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ABSTRACT

We present a solver for quadratic programming problems,
which is tuned for applications in computational geome-
try. The solver implements a generalization of the simplex
method to quadratic programs. Unlike existing solvers, it is
efficient if the problem is dense and has few variables or few
constraints. The range of applications covers well-known
problems like smallest enclosing ball, or polytope distance,
but also linear programming problems like smallest enclos-
ing annulus. We provide an exact implementation with only
little overhead compared to pure floating-point code. More-
over, unlike all methods for these problems that were sug-
gested (and implemented) before in computational geome-
try, the runtime in practice is not exponential in the dimen-
sion of the problem, which for example allows to compute
smallest enclosing balls in dimensions up to 300 (beyond
that, the exact arithmetic becomes the limiting factor).

The solver follows the generic programming paradigm, and
it will become part of the European computational geometry
algorithms library CGAL.

1. INTRODUCTION

Many geometric optimization problems can be formulated as
instances of linear programming (LP) or quadratic program-
ming (QP), where either the number of variables or the num-
ber of constraints is small. LP is concerned with the min-
imization of a linear function subject to linear (in)equality
constraints, while QP deals with convex quadratic objective
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functions of the form
zT Dz + cT:c,

with D being a positive-semidefinite matrix. Examples are
the following:

Smallest enclosing ball.

Given n points in d-dimensional space, find the ball of small-
est volume containing all the points. This is a classical prob-
lem of computational geometry, with many applications, for
example in bounding volume heuristics.! For fixed dimen-
sion d, O(n) algorithms are known [15], and efficient imple-
mentations exist [5, 14]. We show that the problem can be
formulated as a QP problem, although this is not obvious
from its definition. Thus, our QP solver leads to an ex-
tremely fast solution in low dimensions, and is much more
efficient than previous codes in moderately high dimensions.

Polytope distance.

Given two polytopes P, @, defined by a total of n vertices
(or m halfspaces) in d-dimensional space, find two points
p € P,q € Q with smallest Euclidean distance. For fixed d,
an O(n) solution follows from the fact that this problem
can be formulated as an LP-type problem [9]. It has explic-
itly been addressed by Wolfe for the special case where one
polytope is defined by a single point [17] and by Sekitani
and Yamamoto in the general case [13]. The latter algo-
rithm applies the technique Welzl has used for the small-
est enclosing ball problem [15], while the former works in a
simplex-type fashion; in fact, when specialized to the situ-
ation in Wolfe’s paper, our algorithm is an implementation
of his method. This problem—mostly occurring in collision
detection—immediately fits into the QP framework.

Smallest enclosing annulus.

Given n points in d-dimensional space, find the annulus (re-
gion between concentric spheres with radii R and r, R > r)
that contains the points and minimizes the difference R?—r2.

For d = 2, this is the annulus of smallest area, and in any

!Over the years, the first author has obtained requests for
source code, from an amazingly wide range of application
areas, see [5].



dimension, the optimal annulus can be used to test whether
the input points lie approximately on a sphere. Roundness
tests have in general received some attention recently [8].
The problem is also of theoretical importance, because it can
be used in an approximation algorithm for the minimum-
width annulus, a much harder problem [1]. The smallest
enclosing annulus problem is an LP problem, but it can of
course also be considered as QP with a ‘degenerate’ objec-
tive function, having D = 0. We provide test results also
for this problem, mainly to show that we incur no loss of
efficiency in comparison with a dedicated LP solver in the
same scenario [4]. On the contrary, care has been taken to
optimize the code, which is reflected in the run-times.

Optimal separating hyperplane.

Given two point sets P and @ with a total of n points in
d-dimensional space, test whether they can be separated by
a hyperplane, and if so, find a separating hyperplane that
maximizes the distance to the nearest point. The separation
itself can be done by LP, but finding the optimal hyperplane
is QP. The problem can be reduced to the polytope distance
problem.

Our contributions

It is common to all the four problems mentioned above
that d is usually small compared to n, often even constant
(d = 2,3), and in order to solve them efficiently, this has to
be taken into account. Like in case of LP, existing solvers
for QP are not tuned for this scenario. They usually work in
the ‘operations research’ setting, where both the number of
constraints and the number of variables is large, but the ma-
trix representing the constraints is sparse. Of course, such
solvers can be used to address problems in our scenario, but
a performance penalty is unavoidable in this case. Below,
we underpin this statement by comparing our results to the
ones obtained using the QP-solver of CPLEX.

The distinguishing features of our new solver can be sum-
marized as follows.

A simplex-type method.

It is well-known that the simplex method for linear program-
ming can be generalized to deal with quadratic programming
problems. For this, however, one usually blows up the size
of the constraint matrix in such a way that both the num-
ber of constraints and the number of variables become large
[16]; in our scenario, this would mean to give away the cru-
cial advantage of having one parameter d small. As it turns
out, if care is taken, the simplex method can smoothly be
generalized to QP, where the blow-up is limited by the rank
of D, rather than its size. This rank is at most d in our
applications, even if there are many variables.

A simplex-type method has another advantage: it generates
basic solutions. In the smallest enclosing ball problem, for
example, this means that not only the optimal radius, but
also the input points that determine the optimal ball are
computed. In contrast, QP problems are often solved using
interior point methods?, and to obtain basic solutions from
that requires additional effort.

2for example, CPLEX’s quadratic programming solver does
this

Efficient exact computations.

As already shown in case of LP [4], simplex-type meth-
ods allow an easy scheme to combine exact and floating-
point arithmetic, without sacrificing too much performance.
Namely, the number of exact arithmetic operations required
is usually only a function of the smaller parameter of the
problem. We generalize this scheme to the QP case, where
it also works very well. To give a concrete figure: computing
the smallest enclosing ball of 1,000,000 points in dimension
d = 3 takes 7.9 seconds with our method (and the result is
guaranteed to be correct!), while the highly-tuned floating-
point code in [5] is only by a factor of less than four faster.

No ‘curse of dimensionality’.

The simplex-type approach is in practice polynomial in both
parameters (number of constraints and number of variables)
of the QP problem. This means, we can solve the concrete
geometric optimization problems mentioned above even in
moderately high dimensions (50 < d < 300, depending on
the problem). In particular, for the smallest enclosing ball
problem this substantially extends the range of feasible di-
mensions that can be handled by computational geometry
codes. Interior point codes (like CPLEX’s QP solver) can
go much higher, so if that is required, they are the ones to
choose (with the disadvantages mentioned above). Still, we
obtain a solver that is very efficient in low dimensions, al-
ways exact, and can handle higher dimensions as well (with
decreasing efficiency, because of the exact arithmetic).

2. QP AND THE GEOMETRIC OPTIMIZA-
TION SCENARIO

Quadratic Programming is the problem of minimizing a con-
vex quadratic function in n variables, subject to m linear
(in)equality constraints over the variables. In addition, the
variables may have to lie between prespecified bounds. In
this general formulation, QP can be written as

(QP) minimize ¢’z + 2T Dz
subject to Az § b, (1)
{<z<u.

Here, A is an mXxn-matrix, b an m-vector, ¢ an n-vector, D
a positive semi-definite nxn-matrix®, and £, u are n-vectors
of bounds (values —oo, 0o may occur). The symbol ‘é’
dicates that any of the m order relations it stands for can
independently be ‘<’ ‘=’ or ‘>’. If D = 0, we obtain a
linear program as a special case of QP.

in-

If a vector 2* = (x3,...,z5)7 exists that satisfies all con-
straints, the problem is called feasible and z* is a feasible
solution, otherwise the problem is called infeasible. If the
objective function f(x) = ¢Tz + 27 Dz is bounded from be-
low on the set of feasible solutions z*, the problem is called
bounded, otherwise unbounded. If the problem is both fea-
sible and bounded, the objective function assumes a unique
minimal value for some (not necessarily unique) optimal fea-
sible solution z*. Solving the quadratic program means find-
ing such an optimal solution z* (if it exists).

3i.e. 2T Dz > 0 holds for all z.



The scenario we exclusively treat in this paper is the one
where min(n,m) is small. In the geometric applications,
this value is closely related to the dimension of the space the
problem lives in. The value max(n, m), on the other hand,
may be very large—it ususally comes from the number of
objects (points, halfspaces etc.) that define the problem.
Moreover, we assume no sparsity conditions—both matrices
A and D may be dense. Namely, the geometric optimization
problems we want to handle typically exhibit a dense struc-
ture; when we deal with point sets in Euclidean space, for
example, the concept of sparsity can even be meaningless.
Many properties of point sets are translation invariant, in
which case coordinates with value zero play no special role
at all.

Let us briefly discuss why ‘standard’ solvers (addressing
the case where both m,n may be large and the problem
is sparse), cannot efficiently be used in our scenario.

First of all, if n is large and D is dense, the problem can-
not even be entered into solvers which require the ©(n?)
nonzero entries of D to be explicitly given. This situation
for example occurs in connection with the smallest enclosing
ball problem. There is an alternative formulation in which
D is sparse, but in return, the constraint matrix A will get
larger. Our solver can handle matrices D which are implic-
itly given, and if m is small, only few entries will ever be
evaluated.

Furthermore, the performance of standard solvers in prac-
tice crucially depends on the number of nonzero entries in
the problem description, rather than on n and m (which is
exactly what one wants for large, sparse problems). In our
scenario, however, this is bad news, because in the dense
case, no advantage is taken from the fact that one of the
parameters is small.

3. THE QP SIMPLEX METHOD

In this section, we describe our generalization of the simplex
method to QP. We will not give an in-depth treatment, but
rather point out the main differences to the usual simplex
method for LP (referred to as LP simplez in the following).
Details appear in the full version. For the LP simplex, the
reader may consult [2] and [4].

For the description, we consider QP in standard form, given
as
(QP) minimize Tz + 27Dz
subject to Az =b, (2)
x>0,

where the number of variables n is at least as large as the
number of equality constraints m. As in the LP simplex,
explicit bounds £ < z < w as in (1) can smoothly be in-
tegrated, and if inequality constraints occur, they can be
turned into equalities by introducing slack variables. This
means, if m is small in (1), we may without loss of gener-
ality assume that the QP is in standard form, having only
few equality constraints.

If m > n in (1), the problem contains many inequality con-
straints in all interesting cases; however, turning them into

equalities generates a large number of slack variables, so that
it is no longer true that the resulting standard form QP has
few equality constraints. The crucial observation here is that
the former inequalities can be treated implicitly; intuitively,
we ‘trade them in’ for the new slack variables, moving the
problem’s complexity from the constraints to the variables,
after which we are basically back to a standard from QP
with m < n. Details are omitted here. In the following, we
assume that we are given a problem in the form of (2).

Basic solutions.

As the LP simplex method, the QP simplex iterates through
a sequence of basic solutions, always improving the objective
function value. A basic solution is characterized by a subset
B of the variables (a @QP-basis) and numerical values z3
for the variables in Bj; variables not in B will always have
value zero. Unlike in the LP-simplex, the basis B may have
more than m variables, and in this case their values are
not uniquely determined. Instead, xz will be the optimal
solution to the unconstrained subproblem

(UQP) minimize cErp +2LDpzn (3)
subject to Apzp =b.

The set B defines a basic solution if and only if this problem
has a unique optimal solution 3 > 0 which is also feasible
for the original problem (2). Here, cg, Dp and Ap are the
entries of ¢, D and A relevant for the variables in B. In case
of LP (i.e. D = 0), this specializes to the usual notion of
basic feasible solutions (in the nondegenerate case).

The following lemma gives a bound for the maximum size
of a QP-basis.

LEMMA 3.1. Every QP-basis B satisfies
|B| < m + rank(D).

Again, if D = 0, we recover the bound for LP-bases. The
lemma is a crucial ingredient of our method. Well-known
methods to generalize the simplex algorithm to QP integrate
D explicitly into the constraint matrix [16]. This is appro-
priate for large sparse problems and corresponding solvers,
because it does not increase the number of nonzero entries
in the problem description. In our scenario, however, this
method is a killer, because it results in a problem with many
variables and many constraints. The lemma limits the in-
fluence of D by considering its rank rather than its size; as
we see below, this rank is small in our applications.

Ratio Test.

The process of going from one basic solution to the next
is called a pivot step. In the LP simplex, the ratio test is
the part of the pivot step that decides which variable has to
leave the basis if another variable enters it. Unless the prob-
lem is degenerate, there is a unique choice for the leaving
variable. In the QP simplex, it can happen that a variable
enters the basis, but there is no leaving variable, so that the
basis gets larger. This is the case if the objective function



reaches a local minimum (while the entering variable is in-
creased), before some other (basic) variable goes down to
zero. Moreover, it can be the case that even if some leaving
variable is found, the solution at that point is not basic. In
this case, the pivot step continues, and more variables may
leave the basis, until another basic solution is discovered.

The other part of the pivot step, the pricing, decides which
variable is chosen as the entering variable, if there is a choice.
The QP pricing works in the same way as the LP pricing.
As in [4], we combine exact and floating-point arithmetic,
and we use partial pricing, a highly efficient strategy to re-
duce the cost of a single iteration if n > m. (A theoretical
analysis of partial pricing has recently been done [7].)

4. THE IMPLEMENTATION

The QP solver is carefully designed and implemented in
C++. We followed the generic programming paradigm, as it
is realized in the STL [11], and the design goals of CGAL [3].
The most important ones, among others, were flexibility for
the user and efficiency of the code. In the sequel we de-
scribe how these at first sight conflicting design goals can be
achieved both at the same time.

Some calculations in the pivot step are only needed for the
QP case and can be omitted if D = 0. We introduced a
compile time tag indicating a linear respectively quadratic
objective function. Thus, the compiler only generates the
code needed for the specific type of problem, resulting in
almost no overhead compared to a stand-alone implementa-
tion for LP (this is also underpinned by the test results).

Different geometric optimization problems come with dif-
ferent representations. We allow the user to choose his fa-
vorite format by only asking for iterators to access the prob-
lem. This also avoids copying overhead and, more impor-
tant, gives the possibility of representing the nxn matrix D
implicitly (which is indeed done in the tests for polytope
distance and smallest enclosing ball).

The efficiency of the algorithm heavily depends on the un-
derlying arithmetic. The user can specify the optimization
problem with a fast (and possibly inexact) number type,
which is used for the pricing, while providing an exact num-
ber type for the internal representation of the basis inverse
and the current solution. This combination of inexact and
exact arithmetic results in a fast and correct implementa-
tion.

The whole pricing step is encapsulated in a class. It can
be replaced with other pricing strategies by deriving a new
class from a given base class and specializing some virtual
functions (this feature was used to perform the tests involv-
ing partial and full pricing and different arithmetic, see the
next section).

5. TEST RESULTS

We have tested our algorithm on three different problems,
with various settings. All these problems can be formulated
as standard form QP (2) with few constraints.

The first one is the polytope distance problem, where the
input polytopes are specified by points. The case where they
are specified by halfspaces results in a QP (1) with m > n;
the routines needed to handle this case exist as prototypes
but have not reached a stable state yet; therefore we do not
include test results for this scenario.

For the smallest enclosing ball problem (our major test prob-
lem), we have performed extensive tests, and compared the
results to the ones obtained using other codes (including
the QP-solver of CPLEX). We will argue that our code is a
substantial new contribution.

Finally, the smallest enclosing annulus problem is mainly
selected as a test problem, because it is an LP problem, and
benchmarks have already been obtained for an exact LP
solver on that problem. It turns out that although we solve
LP as a special case of QP, our method is faster than the
dedicated LP code described in [4]. This is due to the fact
that great care has been taken to ensure runtime efficiency
(see previous section).

All tables show the performance of different codes on data of
different dimensions, for different numbers of points, and dif-
ferent arithmetics (averaged over several runs in each case).
For smallest enclosing ball, the codes that were used are the
first author’s double-only code Miniball, the algorithms of
LEDA [10] and CGAL [14] (in the latter case also the ded-
icated 2-dimensional version), our new QP based method,
and finally the QP-solver of CPLEX. For the smallest en-
closing annulus, the exact LP solver of the first author was
compared with our new method.

Most tests have been performed with pseudo-random input,
i.e. the coordinates were chosen as the lower-order 24 bits of
the pseudo-random numbers generated using the generator
random. This generator is not a linear congruential gener-
ator, and therefore not subject to ‘nonrandom’ effects as
described in [6], as far as we know. For smallest enclosing
ball and annulus, we further have tested with degenerate
inputs, sets of points lying exactly or almost on a sphere.

The three types of arithmetics are double (floating-point
only), filtered (a standard floating-point filter approach
in case of LEDA, and our hybrid scheme in case of the QP
method), as well as exact, denoting full multiple precision
number arithmetic.

In case of the QP solver, two pricing strategies are available,
full and partial. Partial pricing is almost always faster than
full pricing, which is therefore not tabulated for all tests (see
[4] for an explanation of the pricing strategies).

All test results appear in tables at the end of the paper (see
Section 7).

5.1 Polytope Distance

For point sets P = {p1,...,p:}, @ ={q1,-.. ,¢s}, 7+s=mn,
the polytope distance problem is to minimize ||p — g|| such
that p =37, Aipi, ¢ = Y ;_; 1tiqi, where the A;, pu; are in
[0,1] and sum up to one. As a quadratic program, this can



be written as

(PD) minimize z7CTCz”
subject to Y i x; =1, (a)
E?=r+1 Ti = 17
z >0,

where C = (p1,...,pr,—q1,... ,—qs). Here, D = C*C is
an nXn-matrix, but its rank is only d. Hence, by Lemma 3.1,
the QP simplex will trace only bases of size d + 2 at most.
This corresponds to the fact that the closest features of two
d-polytopes are always determined by at most d + 2 points.
(If the polytopes have positive distance, d+1 points suffice.)

Table 1 shows the results of our solver (the best available
setting: partial filtered pricing) for polytope distance prob-
lems with various random point sets in various dimensions.
The main ‘message’ of the table is that the solver is able
to handle large instances fast and ezact. A more detailed
picture is obtained from the results for smallest enclosing
balls, where we compete against other codes.

5.2 Smallest Enclosing Ball

If P = {p1,...,pn}, the problem is to find a point p such
that maxi_||p; — p|| is minimized. The point p is then the
center of the smallest enclosing ball. The following lemma
shows that this problem can be written in the form of QP.
Its proof is omitted here—it follows from the Karush-Kuhn-
Tucker optimality conditions for convex optimization prob-
lems [12].

LEMMA 5.1. For an n-point set P = {px,...
the d x n-matriz C := (p1, ...
programming problem

(MB') minimize zTCTCzx — Y7 | pfpizi
subject to D7 mi =1, (5)
z > 0.

,Pn}, define
,Pn), consider the quadratic

, Ly, be its optimal solution. Then the point

n

* *

p = pi%;,
=1

is the center of the smallest enclosing ball of P.

and let 7, . ..

As before, the matrix C has rank at most d, so Lemma 3.1
shows that the optimal basis has size at most d + 1, corre-
sponding to the fact that d + 1 points suffice to determine
the smallest enclosing ball. Because the matrix D = C7 C is
a dense n X n-matrix (where n will range up to 1,000,000 be-
low), we cannot feed the problem into CPLEX in the present
formulation. However, at the cost of adding a few additional
constraints and variables, the following equivalent formula-
tion is obtained.

(MB”) minimize y"y— Y7 pipizi
subject to y = Ce, (6)
E'anl Ti = 1’
z > 0.

In all tests with CPLEX below, we use formulation (6).

While all methods that are considered can handle large point
sets in dimension 2, there are quite some differences in ef-
ficiency between floating-point, filtered and exact versions
of the same code. Usually, our exact QP solver is only
slightly slower than the double versions of the other codes,
but dramatically faster than their exact implementations.
The LEDA version is still comparable, because it applies a
filtered approach itself. In cases the table entry is blank, we
did not wait for the result, the time here is at least one hour
(Table 2).

As degenerate inputs for d = 2, we have chosen two sets
of points lying exactly on a circle. The small set has coor-
dinates such that the squares still fit into a double value,
while the large one has not. The only double implementa-
tions that can reasonably handle those sets are the Miniball
routine, and CGAL’s dedicated 2-dimensional code. Again,
the exact QP solver is faster than LEDA’s filtered approach,
and much faster than all exact versions. An interesting phe-
nomena occurs when one slightly perturbs the points, so that
they are no longer cocircular. The QP solver becomes much
faster because the perturbation already suffices to make the
built-in error bounds work effectively: to verify optimality
in the last iteration, no exact checks are necessary anymore,
while they extensively happen for the non-perturbed input
(Table 3).

In d = 3, we have chosen a point set almost on a sphere,
obtained by tiling the sphere according to longitude and
latitude values. The only double code still able to handle
this problem is Miniball; our filtered approach, however, is
only by a factor of 6 slower, while the exact versions are out
of the game (Table 4).

We also have results for higher dimensions (Tables 5, 6,
and 7). These show how the missing ‘curse of dimension-
ality’ in the QP solver compensates for the effect of exact
arithmetic, so that our exact solver is already faster than the
inexact solver Miniball in dimension 20, for 10,000 points.
(For n = 100,000 we are not far off, but for 1,000,000 points
we reach the machine’s memory limit). Note that the table
entry is blank for most pure double versions in higher di-
mensions, which means that the results were too inaccurate.

Probably most interesting is that problems up to dimen-
sion 100 can routinely be handled, and even for 10,000 points
in d = 200, we only need about seven minutes (Table 8). It
should be noted that these results hold for random points,
where we observed that the number of points that determine
the final ball is quite small (much smaller than the dimen-
sion itself). In this situation, the QP-bases the algorithm
needs to handle are relatively small, which makes the exact
arithmetic fast.

Finally, we have performed comparisons with the QP solver
of CPLEX (an interior point code), showing that such codes
are not competitive in our scenario (Table 9). It is inter-
esting to note that the performance of the CPLEX solver
mainly depends on the product of n and d (which is closely
related to the number of nonzeroes in the problem descrip-
tion), while we pay a penalty for larger values of d. However,
the results show that our exact method is still superior to
CPLEX for dimensions below 30, which is the range of di-



mensions our code is made for. It is clear that CPLEX’s
method will become superior as d goes higher up.

5.3 Smallest Enclosing Annulus

The problem can be formulated as a linear program in 2n
variables and d + 2 constraints, where it nicely fits into our
scenario [4].

We have tested our QP solver against the exact solver de-
scribed in [4] which employs basically the same combination
of exact and floating-point arithmetic (denoted as LP sim-
plex in the tables). However, as the results show, our solver
is even faster than the dedicated LP solver. This is due to
the fact that we invested much effort in optimizing the code.

As before, the filtered approach is much faster than the exact
approach, and comparable to pure-floating point solutions.
Unlike in the case of smallest enclosing ball, double versions
are still able to compute the correct result in higher dimen-
sions, which indicates that true QP is more challenging for
the numerics than LP (Tables 10, 13, and 14).

In case of degenerate input (points on a circle), we observe
the same phenomenon as with smallest enclosing balls: as
soon as we slightly perturb the points, the filtered approach
gets much faster, because less exact computations are nec-
essary (Tables 11 and 12).
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7. TABLES OF RESULTS

This section contains the tables with performance evalua-
tion results that were discussed in Section 5. With one ex-
ception, runtimes have been measured on a SUN Ultra-250
workstation, using the GNU g++ compiler, version 2.95.2, at
optimization level -03.

Because the most recent version 6.5.3 of CPLEX was avail-

able to us only on a SUN Ultra-60 workstation, the results
in Table 9 refer to that machine.

7.1 Polytope Distance

random points

d 10,000 | 100,000 | 1,000,000
2 82 ms | 797 ms 83s
3 90 ms | 942 ms 88s
5 || 127 ms 13s 12.8 s

10 || 221 ms 2.3s 21.6s

15 || 416 ms 3.8s 355 s

20 || 670 ms 4.7 s 1:01 min
30 1.1s 99s 1:23 min
50 || 2.2s 22.1s 3:30 min
100 || 7.0s 57.8s 9:59 min

Table 1: Runtimes on random polytope-distance
problems, QP solver with partial filtered pricing



7.2 Smallest Enclosing Ball

random points

100,000 [ 1,000,000

Algorithm (d = 2) 10,000

Miniball (double) 9ms | 102 ms 1.3s
LEDA Min _circle (double) 29 ms | 451 ms 5.8s
( )

CGAL Min_sphere double 26 ms | 344 ms 35s
CGAL Min_circle (double) 92 ms | 982 ms 9.5s
QP Solver (partial,double) 28 ms | 323 ms 33s
QP Solver (full,double) 59 ms | 673 ms 7.0s
LEDA Min _circle (filtered) || 103 ms | 1.13 s 126 s
QP Solver (partial,filtered) 64 ms | 661 ms 6.6 s

QP Solver (full,filtered) 89ms | 1.01s 10.3 s
QP Solver (partial,exact) 3.6s 34.6 s 5:45 min
QP Solver (full,exact) 6.9s 1:07 min

CGAL Min_sphere (exact) 6.8s 1:02 min

CGAL Min_circle (exact) || 11.1s 1:51 min

Table 2: Runtimes on random miniball problems, d = 2

points on circle

Algorithm (d = 2) 6,144 [ 13,824 [ 6.144 (perturbed)
Miniball (double) <1 ms 10 ms | 10 ms
CGAL Min_circle (double) 20 ms 60 ms

LEDA Min_circle (filtered) || 2.56 s 6.4s 6.5s
QP Solver (partial,filtered) | 830 ms | 5.1s 60 ms

QP Solver (full filtered) || 870 ms | 9.8s 110 ms
QP Solver (partial,exact) || 840 ms | 14.6 s 2.7s
QP Solver (full,exact) 1.7s 48.1s 8.8s
CGAL Min_sphere (exact) || 860 ms | 2.0s 7.0s
CGAL Min_circle (exact) 1.8s 40s 6.9s

Table 3: Runtimes on degenerate miniball problems, d = 2

. oints on sphere
Algorithm (d = 3) ?0,000 (pertlﬁ)rbed)
Miniball (double) 40 ms
QP Solver (partial,filtered) 250 ms
QP Solver (full filtered) 260 ms
QP Solver (partial,exact) 22.4 s
QP Solver (full,exact) 23.6 s
CGAL Min_sphere (exact) 48.3 s

Table 4: Runtimes on degenerate miniball problem, d =3

random points (10,000)

Algorithm A2 1T 3 [ 5 [ 10 [ 15 [ 20

Miniball (double) 9ms | 15ms| 34ms | 118 ms | 341 ms 21s

CGAL Min_sphere (double) || 26 ms 37 ms
QP Solver (partial,double) || 28 ms 35 ms 54 ms | 128 ms

QP Solver (partial,filtered) 64 ms 84 ms | 153 ms | 443 ms 926 ms 1.7s

QP Solver (partial,exact) || 3.6 s 44s 7.1s 14.8 s 23.3s 34.5s
CGAL Min_sphere (exact) || 6.8s 124s 32.0s 2:19 min | 7:25 min

Table 5: Runtimes on random miniball problems, n = 10,000



] random points (100,000)

Algorithm il 2 1 3 [ 5 [ 10 [ 15 [ 20
Miniball (double) 102 ms 206 ms 502 ms 16s 3.1s 79s
CGAL Min_sphere (double) || 344 ms | 516 ms 1.1s
QP Solver (partial,double) || 323 ms | 370 ms
QP Solver (partial,filtered) || 661 ms 814 ms 1.3s 29s 5.3s 12.0s
QP Solver (partial,exact) || 34.6 s 42.0s 1:07 min | 2:07 min | 3:10 min | 4:35 min
CGAL Min_sphere (exact) || 1:02 min | 2:05 min | 5:45 min

Table 6: Runtimes on random miniball problems, n = 100,000

. random points (1,000,000
Algorithm A2 73 7] 5 | 1 | 5 20
Miniball (double) 1.3s 22s | 50s | 186s|30.0s|595s
CGAL Min_sphere (double) 3.5s 54s| 98s|31L7s
QP Solver (partial,double) 3.3s 3.8s
QP Solver (partial,filtered) 6.6 s 79s | 11.5s | 283s | 47.1 s | 3:55 min
QP Solver (partial,exact) || 5:45 min

Table 7: Runtimes on random miniball problems, n = 1,000,000

random points

d 10,000 | 100,000

30 6.7s 26.3 s

50 20.2s 1:49 min
100 50.7 s 3:08 min
200 6:51 min
300 || 20:41 min

Table 8: Runtimes on random miniball problems, QP solver with partial filtered pricing

random points

Algorithm d 3 30
n || 100,000 | 10,000
CPLEX (double) || 12.8 s 10.2 s
QP Solver (partial,filtered) || 671 ms | 6.8s

Table 9: Runtimes on two random miniball problems, compared to CPLEX’s QP solver

7.3 Smallest Enclosing Annulus

. random points (d = 2

Algorithm 10,000 | 105),000 :
QP Solver (partial,double) 15 ms 232 ms
QP Solver (full,double) 65 ms 935 ms
LEDA Min_annulus (double) 4.5s 57.6 s
QP Solver (partial,filtered) 42 ms 388 ms
QP Solver (full filtered) 84 ms 11s
LP Simplex (partial,filtered) 493 ms 49s
LEDA Min_annulus (filtered) 39.3 s 7:50 min
QP Solver (partial,exact) 8.1s 1:40 min
QP Solver (full,exact) 279s 4:46 min

Table 10: Runtimes on random annulus problems, d = 2



Algorithm

points on circle (d = 2)

6,144 | 13,824 | 6.144 (perturbed)

QP Solver (partial,filtered) || 1.8 s 43s 50 ms
QP Solver (full filtered) || 1.8's 43s 80 ms
LP Simplex (partial filtered) || 1.8 s 3.5s 320 ms
LEDA Min_annulus (filtered) || 5.7s | 13.1s

QP Solver (partial,exact) || 1.8 s 4.5 6.9s
QP Solver (full,exact) || 8.4s | 27.3s 29.2 s

Table 11: Runtimes on degenerate annulus problems, d = 2

] points on sphere (d = 3)
Algorithm 10,000 (perturbed)

QP Solver (partial,double) 80 ms
QP Solver (full,double) 120 ms
QP Solver (partial,filtered) 180 ms
QP Solver (full filtered) 210 ms
LP Simplex (partial filtered) 630 ms
QP Solver (partial,exact) 36.7 s

QP Solver (full,exact) 59.7 s

Table 12: Runtimes on degenerate annulus problem, d = 3

] random points (10,000)
Algorithm d 2 T 3 [ 5 [ 10 | 15 [ 20 [ 30
(partial,double) 15ms | 31 ms 41 ms 131 ms 289 ms 677 ms
(full,double) 65 ms | 156 ms | 275 ms 11s 2.1s 41s
QP Solver (partial,filtered) 42 ms 90 ms | 206 ms 1.6s 8.4s 28.7s 3:10 min
(full,filtered) 84 ms | 187 ms | 368 ms 20s 7.6s 23.7s
(partial filtered) || 493 ms | 551 ms | 722 ms 2.6s 9.8s 33.2s 3:35 min
(partial,exact) 8.1s 119s 20.8s 1:23 min | 4:25 min | 10:38 min
(full,exact) || 27.9 s 54.0 s 1:55 min | 8:59 min | 27:31 min
Table 13: Runtimes on random annulus problems, n = 10,000
] random points (100,000)
Algorithm d 3 35 1 5 ] 1(() [ 15 | 20 [ 30
QP Solver (partial,double) || 232 ms 238 ms 335 ms 685 ms 1.5s | 3.6s
QP Solver (full,double) || 935 ms 1.5s 34s 11.1s
QP Solver (partial,filtered) || 388 ms 431 ms 704 ms 2.6s 10.8 s | 36.8 s | 3:52 min
QP Solver (full,filtered) 1.1s 1.7s 3.6s 125 s
LP Simplex (partial,filtered) 49s 49s 5.3 ms 8.0s 17.8 s | 47.7s | 4:23 min
QP Solver (partial,exact) || 1:40 min | 1:50 min | 3:01 min | 8:12 min
QP Solver (full,exact) || 4:46 min | 11:41 min | 22:57 min

Table 14: Runtimes on random annulus problems, n = 100,000




