consider the problem

(QP(B)) minimize 'z + a2t Dx
subject to Az = b,
rp > 0,
N = 0,

(4.5)

and let z(B) denote the objective function value of an optimal solution of QP(B). (This
problem may be unbounded in which case we have z(B) = —oc.)

Definition 4.3 A basis of QP is an inclusion-minimal set B such that z(B) = zy, for
some fized value zy # —o0.

A few facts follow from this definition. As before, nondegeneracy implies |B| > m, but
we do not necessarily have |B| = m. In fact, |B| can be as large as n. Beyond that, the
following statements hold.

Lemma 4.4 Let B be a basis of QP.
(i) Any optimal solution T to QP(B) satisfies Tp > 0.
(ii)) QP(B) has a unique optimal solution Z.

(11i) T is at the same time an optimal solution to the unconstrained problem

(UQP(B)) minimize 'z + a2t Dx
subject to Ax = b, (4.6)
IN = 0.

Proof. (i) follows from the minimality of B. To see (iii), apply the Kuhn-Tucker Theorem
3.5 to QP(B). Because of Zg > 0, the vector p in this theorem vanishes. Then, however,
Z is an optimal solution to UQP(B) by the same Theorem. To prove (ii), let us write out
the conditions of Theorem 3.5 explicitly, for problem UQP(B). We get that z is optimal
for UQP(B) if and only if an m-vector A and n-vector p with up = 0 exists such that

Ax = b,
N = 0, (47)
cl'+2TD = XA+t

This means, the (z, A, 1) defining optimal solutions form an affine space L. We claim
that this affine space is a single point, proving (ii) (because L in particular contains the
optimal solutions to QP(B)) and uniqueness of the vectors A, u. First assume, we had
optimal solutions (Z, A, ), (&', N, u') with & # &', where Z is assumed to be any optimal
solution to QP(B). Then {z | (z, A\, u) € L} contains a line. Moving from Z along this line,
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we can reach an optimal solution Z” to QP(B) with z7 = 0 for some i € B, contradicting

the minimality of B. This means, we must have = & for all (z, A\, u) € L. Then, however,
A must be unique as well, because the nondegeneracy assumption implies that the rows of
Ap are linearly independent (exercise), so that A is already uniquely computed from the
subsystem of equations

cp+ipD(B) = -\ Ap,

D(B) being the quadratic submatrix of D correspodning to rows and columns with indices
in B. Finally, it also follos that ju is unique.

This means, just like in LP, a basis B determines a unique optimal solution = to a
‘subproblem’ QP (B). While for LP, this uniqueness already follows from the uniqueness
of a feasible solution, in case of QP we need the additional equations imposed by the
Kuhn-Tucker optimality conditions.

4.2.2 Optimality condition

Given an optimal solution Z to some basic problem QP(B) which is then also a solution to
UQP(B), we would — like in the LP case — like to find a variable z;, j ¢ B whose increase
would lead to a smaller objective function value. Equivalently, we would like to find an
index j such that z(B U {j}) < z(B) or certify that no such index exists. The following
Lemma characterizes the set of improving indices.

Lemma 4.5 Let B be a basis of QP with associated optimal solution T and vectors A, j,
up = 0 such that

' +3"D=- A+ ", (4.8)

(By the previous lemma, T, \ and p are unique.) Then z(B U {j}) < z(B) holds if and
only if pj < 0.

Proof. QP(BU{j}) differs from QP(B) only by the fact that the equality z; = 0 has been
replaced by the inequality z; > 0. In the corresponding Kuhn-Tucker conditions according
to Theorem 3.5, this replaces the previously unrestricted variable 1; by a restricted variable
pj > 0. It follows that & is optimal for QP(BU{j}) if and only if s1; > 0 really holds. The
Lemma follows. Hl

Note that if y1; > 0 for all j € B, then Z is an optimal solution to the whole problem.

4.2.3 The Pivot Step

How do we actually find the improved solution z(B U {j}) and a corresponding basis B’ 7
In LP, this was easy, we just needed to increase x; until some other variable z; got down to
zero. At that point, B' = BU {j} — {i} is the desired new basis with z(B') = z(B U {j}).
In case of QP, it’s not that simple, because of three reasons.

35



(i) What does ‘increasing ;" mean? In case of LP, a unique feasible solution to the
problem LP(BU{j}) is associated with each possible value of z; (and these solutions
taken together form an edge of the feasible region which is traversed as x; increases).
In case of QP(B), many feasible solutions may correspond to a fixed value of z;.

(ii) Although it is feasible to increase x; until some z;,i € B goes down to zero, it
may not be profitable. In other words, the objective function value might reach a
minimum before any other constraints become binding. In case of a linear objective
function, of course, this can not happen.

(iii) Even if x; profitably increases until some basic variable reaches zero, the feasible
solution we have at this point is not necessarily the desired optimal solution to
QP(B U{j}). In LP we are only allowed to argue in that way because z; cannot
be increased further without violating feasibility. In QP, it may well be possible
to ‘change’ the direction in which we move our solution (because this direction is
in general not unique, see item (i)) and still keep improving the objective function
further without leaving the feasible region.

Item (i) can easily be dealt with if we consider for fixed value ¢ of =; the unique optimal
solution of the problem QP(B U {j}) subject to the additional constraint z; = ¢t. Why is
this solution unique and how do we get it?

Let & be the optimal solution to QP(B) and UQP(B) and rewrite the optimality
conditions (4.7) in matrix form. We get that Z is obtained from the uniquely solvable
system of equations

D A" —EN)T T —c
A0 0 A= b |, (4.9)
“E(N) 0 0 " 0

E(N) the n x n-matrix whose j-th column E; satisfies

B = €, lijN,
IV 0, ifj¢N

Now define B := BU {j} and consider the problem

~

UQPy,,—(B) minimize 'z + 2" Dx
subject to Ax = b,
rn-} = 0,
.’I?j = t,

(4.10)

which arises from UQP(B) by replacing equality z; = 0 with z; = ¢. The Kuhn-Tucker
conditions do not change at all, and we get that the optimal solution  to (4.10) is obtained
by solving the system

D AT —E(N)T x —c
A0 0 A= o (4.11)
_E(N) 0 0 " —te,
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for o, A, p. If (4.9) is uniquely solvable, so is (4.11) because both systems only differ in
their right-hand side. As long as the solution Z of (4.11) is feasible for QP(B), it is also
an optimal solution to

QP{x]:t}(B) minimize ¢’z + 27 Dx
subject to Az =0,
TN—{} = 0,
Ty = t,

Now we have — just like in LP — the situation that a unique point Z(t) is associated to
each value z; = ¢.

Let’s consider item (ii) above. How large should we let z; get? In LP, our only worry
was that at some point, the solution z(¢) becomes infeasible, and that’s where we had to
stop. Of course, then we also have to stop here, and computing for each variable x;,7 € B
the value t; at which it becomes zero, is just a classical case of the ratio test as we had it
before in LP (see Subsection 2.3.2).

But we may have to stop earlier, namely when the objective function reaches a minimum
before any basic variable has become zero. How do we notice this? That’s easy: as soon
as we get p; = 0 from (4.11), we know that the current solution is optimal not only for
QP{wj:t}(B) but also for QP(B) Namely, in this case the Kuhn-Tucker conditions imply
that the current solution is optimal for the problem

minimize ¢’z + 2" Dz
subject to Az =,
xp 2> 0,
ry-(jy = 0,

and because we know that x; > 0 also holds, we have the desired optimum for QP(B).
Moreover, B is a basis (exercise). Finding the time ¢; at which p; becomes zero is just as
easy as finding the times ¢; before.

Concerning item (iii), we still need to discuss what happens at the point where the
current solution #(t) is about to become infeasible for QP(B), satisfying #;(t) = 0 for
some i € B. Then Z is not only the unique optimal solution to the problem QP{IJ.:t}(B)

that we currently handle, but also the unique optimal solution for QP{Ij:t}(B \ {i}). If
we just update B to B\ {i}, we are back in the situation where we have problem (4.10)

and a unique optimal solution to it. Then we just repeat the preceding steps. Because B
gets smaller in every such ‘subiteration’, we must sooner or later end up in the situation
that 11; becomes zero, in which case we have found our new basis, and the pivot step is

finished.
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4.3 Size of a Basis

In an implementation, we really need to solve the linear system (4.11), but in the form
we have written it down, it is a system in 2n + m equations in 2n + m unknowns, which
is not feasible to solve for large n. In contrast, for LP, the linear systems we needed to
solve were of order m x m. In particular, their sizes are independent of n. Luckily, we do
not need to solve the large system (4.11), there is an equivalent smaller one. To see this,
we rewrite problem UQP{mj:t}(B) (whose optimal solution is characterized by (4.11)) as a
problem over only |B| variables, namely as

~

UQP (4= (B) minimize cgajé + ang(B)xB
subject to Agxp =0, (4.13)
.’L‘j =1.

Considering the Kuhn-Tucker conditions for this problem, we get a system in only |B| +
m + 1 variables. This means, if B is sufficiently small, we deal with small systems again.
Since |B| is always at most |B| 4+ 1, B the basis we have started with, we would like to
have a bound on the maximum basis size. As the next Lemma shows, this bound depends
on the rank of D.

Lemma 4.6 Let & be an optimal solution to (QP). If r denotes the rank of D, then an
optimal solution T’ to (CP) exists such that

{j: & >0} <m+r

In case of LP, i.e. if D is the zero matrix of rank 0, we recover the statement that the
optimal solution is a BFS, w.l.o.g. For QP it follows that any basis has size at most m +r.
Proof. By Theorem 3.5, there are vectors A, i such that

' +i"D=-NA+p.
It follows that any y in the affine space
L={yly"D=a"D}n{y| Ay =10}
is also optimal. We have

dim(L) dim({y | y* D = 2" D}) + dim({y | Ay = b}) — n

>
> (n—=r)+(n—m)—n

n—m-—rT.

This means, the set of optimal solutions contains the n — m — r-dimensional polytope
LNn{x|z>0}. A vertex ¥’ of this polytope has the required property.
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Chapter 5

Some Applications

In this final chapter we come back to the examples of geometric optimization problems in-
troduced back in the first section of the first chapter, and see how the previously developed
algorithms can efficiently be applied to them.

Look at the Largest ball in polyhedron problem (LBIP) as defined in (1.1). In this
formulation, the problem is LP with n inequality constraints but only d + 1 variables.
Recall that our scenario was that d is small but n quite large. If we would just apply
the simplex method to this problem, we would introduce n slack variables to turn the
inequalities into equalities; subsequently we would then work with bases B of size n,
involving the computations of inverses Az" of n x n-matrices. Computing the inverse takes
O(n?) time if done with Gaussian elimination, and this is just too much.

We would rather have the problem the other way round, featuring many variables but
only few constraints. Then the simplex method would work with small basis matrices and
can be expected to be efficient.

Luckily, there is something called duality in linear programming. Consider the problem

(LP) minimize ¢’z
subject to Ax <b.

(This is the situation in (LBIP)). One can prove that if (LP) has an optimal solution, then
also the problem

(5.1)

(LP’) minimize by
subject to ATy = —e, (5.2)
y=>0

has an optimal solution, and the optimal solutions coincide. Moreover, from an optimal
BFS to (5.2), an optimal BFS to (5.1) can easily be reconstructed. In case of (LBIP), (5.2)
has only d+ 1 equality constraints (and n variables); it can therefore effciently be handled
using the simplex method, i.e. usually in time O(n) if d is assumed to be a constant, see
Section 2.4.

The LP arising from the Smallest enclosing annulus problem (area version) is also
transformed to a problem with few constraints, using the same kind of duality, again
leading to an algorithm which we expect to be an O(n) algorithm.
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There are several versions of the duality theorem, depending on whether the problem
has equality or inequality constraints, nonnegativity restrictions or not etc., but all these
versions are essentially equivalent.

The version which is easiest to prove using the material of this manuscript is probably
the following.

Consider the problems

(LP) minimize ¢’z
subject to Az < b, (5.3)
x>0

and

(LP’) maximize by
subject to ATy <, (5.4)
y<0.

If (5.3) has an optimal solution, so has (5.4), and both optimal values coincide.

The Distance of polytopes problem (DOP) as defined in (1.1) is directly solvable within
our framework in an efficient manner, because it only has 2d + 2 equality constraints.
Moreover, the objective function was

=) —a)=- Q)T< _EE _EE ) (0 —a).

which is a positive definite matrix; consequently, the matrix D in the objective function
has only rank 2d (recall that this was important to have only small systems of equations
to solve). As for the simplex method itself, the variant for quadratic programming is also
expected to be fast in practice, if at each stage, the variable x; is entered which has the
smallest value of 1, see Subsection 4.2.2. As for the problems before, we expect an O(n)
algorithm for (DOP) in case the dimension is constant.

Finally, we have the Smallest enclosing ball problem. Why is this a quadratic program-
ming problem? Let py,...,p, be the input points. Now we claim that the problem can be
formulated in the form

(SEB) minimize p"p — p! piz,
subject to p =Y, zp;,
o1 T = 1,
x>0,

(5.5)

and the optimal point p is the center of the smallest enclosing ball of the points. To prove
this is the ‘master exercise’.

Problem (SEB) has d + 1 equality constraints, and the rank of the matrix D in the
objective function — when formulated as QP — is d. Thus, the problem can efficiently be
solved using the adaptation of the simplex method for quadratic programming.
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