
May 11, 2004 16:41 WSPC/Guidelines mb

International Journal of Computational Geometry & Applications
c© World Scientific Publishing Company

THE SMALLEST ENCLOSING BALL OF BALLS:

COMBINATORIAL STRUCTURE AND ALGORITHMS

KASPAR FISCHER∗

Institut für Theoretische Informatik
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We develop algorithms for computing the exact smallest enclosing ball of a set of n
balls in d-dimensional space. Unlike previous methods, we explicitly address small cases
(n ≤ d+2), derive the necessary primitive operations and show that they can efficiently
be realized with rational arithmetic. An implementation (along with a fasta and robust
floating-point version) is available as part of the Cgal library.b

Our algorithms are based on novel insights into the combinatorial structure of the
problem. For example, we show that Welzl’s randomized linear-time algorithm for com-
puting the ball spanned by a set of points fails to work for balls. Consequently, the
existing adaptations of the method to the ball case are incorrect.

In solving the small cases we may assume that the ball centers are affinely inde-
pendent; in this case, the problem is surprisingly well-behaved: via a geometric trans-
formation and suitable generalization, it fits into the combinatorial model of unique

sink orientations whose rich structure has recently received considerable attention. One
consequence is that Welzl’s algorithm does work for small instances; moreover, there is
a variety of pivoting methods for unique sink orientations which have the potential of
being fast in practice even for high dimensions.

As a by-product, we show that the problem of finding the smallest enclosing ball
of balls with a fixed point on the boundary is equivalent to the problem of finding the
minimum-norm point in the convex hull of a set of balls; we give algorithms to solve
both problems.

∗Supported by the Berlin/Zürich joint graduate program “Combinatorics, Geometry, and Com-
putation” (CGC).
†Partly supported by the IST Programme of the EU and the Swiss Federal Office for Education
and Science as a Shared-cost RTD (FET Open) Project under Contract No IST-2000-26473 (ECG
— Effective Computational Geometry for Curves and Surfaces).
aFor d = 3, a set of 1,000,000 balls is processed in less than two seconds on a modern PC.
bhttp://www.cgal.org
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1. Introduction

In this paper, we study the problem of finding the closed ball of smallest radius

that contains a given set of n closed balls in d-dimensional Euclidean space. This

problem—which we denote by SEBB—generalizes the well-understood problem

SEBP of finding the smallest enclosing ball of n given points. Applications include

collision detection, the computation of bounding sphere hierarchies for clustering

or efficient rendering of complex scenes, culling (e.g. for visualization of molecular

models26), automated manufacturing,12 and similarity search in feature spaces.15

Exact algorithms. The SEBB problem can be solved in time O(n) for fixed

dimension d, where the constant factor is exponential in d. For SEBP, the first

(deterministic) linear-time algorithm—based on the prune-and-search paradigm—is

due to Megiddo,17,18 with subsequent improvements by Dyer;5 Welzl’s randomized

algorithm25 is the first ‘practical’ algorithm to achieve this bound. Extending the

applicability of prune-and-search, Megiddo19 and Dyer6 later showed that the O(n)

bound also applies to SEBB. Linear-time algorithms for SEBB also result from the

observation that the problem is of LP-type,16 in which case generic O(n)-methods

for this class of problems can be applied.16,3

When it comes to actual implementations of these methods, it turns out that

none of them work out of the box; the prune-and-search approaches require rou-

tines for solving systems of constant-degree algebraic equations, while the LP-type

approach asks us to provide a method of computing SEBB for small instances

(n ≤ d + 2). To the best of our knowledge, there are no results that address exact

solutions for these primitive operations. Restricting attention to the SEBP prob-

lem, we also have Welzl’s algorithm at our disposal which has the attractive feature

that the primitive operations are very easy to implement. It is therefore tempting

to generalize Welzl’s algorithm to the case of balls as input. This has indeed been

done by Xu et al.27 for d = 2, and by David White for general d. Links to White’s

code appear in many web directories of computational geometry software.c

Approximation algorithms. The above exact approaches from computational ge-

ometry are complemented with iterative solution methods based on general opti-

mization techniques, see for example the papers by Xu et al.27 and Zhou et al.28.

The most important advantage of these algorithms is that they scale well with d in

practice, allowing the problem to be efficiently solved even in high dimensions. A

different kind of approach has been pursued by Kumar et al.14. Their method effi-

ciently finds a small subset of the input balls—a core set—approximately spanning

the same smallest enclosing ball as the input itself; for this, it repeatedly calls an

(approximate or exact) solver for small instances.

Our contribution. As we show in this paper, the extension of Welzl’s algorithm

to balls as input does not work. For d = 2, we exhibit a concrete, nondegenerate

cMeanwhile, his web site has disappeared; a version of White’s code is available to us.
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example of five input balls for which Welzl’s algorithm (and in particular, the codes

by Xu et al. and White) may crash.d In other instances, it might compute balls

which are too large. The reason behind these failures becomes apparent in the

next section when we discuss basic properties of the SEBB problem (in particular,

properties of the SEBP problem that do not generalize).

Having said this, it might come as a surprise that Welzl’s method does extend

to the case where the ball centers are affinely independent, and this becomes an

important special case, if we want to solve the small instances within the LP-type

framework mentioned above. However, already in the point case there are inputs

(e.g. the vertices of a regular simplex) for which Welzl’s algorithm has complexity

Ω(2d)—it enumerates all candidate solutions before finding the optimal one—so

this approach is limited to small or only moderately high dimensions. For such d,

we can even solve the small cases (up to d+2 balls) by an explicit exhaustive search,

circumventing the affine independence requirement. In this approach, the primitive

operations need to be done carefully but are otherwise as easy as in Welzl’s method;

the resulting code is very fast for dimensions up to 10.

For dimensions beyond that, it is known that for SEBP, the performance can

be improved under affine independence of the input points: in theory, there are

subexponential methods,7 and there is also a very practical approach10 that reduces

the expected number of candidate solutions to (3/2)d. Using the recent concept

of unique sink orientations (USO), this can be improved even further.24 We show

that the SEBB problem with affinely independent ball centers, too, exhibits enough

structure to fit into the USO framework—even though we have to overcome some

nontrivial obstacles on the way. The resulting procedure for small instances can be

plugged into the LP-type algorithm which invokes it only a subexponential number

of times.9 This means that the exponential complexity of the procedure itself is the

bottleneck of the algorithm, and savings in the exponent pay off.

On the practical side, the USO approach allows for pivoting methods for which

we may not be able to give performance guarantees, but which have the potential of

being fast for almost any input. Candidates are Murty’s method21 and approaches

based on random walks in the orientation. Even though this approach requires

affine independence, the gain in runtime would justify an embedding of our (at

most (d + 2)-element) ball set into dimension d + 1, followed by a symbolic pertur-

bation to attain affine independence.e On the theoretical side, our USO approach

improves over the previously best complexity for small instances, that is, it breaks

the aforementioned Ω(2d)-barrier resulting from complete enumeration of all can-

didate solutions.

dFor points as input, Xu et al.’s implementation of Welzl’s algorithm works but is not state-of-
the-art: the move-to-front25 and the farthest-first8 heuristic (which is also employed in our code)
reduce the runtime in practice significantly.
eIf done properly, this requires only minor modifications of the formulas for the affinely indepen-
dent case.11
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Still, our techniques remain impractical for large d. The pivoting approach might

change this, but currently, for d > 30, our results are more significant with respect

to the geometric and combinatorial properties of the SEBB problem. In particular,

our use of the inversion transform relates SEBB to the problem of finding the

distance of a point to the convex hull of a set of balls. Moreover, the formulation

of the latter geometric problem in terms of well-behaved mathematical programs

might prove useful in optimization-based techniques for both problems.

From a practical point of view, our main focus is the case of small d. Here, we

are not aware of any (exact or approximate) methods which outperform our code.

2. Basics

A d-dimensional ball with center c ∈ Rd and nonnegative radius ρ ∈ R is the point

set B(c, ρ) =
{

x ∈ Rd | ‖x − c‖2 ≤ ρ2
}

, and we write cB and ρB to denote the

center and radius, respectively, of a given ball B. We say that a ball is proper if its

radius is nonzero.

Ball B′ = B(c′, ρ′) is contained in ball B = B(c, ρ) if and only if

‖c − c′‖ ≤ ρ − ρ′, (1)

with equality if and only if B′ is internally tangent to B.

We define the miniball mb(U) of a finite set U of balls set U in Rd to be the

unique ball of smallest radius which contains all balls in U (Fig. 1). We also set

mb(∅) = ∅ (note that mb(∅) is not a ball). The next lemma shows that mb(U) is

well-defined.

Lemma 2.1. For a finite nonempty set U of balls, there is a unique ball of smallest

radius that contains all balls of U .

Proof. A standard compactness argument shows that some enclosing ball of small-

est radius exists. If this radius is zero, the lemma easily follows. Otherwise, we use

convex combinations of balls,25 a concept we will also need later on: a proper ball

B = B(c, ρ) can be written as the set of points x ∈ Rd satisfying fB(x) ≤ 1

B1

B2

B3

B4

mb(U) B1

B2

B3

B4

mb(U)

Fig. 1: Two examples in R
2 of the miniball mb(U) for U = {B1, . . . , B4}.

Throughout the paper, points and balls of zero radius are drawn as ‘ ’.
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B0

B1

Fig. 2. Convex combinations Bλ (dashed) of the two balls B0 and B1 (solid), for λ ∈ {1/3, 2/3}.

for fB(x) = ‖x − c‖2/ρ2. For any λ ∈ [0, 1], the convex combination Bλ of two

intersecting balls B, B′ is the set of points x fulfilling

fBλ
(x) = (1 − λ)fB(x) + λfB′(x) ≤ 1.

It is easily verified that Bλ is a ball again, that it contains B∩B′ and that the points

on the boundary of both B and B′ lie on the boundary of Bλ, too. Moreover, if B and

B′ are distinct then the radius of the ball Bλ is, for any λ ∈ (0, 1), strictly smaller

than the maximum of the radii of B, B′ (Fig. 2). The latter property immediately

proves that mb(U) is well-defined: assuming there are two distinct smallest enclosing

balls, a proper convex combination of them is still enclosing, but has smaller radius,

a contradiction.

The following optimality criterion generalizes a statement for points due to

Seidel.23 Recall that a point q ∈ Rd lies in the convex hull conv(P ) of a finite point

set P ⊆ Rd if and only if minp∈P (p − q)T u ≤ 0 for all unit vectors u.

Lemma 2.2. Let V be a nonempty set of balls, all internally tangent to some ball

D. Then D = mb(V ) if and only if cD ∈ conv({cB | B ∈ V }).

Proof. For direction (⇐), assume D 6= mb(V ), i.e., there exists an enclosing ball

D′ with radius ρD′ < ρD. Write its center (which must be different from cD by the

internal tangency assumption) as cD′ = cD + λu for some unit vector u and λ > 0.

Then the distance from cD′ to the farthest point in a ball B ∈ V is

δB = ‖cD′ − cB‖ + ρB

=
√

(cD + λu − cB)T (cD + λu − cB) + ρB

=
√

‖cD − cB‖2 + λ2uT u − 2λ (cB − cD)T u + ρB

=
√

(ρD − ρB)2 + λ2 − 2λ (cB − cD)T u + ρB, (2)
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because (1) holds with equality by our tangency assumption. Since D′ is enclosing,

we must have

ρD′ ≥ max
B∈V

δB. (3)

Furthermore, the observation preceding the lemma yields the existence of B′ ∈ V

such that (cB′ − cD)T u ≤ 0, for cD lies in the convex hull of the centers of V .

Consequently,

δB′ >
√

(ρD − ρB′)2 + ρB′ = ρD > ρD′

by equation (2), a contradiction to (3).

For direction (⇒), suppose that cD does not lie in the convex hull of the centers

of V . By the above observation there exists a vector u of unit length with (cB −
cD)T u > 0 for all B ∈ V . Consider the point cD′ := cD + λu, for some strictly

positive λ < 2 minB∈V (cB − cD)T u. According to (2), δB < (ρD − ρB) + ρB = ρD

for all B, and consequently, the ball D′ with center cD′ and radius maxB δB < ρD

is enclosing, contradiction.

Another property we will use for our algorithm in Sec. 3 is the following intuitive

statement which has been proved by Welzl for points.25

Lemma 2.3. If the ball B ∈ U is properly contained in the miniball mb(U) (i.e., not

internally tangent to it) then mb(U) = mb(U\{B}), equivalently, B ⊆ mb(U\{B}).

Proof. Consider the convex combination Dλ of the balls D = mb(U) and D′ =

mb(U \ {B}); it continuously transforms D into D′ as λ ranges from 0 to 1 and

contains all balls in U \ {B}. Since B is not tangent to mb(U), there is a λ′ > 0

such that Dλ′ still encloses all balls from U . But if D and D′ do not coincide, Dλ′

has smaller radius than D, a contradiction to the minimality of D = mb(U).

Motivated by this observation, we call a set U ′ ⊆ U a support set of U if all balls

in U ′ are internally tangent to mb(U) and mb(U ′) = mb(U). An inclusion-minimal

support set of U is called basis of U (see Fig. 3), and we call a ball set V a basis if

it is a basis of itself. A standard argument based on Helly’s Theorem reveals that

the miniball is determined by a support set of size at most d + 1.

B1 B3

B2

mb(U)

Fig. 3. U = {B1, B2, B3} is a support set (but not a basis) of U ; V = {B1, B3} is a basis.
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B1

B2

B3

D ∈ mb(U, V ) D′ ∈ mb(U, V )

B2

B1

B3

Fig. 4. mb(U, V ) may contain several balls (left) or none (right): set U = {B1, B2, B3}, V = {B2}.

Lemma 2.4. Let U be a set of at least d + 1 balls in Rd. Then there exists a

subset U ′ ⊆ U of d + 1 balls such that mb(U) = mb(U ′).

Proof. Let D = mb(U) and consider the set I =
⋂

B∈U B(cB , ρD − ρB). Observe

that B(cB , ρD − ρB) is the set of all centers which admit a ball of radius ρD that

encloses B. By the existence and uniqueness of mb(U), I thus contains exactly one

point, namely cD. It follows that
⋂

B∈U intB(cB, ρD−ρB) = ∅, where intB′ denotes

the interior of ball B′. Helly’s Theoremf yields a set U ′ ⊆ U of d + 1 elements such

that
⋂

B∈U ′ int B(cB, ρD − ρB) = ∅. Consequently, no ball of radius < ρD encloses

the balls U ′, and thus mb(U) and mb(U ′) have the same radius. This however

implies mb(U) = mb(U ′), since we would have found two different miniballs of U ′

otherwise.

Lemma 2.5. The centers of a basis V of U are affinely independent.

Proof. The claim is obvious for V = ∅. Otherwise, by Lemma 2.2, the center cD

of the miniball D = mb(V ) = mb(U) can be written as cD =
∑

B∈V λBcB for

some coefficients λB ≥ 0 summing up to 1. Observe that λB > 0, B ∈ V , by

minimality of V . Suppose that the centers {cB | B ∈ V } are affinely dependent, or,

equivalently, that there exist coefficients µB, not all zero, such that
∑

B∈V µBcB = 0

and
∑

µB = 0. Consequently,

cD =
∑

B∈V

(λB + αµB) cB for any α ∈ R. (4)

Change α continuously, starting from 0, until λB′ + αµB′ = 0 for some B′. At this

moment all nonzero coefficients λ′
B = λB + αµB of the combination (4) are strictly

positive, sum up to 1, but λ′
B′ = 0, a contradiction to the minimality of V .

fHelly’s Theorem4 states that if C1, . . . , Cm ⊂ R
d are m ≥ d + 1 convex sets such that any d + 1

of them have a common point then also
Tm

i=1 Ci is nonempty.
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B1

B3

B2

B

mb(U, V )
mb(U\{B}, V )

Fig. 5. Ball B cannot be dropped although it is properly contained in mb(U, V ).

We conclude this section with some basic properties of mb(U, V ) which is the

following generalization of mb(U). For sets U ⊇ V of balls, we denote by b(U, V ) the

set of balls B which contain the balls U and to which the balls in V are internally

tangent (we set b(∅, ∅) = {∅}). Based on this, we define mb(U, V ) to be the set of

smallest balls in b(U, V ); in case mb(U, V ) contains exactly one ball D, we abuse

notation and refer to D as mb(U, V ). Observe that mb(U) = mb(U, ∅) and hence

any algorithm for computing mb(U, V ) solves the SEBB problem. However, several

intuitive properties of mb(U) do not carry over to mb(U, V ): the set mb(U, V ) can

be empty, or there can be several smallest balls in b(U, V ), see Fig. 4. Furthermore,

properly contained balls cannot be dropped as in the case of mb(U) (Lemma 2.3): for

a counterexample refer to Fig. 5, where mb(U, V ) 6= mb(U\{B}, V ) for V = {B2}
and U = {B1, B2, B3, B}, although B is properly contained in mb(U, V ).

In the sequel we will also deal with

mbp(U) := mb(U ∪ {p}, {p}), (5)

where p ∈ Rd is some point and U as usual is a set of balls.g Again mbp(U) may

be empty (place p inside the convex hull conv(U) := conv(
⋃

B∈U B)), but in the

nonempty case it contains a unique ball. This follows from

Lemma 2.6. Let U ⊇ V be two sets of balls, V being a set of points (balls of zero

radius). Then mb(U, V ) consists of at most one ball.

Proof. If D, D′ ∈ mb(U, V ), their convex combination Dλ contains U and in addi-

tion has the points V on the boundary. Thus, Dλ ∈ b(U, V ) for any λ ∈ [0, 1]. If D

and D′ were distinct, a proper convex combination would have smaller radius than

D′ or D, a contradiction to the minimality of D, D′.

Combining a compactness argument as in the proof of Lemma 2.1 with the

techniques from the previous lemma, we can also show the following.

gIn writing U ∪ {p} we abuse notation and identify the ball B(p, 0) with the point p.
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Lemma 2.7. Let U be a set of balls and p ∈ Rd such that no ball in U contains p.

Then mbp(U) is empty if and only if p ∈ conv(U).

Without the assumption on U and p, it may happen that mbp(U) 6= ∅ although

p ∈ conv(U) (take a single ball, U = {B}, and a point p on its boundary).

3. Algorithms

Our algorithms are combinatorial in nature and based on the notion of mb(U, V ).

Of particular importance is mb(V, V ), which will take the role of a ‘base’ case and

for which we therefore need explicit formulas; further properties of mb(U, V ) are

developed in Secs. 4, 5 and 6.

Lemma 3.1. Let V be a basis of U . Then mb(V, V ) = mb(U), and this ball can be

computed in time O(d3).

Proof. For V = ∅, the claim is trivial, so assume V 6= ∅. As a basis of U , V satisfies

mb(V ) = mb(U). Since the balls in V must be tangent to mb(U) (Lemma 2.3), we

have mb(V ) ∈ mb(V, V ). But then any ball in mb(V, V ) is a smallest enclosing ball

of V , so Lemma 2.1 guarantees that mb(V, V ) is a singleton.

Let V = {B1, . . . , Bm}, m ≤ d + 1, and observe that B(c, ρ) ∈ b(V, V ) if and

only if ρ ≥ ρBi
and ‖c − cBi

‖2 = (ρ − ρBi
)2 for all i. Defining zBi

= cBi
− cB1

for

1 < i ≤ m and z = c − cB1
, these conditions are equivalent to ρ ≥ maxi ρBi

and

zT z = (ρ − ρB1
)2, (6)

(zBi
− z)T (zBi

− z) = (ρ − ρBi
)2, 1 < i ≤ m.

Subtracting the latter from the former yields the m − 1 linear equations

2zT
Bi

z − zT
Bi

zBi
= 2ρ (ρBi

− ρB1
) + ρ2

B1
− ρ2

Bi
, 1 < i ≤ m.

If B(c, ρ) = mb(V, V ) then c ∈ conv({cB1
, . . . , cBm

}) by Lemma 2.2. Thus we get

c =
∑m

i=1 λicBi
with the λi summing up to 1. Then, z =

∑m

i=2 λi(cBi
− cB1

) = Qλ,

where Q = (zB2
, . . . , zBm

) and λ = (λ2, . . . , λm)T . Substituting this into our linear

equations results in

2zT
Bi

Qλ = zT
Bi

zBi
+ ρ2

B1
− ρ2

Bi
+ 2ρ (ρBi

− ρB1
), 1 < i ≤ m. (7)

This is a linear system of the form Aλ = e + fρ, with A = 2QT Q. So B(c, ρ) =

mb(V, V ) satisfies c − cB1
= z = Qλ with (λ, ρ) being a solution of (6), (7) and

ρ ≥ maxi ρBi
. Moreover, the columns of Q are linearly independent as a consequence

of Lemma 2.5, which implies that A is in fact regular.

Hence we can in time O(d3) compute A−1, find the solution space of the linear

system (which is one-dimensional, parameterized by ρ) and substitute this into the

quadratic equation (6). From the possible solutions (λ, ρ) we select one such that

ρ ≥ maxi ρBi
, λ ≥ 0 and λ1 = 1 − ∑m

i=2 λi ≥ 0; by mb(V ) = mb(V, V ) and

Lemma 2.2 such a pair (λ, ρ) exists, and in fact, there is only one such pair because
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the ball determined by any (λ, ρ) with the above properties is tangent, enclosing

and by Lemma 2.2 equal to mb(V ).

We note that the existing, robust formulas for computing mb(V, V ) in the point

case8 can be generalized to balls (and are employed in our code).

procedure welzl(U ,V )

{ Intended to compute mb(U, V ) but does not work }
{ Precondition: U ⊇ V , |mb(U, V )| = 1 }
begin

if U = V then

return mb(V, V )

else

choose B ∈ U\V uniformly at random

D:= welzl(U\{B},V )

if B 6⊆ D then

return welzl(U ,V ∪ {B})
end

end

end welzl

Fig. 6. Welzl’s algorithm for balls.

3.1. Welzl’s algorithm

Welzl’s algorithm25 for the SEBP problem can easily be ‘rewritten’ for balls (Fig. 6).

However, the resulting procedure does not work anymore in general. The reason for

this is that Welzl’s Lemma,25 underlying the algorithm’s correctness proof in the

point case, fails for balls:

Dilemma 3.2. Let U ⊇ V be sets of balls such that mb(U, V ) and mb(U \{B}, V )

contain unique balls each. If

B 6⊆ mb(U \ {B}, V )

for some B ∈ U \V then B is tangent to mb(U, V ), so mb(U, V ) = mb(U, V ∪{B}).

A counterexample is depicted in Fig. 7: the point B5 is not contained in the ball

D = mb({B1, B3, B4}, {B1, B3, B4}), but B5 is not tangent to

D′ = mb({B1, B3, B4, B5}, {B1, B3, B4}).
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As a matter of fact, feeding the procedure welzl with the balls from Fig. 7 produces

incorrect results from time to time, depending on the outcomes of the internal ran-

dom choices.h If in each call, B is chosen to be the ball of lowest index in U \V , the

algorithm eventually gets stuck when it tries to find the ball mb({B1, B3, B4, B5},
{B1, B3, B4, B5}), which does not exist (see Fig. 8). Observe that this counterex-

ample is free of degeneracies, and that no set mb(U, V ) contains more than one ball.

B1

B2

B3

B4

B5

D′

D

Fig. 7. Five balls {B1, . . . , B5} in R
2 for which Welzl’s algorithm may fail.

3.2. LP-type algorithm

From the combinatorial point of view, we want to find an inclusion-minimal set

V ⊆ U spanning the same miniball as U ; since we then have mb(U) = mb(V, V ),

it is straightforward to compute mb(U) from V (Lemma 3.1). This formulation of

the problem fits nicely into the framework of so-called LP-type problems.16

In general, an LP-type problem is a pair (T, w) with w : 2T → Ω for Ω some

ordered set, satisfying the following two conditions for all U ′ ⊆ U ⊆ T .

(i) w(U ′) ≤ w(U) (monotonicity), and

(ii) w(U ′) < w(U) implies the existence of B ∈ U with w(U ′) < w(U ′ ∪ {B})
(locality).

In LP-type terminology, a basis of U is an inclusion-minimal subset V ⊆ U such

that w(V ) = w(U), and the goal is to find a basis of T .

LP-type problems can be solved by the MSW-algorithm16 of Fig. 9, provided

two primitives are available: for the violation test we are given a basis V ⊆ U

(meaning V is a basis of itself but not necessarily of U) and B ∈ U , and we need

hThe balls in Fig. 5 already constitute a counterexample to Dilemma 3.2 but cannot be used to
fool Welzl’s algorithm.
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B1

B3

B4

B5

D1

B2

B1 6⊆ D1 = welzl({B2, . . . , B5}, {})
 welzl({B1, . . . , B5}, {B1})

B1

B2

B3

B4

B5

D2

B3 6⊆ D2 = welzl({B1, B4, B5}, {B1})
 welzl({B1, B3, B4, B5}, {B1, B3})

B1

B2

B3

B4

B5

D3

B5 6⊆ D3 = welzl({B1, B3}, {B1, B3})
 welzl({B1, B3, B5}, {B1, B3, B5})

B1

B2

B3

B4

B5

D4

B4 6⊆ D4 = welzl({B1, B3, B5}, {B1, B3})
 welzl({B1, B3, B4, B5}, {B1, B3, B4})

B1

B2

B3

B4

B5

D5

B5 6⊆ D5 = welzl({B1, B3, B4}, {B1, B3, B4})
 welzl(V, V ), for V = {B1, B3, B4, B5}

B1

B2

B3

B4

B5

D6

mb(V, V ) = ∅ because B1 is not tangent to
b({B3, B4, B5}, {B3, B4, B5}) = {D6}.

Fig. 8. A failing run of Welzl’s algorithm on the circles from Fig. 7.
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procedure msw(U ,V )

{ Computes a basis of U }
{ Precondition: V ⊆ U is a basis }
begin

if U = V then

return V

else

choose B ∈ U\V uniformly at random

V := msw(U\{B},V )

if B violates V then

return msw(U ,basis(V ,B))

end

end

end msw

Fig. 9. The MSW-algorithm.

to test whether w(V ) < w(V ∪ {B}). In the basis computation basis(V, B), V is a

basis such that B ∈ U violates V , and the task is to find a basis of V ∪ {B}. If the

combinatorial dimension (size of the largest basis) is constant then both primitive

operations can be realized in constant time.

For SEBB, we define the function w : 2T → R+ ∪{−∞} to map a subset U ⊆ T

to the radius of mb(U), with the convention that the radius of mb(∅) is −∞. Using

the properties from Sec. 2, it is easily shown that any instance of SEBB in this

formulation is an LP-type problem of combinatorial dimension at most d + 1.

In this case, the primitive operations are the following. The violation test needs

to check whether B 6⊆ mb(V ) (as V is always a basis, Lemma 3.1 can be used to

compute mb(V ) = mb(V, V )). In the basis computation we have a basis V and a

violating ball B (i.e., B 6⊆ mb(V )), and we are to produce a basis of V ∪ {B}. By

Lemma 2.3, the ball B is internally tangent to mb(V ∪ {B}). A basis of V ∪ {B}
can then be computed in a brute-force manneri by using Lemma 3.1, as follows.

We generate all subsets V ′, B ∈ V ′ ⊆ V ∪ {B}, in increasing order of size. For

each V ′ we test whether it is a support set of V ∪{B}. From our enumeration order

it follows that the first set V ′ which passes this test constitutes a basis of V ∪ {B}.
We claim that V ′ is a support set of V ∪ {B} if and only if the computations

from Lemma 3.1 go through and produce a ball that in addition encloses the balls

in V ∪ {B}: if V ′ is a support set of V ∪ {B} then it is, by our enumeration order,

iWe will improve on this in Sec. 6. Also, Welzl’s algorithm could be used here, by lifting and
subsequently perturbing the centers, but this will not be better than the brute-force approach, in
the worst case.
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Fig. 10. Running times (in seconds) of our heuristic in R
3 (left) and R

10 (right) for n balls with
center coordinates and radii uniformly distributed in [0, 1] (solid) and for n balls with centers
uniformly distributed on the unit sphere and radius uniformly drawn from [0, 1/2] (dotted). All
times were measured on a 480 MHz Sun Ultra 4 workstation with double arithmetic.

a basis and hence the lemma applies. Conversely, a successful computation yields

a ball D ∈ b(V ′, V ′) (enclosing V ∪ {B}) whose center is a convex combination of

the centers of V ′; by Lemma 2.2, D = mb(V ′) = mb(V ∪ {B}).
Plugging these primitives into algorithm msw yields an expected O(d322dn)

algorithm for computing the miniball mb(U) of any set of n balls in d-space.16

Moreover, it is possible to do all computations in rational arithmetic (provided the

input balls have rational coordinates and radii): although the center and the radius

of the miniball may have irrational coordinates, the calculations in the proof of

Lemma 3.1 show that they actually are of the form αi + βi
√

γ, where αi, βi, γ ∈ R

and where γ ≥ 0 is the discriminant of the quadratic equation (6). Therefore,

we can represent the coordinates and the radius by pairs (αi, βi) ∈ R2, together

with the discriminant γ. Since the only required predicate is the containment test,

which boils down to determining the sign of an algebraic number of degree 2, all

computations can easily be done in Q.

We have implemented the algorithm in C++. The code follows the generic

programming paradigm and has been released with Cgal 3.0. It is parameterized

with a number type F ; choosing F to be a type realizing rational numbers of

arbitrary precision,j no roundoff errors occur and the computed ball is the exact

smallest enclosing ball of the input balls.

Under a naive floating-point implementation, numerical problems may arise

when balls are ‘almost’ tangent to the current miniball. In order to overcome

these issues, we also provide a (deterministic) variant of algorithm msw. In this

heuristic—it comes without any theoretical guarantee on the running time—we

maintain a basis V (initially consisting of a single input ball) and repeatedly add to

it, by an invocation of the basis computation, a ball farthest away from the basis,

jEfficient implementations of such types are available, see for instance the core or the leda

library.13,20
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d

Fig. 11. Running time (in seconds) of algorithm msw (dotted) and our heuristic (solid) when fed
with the vertices ei, i ∈ {1, . . . , d + 1}, of the d-dimensional simplex embedded in R

d+1. All times
were measured on a 480 Mhz Sun Ultra 4 workstation with double arithmetic.

that is, a ball B′ satisfying

‖c − cB′‖ + ρB′ = max
B∈U

(‖c − cB‖ + ρB) =: χV ,

with c being the center of mb(V ). The algorithm stops as soon as χV is smaller

or equal to the radius of mb(V ), i.e., when all balls are contained in mb(V ). This

method, together with a suitable adaptation of efficient and robust methods for the

point case,8 handles degeneracies in a satisfactory manner. An extensive testsuite

containing various degenerate configurations of balls is passed without problems.

Some running times are shown in Figs. 10 and 11.

4. Signed balls and shrinking

In this section we show that under a suitable generalization of SEBB, one of the

input balls can be assumed to be a point, and that SEBB can be reduced to the

problem of finding the miniball with some point fixed on the boundary. With this,

we prepare the ground for the more sophisticated material we are going to develop

in Secs. 5 and 6.

Recall that a ball B = B(c, ρ) encloses a ball B′ = B(c′, ρ′) if and only if relation

(1) holds. Now we are going to use this relation for signed balls. A signed ball is

of the form B(c, ρ), where—unlike before—ρ can be any real number, possibly

negative. B(c, ρ) and B(c,−ρ) represent the same ball {x ∈ Rd | ‖x − c‖2 ≤ ρ2},
meaning that a signed ball can be interpreted as a regular ball with a sign attached

to it; we simply encode the sign into the radius. If ρ ≥ 0, we call the ball positive,

otherwise negative.

Definition 4.1. Let B = B(c, ρ) and B′ = B(c′, ρ′) be signed balls. B dominates

B′ if and only if

‖c − c′‖ ≤ ρ − ρ′. (8)

B marginally dominates B′ if and only if (8) holds with equality.
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B
B′

B
B′ B

B′

(a) (b) (c)

Fig. 12. B dominates B′ (a) if both balls are positive and B ⊇ B′, (b) if B is positive and B′

negative and the two intersect, or (c) if both are negative and B ⊆ B′. (Negative balls are drawn
dotted, positive ones solid as usual.)

Figure 12 depicts three examples of the dominance relation. Furthermore,

marginal dominance has the following geometric interpretation: if both B, B′ are

positive, B′ is internally tangent to B; if B is positive and B′ is negative then B

and B′ are externally tangent to each other. Finally, if both B, B′ are negative then

B is internally tangent to B′.
We generalize SEBB to the problem of finding the ball of smallest signed radius

that dominates a given set of signed balls. For two sets U ⊇ V of signed balls, we

denote by b(U, V ) the set of signed balls that dominate the balls in U and that

marginally dominate the balls in V . Then, mb(U, V ) is the set of smallest signed

balls in b(U, V ), and we again set mb(∅, ∅) = {∅} and abuse notation in writing

mb(U, V ) for the ball D in case mb(U, V ) is a singleton {D}.
Figure 13 depicts some examples of mb(U) := mb(U, ∅). In particular, Fig. 13(c)

illustrates that this generalization of SEBB covers the problem of computing a ball

of largest volume (equivalently, smallest negative radius) contained in the intersec-

tion I =
⋂

B∈U B of a set of balls U ; for this, simply encode the members of U as

negative balls.

At this stage, it is not yet clear that mb(U) is always nonempty and contains a

unique ball. With the following argument, we can easily show this. Fix any ball O

and define sO : B 7→ B(cB , ρB − ρO) to be the map which ‘shrinks’ a ball’s radius

by ρO while keeping its center unchanged.k We set sO(∅) := ∅ and extend sO to sets

T of signed balls by means of sO(T ) = {sO(B) | B ∈ T}. From Eq. (8) it follows

that dominance and marginal dominance are invariant under shrinking and we get

the following

Lemma 4.2. Let U ⊇ V be two sets of signed balls, O any signed ball. Then

B ∈ b(U, V ) if and only if sO(B) ∈ b(sO(U), sO(V )) for any ball B.

Obviously, also the ‘smaller’ relation between signed balls is invariant under

shrinking, from which we obtain

kActually, sO only depends on one real number, but in our application, this number will always
be the radius of an input ball.
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Fig. 13. The miniball mb(U) (dashed) for three sets U of signed balls: (a) mb(U) is determined
by three positive balls, (b) mb(U) is determined by two negative balls, (c) the miniball mb(U)
of intersecting, negative balls is the ball of largest volume contained in

T

B∈U B; its radius is
negative.

Corollary 4.3. mb(sO(U), sO(V )) = sO(mb(U, V )) for any two sets U ⊇ V of

signed balls, O any signed ball.

This leads to the important consequence that an instance of SEBB defined by a

set of signed balls U has the same combinatorial structure as the instance defined

by the balls sO(U): Most obviously, Corollary 4.3 shows that both instances have

the same number of miniballs, the ones in mb(sO(U)) being shrunken copies of

the ones in mb(U). In fact, replacing the ‘positive’ concepts of containment and

internal tangency with the ‘signed’ concepts of dominance and marginal dominance

in Sec. 2, we can define support sets and bases for sets of signed balls. It then

holds (Corollary 4.3) that U and sO(U) have the same support sets and bases, i.e.,

the combinatorial structure only depends on parameters which are invariant under

shrinking: the ball centers and the differences in radii.

In particular, if the ball O in the corollary is a smallest ball in U then sO(U)

is a set of positive balls, and all material we have developed for this special case in

Sec. 2 carries over to the general case (most prominently, this shows that mb(U) for

signed balls U is well-defined, and that SEBB over signed balls is of LP-type and

thus solvable by algorithm msw). In this sense, any instance of SEBB over signed

balls is combinatorially equivalent to an instance over positive balls, and from now

on, we refer to SEBB as the problem of finding mb(U) for signed balls U .

Reconsidering the situation, it becomes clear that this extension to signed balls

is not a real generalization; instead it shows that any instance comes with a ‘slider’

to simultaneously change all radii.

One very useful slider placement is obtained by shrinking w.r.t. some ball O ∈
U . In this case, we obtain a ball set sO(U) where at least one ball is a point.

Consequently, when we solve SEBB using algorithm msw of Fig. 9, we can also

assume that the violating balll B entering the basis computation is actually a

lA ball now violates V if it is not dominated by mb(V ).
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point. We can therefore focus on the problem SEBBp of finding the smallest ball that

dominates a set U of signed balls, with an additional point p marginally dominated.

More precisely, for given p ∈ Rd we define

bp(U, V ) := b(U ∪ {p}, V ∪ {p})

and denote the smallest balls in this set by mbp(U, V ). Then SEBBp is the problem

of finding mbp(U) := mbp(U, ∅) for a given set U of signed balls and a point p ∈ Rd.

Observe that this generalizes the notion mbp(U) (Eq. (5)) from only positive balls

to signed balls. In contrast to the case of positive balls (Lemma 2.6), the set mbp(U)

may contain more than one ball when U is a set of signed balls (to see this, shrink

Fig. 4 (left) w.r.t. B2). Throughout the paper, we only compute mbp(U) in case the

set contains at most one ball. We note that all balls in bp(U, V ) are positive (they

dominate p) and that we can always achieve p = 0 through a suitable translation,

i.e., reduce problem SEBBp to SEBB0.

Using the currently best algorithm for general LP-type problems,9 the previous

discussion yields the following result.

Theorem 4.4. Problem SEBB over a set of n signed balls can be reduced to problem

SEBB0 over a set of at most d + 1 signed balls: given an algorithm for the latter

problem of runtime f(d), we get an O((dn+e
√

d log d)f(d))-algorithm for the former.

In the sequel (Secs. 5 and 6), we concentrate on methods for solving problem

SEBB0 with the goal of improving over the complete enumeration approach which

has f(d) = Ω(2d). Any ball is assumed to be a signed ball, unless stated otherwise.

5. Inversion

In this section we present a ‘dual’ formulation of the SEBB0 problem for (signed)

balls. We derive this by employing the inversion transform to obtain an ‘almost’

linearm program that describes mb0(U, V ). This program is also the basis of our

approach to small cases of SEBB0 (Sec. 6). As a by-product, this section links

SEBB0 to the problem of finding the distance from a point to the convex hull of a

set of balls.

5.1. A dual formulation for SEBB0

We use the inversion transform x∗ := x/‖x‖2, x 6= 0, to map a ball B ∈ b0(U, V ),

to some simpler object. To this end, we exploit the fact that under inversion, balls

through the origin map to halfspaces while balls not containing the origin simply

translate to balls again.

We start by briefly reviewing how balls and halfspaces transform under inversion.

For this, we extend the inversion map to point sets via P ∗ := cl({p∗ | p ∈ P \{0}}),

mIn contrast to the convex but far-from-linear programs obtained by Megiddo and Dyer.19,6.
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where cl(Q) denotes the closure of set Q, and to sets S of balls or halfspaces by

means of S∗ := {P ∗ | P ∈ S}.n Consider a halfspace H ⊂ Rd; H can always be

written in the form

H =
{

x | vT x + α ≥ 0
}

, vT v = 1. (9)

If H does not contain the origin (i.e., α < 0) then H maps to the positive ball

H∗ = B(−v/(2α),−1/(2α)). (10)

In this case, the number −α is the distance of the halfspace H to the origin.

Since (P ∗)∗ = P , if P is a ball or halfspace, the converse holds, too: a proper

ball with the origin on its boundary transforms to a halfspace not containing the

origin. On the other hand, a ball B = B(c, ρ) not containing the origin maps to a

ball again, namely to B∗ = B(d, σ) where

d =
c

cT c − ρ2
and σ =

ρ

cT c − ρ2
. (11)

B∗ again does not contain the origin, and B∗ is positive if and only if B is positive.

All these facts are easily verified.2

The following lemma shows how the dominance relation in the ‘primal’ domain

translates under inversion. For this, we say that a halfspace H of the form (9)

dominates a ball B = B(d, σ) if and only if

vT d + α ≥ σ, (12)

and we speak of marginal dominance in case of equality in (12).

As in the primal domain, the dominance relation has an interpretation in terms

of containment and intersection: H dominates a positive ball B if and only if H

contains B, and H dominates a negative ball B if and only if H intersects B. In

both cases, marginal dominance corresponds to B being tangent to the hyperplane

underlying H , in addition.

Lemma 5.1. Let D be a positive ball through 0 and B a signed ball not containing

0. Then D dominates B if and only if the halfspace D∗ dominates the ball B∗.

Proof. We first show that D dominates B if and only if

‖cD − cB‖2 ≤ (ρD − ρB)2. (13)

The direction (⇒) is clear from the definition of dominance, and so is (⇐) under

the assumption that ρD − ρB ≥ 0. So suppose (13) holds with ρD − ρB < 0. Then

0 ≤ ‖cD − cB‖ ≤ ρB − ρD,

nThe use of the closure operator guarantees that if P is a ball or halfspace containing 0, its image
P ∗ is well-defined and has no ‘holes;’ we also set {}∗ := {0} to have (P ∗)∗ = P .
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mb0(U, {B2})
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Fig. 14. An example illustrating our use of the inversion transform. (a) A configuration of four
circles U , together with B := mb0(U, {B2}) (dashed). (b) The balls from (a) after inversion:
dominance carries over in the sense of Lemma 5.1, so B∗ contains B∗

4 , intersects B∗
1 and B∗

3 , and
B∗

2 is internally tangent to it.

from which we conclude that B is positive and dominates D. Thus, 0 ∈ D ⊆ B, a

contradiction to B not containing the origin.

It remains to show that Eq. (13) holds if and only if the halfspace D∗ dominates

the ball B∗. As cT
DcD = ρ2

D, the former inequality is equivalent to

cT
BcB − ρ2

B ≤ 2 (cT
DcB − ρDρB), (14)

where the left hand side µ := cT
BcB − ρ2

B is a strictly positive number.

Write the halfspace D∗ in the form (9) with α < 0, and observe from (10) and

(11) that

cD = −v/(2α), ρD = −1/(2α), d = cB/µ, σ = ρB/µ,

for the inverse B(d, σ) of B. Using this, we obtain the equivalence of (12) and (14)

by multiplying (14) with α/µ < 0.

For U ⊇ V two sets of balls, we define h(U, V ) to be the set of halfspaces not

containing the origin that dominate the balls in U and marginally dominate the

balls in V . The following is an immediate consequence of Lemma 5.1. Observe that

any ball B satisfying B ∈ b0(U, V ) or B∗ ∈ h(U∗, V ∗) is positive by definition.

Lemma 5.2. Let U ⊇ V , U 6= ∅, be two sets of balls, no ball containing the origin.

A ball B lies in b0(U, V ) if and only if the halfspace B∗ lies in h(U∗, V ∗).

We are interested in smallest balls in b0(U, V ). In order to obtain an interpreta-

tion for these in the dual, we use the fact that under inversion, the radius of a ball

B ∈ b0(U, V ) is inversely proportional to the distance of the halfspace B∗ to the

origin, see (10). It follows that B is a smallest ball in b0(U, V ), i.e., B ∈ mb0(U, V ),

if and only if the halfspace B∗ has largest distance to the origin among all halfspaces

in h(U∗, V ∗). We call such a halfspace B∗ a farthest halfspace.
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An example of four balls U = {B1, . . . , B4} is shown in Fig. 14(a), together with

the dashed ball B := mb0(U, {B2}). Positive balls are depicted with solid, negative

balls with dotted boundary. Part (b) of the figure depicts the configuration after

inversion w.r.t. the origin. The image B∗ of B corresponds to the gray halfspace; it

is the farthest among the halfspaces which avoid the origin, contain B∗
4 , intersect

B∗
1 and B∗

3 , and to which B∗
2 is internally tangent.

The previous considerations imply that the following mathematical program

searches for the halfspace(s) mb0(U, V )∗ in the set h(U∗, V ∗).

Corollary 5.3. Let U ⊇ V , U 6= ∅, be two sets of balls, no ball containing the

origin. Consider the program

P0(U, V ) minimize α

subject to vT dB + α ≥ σB , B ∈ U \ V,

vT dB + α = σB , B ∈ V,

vT v = 1,

where the dB and σB are the centers and radii of the inverted balls U∗, see Eq. (11).

Then D ∈ mb0(U, V ) if and only if

D∗ = {x ∈ Rd | ṽT x + α̃ ≥ 0}

for some optimal solution (ṽ, α̃) to the above program satisfying α̃ < 0.

The assumption U 6= ∅ guarantees D 6= 0; if U is empty, program P0(U, V )

consists of a quadratic constraint only and is thus unbounded (the statement is still

correct if we define the optimal solution to be (0,−∞) in this case).

5.2. The distance to the convex hull

With the material from the previous subsection at hand, we can easily relate prob-

lems SEBB and SEBB0 to the problem DHB of finding the distance from a point

p ∈ Rd to the convex hull

conv(U) := conv(
⋃

B∈U B)

of a given set U of positive balls (Fig. 15). W.l.o.g. we may assume that p = 0, in

which case the problem amounts to finding the minimum-norm point in conv(U).

Also, we can make sure in linear time that no input ball contains the origin.

Observe that a point q 6= 0 (which we can always write as q = −αv with vT v = 1

and α < 0) is the minimum-norm point in conv(U) if and only if the halfspace (9) is

the farthest halfspace containing the balls in U . By Lemma 2.6 and Corollary 5.3,

if the latter halfspace exists, it is unique and can be computed by an algorithm for

SEBB0 over positive balls. (If the algorithm delivers mb0(U∗) = ∅, we know that

0 ∈ conv(U) and hence q = 0 is the minimum-norm point, see Lemma 2.7.) It is

clear that we can also solve SEBB0 for positive balls, given an algorithm for DHB.

In this sense, both problems are equivalent.
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p

B1

B2

B3

Fig. 15. The DHB problem: find the distance (dotted) from point p ∈ R
d to the nearest point in

the convex hull conv(U) of the positive balls U (gray). In this example, U = {B1, B2, B3}.

In addition, we can also solve SEBB for signed balls with an algorithm D for

DHB.o To obtain mb(U), we guess the smallest (possibly negative) ball O ∈ U

marginally dominated by mb(U), find the set U ′ of positive shrunken balls,

U ′ = {B ∈ sO(U \ {O}) | B positive},

and compute mbcO
(U ′) = sO(mb(U)) from which the ball mb(U) is easily recon-

structed (Corollary 4.3). (If our guess was correct, the shrunken balls with negative

radius come from balls that do not contribute to mb(U) by Lemma 2.3.) As long

as U is a small set, the at most |U | guesses introduce a negligible polynomial over-

head. For large input sets however, a direct application of the reduction leads to

an unnecessarily slow algorithm, and thus it pays off to run algorithm msw and use

the reduction for the small cases only (where |U | ≤ d + 2).

6. Small cases

We have shown in Sec. 4 that problem SEBB can be reduced to the problem SEBB0

of computing mb0(T ), for T some set of signed balls, |T | ≤ d + 1.

Using the fact that we now have the origin fixed on the boundary we can

improve over the previous complete enumeration approach, by using inversion and

the concept of unique sink orientations.24

In the sequel, we assume that T is a set of signed balls with linearly independent

centers,p none of them containing the origin. The latter assumption is satisfied

in our application, where mb0(T ) is needed only during the basis computation of

algorithm msw (Fig. 9). The linear independence assumption is no loss of generality,

oAn entirely different reduction from SEBP to DHP, the problem of finding the distance from a
given point to the convex hull of a set of points, is well-known7,22 but only works for small cases
and does not generalize to SEBB.
pFor this, we interpret the centers as vectors, which is quite natural because of the translation
employed in the reduction from SEBBp to SEBB0.



May 11, 2004 16:41 WSPC/Guidelines mb

The Smallest Enclosing Ball of Balls: Combinatorial Structure and Algorithms 23

because we can embed the balls into Rd+1 and symbolically perturb them; in fact,

this is easy if T arises as the set V during the basis computation basis(V, B) of the

algorithm msw.11

Our method for finding mb0(T ) computes as intermediate steps balls of the form

mb0(U, V ) = mb(U ∪ {p}, V ∪ {p}),

for V ⊆ U ⊆ T . One obstacle we have to overcome for this is the possible nonexis-

tence of mb0(U, V ): take for instance a positive ball B not containing the origin and

place a positive ball B′ into conv(B ∪ {0}), U = {B, B′} and V = {B′}.q Our so-

lution employs the inversion transform: it defines for all pairs (U, V ) a ‘generalized

ball’ gmb0(U, V ) which coincides with mb0(U, V ) if the latter exists.

Performing inversion as described in the previous section gives us |T | ≤ d balls

T ∗ with centers dB and radii σB, B ∈ T , as in (11). The latter equation also

shows that the dB are linearly independent. The following lemma is then an easy

consequence of previous considerations.

Lemma 6.1. For given V ⊆ U ⊆ T with U 6= ∅, consider the following (nonconvex)

optimization problem in the variables v ∈ Rd, α ∈ R.

P0(U, V ) lexmin (vT v, α),

subject to vT dB + α ≥ σB , B ∈ U \ V,

vT dB + α = σB , B ∈ V,

vT v ≥ 1.

(i) P0(U, V ) has a unique optimal solution (ṽ, α̃).

(ii) D ∈ mb0(U, V ) if and only if

D∗ = {x ∈ Rd | ṽT x + α̃ ≥ 0}

for the optimal solution (ṽ, α̃) to the above program with ṽT ṽ=1 and α̃ < 0.

In particular, part (i) implies that the set mb0(U, V ) contains at most one ball

whenever the balls in U do not contain the origin and their centers are affinely

independent.

Proof. (i) If we can show that P0(U, V ) has a feasible solution then it also has an

optimal solution, again using a compactness argument (this requires U 6= ∅). To

construct a feasible solution, we first observe that by linear independence of the

dB, the system of equations

vT dB + α = σB, B ∈ U

has a solution v for any given α; moreover, if we choose α large enough, any corre-

sponding v must satisfy vT v ≥ 1, in which case (v, α) is a feasible solution.

qSuch a configuration may turn up in our application.
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B1 B2

gmb0(V, V )

B∗
1 B∗

2

fh(V, V )

Fig. 16. Two balls V = {B1, B2} (left) and their images under inversion (right). In this example,
the value (ṽ, α̃) of (V, V ) has α̃ = 0, in which case the ‘generalized ball’ gmb0(V, V ) is a halfspaces.

To prove uniqueness of the optimal solution, we again invoke linear independence

of the dB and derive the existence of a vector w (which we call an unbounded

direction) such that

wT dB = 1, B ∈ U. (15)

Now assume that P0(U, V ) has two distinct optimal solutions (ṽ1, α̃), (ṽ2, α̃) with

ṽT
1 ṽ1 = ṽT

2 ṽ2 = δ ≥ 1. Consider any proper convex combination v of ṽ1 and

ṽ2; v satisfies vT v < δ. Then there is a suitable positive constant Θ such that

(v + Θw)T (v + Θw) = δ, and hence the pair (v + Θw, α̃ − Θ) is a feasible solution

for P0(U, V ), a contradiction to lexicographic minimality of the initial solutions.

(ii) Under ṽT ṽ = 1, this is equivalent to the statement of Corollary 5.3(ii).

Even if mb0(U, V ) = ∅, program P0(U, V ) has a unique solution, and we call it

the value of (U, V ).

Definition 6.2. For U ⊇ V with U nonempty, the value of (U, V ), denoted

by val(U, V ), is the unique solution (ṽ, α̃) of program P0(U, V ), and we define

val(∅, ∅) := (0,−∞). Moreover, we call the halfspace

fh(U, V ) := {x ∈ Rd | ṽT x + α̃ ≥ 0},

the farthest (dual) halfspace of (U, V ). In particular, fh(∅, ∅) = ∅.

The farthest halfspace of (U, V ) has a meaningful geometric interpretation even

if mb0(U, V ) = ∅. If the value (ṽ, α̃) of (U, V ) satisfies ṽT ṽ = 1, we already know

that fh(U, V ) dominates the balls in U and marginally dominates the balls in V ,

see Eq. (12). If on the other hand ṽT ṽ > 1, it is easy to see that the halfspace

fh(U, V ) dominates the scaled balls

B(dB , σB/
√

τ ) with τ := ṽT ṽ, (16)

for B ∈ U , and marginally dominates the scaled versions of the balls in V ∗ (divide

the linear constraints of program P0(U, V ) by
√

τ).
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B1

B2

gmb0(V, V )

B∗
1

B∗
2

fh(V, V )

Fig. 17. Two positive balls V = {B1, B2} (left) and their images under inversion (right). The value
(ṽ, α̃) of (V, V ) has ṽT ṽ > 1 and the ‘generalized ball’ gmb0(V, V ) is not tangent to the balls V ∗.

B1

B2

gmb0(V, V )

B∗
1

B∗
2

fh(V, V )

Fig. 18. Two positive balls V = {B1, B2} (left) and their images under inversion (right). In this
case, the value (ṽ, α̃) has ṽT ṽ = 1 but α̃ > 0, i.e., the balls do not admit a ball mb0(V, V ). Sill,
all balls V are ‘internally’ tangent to the ‘generalized ball’ gmb0(V, V ).

B′
1

B′
2

fh(V, V )

Fig. 19. The scaled balls {B′
1, B′

2}, obtained from the balls V ∗ = {B∗
1 , B∗

2} in Fig. 17 by scaling
their radii with 1/

√
τ , τ = ṽT ṽ, are marginally dominated by fh(V, V ).
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For an interpretation of fh(U, V ) in the primal, we associate to the pair (U, V )

the ‘generalized ball’

gmb0(U, V ) := fh(U, V )∗,

which in general need not be a ball, as we will see. However, in the geometrically

interesting case when the set mb0(U, V ) is nonempty, it follows from Lemma 6.1(ii)

that gmb0(U, V ) = mb0(U, V ). Recall that this occurs precisely if the value (ṽ, α̃)

of the pair (U, V ) fulfills ṽT ṽ = 1 and α̃ < 0.

In general, gmb0(U, V ) can be a ball, the complement of an open ball, or a

halfspace. In case α̃ > 0, the halfspace fh(U, V ) contains the origin and hence

gmb0(U, V ) is the complement of an open ball through the origin. If α̃ = 0 then

fh(U, V ) goes through the origin, and inversion does not provide us with a ball

gmb0(U, V ) but with a halfspace instead (Fig. 16). We remark that if ṽT ṽ > 1,

gmb0(U, V ) will not even be tangent to the proper balls in V (Fig. 17).

In Fig. 18, the inverted balls V ∗ do not admit a halfspace that avoids the

origin. Hence program P0(V, V ) has no solution, implying mb0(V, V ) = ∅. In order

to obtain gmb0(V, V ), we have to solve program P0(V, V ). For this, we observe

that the balls V ∗ admit two tangent hyperplanes, i.e., there are two halfspaces,

parameterized by v and α, which satisfy the equality constraints of P0(V, V ) with

vT v = 1. Since the program in this case minimizes the distance to the halfspace,

fh(V, V ) is the enclosing halfspace corresponding to the ‘upper’ hyperplane in the

figure (painted in gray). Since it contains the origin, gmb0(V, V ) is the complement

of a ball. Finally, Fig. 19 depicts the scaled versions (16) of the balls V ∗ from

Fig. 17. Indeed, fh(V, V ) marginally dominates these balls.r

We now investigate program P0(U, V ) further. Although it is not a convex

program, it turns out to be equivalent to one of two related convex programs.

Program C′
0
(U, V ) below finds the lowest point in a cylinder, subject to linear

(in)equality constraints. In case it is infeasible (which will be the case if and only

if mb0(U, V ) = ∅), the other program C0(U, V ) applies in which the cylinder is

allowed to enlarge until the feasible region becomes non-empty.

Lemma 6.3. Let (ṽ, α̃) be the optimal solution to program P0(U, V ), for U 6= ∅,
and let γ be the minimum value of the convex quadratic program

C0(U, V ) minimize vT v

subject to vT dB + α ≥ σB , B ∈ U \ V,

vT dB + α = σB , B ∈ V.

(i) Program C0(U, V ) has a unique optimal solution, provided V 6= ∅.
(ii) If γ ≥ 1 then (ṽ, α̃) is the unique optimal solution to C0(U, V ).

rSince scaled balls do not invert to scaled balls in general—the centers may move—the situation
is more complicated in the primal.
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(iii) If γ < 1 then ṽT ṽ = 1 and (ṽ, α̃) is the unique optimal solution to the

convex program

C′
0
(U, V ) minimize α

subject to vT dB + α ≥ σB , B ∈ U \ V,

vT dB + α = σB , B ∈ V,

vT v ≤ 1.

Also, C0(U, V ) is strictly feasible (i.e., feasible values exist that satisfy all inequality

constraints with strict inequality). If γ < 1, C′
0
(U, V ) is strictly feasible, too.

Proof. (i) A compactness argument shows that some optimal solutions exists.

Moreover, C0(U, V ) has a unique optimal vector ṽ because any proper convex combi-

nation of two different optimal vectors would still be feasible with smaller objective

function value. The optimal ṽ uniquely determines α because C0(U, V ) has at least

one equality constraint.

(ii) Under γ ≥ 1, (ṽ, α̃) is an optimal solution to C0(U, V ) and by (i) it is the

unique one because γ ≥ 1 implies V 6= ∅.
(iii) Under γ < 1, C′

0
(U, V ) is feasible and a compactness argument shows that an

optimal solution (ṽ′, α̃′) exists. Using the unbounded direction (15) again, ṽ′T ṽ′ = 1

and the uniqueness of the optimal solution can be established. Because (ṽ′, α̃′) is

feasible for P0(U, V ), we have ṽT ṽ = 1, and from lexicographic minimality of (ṽ, α̃),

(ṽ, α̃) = (ṽ′, α̃′) follows.

To see strict feasibility of C′
0
(U, V ), first note that γ < 1 implies the existence

of a feasible pair (v, α) for which vT v < 1. Linear independence of the dB yields a

vector w such that

wT dB =

{

1, B ∈ U \ V,

0, B ∈ V
.

For sufficiently small Θ > 0, the pair (v + Θw, α) is strictly feasible for C′
0
(U, V ).

Strict feasibility of C0(U, V ) follows by an even simpler proof along these lines.

This shows that given the minimum value γ of program C0(U, V ), the solution

of program P0(U, V ) can either be read off program C0(U, V ) (in case γ ≥ 1) or

program C′
0
(U, V ) (in case γ ≤ 1).

The next step is to characterize the optimal solutions of the programs C0(U, V )

and C′
0
(U, V ), based on the Karush-Kuhn-Tucker Theorem for convex programming.

Unifying both characterizations, we obtain necessary and sufficient optimality con-

ditions for program P0(U, V ). To this end, we invoke the following version of the

Karush-Kuhn-Tucker Theorem which is a specialization of a general result (Theo-

rem 5.3.1 and Theorem 4.3.8 with Slater’s constraint qualification in the book by

Bazaraa, Sherali & Shetty1).
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Theorem 6.4. Let f, g1, . . . , gm be differentiable convex functions, let a1, . . . , a` ∈
Rn be linearly independent vectors, and let β1, . . . , β` be real numbers. Consider the

optimization problem

minimize f(x),

subject to gi(x) ≤ 0, i = 1, . . . , m,

aT
i x = βi, i = 1, . . . , `.

(17)

(i) If x̃ is an optimal solution to (17) and if there exists a vector ỹ such that

gi(ỹ) < 0, i = 1, . . . , m,

aT
i ỹ = βi, i = 1, . . . , `,

then there are real numbers µ1, . . . , µm and λ1, . . . , λ` such that

µi ≥ 0, i = 1, . . . , m, (18)

µigi(x̃) = 0, i = 1, . . . , m, (19)

∇f(x̃) +

m
∑

i=1

µi∇gi(x̃) +
∑̀

i=1

λia
T
i = 0. (20)

(ii) Conversely, if x̃ is a feasible solution to program (17) such that numbers

satisfying (18), (19) and (20) exist then x̃ is an optimal solution to (17).

Applied to our two programs, we obtain the following optimality conditions.

Lemma 6.5. Let V ⊆ U ⊆ T with U 6= ∅.

(i) A feasible solution (ṽ, α̃) for C0(U, V ) is optimal if and only if there exist

real numbers λB , B ∈ U , such that

λB ≥ 0, B ∈ U \ V

λB(ṽT dB + α̃ − σB) = 0, B ∈ U \ V,
∑

B∈U λBdB = ṽ, (21)
∑

B∈U λB = 0. (22)

(ii) A feasible solution (ṽ, α̃) to C′
0
(U, V ) satisfying ṽT ṽ = 1 is optimal if there

exist real numbers λB , B ∈ U , such that

λB ≥ 0, B ∈ U \ V (23)

λB(ṽT dB + α̃ − σB) = 0, B ∈ U \ V, (24)
∑

B∈U λBdB = ṽ, (25)
∑

B∈U λB > 0. (26)

Conversely, if (ṽ, α̃) is an optimal solution to C′
0
(U, V ) and the minimum

value γ of program C0(U, V ) fulfills γ < 1 then there exist real numbers λB,

B ∈ U , such that (23), (24), (25) and (26) hold.

In both cases, the λB are uniquely determined by ṽ via linear independence of the dB.
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From these sets of conditions for C0(U, V ) and C′
0
(U, V ) we can derive optimality

conditions for the nonconvex program P0(U, V ).

Theorem 6.6. A feasible solution (ṽ, α̃) for program P0(U, V ) is optimal if and

only if there exist real numbers λB , B ∈ U , with µ :=
∑

B∈U λB such that

λB ≥ 0, B ∈ U \ V

µ ≥ 0,

λB(ṽT dB + α̃ − σB) = 0, B ∈ U \ V,

µ (ṽT ṽ − 1) = 0, (27)
∑

B∈U λBdB = ṽ.

Proof. The direction (⇒) follows through Lemmata 6.3 and 6.5, so it remains to

settle (⇐). For this, we distinguish two cases, depending on the minimum value γ

of program C0(U, V ).

Consider the case γ < 1 first. If
∑

B∈U λB = 0 then Lemma 6.5 shows that (ṽ, α̃),

which is clearly feasible for C0(U, V ), is optmial to C0(U, V ); hence γ = ṽT ṽ ≥ 1,

a contradiction. Thus
∑

B∈U λB > 0, which by (27) implies ṽT ṽ = 1. So (ṽ, α̃) is

feasible and optimal to C′
0
(U, V ), which together with Lemma 6.3(iii) establishes

the claim.

In case γ ≥ 1 the argument is as follows. If
∑

B∈U λB = 0 holds, the Lemmata

6.5 and 6.3(ii) certify that the solution (ṽ, α̃) is optimal to P0(U, V ). If on the other

hand
∑

B∈U λB > 0 then ṽT ṽ = 1 by (27), from which we derive via an invocation

of Lemma 6.5(ii) that (ṽ, α̃) is optimal to program C′
0
(U, V ). Moreover, (ṽ, α̃) must

also be optimal to P0(U, V ) because the optimal solution to program P0(U, V )

satisfies the constraint vT v ≥ 1 with equality (recall ṽT ṽ = 1) and hence is feasible

to program C′
0
(U, V ).

As promised, we can state a version of Welzl’s Lemma.25 We prepare this by

presenting the statement in the dual space, i.e., in terms of values of pairs (U, V )

and associated halfspaces fh(U, V ).

Lemma 6.7. Let V ⊆ U ⊆ T and B ∈ U \ V . Denote by (ṽ, α̃) the value of the

pair (U \ {B}, V ). Then

val(U, V ) =

{

val(U \ {B}, V ), if ṽT dB + α̃ ≥ σB,

val(U, V ∪ {B}), otherwise.

As the value of a pair uniquely determines its associated farthest halfspace,

the lemma holds also for farthest halfspaces (i.e., if we replace ‘val’ by ‘fh’ in

the lemma). In this case, we obtain the following geometric interpretation. The

halfspace fh(U, V ) coincides with the halfspace fh(U \ {B}, V ) if the latter dom-

inates the scaled version (16) of ball B∗, and equals the halfspace fh(U, V ∪ {B})
otherwise.



May 11, 2004 16:41 WSPC/Guidelines mb

30 K. Fischer & B. Gärtner

Proof. The case U = {B} is easily checked directly, so assume |U | > 1. If ṽT dB +

α̃ ≥ σB then (ṽ, α̃) is feasible and hence optimal to the more restricted problem

P0(U, V ), and val(U, V ) = val(U \ {B}, V ) follows. Otherwise, the value (ṽ′, α̃′)
of (U, V ) is different from (ṽ, α̃). Now consider the coefficient λ′

B resulting from the

application of Theorem 6.6 to (ṽ′, α̃′). We must have λ′
B 6= 0, because Theorem 6.6

would otherwise certify that (ṽ′, α̃′) = val(U \{B}, V ). This, however, implies that

ṽ′T dB + α̃′ = σB,

from which we conclude val(U, V ) = val(U, V ∪ {B}).

Here is the fix for Dilemma 3.2 in case of affinely independent centers.

Lemma 6.8. Let V ⊆ U , where U is any set of signed balls with affinely indepen-

dent centers, and assume mb(U, V ) 6= ∅. Then the sets mb(U, V ) and mb(U\{B}, V )

are singletons, for any B ∈ U \V . Moreover, if no ball in V is dominated by another

ball in U , and if

B is not dominated by mb(U \ {B}, V ), (28)

for some B ∈ U \ V , then mb(U, V ) = mb(U, V ∪ {B}), and B is not dominated by

another ball in U , either.

It easily follows by induction that Welzl’s algorithm (Fig. 6 in Sec. 3, with the

test ‘B 6⊆ D’ replaced by ‘B not dominated by D’) computes mb(U) for a set

of signed balls, provided the centers of the input balls are affinely independent (a

perturbed embedding into R|U|−1 always accomplishes this). No other preconditions

are required; in particular, balls can overlap in an arbitrary fashion.

Proof. For V = ∅, this is Lemma 2.3, with the obvious generalization to signed

balls (refer to the discussion after Corollary 4.3). For all V , transitivity of the

dominance relation shows that if B is not dominated by mb(U \ {B}, V ), it cannot

be dominated by a ball in U \ {B}, either.

In case V 6= ∅, we fix any ball O ∈ V and may assume—after a suitable transla-

tion and a shrinking step—that O = 0; Eq. (28) is not affected by this. Moreover,

we can assume that O does not dominate any other (negative) ball in U \ V : such

a ball can be removed from consideration (and added back later), without affecting

the miniball (here, we again use transitivity of dominance).

Then, no ball in U contains O = 0, and the centers of the balls

U ′ = U \ {O}

are linearly independent. Under (28), we have B ∈ U ′. Therefore, we can apply our

previous machinery. Setting

V ′ = V \ {O},
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Lemma 6.1 yields that the two sets mb(U, V ) = mb0(U ′, V ′) and mb(U \ {B}, V ) =

mb0(U ′\{B}, V ′) contain at most one ball each. Also, the assumption mb(U, V ) 6= ∅
implies mb(U \{B}, V ) 6= ∅ (this is easily verified using the program in Lemma 6.1).

Consequently, the ball sets are singletons.

Now let (ṽ, α̃) be the value of pair (U ′ \ {B}, V ′). mb0(U ′ \ {B}, V ′) 6= ∅ implies

ṽT ṽ = 1 (Lemma 6.1). Then, Lemma 5.1 shows that B is not dominated by the

ball mb0(U ′ \ {B}, V ′) if and only if ṽT dB + α̃ < σB holds, for dB, σB being center

and radius of the inverted ball B∗. Lemma 6.7 in turn implies

val(U ′, V ′) = val(U ′, V ′ ∪ {B}), (29)

and fh(U ′, V ′) = fh(U ′, V ′∪{B}) along with gmb0(U ′, V ′) = gmb0(U ′, V ′∪{B})
follows. By assumption, the former ‘generalized ball’ coincides with mb0(U ′, V ′),
from which it follows that the value (ṽ′, α̃′) of (U ′, V ′) fulfills ṽ′T ṽ′ = 1 and α̃′ < 0

(Lemma 6.1). By (29), this shows that gmb0(U ′, V ′ ∪ {B}) = mb0(U ′, V ′ ∪ {B}),
which establishes the lemma.

6.1. The unique sink orientation

In this last part we want to use the results developed so far to reduce the problem

of finding mb0(T ) to the problem of finding the sink in a unique sink orientation.

To this end, we begin with a brief recapitulation of unique sink orientations and

proceed with the presentation of our orientation.

As in the previous subsection, we consider a set T of m ≤ d balls such that the

centers of T are linearly independent and such that no ball in T contains the origin.

Consider the m-dimensional cube. Its vertices can be identified with the subsets

J ⊆ T ; faces of the cube then correspond to intervals [V, U ] := {J | V ⊆ J ⊆ U},
where V ⊆ U ⊆ T . We consider the cube graph

G = (2T , {{J, J ⊕ {B}} | J ∈ 2T , B ∈ T }),

where ⊕ denotes symmetric difference. An orientation O of the edges of G is called

a unique sink orientation (USO) if for any nonempty face [V, U ], the subgraph of

G induced by the vertices of [V, U ] has a unique sink w.r.t. O.24

As before, we write dB and σB for the center and radius of the inverted balls

B∗ ∈ T ∗, see (11). The following is the main result of this section.

Theorem 6.9. Consider the orientation O of G defined by

J → J ∪ {B} :⇔ val(J, J) 6= val(J ∪ {B}, J).

Then O is a USO, and the sink S of the cube is a basis of T , meaning that S is

inclusion-minimal with val(S, S) = val(T, ∅).

In terms of halfspaces fh(U, V ), we can interpret this as follows. The edge

{J, J ∪ {B}} is directed towards the larger set if and only if the halfspace fh(J, J)

does not dominate the scaled version (16) of ball B∗.
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Proof. Fix a face [V, U ] of the cube. If U = ∅, the face is a vertex and has obviously

a unique sink. Otherwise let λB , B ∈ U , be the unique multipliers guaranteed by

Theorem 6.6 for the value (ṽ, α̃) of (U, V ). Let S ∈ [V, U ]. We claim that S is a sink

in [V, U ] if and only if S coincides with the set

V ∪ {B ∈ U \ V | λB > 0}, (30)

which implies uniqueness of the sink.

First assume that S equals the set in (30). Consider sets V ′, U ′ with V ⊆ V ′ ⊆
S ⊆ U ′ ⊆ U . By definition of S and Theorem 6.6,

ṽT dB + α̃ = σB , B ∈ V ′,
λB = 0, B 6∈ U ′,

which—again using Theorem 6.6—implies that (ṽ, α̃) is both feasible and optimal

for P0(U ′, V ′). In particular, we obtain

val(S, S) = val(S ∪ {B}, S), B ∈ U \ S, (31)

and

val(S, S) = val(S, S \ {B}), B ∈ S \ V,

where all values coincide with (ṽ, α̃). Because the λB are determined by ṽ, and

λB 6= 0 for B ∈ S \ V , we must have

val(S, S \ {B}) 6= val(S \ {B}, S \ {B}), B ∈ S \ V. (32)

Equations (31) and (32) together show that S is a sink in [V, U ] w.r.t. O.

For the other direction, let S be any sink in [V, U ], let (ṽ′, α̃′) be the value of

(S, S), and let λ′
B , B ∈ S, be the multipliers proving this according to Theorem 6.6.

We first show that (ṽ′, α̃′) = val(U, V ). S being a sink is equivalent to (31) and

(32). From (31) it follows that (ṽ′, α̃′) is feasible for P0(U, V ), and (32) together

with Lemma 6.7 yields

val(S, S) = val(S, S \ {B}). (33)

This in turn implies λ′
B ≥ 0, by Theorem 6.6, and via another invocation of the

theorem, (ṽ′, α̃′) = val(U, V ) follows. In particular, λB = λ′
B for B ∈ S and λB = 0

for B ∈ U \ S.

To prove that S equals the set in (30) we need another ingredient: λ′
B = λB > 0

for B ∈ S \V . With Theorem 6.6, this follows from λ′
B ≥ 0 and (32). Consequently,

S = V ∪ {B ∈ U \ V | λ′
B > 0},

as desired.

With the representation (30) for the sink S of [V, U ] it is easy to see that S ∈
[V, U ] is inclusion-minimal with val(S, S) = val(U, V ). A proper subset S′ ⊂ S,

V ⊆ S′, differs from S in at least one ball B′ ∈ S \ S′, which must have λB′ 6= 0

according to (30). It follows from Theorem 6.6 that (ṽ, α̃) disagrees with the value

of (S′, S′), so val(S′, S′) 6= val(S, S) = val(U, V ).
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{}
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{B2}

{B1, B2}

(a) (b) (c)

Fig. 20. The USO (c) from Theorem 6.9 for a set T = {B1, B2} of two circles (a). A vertex J ⊆ T
of the cube corresponds to the solution val(J, J) of program P0(J, J) and represents a halfspace
fh(J, J) in the dual (b) and the ball gmb0(J, J) (gray) in the primal (a). Every edge {J, J ∪{B}}
of the cube is oriented towards J ∪ {B} if and only if the halfspace fh(J, J) does not dominate
the scaled version of B∗ (which in this example is B∗ itself). The global sink S in the resulting
orientation corresponds to the inclusion-minimal subset S with val(S, S) = val(T, ∅). For the
definition of the USO, the halfspace fh(T, T ) is irrelevant, and since fh(∅, ∅) does not dominate
any ball, all edges incident to ∅ are outgoing (therefore, the figure does not show these halfspaces).

Figure 20 illustrates Theorem 6.9 for a set T of two circles.

Specialized to the case of points, this result is already known;10 however, our

proof removes the general position assumption.

In order to apply USO-algorithms24 to find the sink of our orientation O, we

have to evaluate the orientation of an edge {J, J ∪ {B}}, i.e., we must check

val(J, J) 6= val(J ∪ {B}, J). (34)

If J = ∅, this condition is always satisfied. Otherwise, we first solve program

C0(J, J), which is easy: by the Karush-Kuhn-Tucker conditions from Lemma 6.5(i),

it suffices to solve the linear system consisting of the Eqs. (21), (22), and the feasibil-

ity constraints vT dB +α = σB , B ∈ J . We know that this system is regular because

the optimal solution is unique and uniquely determines the Karush-Kuhn-Tucker

multipliers.

If the solution (ṽ, α̃) satisfies ṽT ṽ ≥ 1, we have already found the value (ṽ, α̃)

of (J, J) (Lemma 6.3(i)), and we simply check whether

ṽT dB + α̃ < σB, (35)

a condition equivalent to (34). If ṽT ṽ < 1, we solve C′
0
(J, J): by the Karush-Kuhn-

Tucker conditions from Lemma 6.6(ii), it suffices to solve the system consisting

of the Eqs. (25), the feasibility constraints vT dB + α = σB, B ∈ J , and vT v =

1. For this, we first solve the subsystem of linear equations; like in the proof of

Lemma 3.1 we can show that the solution space is one-dimensional. The additional

constraint vT v = 1 selects at most two candidate solutionss, exactly one of which

sA continuous set of solutions would contradict the uniqueness of (ṽ, α̃) in Lemma 6.3(iii).
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must satisfy (26). In this way we obtain the value of (J, J) and again evaluate (35).

Equation (34) gives an easy way to evaluate the orientation of the upward edge

{J, J∪{B}}, given the value of (J, J). We note that the orientation of the downward

edge {J, J \{B}} can be read off the Karush-Kuhn-Tucker multiplier λB associated

with val(J, J): orient from J \ {B} towards J if and only if λB > 0 (refer to the

proof of Theorem 6.9). Moreover, the solution of the second program C′
0
(J, J) can

be obtained by reusing intermediate results from the computations for the first

program C0(J, J).11

With the currently best known USO algorithm we can find the sink of an m-

dimensional USO with an expected number of O(cm) vertex evaluations, where

c ≈ 1.438.24 Since in our case a vertex evaluation (determine the orientations of

all edges incident to some vertex) essentially requires to solve one system of linear

equations, we obtain an expected running time of O(d3cm) to solve problem SEBB0

for a set of m ≤ d signed balls. Plugging f(d) = O(d3cd) into Theorem 4.4, we obtain

the currently best known exact algorithm for SEBB.

It remains an open problem whether SEBB0 or SEBB can be solved in sub-

exponential time as is the case for problem SEBP.7
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