
Pitfalls in Computing with Pseudorandom Determinants∗

Bernd Gärtner
Institut für Theoretische Informatik, ETH Zürich

ETH Zentrum, CH-8092 Zürich, Switzerland

gaertner@inf.ethz.ch

ABSTRACT
It has been known for 30 years that pseudorandom num-
ber generators in the class of linear congruential generators
(LCG) exhibit strong and predictable regularities. A widely
used generator in this class is drand48. While the regu-
larity is not problematic in most applications, I show that
it can produce very misleading results in testing geomet-
ric algorithms that involve determinant computations. By
presenting scenarios where LCG behave ‘nonrandom’ (some-
times in a spectacular way), I want to raise awareness for
possible problems with LCG and pseudorandom numbers in
general.

1. INTRODUCTION
In recent years, more and more papers published in compu-
tational geometry conferences and journals report about im-
plementations. The results usually include tests with ‘ran-
dom input’. Statements like “Table 4 gives the runtime for
n points randomly chosen from the unit square, for different
values of n” are typical.

The main point of this paper is that such a statement can
be quite meaningless, if it does not mention the method
according to which the random choices were made. And even
if it does, this particular method might be inappropriate,
thus invalidating the results.

This is not a new insight; on the contrary, similar statements
have been made by many people, including Knuth who re-
marked that “random numbers should not be generated by
a method chosen at random”[10]. In fact, it is computer
sciene folklore that pseudorandom number generation bears
some danger, and many even know about one particularly

∗This work was supported by a grant from the Swiss Fed-
eral Office for Education and Science (Project ESPRIT IV
LTR No. 28155 GALIA). Parts of the material have already
appeared in the Mitteilungen der Deutschen Mathematiker-
Vereinigung (DMV), Volume 2, 1999, pp. 55-60 (in Ger-
man).

bad random number generator used in the sixties. This gen-
erator (actually an LCG; we come back to it below) has the
property that the threedimensional points it generates are
concentrated in very few planes.

Still, a widespread attitude is that as long as some ‘good’
generator (according to standard benchmarks) is used, it
does not matter which one it is in particular. Then state-
ments like the one quoted above are considered valid—by the
author as well as by the reader—under the silent assump-
tion that the random number generator used in the tests is
reasonably up-to-date (which hopefully holds for most gen-
erators used nowadays).

This attitude, however, misses the main point. Namely, even
the ‘best’ and most recent generator can be inappropriate
in a certain application. It seems that the ‘likelihood’ of
such an event is small, but we will see that the whole class
of LCG is problematic in applications dealing with deter-
minants. Because LCG are widely used, and determinant
computations are ubiquitous in computational geometry, the
problems are just around the corner.

It should be clear that results for pseudorandom or truly
random input are only vaguely (if at all) related to the
performance of an algorithm in practice, because the input
distributions one typically observes are quite nonrandom.
Despite this fact, tests with pseudorandom input are fre-
quently being made, with the clear intention of performance
evaluation. One reason for that is a lack of real data, of-
ten observed in connection with more theoretically oriented
research; another attractive feature is that pseudorandom
data are seemingly beyond the control of the test person,
documenting that the algorithm can handle inputs not ex-
plicitly ‘prepared’ by the author.

This paper does not make any statement about testing with
‘real-world data’, obtained without involving a pseudoran-
dom source. It does make a statement regarding test scenar-
ios that simply pretend to simulate real-world behavior by
using pseudorandom input. I want to argue that the latter
scenarios can potentially be dangerous, more often than one
might think.

In the next section, I will introduce LCG and state the reg-
ularity theorem. Section 3 presents three scenarios where
this theorem and consequences of it lead to nonrandom be-
havior. Finally, Section 4 contains a proof of the regularity

theorem, which provides insights into the structure of LCG
in general.

The regularity theorem as I present it, along with its impli-
cations for determinant computation, is new. However, it is
a simple consequence of known and classical results regard-
ing the structure of LCG [11, 10].

2. LCG AND THE REGULARITY THEO-
REM

Let a, c, m be integers with 0 ≤ a, c < m. The LCG with
parameters a, c, m outputs a sequence X1, X2, . . . of pseudo-
random integers in the range [0, m) according to the formula

Xt+1 = (aXt + c) mod m, t ≥ 0. (1)

Here, X0 is the seed, m the modulus, a the multiplier, and c
the increment.

The generator drand48, for example, has the parameters

a = 25214903917, c = 11, m = 248. (2)

To get floating-point numbers in the unit interval, the gen-
erated numbers Xi are scaled by 2−48.

Because the sequence (Xi) is periodic with period length at
most m, the modulus should be large, and the period length
close to the maximum. drand48 has full period. As a small
running example, let us consider the full-period generator
knuth8 [10], specified by

a = 137, c = 187, m = 28. (3)

Theorem 2.1. (Regularity Theorem.) For fixed m, a, c, X0,
let

Xt+1 = (aXt + c) mod m,

for t ≥ 0, and fix a positive integer d as well as two sequences
of nonnegative integers i1, . . . , id and j1, . . . , jd. Consider
the d × d-matrices

A :=

0

B

B

B

@

Xi1+j1 Xi1+j2 · · · Xi1+jd

Xi2+j1 Xi2+j2 · · · Xi2+jd

...
...

...
Xid+j1 Xid+j2 · · · Xid+jd

1

C

C

C

A

and

A′ :=

0

B

B

B

@

Xi1+j1 Xi1+j2 · · · Xi1+jd−1
1

Xi2+j1 Xi2+j2 · · · Xi2+jd−1
1

...
...

...
...

Xid+j1 Xid+j2 · · · Xid+jd−1
1

1

C

C

C

A

.

Then both det(A) and det(A′) are integer multiples of md−2.

I prove the theorem in Section 4. For d = 3, one gets the
first nontrivial statement, showing that for example,

det

0

@

X1 X2 1
X3 X4 1
X5 X6 1

1

A , det

0

@

X1 X4 1
X2 X5 1
X3 X6 1

1

A

and

det

0

@

X1 X2 X3

X2 X3 X4

X3 X4 X5

1

A

are divisible by the modulus m. To give concrete numbers
in case of knuth8, one computes (with X0 = 0)

det

0

@

X1 X2 1
X3 X4 1
X5 X6 1

1

A = det

0

@

187 206 1
249 252 1
151 138 1

1

A

= −2560 = −10 · 256.

The theorem is quite general in the sense that many natural
ways of filling the matrix A or A′ from a stream of pseudo-
random numbers lead to regular behavior. For example, one
can proceed row- or columnwise, skip or repeat full rows or
columns, or use only every k-th number, for some k. Still,
knowing the pattern, it is not difficult to break it. For exam-
ple, omitting every k-th number from the stream for k ≥ 3
leads to a matrix with substantially less regularity (also de-
pending on whether k and d are relative prime).

In the following, the term ‘pseudorandom’ always refers to
LCG-generated numbers.

3. THREE NONRANDOM SCENARIOS
The important consequence of Theorem 2.1 is that determi-
nants with pseudorandom entries have unnaturally small bit
complexity when the modulus is a power of two. Among the
three scenarios below, the first two elaborate on the prac-
tical implications of this phenomenon. The third scenario
deals with a different effect that happens when lower-order
bits of an LCG sequence are used to define pseudorandom
point coordinates.

To argue that certain effects are nonrandom, one must show
that they do not occur with truly random data. In all sce-
narios discussed below, this is either obvious, or can easily
be done. Still, to illustrate the effects, I have performed tests
that compare pseudorandom with truly random input. To
obtain the latter, I have used David Walker’s HotBits which
are generated by radioactive decay and can be downloaded
in chunks from Walker’s web site (http://www.fourmilab.
ch/hotbits/). Since it is impossible to decide whether a
concrete stream of bits is ‘random’, or whether the random
source is trustworthy at all, those tests should not be taken
too seriously. They simply provide good practical estimates
for the impact of the effects I am going to describe.

Exact computations: too fast.
Exact evaluations of pseudroandom determinants can lead
to the largest miscalculations of an algorithm’s performance;
therefore, I want to begin with this scenario. Although it is
mostly the sign rather than the exact value one is interested
in, there are situations where one actually needs to compute
the full determinant. For example, to obtain benchmarks for
the efficiency of a floating-point filter, one typically com-
pares the runtime of the filtered approach with the runtime
of the exact evaluation. Also, in degenerate situations where
the filtered approach fails for many sign tests, the efficiency

drand48 HotBits

d t b bnorm t b
5 0.12 138 89 0.12 234
10 0.14 134 86 0.19 474
20 0.37 139 92 1.78 956
30 0.97 143 96 9.87 1442
40 2.14 152 104 34.4 1929
50 4.06 160 113 92.0 2411

Table 1: Exact matrix inversion over pseudorandom
and truly random input

of the exact evaluation becomes an issue. In geometric opti-
mization (most notably in low-dimensional linear program-
ming), systems of linear equations have to be solved; in this
case, it is much less clear how floating-point filters can be
applied effectively, and exact computation is often the only
viable alternative. Solving those linear systems, however,
often boils down to the computation of (sub-)determinants.

The following case study models the situation as it occured
in the implementation of an exact linear programming solver
[5]. The suspiciously high efficiency of the solver on pseudo-
random input—even for larger dimensions— made me ‘dis-
cover’ the underlying regularities of the input, as they are
given in Theorem 2.1.

By Cramer’s rule, the entries of the inverse of a (d × d)-
matrix A can be computed as

A−1
ij = (−1)i+j det(Aji)

det(A)
, (4)

where Aji is the submatrix obtained by deleting row i and
column j. In the linear programming solver, A is a matrix
with floating-point entries, and A−1 is used as a device to
solve linear systems Ax = y. To represent A−1 without
roundoff errors, its entries are stored as rational numbers
according to (4), where numerator and denominator are of
the form s · 2e, with s and e multiple precision integers.

A technique called Q-pivoting [4, 5] is used to update A−1 in
case a column of A is exchanged (this corresponds to a pivot
step in the solver and a rank-1 update of A−1). The update
step performs O(d2) arithmetic operations, many operands
being subdeterminants det(Aji).

Q-pivoting can be applied to build A−1 from scratch, using
d rank-1 updates. This process is used in Table 1 to evaluate
the efficiency of multiple precision integer arithmetic in this
context. Note that other exact arithmetic methods for solv-
ing linear systems (e.g. the division-free Gauss elimination
described in [6]) are similar and boil down to computations
with subdeterminants as well. All these methods are there-
fore subject to the phenomenon described here.

For various values of d, the matrix A was filled with floating-
point numbers of 48 bits precision, in one case generated
from drand48, in the other case from a stream of HotBits.
In both cases, t denotes the absolute time in seconds needed
to invert A.1

1All tests have been done on a SUN Ultra 2

b is the number of significant bits of det(A) in the form
s · 2e, as it was computed by the Q-pivoting. bnorm is the
number of significant bits after normalizing, which moves
powers of 2 contained in s to the exponent. Because in case
of HotBits, b − bnorm ≤ 1 holds in all tests that were done,
the normalized bit complexity is not given.

The table shows that Theorem 2.1 strikes in an impressive
manner here. A was filled row by row, thus has the form

A =
1

248

0

B

B

B

@

X1 X2 · · · Xd

Xd+1 Xd+2 · · · X2d

...
...

...
X(d−1)d+1 X(d−1)d+2 · · · Xd2

1

C

C

C

A

where the Xi are generated according to (2). For d small,
the integer value 248 det(A) requires no more than roughly
48d bits of precision. On the other hand, according to The-
orem 2.1, the least significant 48(d−2) bits must be zero, so
roughly 96 significant bits remain. This of course also holds
for det(A) itself, which then has a mantissa s of no more
than roughly 96 bits in the normalized form s · 2e. This
tallies quite well with the figures in Table 1.

Moreover, the numbers are essentially that small throughout
the whole Q-pivoting; only the final step does not perform
normalization, which explains the gap between b and bnorm.

In comparison, det(A) really requires about 48d bit of pre-
cision in case of HotBits. In dimension 50, this is a factor
of 15 larger than the precision one gets from drand48. Be-
cause the complexities of multiplication and integer division
(the latter occurs during the Q-pivoting) are superlinear in
the bit complexities of their operands, the runtime is higher
even by a factor of 23.

In other words, if drand48 (or any other LCG whose mod-
ulus is a power of two) is chosen to generate the entries of
A, the efficieny of the exact inversion of A is overestimated
by a substantial factor, already for small d.

It might seem that the problem is specific to the choice
of representing numbers in the form s · 2e (although this
is a canonical way to generalize floating-point numbers).
But the same effect can be observed when other space-
efficient representations are chosen, for example Shewchuck’s
nonoverlapping expansions [12]. In this format, a multiple
precision floating-point number f is stored as a sum of or-
dinary floating-point numbers, and if f has small mantissa,
only few summands are needed.

Even if the exact inverse of an integer matrix is computed,
using plain multiple precision integers as the exact number
type, it is not guaranteed that everything behaves as ex-
pected. For example, the integer type might still be able
to handle powers of 2 more efficiently than other numbers.
This is even very likely, if the numbers are stored in binary
representation, in which case many zeros in the representa-

machine, without compiler optimization, and us-
ing the multiple precison integer type of LEDA
(http://www.mpi-sb.mpg.de/LEDA/) to represent the
mantissa s. However, this is not important here, because
we only consider the runtimes relative to each other.

tion make the arithmetic operations faster.

The only reasonable advice I can give in this scenario is to
stay away from LCG completely.

Floating-point computations: too exact.
Consider three points p, q, r in the plane. It is well known
[2] that the orientation of the triple (p, q, r) is given by the
sign of the 3 × 3-determinant

D =det

0

@

px py 1
qx qy 1
rx ry 1

1

A

=(qx − px)(ry − py) − (qy − py)(rx − px), (5)

where the entries are the coordinates of the points. Assume
those coordinates are of the floating-point type double, al-
lowing 53 bits of precision [8], but they are initialized with
pseudorandom values from drand48, row- or columnwise.
Then the sign of the determinant is always evaluated cor-
rectly over the type double. If pseudorandom d+1-tuples of
points in d-space are chosen that way, it still holds for d = 3
(and a few more values of d) that the sign of D is evaluated
correctly unless D = 0.

For the argument, let us concentrate on the 2-dimensional
case now. D will be of the form D = s · 2−96, where s is
an integer multiple of 248 by Theorem 2.1. But then we can
normalize D to s′ ·2−48. In particular, D has absolute value
at least 2−48 if it is nonzero. This is much larger than the
absolute error that can occur during the computation of D
using (5)—recall that we have 53 bits of precision for that.
Thus, the sign of D is computed correctly, if D 6= 0. In case
D = 0, both expressions

(qx − px)(ry − py), (qy − py)(rx − px)

evaluate to the same double value, hence their difference
will evaluate to 0. To see this note that the four differences
will be evaluated exactly, because they only need 49 bits
of precision. Then, both products will be the same closest
double approximation to the real product α = (qx−px)(ry−
py) = (qy − py)(rx − px).

Theorem 2.1 shows that in any dimension d, the pseudoran-
dom orientation determinant

D=
1

248

0

B

B

B

@

X1 X2 · · · Xd 1
Xd+1 Xd+2 · · · X2d 1
...

...
...

...
Xd(d−1)+1 Xd(d−1)+2 · · · Xd2 1

1

C

C

C

A

has absolute value |D| ≥ 2−48 if D 6= 0, giving a spectac-
ularly good separation bound. For small d, this bound is
still larger than the absolute error made in computing D.
Hence, D 6= 0 implies that its sign is computed correctly.

Even for d = 2, the practical relevance of this observation
is limited, because a truly random 3-tuple of points leads to
a value of |D| < 2−48 only with very small probability—in
fact so small that this event is unlikely to occur even in years
of testing.

As shown by Henze [7], the density function of |D| for three
points randomly chosen from the unit square can be com-

puted explicitly (although the formula is pretty complicated),
and one obtains

prob(|D| < 2−48) ≈ 4.7 · 10−14.

Devillers and Preparata [3] have derived a simpler formula
for the density of |D| if p = (px, py) = (0, 0), and only the
points q, r are chosen at random. Both distributions behave
similarly, but only the former correctly models the situation
we consider here.

If we do not compute with double precision, but use single
precision numbers of type float (24 bits of precision), the
effect described above becomes noticeable. From Henze’s
formula, we get

prob(|D| < 2−24) ≈ 7.2 · 10−7.

This means for example that if we generate 10, 000 truly
random points, we expect about 12,000 point triples with
0 < |D| < 2−24, while no such triple will occur when the
input coordinates are chosen from an LCG with modulus at
most 224. In this situation, we expect more roundoff errors
in computing D for the truly random triples. However, since
generators with such small moduli are not in practical use,
the danger of actually running into the described anomalies
is still small.

As we show in the next scenario, the situation becomes crit-
ical if the 24-bit coordinates are chosen in a more realistic
way, namely as the lower-order bits of the numbers gener-
ated by some LCG with higher modulus.

Lower order bits: duplicated points.
To choose pseudorandom values Y1, Y2, . . . in some range
{0, . . . , k−1}, a natural way to proceed is to generate values
X1, X2, . . . from some LCG with modulus m, such that m >
k, and set

Yi := Xi mod k.

For example, to get a sequence of pseudorandom float val-
ues, we might generate a sequence of double values using
drand48, and take the 24 least significant bits of each value.
In this case, m is a multiple of k, and the following theorem
shows that this is a bad choice for generating pseudorandom
points in d-dimensional space.

Theorem 3.1. With k, m, Xi and Yi as above, m a mul-
tiple of k, and j1, . . . , jd a sequence of nonnegative integers,
define

pi := (Yi+j1 , Yi+j2 , . . . , Yi+jd
).

Then the set P = {pi | i > 0} has size at most k.

This is remarkable, because the number of different points
(Xi+j1 , Xi+j2 , . . . , Xi+jd

) equals the period length of the
generator, thus is close or even equal to m. We prove the
theorem in the next section, where it is an easy consequence
of the proof of Theorem 2.1. Let us derive the undesirable
implications of it now. Assume for the moment that for
every i, pi is a random point in P . An argumentation similar
to the one used to establish the birthday-paradox [1] then

shows that after choosing only about
√

k points, we expect

Figure 1: Two-dimensional points obtained from the
4 lower-order bits (left) resp. the 4 higher-order bits
(right) of knuth8

Figure 2: Two-dimensional points obtained from
knuth8

to have selected some point twice! Coming back to the case
where k = 224, this means that only about 212 points can
be chosen before we obtain a duplicated point. As the size
of the sample gets larger, more and more duplicated points
will occur.

In contrast, if we choose truly random d-dimensional points
with coordinates at most k, we need to sample roughly

√
kd = kd/2

points before we expect any duplicated point. Also, taking
the k most significant bits of Xi to define Yi usually has less
dangerous effects, because the size of the set P as defined
above will still be close to m.

Theorem 3.1 is visualized in Figure 1 for the generator knuth8
defined in (3). To the left, the set of points

P = {(Xi mod 16, Xi+1 mod 16) | 1 ≤ i ≤ 256}

obtained from the 4 lower-order bits is drawn in the square
[0, 16]2. To the right, the point set

P ′ = {(Xi div 16, Xi+1 div 16) | 1 ≤ i ≤ 256}

obtained from the 4 higher-order bits is depicted. While P ′

still looks reasonably ‘random’, P consists of only 16 points
of high multiplicity each. Figure 2 shows the distribution of
the original points

{(Xi, Xi+1) | 1 ≤ i ≤ 256},

drawn in the square [0, 256]2.

Figure 3: Distribution of pairs (Xi/256, Xi+1/256) for
adhoc8

The practical consequences are quite apparent: if we choose
— as in the previous scenario — a set of many (w.r.t.

√
k)

pseudorandom points from lower-order bits, we will get many
duplicates. A huge number of orientation determinants D of
point triples will then actually be zero. This means, a point
configuration obtained in this way is extremely degenerate,
just not what you would expect from truly random points.

Exactly in this context, Kettner and Welzl [9] have per-
formed tests to evaluate the precision of floating-point arith-
metic, as follows. A sequence of n random points is gener-
ated, and the consistency of every triple is checked. A triple
is called consistent if the different ways to assign the points
to p, q and r in (5) all lead to the same sign of D. A triple can
only be inconsistent if the true value of D is small. In our
scenario, such a test would report far too many inconsistent
triples, because of the many triples with D = 0. Interest-
ingly, when (5) is used, this will not happen, because the
formula correctly computes D = 0 when two of the points
are equal. In higher dimensions, or for more complicated
predicates sensitive to degeneracies, this is not necessarily
the case; it is not even the case for d = 2, if instead of (5),
D is evaluated according to the less robust formula

D = pxqy + rxpy + qxry − rxqy − pxry − qxpy.

The advice in this scenario is not to use the lower-order bits
of an LCG sequence, because the actual ‘entropy’ of the
sequence is contained in the higher-order bits.

4. THE STRUCTURE OF LCG
If an LCG with modulus m has full period, the numbers
Xi/m, i = 1, . . . , m define an equidistant partition of the
unit interval, as fine as possible according to the given pa-
rameters. With respect to this measure of quality, the gen-
erator adhoc8, defined by the parameters

a = 193, c = 73, m = 28

is as good as knuth8, because it also has full period. A
difference in quality becomes apparent when we consider
pairs of numbers (Xi/m, Xi+1/m), i = 1, . . . , m. Again, it
is desirable that the distribution of those pairs approximates
the uniform distribution over the unit square in some sense.
From Figure 2 it is intuitively clear that knuth8 reaches this
to some extent, while Figure 3 shows that adhoc8 has clear
deficiencies.

The so-called spectral test formalizes this intuition (in one

Figure 4: The 15 planes of randu

possible way) and defines a procedure for measuring the
quality of a generator. It considers strips (regions between
parallel lines) in the unit square. The widest strip not con-
taining a point (Xi/m, Xi+1/m) defines the quality of the
generator: the inverse of its width is the (two-dimensional)
measure of quality.

According to this measure, the quality of adhoc8 is
√

32,
while knuth8 attains

√
274. One can show that the best pos-

sible quality attainable by any LCG is about
√

m, meaning
that knuth8 is very good.

The spectral test can also be carried out in higher dimen-
sions; for example, in three dimensions, one considers points
(Xi/m, Xi+1/m, Xi+2/m) in the unit cube, and the quality
is defined by the widest empty strip between parallel planes.
The spectral test has become famous for showing that the
generator randu—widely used in the sixties—is actually a
very bad generator. randu has the parameters

a = 65539, c = 0, m = 231,

and is therefore a multiplicative generator. The value c = 0
is quite common, although multiplicative generators cannot
have full period. randu has a period length of 229 which
is best possible under the given parameters. The multiplier
a = 216+3, however, has turned out to be very poor (accord-
ing to Knuth, it is almost the worst conceivable choice [10]).
The result is that all 229 points (Xi/m, Xi+1/m, Xi+2/m)
live in only 15 parallel planes which are pretty far apart, see
Figure 4.

The threedimensional quality of this generator is
√

118, while
the desirable value is roughly 3

√
m ≈ 1000. This means,

whenever a set of random points in 3-space is to be gener-
ated, randu behaves spectacularly ‘nonrandom’.

As it turns out, the consideration of d-tuples underlying the
spectral test in dimension d is the key to the structure of
LCG in general, and also leads to proofs of Theorems 2.1
and 3.1.

As the Figures 2, 3 and 4 already suggest, the set of d-
dimensional points (Xi, Xi+1, . . . , Xi+d−1) has the structure
of an integer lattice. To prove this, we consider a slightly
more general scenario which directly allows us to prove The-
orem 2.1.

Consider, as in the theorem, two sequences i1, . . . , id and
j1, . . . , jd which are fixed for the rest of the proof. Let us
define

Xi := (Xi+j1 , . . . , Xi+jd
), i ≥ 0.

Furthermore, we observe that

Xi+s − X`+s ≡ as(Xi − X`) (mod m), i, `, s ≥ 0,

which easily follows from (1) by induction on s. This implies

Xi − X` ≡ (Xi − X`)

0

B

B

B

@

aj1

aj2

...
ajd

1

C

C

C

A

(mod m),

for all i, `, where congruence is defined componentwise. If
we apply the definition of the congruence relation, we get

Xi − X` = (Xi − X`)

0

B

B

B

@

aj1

aj2

...
ajd

1

C

C

C

A

+ m

0

B

B

B

@

u1

u2

...
ud

1

C

C

C

A

, (6)

where the u1, . . . , ud are integers. W.l.o.g. assume that
j1 = min{j1, . . . , jd}. Then, Xi − X` is an integer linear
combination of the d + 1 vectors

0

B

B

B

@

1
aj2−j1

...
ajd−j1

1

C

C

C

A

,

0

B

B

B

@

m
0
...
0

1

C

C

C

A

,

0

B

B

B

@

0
m
...
0

1

C

C

C

A

, . . . ,

0

B

B

B

@

0
0
...
m

1

C

C

C

A

. (7)

The vector (m, 0, . . . , 0)T ist even redundant, because it is
an integer combination of the others. Thus, for all i, `, Xi −
X` is a member of an integer lattice, generated by the integer
linear combinations of a lattice basis

B =

0

B

B

B

@

1 0 · · · 0
aj2−j1 m · · · 0

...
...

. . .
...

ajd−j1 0 · · · m

1

C

C

C

A

.

Now consider the matrices A and A′ of Theorem 2.1. We
get

det(A) = det(Xi1 ,Xi2 , . . . ,Xid
)

= det(Xi1 ,Xi2 − Xi1 , . . . ,Xid
− Xi1)

=
1

m
det(L),

with

L := (mXi1 ,Xi2 − Xi1 , . . . ,Xid
− Xi1).

All columns of L are elements of the lattice generated by B;
for the last d− 1 columns, we have already shown this, and

for the first column mXi1 this follows from the fact that the
set of vectors in (7) generates the lattice.

This again means that L is representable in the form

L = BQ

where Q is an integer matrix. In particluar, we then have

det(A) =
1

m
det(L) =

1

m
det(B) det(Q)

= md−2 det(Q). (8)

In case of A′ we proceed similarly. With

Yi := (Xi+j1 , . . . , Xi+jd−1
), 0 ≤ i,

we have

det(A′)

= det(
Yi1

1
,

Yi2

1
, . . . ,

Yid

1
)

= det(
Yi1

1
,

Yi2 − Yi1

0
, . . . ,

Yid
− Yi1

0
)

= (−1)d−1 det(Yi2 − Yi1 , . . . ,Yid
− Yi1),

and a factor of md−2 follows as before.

Theorem 3.1 can now easily be derived from the general
structure. For k a divisor of m, (6) with ` = 0 gives

(Xi − X0) mod k = (Xi − X0)

0

B

B

B

@

aj1

aj2

...
ajd

1

C

C

C

A

mod k,

which shows that the points (Xi−X0) mod k can take only
k different values over all i. The same is true for the points
pi = Xi mod k forming the set P in the theorem.

5. CONCLUSION
I have described regularities in (orientation) determinants
(matrices A and A′ in Theorem 2.1), which are completely
build from pseudorandom input, or have a single ‘nonran-
dom’ column of ones. The regularity theorem can easily
be extended to other cases. In general, if a d × d-matrix
M contains ` rows or columns of A or A′, its determinant
still contains a factor of m`−2, m the modulus of the LCG
used to generate the entries. This follows by expanding the
determinant of M according to Laplace’s theorem.

In particular, the (d + 2) × (d + 2)-determinant one evalu-
ates for the d-dimensional in-sphere test is of this form for
pseudorandom input, because it contains d + 1 columns of
a suitable orientation determinant A′. This means, already
the twodimensional in-circle test is subject to the regulari-
ties described for the orientation test.

An important question is of course how to avoid regularities,
in the scenarios above, and in other tests involving pseudo-
random input. To get rid of the effects described here, one
might simply not use LCG. Other generation methods are
available, and if not too many random numbers are needed, I
would even recommend HotBits. One should be aware that

there is no way to avoid all possible pitfalls caused by using
pseudorandom rather than truly random numbers. This im-
plies that test results should be more carefully examined, in
order to spot hidden regularities. Luckily, I did not have to
learn this the hard way: before publishing the performance
results of my linear programming solver [5], I accidentally
discovered the phenomenon described in the first scenario
above—during debugging of my Q-pivoting routine.

Another conclusion is that test reports should always men-
tion the method according to which pseudorandom test data
were generated. If the machine architecture and even the
compiler (including the optimization level that was used) are
mentioned, then why not the pseudorandom number gener-
ator? Reproducability of results is only guaranteed if all
parameters of the test environment are known. As already
observed in the introduction, the generator is often not con-
sidered as a crucial parameter; I hope I was able to argue
that this is a mistake.

A completely different view of the regularity Theorem 2.1 is
obtained when one asks whether it is possible to make con-
structive use of it. For example, a tempting idea to speed
up algorithms using exact arithmetic is the following: round
any input point to the nearest point (Xi, . . . , Xi+d−1) in the
integer lattice coming with some LCG (see Section 4). Ac-
cording to the first scenario, the arithmetic will be very fast
on the rounded points. The catch of course is that round-
ing to a general integer lattice is an NP-hard problem, if d
is a parameter, and still difficult if d is fixed: for this, we
would have to perform exactly the full arithmetic we wanted
to avoid by using the rounded points. Still, it is conceivable
that the structure revealed by Theorem 2.1 might prove use-
ful in certain applications.

6. ACKNOWLEDGMENT
I like to thank the SoCG reviewers for extensive and helpful
comments.

7. REFERENCES
[1] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.

Introduction to Algorithms. The MIT Press,
Cambridge, MA., 1990.

[2] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf. Computational Geometry: Algorithms
and Applications. Springer-Verlag, Berlin, 1997.

[3] O. Devillers and F. P. Preparata. A probabilistic
analysis of the power of arithmetic filters. Technical
Report CS-96-27, Center for Geometric Computing,
Dept. Computer Science, Brown Univ., 1996.

[4] J. Edmonds and J.-F. Maurras. Note sur les
Q-matrices d’Edmonds. Recherche Opérationnelle
(RAIRO), 31(2):203–209, 1997.

[5] B. Gärtner. Exact arithmetic at low cost – a case
study in linear programming. Computational
Geometry - Theory and Applications, 13:121–139,
1999.

[6] M. Grötschel, L. Lovász, and A. Schrijver. Geometric
Algorithms and Combinatorial Optimization, volume 2

of Algorithms and Combinatorics. Springer-Verlag,
Berlin Heidelberg, 1988.

[7] N. Henze. Random triangles in convex regions. J.
Appl. Prob., 20:111–125, 1983.

[8] N. J. Higham. Accuracy and Stability of Numerical
Algorithms. SIAM, 1996.

[9] L. Kettner and E. Welzl. One sided error predicates in
geometric computing. In K. Mehlhorn, editor, Proc.
15th IFIP World Computer Congress,
Fundamentals–Foundations of Computer Science,
pages 13–26, 1998.

[10] D. E. Knuth. Seminumerical Algorithms, volume 2 of
The Art of Computer Programming. Addison-Wesley,
Reading, MA, 3rd edition, 1998.

[11] G. Marsaglia. Regularities in congruential random
number generators. Numerische Mathematik, 16:8–10,
1970.

[12] J. R. Shewchuk. Robust adaptive floating-point
geometric predicates. Discr. Comput. Geom.,
18(3):305–363, 1997.

