
Linear Programming and Unique Sink Orientations

Bernd Gärtner∗

Institute of Theoretical Computer Science

ETH Zürich

8092 Zürich

Switzerland

gaertner@inf.ethz.ch

Ingo Schurr†

Institute of Theoretical Computer Science

ETH Zürich

8092 Zürich

Switzerland

schurr@inf.ethz.ch

Abstract

We show that any linear program (LP) in n nonnegative
variables and m equality constraints defines in a natural
way a unique sink orientation of the n-dimensional
cube. From the sink of the cube, we can either read off
an optimal solution to the LP, or we obtain certificates
for infeasibility or unboundedness.

This reduction complements the implicit local
neighborhoods induced by the vertex-edge structure of
the feasible region with an explicit neighborhood struc-
ture that allows random access to all 2n candidate so-
lutions. Using the currently best sink-finding algo-
rithm for general unique sink orientations, we obtain the
fastest deterministic LP algorithm in the RAM model,
for the central case n = 2m.

1 Introduction

Linear Programming is the problem of maximizing a
linear function subject to linear (in)equality constraints.
Here, we consider linear programs (LP) of the form

(LP) max cT x
s.t. Ax = b

x ≥ 0,
(1.1)

with A ∈
�

m×n, c ∈
�

n, b ∈
�

m. Any LP can be con-
verted into this form. If the polyhedron P(A, b) = {x ∈

�
n | Ax = b, x ≥ 0} is nonempty, (1.1) is called feasible,

otherwise infeasible. If in the feasible case, the objec-
tive function value cT x is bounded above over P(A, b),
(1.1) is called bounded, otherwise unbounded. Any feasi-
ble and bounded linear program has a maximum value
z∗ ∈

�
, and any x ∈ P(A, b) with cT x = z∗ is called an

optimal solution [1].

∗supported by the Swiss Science Foundation (SNF), project
No. 200021-100316/1

†supported by the joint Berlin/Zürich graduate program Com-
binatorics, Geometry and Computation (CGC), financed by the
German Science Foundation (DFG) and ETH Zürich

To solve the linear program (1.1) means to compute
an optimal solution x∗ if the problem is feasible and
bounded, and to report infeasibility or unboundedness
otherwise.

In this paper, we introduce a new method for
solving linear programs, based on the concept of unique
sink orientations of cubes (USO) [17]. An orientation
of the n-cube graph is said to be USO if all subgraphs
induced by nonempty faces of the cube hae unique sinks.
Like in the simplex method [3, 1], some rule guides
us through a finite sequence of candidate solutions
(associated with cube vertices), where a single iteration
boils down to solving some systems of linear equations.
In almost all other aspects, our method is quite different
from the simplex method. Here are its distinguishing
features.

• There is only one phase; the output is a pair of
primal and dual optimal solutions to a modified
linear program, and this pair is a certificate for
either infeasibility, unboundedness, or optimality
of the original problem (in the latter case, the
modified linear program is the original one).

• The output does not depend on the internal rule
being used and therefore defines a canonical solu-
tion to any LP, even in the infeasible or unbounded
case.

• All inputs (A, b, c) are dealt with in the same
manner. The method implicitly resolves rank
deficiencies and other degeneracies.

• The internal rule does not necessarily induce a path
in the cube graph; it can take full advantage of
random vertex access.

• Under a suitable rule that actually “jumps around”
in the cube, the new method is the fastest known
deterministic algorithm for LP with n = 2m
variables, in the RAM model.

This research is motivated by an open problem in
complexity theory: although LP is known to be in P

since 1979 [7], no strongly polynomial-time algorithm
(a polynomial-time algorithm in the RAM model) is
known. The quest for such an algorithm is a research
challenge since more than thirty years [18]. The most
prominent problem here is to find a pivot rule under
which the simplex algorithm performs a polynomial
number of steps in the worst case.

Despite substantial research, there is no pivot rule
known that leads to substantially less iterations than the
total number of vertices of P (A, b) in the worst case, and
this number may be exponential in m.1 This is where
unique sink orientations come in. USO were first intro-
duced by Stickney and Watson [16] as digraph models
for P-matrix linear complementarity problems (PLCP);
recent years have seen a number of results concerned
with the combinatorial and complexity theoretic aspects
of USO, see the references in the next section.

The Fibonacci Seesaw of Szabó and Welzl [17] for
finding the sink of a USO, implicitly given by a vertex
evaluation oracle, features an interesting new twist: the
possibility of random access to all candidate solutions
may indeed help. For PLCP—not known to be in P—
this “jumping” approach yields the fastest algorithm so
far.

In this paper, we show that any linear program
defines a USO in a natural way, with the unique global
sink of the USO corresponding to the solution of the
LP. Moreover, the vertex evaluation oracle required by
the Fibonacci Seesaw (and other algorithms for general
USO) boils down to Gaussian elimination. Plugging
in the bounds of Szabó and Welzl for finding the sink
in general USO [17], we obtain the following result,
showing that jumping also helps for LP.

Theorem 1.1. Any LP with n = 2m variables can be
solved in time

O
(

1.6062m
)

= O (2.58m) .

In contrast, there are linear programs with n = 2m
but a higher number of basic feasible solutions, almost
all of which might be visited by a deterministic simplex
algorithm. For example, any dual-to-cyclic polytope
with n facets in

�
n−m induces such an LP, after an

affine transformation that writes it as the intersection of
the positive orthant in

�
n with an (n−m)-dimensional

affine subspace. The number of vertices, equivalently
the number of basic feasible solutions in the LP, is equal
to the largest number allowed by the Upper Bound

1There are randomized pivot rules that lead to an expected
subexponential number of steps[6, 9].

Theorem, and it is in particular larger than
(

m − 1 + bm
2 c

bm
2 c

)

= 2
3

2
H(1

3)m+o(m) = Ω(2.598m),

where H(x) is the binary entropy function [19].
In fact, no deterministic algorithm for solving LP in

the RAM model is known to require asymptotically less
time than the number of basic feasible solutions, in the
worst case. For n = 2m, the algorithm behind Theorem
1.1 beats this bound: it is decoupled from the concept of
basic feasible solutions, and its runtime bound is indeed
(exponentially) smaller than the worst-case number of
basic feasible solutions.

The outline of the paper is as follows. In Section
2, we briefly review the concept of unique sink orienta-
tions. Section 3 presents our main technical tool for the
LP-to-USO reduction, the Karush–Kuhn–Tucker condi-
tions for convex programming. Based on this, section 4
shows that a certain class of very simple strictly convex
programs give rise to USO.

Using this (essentially known) machinery, Section 5
starts our actual contribution. We symbolically perturb
any LP to a family of strictly convex quadratic programs
parameterized with ε > 0. As the key steps, we analyze
the limiting USO obtained from letting ε tend to zero,
and we show how we can perform vertex evaluations in
this LP-induced USO without computing with ε’s.

In Section 6, we examine the sink of the LP-induced
USO, and we show how a certified solution to the LP
can be extracted from it, even in the infeasible and
unbounded case.

Section 7 addresses open questions; in particular,
we point out that LP-induced USO possess the Holt-
Klee property that set them apart from general USO,
and we discuss possible algorithmic consequences of this
result.

2 Unique sink orientations

Definition 2.1. An orientation of the vertex-edge
graph of the n-dimensional cube is called unique sink
orientation (USO) if every subgraph induced by a
nonempty cube face has a unique sink.

In particular, the cube has a unique global sink.
Starting from n = 3, there are USO containing directed
cycles, like the one in Figure 1.

After their invention by Stickney and Watson in
1978 [16], USO have suffered a long period of non-
observance. They were independently revived by two
papers. On the negative side, Morris showed that for
odd n, there are highly cyclic n-cube USO (actually
coming from PLCP) on which the natural directed
random walk takes more than ((n − 1)/2)! steps to

Figure 1: A cyclic USO of the 3-cube

reach the global sink, much more than the number
of vertices [11]. On the positive side, Szabó and
Welzl found a deterministic algorithm—the Fibonacci
Seesaw—that finds the global sink of any n-cube USO
by looking at less than 1.61n vertices (more precisely, at
the orientations of the incident edges) [17]. This is the
vertex evaluation model.

Encouraged by these findings that established USO
as fruitful objects with interesting combinatorial prop-
erties, a number of other results followed [8, 10, 4, 15,
13, 5, 14].

3 The Karush–Kuhn–Tucker conditions

Let us fix some notation first. For x ∈
�

n and
J ⊆ [n] := {1, . . . , n}, xJ is the |J |-dimensional vector
obtained from x by collecting all coordinates with
subscript in J . For A ∈

�
m×n, AJ ∈

�
m×|J| collects

the columns of A with subscript in J .
With 0 being the zero vector of the appropriate

dimension, we also use

� J := {x ∈
� n | x[n]\J = 0}.

Let f :
�

n →
�

be a differentiable convex function
with continuous partial derivatives. For I ⊆ J ⊆ [n] we
consider the convex programming problem

CP(I, J) min f(x)
s.t. Ax = b

x ∈
�

J

xJ\I ≥ 0.

(3.2)

where A ∈
�

m×n and b ∈
�

m. The following is a
specialization of a very general theorem to our scenario.
For completeness, we include a simple proof using LP
duality.

Theorem 3.1. x∗ ∈
�

n is an optimal solution to
problem CP(I, J) if and only if

(i) Ax∗ = b, x∗ ∈
�

J , x∗
J\I ≥ 0, and

(ii) there exists λ ∈
�

m such that for all j ∈ J ,

∇f(x∗)j − λT Aj ≥ 0,

with equality if j ∈ I or x∗
j > 0.

Here, ∇f(x∗) is the gradient of f at x∗ which by
convention is an n-dimensional row vector.

The entries of λ are called Karush–Kuhn–Tucker (KKT)
multipliers.

Proof. Assume (i) and (ii) hold. Then we get

(∇f(x∗) − λT A)x∗ = 0, and

(∇f(x∗) − λT A)x ≥ 0

for all feasible solutions x to CP(I, J). Subtracting the
first equation from the second, the contributions of λT A
cancel, and we get

0 ≤ ∇f(x∗)(x − x∗).(3.3)

The fact that this equation holds for all feasible x is well-
known to characterize optimality of x∗, see for example
[12].

For the other direction, assume that x∗ is optimal,
in particular feasible, which gives (i). Since in this case,
(3.3) holds for all feasible x, the vector x∗ is an optimal
solution to the linear program

min ∇f(x∗)x
s.t. Ax = b

x ∈
�

J

xJ\I ≥ 0.

Let y∗ be an optimal solution to the dual linear
program

max bT y
s.t. yT Aj = ∇f(x∗)j , j ∈ I

yT Aj ≤ ∇f(x∗)j , j ∈ J \ I.

By the complementary slackness condition, (y∗)T Aj =
∇f(x∗)j for all j ∈ J \ I with x∗

j > 0, implying that
λ := y∗ fulfills (ii).

4 Simple convex programming

Let us fix a strictly convex function f and consider for
I ⊆ J ⊆ [n] the problem

SCP(I, J) min f(x)
s.t. x ∈

�
J ,

xJ\I ≥ 0.
(4.4)

This is just the program CP(I, J) from the previous
section, restricted to the strictly convex case, and with
A ∈

� 0×n. We refer to this setup as simple convex
programming (SCP).

Since f is strictly convex and SCP(I, J) is feasible,
the program SCP(I, J) has a unique solution x∗(I, J),
for all pairs I ⊆ J . Applying Theorem 3.1,2 we see that
x∗ = x∗(I, J) if and only if we have primal feasibility

x∗
[n]\J = 0,(4.5)

x∗
J\I ≥ 0,(4.6)

along with dual feasibility

∇f(x∗)I = 0,(4.7)

∇f(x∗)J\I ≥ 0,(4.8)

and complementarity

∇f(x∗)jx
∗
j = 0, j ∈ J \ I.(4.9)

Let us focus on the case I = J for a moment.
Conditions (4.6), (4.8) and (4.9) are vacuous, so we get
that x∗ = x∗(J, J) if and only if

x∗
[n]\J

= 0,

∇f(x∗)J = 0.
(4.10)

Towards the USO. Identifying the n-cube ver-
tices with the sets J ⊆ [n], we will derive the edge ori-
entations from the vectors x∗(J, J). We still need one
preparatory

Lemma 4.1. For J ⊆ [n], j ∈ J and I := J \ {j}, the
following two statements are equivalent.

(i) x∗(J, J)j > 0.

(ii) ∇f(x∗(I, I))j < 0.

Proof. If x∗(J, J)j > 0, then x∗(J, J) is feasible
and therefore optimal for the more restricted problem
SCP(I, J). On the other hand, x∗(J, J)j > 0 shows that
x∗(J, J) 6= x∗(I, I). This means, we have x∗(I, J) 6=
x∗(I, I), the only possible reason being that (4.8) fails
for x∗ = x∗(I, I). This shows ∇f(x∗(I, I))j < 0.

Conversely, ∇f(x∗(I, I))j < 0 implies x∗(I, J) 6=
x∗(I, I), so x∗(I, J)j > 0. Complementarity yields
∇f(x∗(I, J))j = 0, so x∗(I, J) is also optimal for the
less restricted problem SCP(J, J) by (4.10). This yields
x∗(J, J)j = x∗(I, J)j > 0.

Here is the main result of this section.

2you might want to recheck it for the case of a matrix A with
no rows

Theorem 4.1. For J ⊆ [n], j ∈ J and I := J \{j}, the
edge orientations

I → J :⇔ x∗(J, J)j > 0 (⇔ ∇f(x∗(I, I))j < 0)

define a USO of the n-cube.

Proof. We have to show that every nonempty cube face
has a unique sink. In our interpretation of cube vertices
as subsets J ⊆ [n], the faces can be identified with set
intervals of the form

[I, J] := {F ⊆ [n] | I ⊆ F ⊆ J}.

We claim that

S := I ∪ {j ∈ J | x∗(I, J)j > 0}(4.11)

is the desired sink of the face [I, J], I ⊆ J . First observe
that by this definition of S, x∗ = x∗(I, J) satisfies

x∗
[n]\S = 0,(4.12)

∇f(x∗)S = 0,(4.13)

by (4.7) and complementarity (4.9). It follows that
x∗(I, J) = x∗(S, S), by (4.10). Therefore,

x∗(S, S)j > 0, j ∈ S \ I,(4.14)

∇f(x∗(S, S))j ≥ 0, j ∈ J \ S,(4.15)

by (4.8). According to the definition of the orientation,
S is a sink in [I, J].

Conversely, if S is any sink in [I, J], then the two
previous inequalities hold, so x∗(S, S) is feasible for
SCP(I, J) since (4.12) and (4.14) imply (4.5) and (4.6),
and it is dual feasible since (4.13) and (4.15) imply (4.7)
and (4.8). Complementarity (4.9) follows from (4.12)
and (4.13). Thus, x∗(S, S) = x∗(I, J), where (4.14)
forces S to coincide with the set defined in (4.11).

We remark that this reduction of SCP to USO is
known for the case where f is a quadratic function, and
this is the situation in which we will apply it.

In the quadratic case, f is of the form

f(x) = xT Qx + uT x + w

for some symmetric positive definite matrix Q ∈
�

n×n,
u ∈

�
n, and w ∈

�
. For I = ∅, J = [n], the

optimality conditions (4.5) through (4.9) define a linear
complementarity problem whose matrix is in particular
a P-matrix. The USO derived by Stickney and Watson
[16] then coincides with the orientation we have defined
in Theorem 4.1 [2].

The above generalization to strictly convex func-
tions is straightforward, and we have included the proof
mainly for completeness. Our actual contribution is the
nontrivial reduction of LP to strictly convex quadratic
programming in the next two sections.

5 LP-induced USO

Given the linear program (1.1) with n variables, we
define for any ε > 0 a quadratic function fε by

fε(x) := xT (AT A + ε2I)x − 2bT Ax − 2εcT x

= ‖Ax − b‖2 − 2εcT x + ε2‖x‖2 − bT b.

Here, I is the identity matrix of the appropriate dimen-
sion (n in this case). Since AT A+ε2I is positive definite
for all ε > 0, fε(x) is a strictly convex function.

Let us denote by SCPε(I, J) the program (4.4) with
function f = fε. We are interested in the behavior
for ε → 0. We expect that in the limit, the program
lexicographically minimizes the triple

(‖Ax − b‖2,−2cT x, ‖x‖2).

In the feasible and bounded case, the solution x∗
ε(∅, [n])

of SCPε(∅, [n]) should therefore converge to the optimal
LP solution of minimum norm.

In order to understand the USO induced by fε, we
have to know the values x∗

ε(J, J). From (4.10) it follows
that x∗

ε(J, J) ∈
�

J is obtained from the unique solution
of the linear equation system

∇f(x)T
J

2
= (AT

J AJ + ε2I)xJ − AT
J b − εcJ = 0(5.16)

with x ∈
�

J .

Lemma 5.1. Let
ε
→ be the USO of the n-cube induced

by fε according to Theorem 4.1. Then there exists a
USO → such that

ε
→=→ for sufficiently small ε.

We call this “limiting” USO the USO induced by
the LP.

Proof. Using Cramer’s rule to compute the solution
x∗

ε(J, J)J of the system (5.16), we see that the entries
of all x∗

ε(J, J)j are rational functions in ε. By Theorem

4.1,
ε
→ is determined by the signs of finitely many of

these rational functions.
Now, for any nonzero rational function r(ε), there

is an open interval of the form (0, δ) in which neither its
numerator nor its denominator has any zeros. In this
interval, the sign of r(ε) is fixed. The lemma follows.

This also provides a way of computing edge orienta-
tions in the limiting USO →: simply compute the ratio-
nal function “responsible” for the orientation in ques-
tion and find the terms with the smallest ε-power in
both the numerator and the denominator. These deter-
mine the sign of the rational function for ε → 0.

Nevertheless, since the limiting USO does not de-
pend on ε, there must be a way of avoiding computa-
tions involving ε. Our approach is to develop x∗

ε(J, J)
into a power series, and this will also be crucial for un-
derstanding the global sink of → in the next section.

A zoo of easy programs. It will turn out that
the coefficients of the power series expansion are so-
lutions to unconstrained strictly convex quadratic pro-
grams (where unconstrained means that there are no in-
equalities). All “animals” in the following list are unique
optimal solutions of their defining programs.

Definition 5.1. For J ⊆ [n], set

b̄(J) = argmin (b − y)T (b − y)
s.t. Ax = y

x ∈
�

J ,

x(J) = argmin xT x
s.t. Ax = b̄(J)

x ∈
�

J ,

c̄(J) = argmin (c − x)T (c − x)
s.t. AT

J y = xJ ,

y(J) = argmin yT y
s.t. AT

J y = c̄(J)J ,

c(J) = argmin (c − x)T (c − x)
s.t. Ax = 0,

x ∈
�

J ,

b(J) = argmin (b − y)T (b − y)
s.t. AT

J y = 0,

t(J) = argmin xT x
s.t. Ax = y(J)

x ∈
�

J .

If not indicated otherwise, all x range over
�

n and all
y over

�
m.

Note that all programs except the last one are easily
seen to have feasible and therefore unique optimal
solutions. For the last one, this will be shown in Lemma
5.2 below.

To get an intuition what these values are, let us
consider for γ ∈

�
n and β ∈

�
m the (unconstrained,

and therefore quite boring) linear program

LP(J) max γT x
s.t. Ax = β,

x ∈
�

J ,
(5.17)

along with its dual

LP4(J) min βT y
s.t. AT

J y = γJ .
(5.18)

The vector β = b̄(J) is the vector closest to b such
that LP(J) is feasible, and x(J) is the feasible solution
with minimum norm. Dually, γ = c̄(J) is the vector
closest to c such that LP4(J) is feasible, and y(J) is

the feasible solution with minimum norm. c(J) is the
projection of c onto the kernel of AJ , while b(J) is the
projection of b onto the kernel of AT

J .
The following technical lemma also explains how

t(J) enters the picture. (Upon first reading, this lemma
can be skipped.)

Lemma 5.2. For all J ⊆ [n], the following holds.

(i) 2t(J) is the shortest vector of KKT multipliers for
the program defining y(J).

(ii) If b(J) 6= 0, then bT b(J) > 0, and if c(J) 6= 0, then
cT c(J) > 0.

(iii) b = b(J) + b̄(J) and c = c(J) + c̄(J).

(iv) x(J) has the following alternative definition.

x(J) = argmin xT x
s.t. AT

J Ax = AT
J b

x ∈
�

J .

(v) t(J) has the following alternative definition.

t(J) = argmin xT x
s.t. AT

J Ax = c̄(J)J

x ∈
� J .

Proof. (i) Theorem 3.1 states that 2y(J)T = λT AT
J , for

some vector λ ∈
� |J|, and λ = 2t(J)J is the shortest

such vector by definition of t(J).
(ii) If b(J) 6= 0, optimality of b(J) under a strictly

convex function yields

(b − b(J))T (b − b(J)) < (b − 0)T (b − 0) = bT b.

The inequality 2bT b(J) > b(J)T b(J) ≥ 0 follows. The
argument for c(J) is the same.

(iii) We only give the argument for b here, the one
for c is similar. The Karush–Kuhn–Tucker conditions
for the program defining b̄(J) restricted to (xJ , y)
(Theorem 3.1) show that

AJx∗ = b̄(J),

(0T , 2(b̄(J) − b)) = λT (AJ ,−I),

for some x∗ ∈
�

J , λ ∈
�

m. Set y∗ = λ/2. It follows
that y∗ = b − b̄(J) and AT

J y∗ = 0. Moreover, with
µ := −2x∗, we have 2(y∗ − b)T = −2b̄(J) = µT AT

J .
This means that y∗ and µ satisfy the Karush–Kuhn–
Tucker conditions for the program defining b(J). Then
b(J) = y∗ = b − b̄(J) follows.

Geometrically, b̄(J) is the projection of b onto the
column space of AJ , while b(J) is the projection of b
onto the orthogonal complement of the column space.

(iv) In proving AT
J y∗ = 0 in (iii), we have shown

that AT
J b̄(J) = AT

J b. Since any feasible linear system
Mx = q is equivalent to MT Mx = MT q,3 we know
that the system AJxJ = b̄(J) that yields x(J)J can be
replaced by AT

J AJxJ = AT
J b̄(J) = AT

J b.
(v) Knowing from (i) that AJxJ = y(J) is feasible,

we may replace it by AT
J AJxJ = AT

J y(J) = c̄(J)J .

Here is the promised power series expansion.

Theorem 5.1. For J ⊆ [n], define

g−1(J) = c(J),

g0(J) = x(J),

g1(J) = t(J),

and for i ≥ 2,

gi(J) = argmin xT x
s.t. AT

J Ax = −gi−2(J)J

x ∈
�

J .

Then for any k ≥ 1,

x∗
ε(J, J) =

k
∑

i=−1

εigi(J) + O(εk+1),

where the big-O notation refers to the asymptotic behav-
ior for ε → 0.

With Lemma 5.2 (iv) and (v), any gi(J), i ≥ 0, is
by Theorem 3.1 of the form 2gi(J)T

J = λT AT
J AJ for

some λ. This guarantees that the programs defining
the gi(J), i ≥ 2 are feasible, so all the gi(J) are indeed
well-defined.

Proof. Let us write x∗
ε(J, J) in the form

x∗
ε(J, J) =

k
∑

i=−1

εigi(J) − rε(J),(5.19)

with rε(J) ∈
� J the remainder term. The fact that

x∗
ε(J, J)J solves (5.16) implies that rε(J)J must be the

unique solution to the system

(AT
J AJ + ε2I)xJ = εk+1gk−1(J)J + εk+2gk(J)J .

To see this, plug (5.19) into (5.16) and use AJc(J)J = 0,
AT

J AJx(J)J = AT
J b (Lemma 5.2(iv)), AT

J AJ t(J) =
c̄(J)J (Lemma 5.2(v)), as well as c = c(J) + c̄(J)

3We need to show that MT Mx = MT q implies Mx = q. Take
any x′ such that Mx′ = q. Then we get MT Mx′ = MT q and
MT M(x′−x) = 0. Also, (x′−x)T MT M(x′−x) = ‖M(x′−x)‖2 =
0 and M(x′ − x) = 0 follows; hence Mx = Mx′ = q.

(Lemma 5.2(iii)). Then watch the terms cancel. In
other words, rε(J)J is of the form

εk+1
(

(AT
J AJ + ε2I)−1 (gk−1(J)J + εgk(J)J)

)

.

If we can show that for all i ≥ 0,

sε := (AT
J AJ + ε2I)−1gi(J)J

converges as ε → 0, we have shown rε(J) = O(εk+1). .
By the remark preceding this proof, we can write this
system as

(Q + ε2I)sε = Qλ

for some vector λ and symmetric matrix Q. Choose a
diagonalizing transformation P such that Q = P−1DP ,
where D is a diagonal matrix with diagonal entries
a1, . . . , a`, 0, . . . , 0, the first ` of them nonzero. Then
the matrix equation can be rewritten as

P−1(D + ε2I)Psε = P−1DPλ,

which in turn is equivalent to (D + ε2I)s′ε = Dλ′, with
s′ε = Psε, λ

′ = Pλ. We then get

s′ε =

(

a1λ
′
1

a1 + ε2
, . . . ,

a`λ
′
`

a` + ε2
, 0, . . . , 0

)

,

meaning that s′ε and therefore sε = P−1s′ε converges.
(It can be shown that the limiting value is the minimum-
norm solution of Qx = Qλ.)

This theorem shows that we can read off the edge
orientation J\{j} → J in the LP-induced USO from the
first nonzero coefficient in the power series expansion of
x∗

ε(J, J). Here are the details.

Corollary 5.1. Let J ⊆ [n], j ∈ J , and set I :=
J \ {j}. Furthermore, define

i(J, j) := min{i ≥ −1 | gi(J)j 6= 0}.

Then i(J, j) = ∞ or i(J, j) ≤ 2|J | − 1, and the LP-
induced USO → derived in Lemma 5.1 induces the edge
orientation

I → J ⇔ gi(J,j)(J)j > 0,(5.20)

where we set g∞(J)j := 0.

Since our power series expansion also induces an ex-
pansion of ∇f(x∗

ε(J, J)) (responsible for the “upward”
edges at J for small ε), we can compute the orienta-
tions of all edges incident to a given vertex J in the
LP-induced USO by solving at most 2|J | + 2 uncon-
strained quadratic programs, and hopefully much less
in most cases; this is the vertex evaluation oracle. By
the Karush–Kuhn–Tucker conditions, this is easy and
reduces to solving linear equation systems.

Proof. We have

I
ε
→ J ⇔ x∗

ε(J, J)j > 0,

see the definition of the orientation in Theorem 4.1.
Then, according to the previous theorem, the first
nonzero value gi(J)j determines the sign of x∗

ε(J, J)j

for sufficiently small ε, and this is the sign that defines
the orientation I → J in the limiting USO.

For the bound on i(J, j) in the finite case, recall that
x∗

ε(J, J)j is a rational function, and if it is nonzero, the
numerator contains a monomial εi with i ≤ 2|J |−1 (this
is again Cramer’s rule, applied to the system (5.16). It
follows that

|x∗
ε(J, J)j | = Ω

(

ε2|J|−1
)

for ε → 0, and the previous theorem implies that
i(J, j) ≤ 2|J | − 1.

On the other hand, i(J, j) = ∞ implies x∗
ε(J, J)j =

0, so (5.20) gives the right orientation also in this case.

6 LP-induced USO: The sink

Let S ⊆ [n] be the sink of the LP-induced USO →.
From Theorem 5.1 we know that

x∗
ε(S, S) =

c(S)

ε
+ x(S) + εt(S) + O(ε2),(6.21)

which implies

∇f(x∗
ε(S, S))T /2 = AT (b̄(S) − b)(6.22)

+ ε(AT y(S) − c̄(S))

+ O(ε2),

using (5.16), Ac(S) = 0, Ax(S) = b̄(S) and At(S) =
y(S), see Definition 5.1, and c = c(S)+ c̄(S), see Lemma
5.2(iii).

For sufficiently small ε, S is also the sink in
ε
→,

so x∗
ε(S, S) = x∗

ε(∅, [n]). Using the optimality criteria
(4.6), (4.8) and (4.9), we deduce

x∗
ε(S, S) ≥ 0,(6.23)

∇f(x∗
ε(S, S)) ≥ 0,(6.24)

∇f(x∗
ε(S, S))jx

∗
ε(S, S)j = 0, j ∈ [n].(6.25)

This implies the following

Theorem 6.1. Consider the linear program

max c̄(S)T x
s.t. Ax = b̄(S)

x ≥ 0,
(6.26)

along with its dual

min b̄(S)T y
s.t. AT y ≥ c̄(S).

(6.27)

For sufficiently small ε > 0, the following statements
hold.

(i) x(S) + c(S)/ε is optimal for (6.26).

(ii) y(S) − b(S)/ε is optimal for (6.27).

Proof. Putting together (6.21) and (6.23) shows that
x(S)+c(S)/ε ≥ 0, and feasibility for (6.26) follows from
the definitions of c(S), x(S). Similarly, we can combine
(6.22) and (6.24) to deduce that y(S)−b(S)/ε is feasible
for (6.27); for this recall b(S) = b − b̄(S) by Lemma
5.2(iii).

To prove optimality, we argue as follows. From
(6.25), we see that if x(S)j + c(S)j/ε > 0, then
AT

j (b̄(S) − b) = −AT
j b(S) = 0 and AT

j y(S)− c̄(S)j = 0,
since otherwise, the lower order terms of (6.21) and
(6.22) cannot contribute enough to reach complemen-
tarity in coordinate j for small ε.

The latter observation implies the complementary
slackness condition for the pair of feasible solutions in
(i) and (ii), and this shows that both are optimal in
their respective programs.

We have shown that the sink S of the LP-induced
USO gives us a primal-dual pair of optimal solutions to
a modified LP (6.26). Here is what we can deduce about
the original LP, our primary object of interest.

In the following, an unbounded ray for an LP is
a halfline whose tail (everything except some initial
segment) is feasible, and on which the objective function
is unbounded.

Theorem 6.2. Let S be the sink of the USO induced
by the LP

(LP) max cT x
s.t. Ax = b

x ≥ 0.
(6.28)

(i) If b̄(S) 6= b, the LP (6.28) is infeasible. Equiva-
lently, the LP

max c̄(S)T x
s.t. Ax = b

x ≥ 0

is infeasible, and this is witnessed by the fact that

{y(S) −
b(S)

ε
| ε > 0}

is an unbounded ray of the dual problem

min bT y
s.t. AT y ≥ c̄(S).

(ii) If b̄(S) = b and c̄(S) 6= c, the LP (6.28) is feasible
but unbounded, and this is witnessed by the fact that

{x(S) +
c(S)

2ε
| ε > 0}

is an unbounded ray of (6.28).

(iii) If b̄(S) = b and c̄(S) = c, then x(S) and y(S) is a
pair of primal and dual optimal solutions to the LP
(6.28).

Proof. By weak duality, the existence of a dual un-
bounded ray implies infeasibility of the primal problem,
so in order to show (i) and (ii), it remains to prove that
the given rays are indeed unbounded. But this follows
from cT c(S) > 0 and bT b(S) > 0, see Lemma 5.2(ii).
Property (iii) is a corollary of the previous theorem,
under b(S) = b − b̄(S) = 0 and c(S) = c − c̄(S) = 0.

We remark that the linear programs (6.26) and
(6.27) can also be defined without reference to the sink
S (this follows from the KKT conditions, taking into
account that AT (b̄(S) − b) ≥ 0 and c(S) ≥ 0).

Lemma 6.1. With S the sink of the LP-induced USO,
we have

b̄(S) = argmin (b − y)T (b − y)
s.t. Ax = y

x ≥ 0

and
c̄(S) = argmin (c − x)T (c − x)

s.t. AT y ≥ x.

This means, b̄(S) is the closest replacement for b which
makes the original LP feasible, while c̄(S) is the closet
replacement for c which makes the dual problem feasi-
ble. In this sense, the USO approach solves the feasible
and bounded LP “closest” to the original one.

7 Discussion

The primal-dual pair of feasible solutions in Theorem
6.1 only depends on constantly many terms in the power
series expansion of x∗

ε(S, S). Although the lower order
terms are “garbage” in this sense, they may still be
needed in order to resolve ties when the “interesting”
terms vanish. A natural question is whether fewer
terms (maybe only c(S) and x(S)?) suffice to define
a USO, where ties are broken by some other rule. We
currently see no systematic way of proving this, and
we believe that the necessity of having to go through
linearly many terms is the “price of degeneracy”. In
fact, tie-braking using a power series is nothing new:
the lexicographic method for degeneracy resolution in

the simplex algorithm does just that, and also in the
lexicographic method, one may end up going through
many lower order terms.

Breaking ties randomly is possible, but we do not
consider this a pleasing solution from a combinatorial
point of view: perturbing the objective function vector c
to c′ = c+AT ỹ, with ỹ chosen randomly from a suitable
distribution, we can guarantee that ties are resolved
early with high probability. Details will be given in the
full paper.

All USO coming from PLCP according to Stickney
and Watson [16] have recently been shown to satisfy
an interesting combinatorial property, the Holt-Klee
condition [5]. This means that any k-dimensional face
has k vertex-disjoint paths from its unique source to its
unique sink.4

Since LP-induced USO are in particular PLCP-
induced USO (see the discussion at the end of Sec-
tion 4), the Holt-Klee condition holds, and we are in
a (probably) very small subclass of all USO. The ob-
vious question is whether this can be exploited algo-
rithmically, leading to improvements in Theorem 1.1.
Unfortunately, we are not aware of any sink-finding al-
gorithm that makes use of the Holt-Klee condition. In
particular, we have no idea whether the Fibonacci See-
saw employed in Theorem 1.1 can be improved under
this condition.

Acknowledgment

We thank Emo Welzl for pointing us to the case
n = 2m underlying Theorem 1.1. We also thank
an anonymous SODA referee for many corrections and
helpful suggestions.

References

[1] V. Chvátal. Linear Programming. W.H.Freeman, New
York, 1983.

[2] R. W. Cottle, J. Pang, and R. E. Stone. The Linear
Complementarity Problem. Academic Press, 1992.

[3] G. Dantzig. Linear programming and extensions, 1963.
[4] M. Develin. LP-orientations of cubes and crosspoly-

topes. Advances in Geometry, 4:459–468, 2004.
[5] B. Gärtner, W. D. Morris, and L. Rüst. Unique sink

orientations of grids. In Proc. 11th Conference on
Integer Programming and Combinatorial Optimization
(IPCO), volume 3509 of Lecture Notes in Computer
Science, pages 210–224, 2005.

[6] G. Kalai. A subexponential randomized simplex algo-
rithm. In Proc. 24th annu. ACM Symp. on Theory of
Computing., pages 475–482, 1992.

4The existence of unique sources follows from the USO axioms.

[7] L. G. Khachiyan. Polynomial algorithms in linear
programming. U.S.S.R. Comput. Math. and Math.
Phys, 20:53–72, 1980.

[8] J. Matoušek. The number of unique sink orientations
of the hypercube. Combinatorica, to appear.

[9] J. Matoušek, M. Sharir, and E. Welzl. A subexpo-
nential bound for linear programming. Algorithmica,
16:498–516, 1996.

[10] W. D. Morris. Distinguishing cube orientations arising
from linear programs. Manuscript, 2002.

[11] W. D. Morris. Randomized principal pivot algorithms
for P-matrix linear complementarity problems. Math.
Programming, Ser. A, 92:285–296, 2002.

[12] A. L. Peressini, F. E. Sullivan, and J. J. Uhl. The
Mathematics of Nonlinear Programming. Undergradu-
ate Texts in Mathematics. Springer-Verlag, 1988.

[13] I. Schurr and T. Szabó. Finding the sink takes some
time. Discrete Comput Geom, 31:627–642, 2004.

[14] I. Schurr and T. Szabó. Jumping doesn’t help in ab-
stract cubes. In Proc. 11th Conference on Integer Pro-
gramming and Combinatorial Optimization (IPCO),
volume 3509 of Lecture Notes in Computer Science,
pages 225–235, 2005.

[15] J. Matoušek and T. Szabó. RANDOM EDGE can be
exponential on abstract cubes. In Proc. 45nd Ann.
IEEE Symp. on Foundations of Computer Science
(FOCS), pages 92–100, 2004.

[16] A. Stickney and L. Watson. Digraph models of bard-
type algorithms for the linear complementary problem.
Mathematics of Operations Research, 3:322–333, 1978.

[17] T. Szabó and E. Welzl. Unique sink orientations of
cubes. In Proc. 42nd IEEE Symp. on Foundations of
Comput. Sci., pages 547–555, 2000.

[18] M. Todd. The many facets of linear programming.
Mathematical Programming, 91:417–436, 2002.

[19] G. M. Ziegler. Lectures on Polytopes. Number 152 in
Graduate texts in mathematics. Springer, 1995.

