
Infinity and Finite Arithmetic

Walter Gander1

Department of Computer Science, ETH Zurich, Switzerland
gander@inf.ethz.ch

Abstract. Juraj Hromkovič discusses in his book Algorithmic Adventures
[4] the notion of infinity. The title of Chapter 3 is Infinity Is Not Equal
to Infinity, or Why Infinity Is Infinitely Important in Computer Science.
Infinity is indeed important in mathematics and computer science. How-
ever, a computer is a finite machine. It can represent only a finite set of
numbers and an algorithm cannot run forever. Nevertheless we are able
to deal with infinity and compute limits on the computer as is shown in
this article.

1 Infinity Is Man Made

The popular use of infinity describes something that never ends. An ocean may
be said to be infinitely large. The sky is so vast that one might regard it as
infinite. The number of stars we see in the sky seems to be infinite. And the
time passes by, it never stops, it runs infinitely forever. Christians end the Lord’s
Prayer mentioning eternity, never stopping time:

For thine is the kingdom, the power, and the glory, for ever and ever.

However, we know today that all what we experience is finite. One liter
of water contains 3.343 × 1025 molecules H2O or 1.003 × 1026 hydrogen and
oxygen atoms (according to Wolfram Alpha1). Every human is composed of a
finite number of molecules, though it may be difficult to actually count them. In
principle one could also count the finite number of atoms which form our planet.

The following quotation is attributed to Albert Einstein (though there is no
proof for this):

“Two things are infinite: the universe and human stupidity; and I’m not
sure about the universe.”

Today scientists believe what Einstein refers to. Wolfram Alpha estimates
that the universe contains 1080 atoms.

Thus we have to conclude:

Infinity does not exists in nature – it is man made.
1 https://www.wolframalpha.com/

2 Infinity in Mathematics

The Enzyclopaedia Britannica2 defines

Infinity, the concept of something that is unlimited, endless, without
bound. The common symbol for infinity, ∞, was invented by the English
mathematician John Wallis in 1657. Three main types of infinity may
be distinguished: the mathematical, the physical, and the metaphysical.
Mathematical infinities occur, for instance, as the number of points on a
continuous line or as the size of the endless sequence of counting numbers:
1, 2, 3, Spatial and temporal concepts of infinity occur in physics
when one asks if there are infinitely many stars or if the universe will
last forever. In a metaphysical discussion of God or the Absolute, there
are questions of whether an ultimate entity must be infinite and whether
lesser things could be infinite as well.

The notion of infinity in mathematics is not only very useful but also necessary.
Calculus would not exist without the concept of limit computations. And this
has consequences in physics. Without defining and computing limits we would
e.g. not be able to define velocity and acceleration.

The model for a set with countable infinite elements are the natural numbers
N = {0, 1, 2, 3, . . .}. Juraj Hromkovič discusses the well known fact in [4] that the
set of all rational numbers

Q =
{
p

q
, p, q ∈ N, q 6= 0

}
has the same cardinality as N, thus |N| = |Q|. On the other hand there are more
real numbers even in the interval [0, 1], thus |N| < |R|. Juraj Hromkovič points in
[4] also to the known fact that the real numbers are uncountable and that there
are at least two infinite sets of different sizes.

We shall not discuss the difference in size of these infinite sets of numbers,
rather we will concentrate in the following on computing limits.

3 Infinite Series

Infinite series
∞∑
k=1

ak occur frequently in mathematics and one is interested if the

partial sums

sn =
n∑
k=1

ak, lim
n→∞

sn =?

converge to a limit or not.
It is well known that the harmonic sum

1 + 1
2 + 1

3 + 1
4 + · · · (1)

2 https://www.britannica.com/topic/infinity-mathematics#toc252429

2

diverges. We can make this plausible by the following argument. We start with
the geometric series and integrate:

1
1− t = 1 + t+ t2 + t3 + · · · , |t| < 1∫ z

0

dt

1− t = − log(1− z) = z + z2

2 + z3

3 + z4

4 + · · · , z < 1.

If we let z → 1 then the right hand side tends to the harmonic series, but the
left hand side − log(1− z)→∞ thus suggests that the harmonic series diverges.

By dividing the last equation by z we obtain

− log(1− z)
z

= 1 + z

2 + z2

3 + z3

4 + · · ·

and by integrating we get the dilogarithm function

Li2(z) =
∫ z

0

− log(1− u)
u

du = z + z2

4 + z3

9 + z4

16 + · · · .

For z = 1 we get the well known series of the reciprocal squares∫ 1

0

− log(1− z)
z

dz = 1 + 1
22 + 1

32 + 1
42 + · · · = π2

6 .

This series is also the value of the ζ-function

ζ(z) = 1 + 1
2z + 1

3z + 1
4z + · · ·

for z = 2. By dividing the dilogarithm function by z and integrating we get∫ 1

0

Li2(z)
z

dz = 1 + 1
23 + 1

33 + 1
43 + · · · = ζ(3).

We can compute the numerical value for ζ(3) but a nice result as for ζ(2) is still
not known.

4 Infinity and Numerical Computations

4.1 Straightforward Computation Fails

Consider again the harmonic series. The terms converge to zero. Summing up
the series using floating point arithmetic such a series converges! The following
program sums up the terms of the series until the next term is so small that it
does not changes the partial sum s anymore.

s=1; term=1; k=1;
while s+term ~= s

k=k+1; term=1/k; s=s+term;
end

3

If we would let this program run on a laptop, we would need to wait a long time
till it terminates. In fact it is known (see [5], page 556) that

sn =
n∑
k=1

1
k

= log(n) + γ + 1
2n +O

(
1
n2

)
where γ = 0.57721566490153286 . . . is the Euler-Mascheroni Constant.

For n = 1015 we get sn ≈ log(n) + γ = 35.116 and numerically in IEEE
arithmetic we have sn + 1/n = sn. So the harmonic series converges on the
computer to s ≈ 35.

My laptop needs 4 seconds to compute the partial sum sn for n = 109. To go
to n = 1015 the computing time would be T = 4 · 106 seconds or about 46 days!
Furthermore the result would be affected by rounding errors.

Stammbach makes in [7] similar estimates and concludes:

Das Beispiel ist instruktiv: Bereits im sehr einfachen Fall der harmonischen
Reihe ist der Computer nicht in der Lage, den Resultaten der Mathematik
wirklich gerecht zu werden. Und er wird es nie können, denn selbst der
Einsatz eines Computers, der eine Million Mal schneller ist, bringt in
dieser Richtung wenig.

If one uses the straightforward approach, he is indeed right with his critical
opinion towards computers. However, it is well-known that the usual textbook
formulas often cannot be used on the computer without a careful analysis as they
may be unstable and/or the results may suffer from rounding errors. Already
George Forsythe [2] noticed that even the popular formula for the solutions of
a quadratic equation has to be modified for the use in finite arithmetic. It is
the task of numerical analysts to develop robust algorithms which work well on
computers.

Let’s consider also the series of the inverse squares:

ζ(2) = 1 + 1
22 + 1

32 + 1
42 + · · · .

Here the straightforward summation works in reasonable time, since the terms
converge rapidly to zero. We can sum up until the terms become negligible
compared with the partial sum:
s=1; term=1; n=1;
while s+term ~= s

n=n+1; term=1/n^2; s=s+term;
end

The program terminates on my laptop in 0.4 seconds with n = 94′906′266 and
s = 1.644934057834575. It is well known than numerically it is preferable to sum
backwards starting with the smaller terms first. Doing so, with
n=94906266; s=0;
for k=n:-1:1

s=s+1/k^2;
end

4

we get another value s = 1.644934056311514. Do the rounding error affect both
results so much? Let’s compare the results using Maple with more precision:

Digits:=30:
s:=0:
for k from 1 to 94906266 do

s:=s+1.0/k^2:
od:
s 1.64493405631151440597651536455

The result is the same as with the backwards summation. But we are far away
from the limit value:

π2

6 − s = 1.5230× 109

Thus also this series cannot be summed up in a straightforward fashion. On the
computer it converges too early to a wrong limit.

Numerical analysts have developed summation methods for accelerating
convergence. In the following we shall discuss some of theses techniques: Aitken
acceleration, extrapolation and the ε-algorithm.

4.2 Aitkens ∆2-Acceleration

Let us first consider Aitkens ∆2-Acceleration [3]. Let {xk} be a sequence which
converges linearly to a limit s. This means that for the error xk − s we have

lim
k→∞

xk+1 − s
xk − s

= ρ 6= 0, |ρ| < 1.

Thus asymptotically

xn − s ∼ ρ (xn−1 − s) ∼ ρn (x0 − s)

or when solved for xn we get a model of the asymptotic behavior of the sequence:

xn ∼ s+ Cρn, C = x0 − s.

If we replace “∼” by “=” and write the last equation for n− 2, n− 1 and n, we
obtain a system of three equations which we can solve for ρ, C and s. Using
Maple

solve({x[n-2]=s+C*rho^(n-2),x[n-2+1]=s+C*rho^(n-1),x[n]=s+C*rho^n},{rho,C,s}):
assign(%): s:=simplify(s);

we get the solution

s =
xnxn−2 − x2

n−1
xn − 2xn−1 + xn−2

.

Forming the new sequence x′n = s and rearranging, we get

x′n = xn−2 −
(xn−1 − xn−2)2

xn − 2xn−1 + xn−2
= xn−2 −

(∆xn−2)2

∆2xn−2

5

which is called Aitken’s ∆2-Acceleration. The hope is that the new sequence {x′n}
converges faster to the limit.

Assuming that {x′n} converges also linearly we can iterate this transformation
and end up with a triangular scheme.

xk x′k x′′k · · ·
x1
x2
x3 x′1
x4 x′2
x5 x′3 x′′1
...

...
...

. . .

Let’s apply this acceleration to compute the Euler-Mascheroni Constant γ.
First we generate a sequence of K + 1 partial sums

xk =
2k∑
j=1

1
j
− log(2k), k = 0, 1, . . . ,K.

function x=HarmonicPartial(K);
% HARMONICPARTIAL computes K+1 partial sums of the harmonic series
% and subtracts the logaritm.
y=[1:2^K]; y=1./y;
s=1; x=s;
for k=1:K

s=s+sum(y(2^(k-1)+1:2^k)); x=[x s-log(2^k)];
end
x=x’;

Then we program the function for the iterated Aitken-Scheme:

function T=AitkenAcc(x)
% AITKENACC tries to accelerate the convergent sequence x
% with repeated Aitken-Delta-Square transformations
n=length(x); m=floor((n+1)/2);
T=zeros(n,m);
T(:,1)=x;
for j=2:m

for k=2*j-1:n
Delta2=T(k,j-1)-2*T(k-1,j-1)+T(k-2,j-1);
if Delta2==0, break, end
T(k,j)=T(k-2,j-1)-(T(k-1,j-1)-T(k-2,j-1))^2/Delta2;

end
end

Now we can call the main program

K=8
x=HarmonicPartial(K);
A=AitkenAcc(x)

6

We get

1.000000000000000
0.806852819440055
0.697038972213442 0.552329999700925
0.638415601177307 0.571280073489448
0.608140270989212 0.575806621446670 0.577227192023427
0.592759292636793 0.576875788763135 0.577206420206234
0.585007820346097 0.577132432059184 0.577213495239782 0.577211697690028
0.581116828669555 0.577195084788389 0.577215319609806 0.577215953496545
0.579167518337717 0.577210549043978 0.577215616874797 0.577215674740153 0.577215691876342

The Aitken extrapolation gives 7 correct decimal digits of γ using only the first
256 terms of the series.

The convergence of the sequence {xk} is linear with the factor ρ ≈ 0.5 as we
can see by computing the quotients (xk+1 − γ)/(xk − γ)

(x(2:K)-0.57721566490153)./(x(1:K-1)-0.57721566490153)

0.543154359030451
0.521794077934416
0.510751519455785
0.505304547186624
0.502629772912587
0.501308676280856
0.500652713588389

4.3 Extrapolation

We follow here the theory given in [3]. Extrapolation is used to compute limits.
Let h be a discretization parameter and T (h) an approximation of an unknown
quantity a0 with the following property:

lim
h→0

T (h) = a0. (2)

The usual assumption is that T (0) is difficult to compute – maybe numerically
unstable or requiring infinitely many operations. If we compute some function
values T (hi) for hi > 0, i = 0, 1, . . . , n and construct the interpolation polynomial
Pn(x) then Pn(0) will be an approximation for a0.

If a limit a0 = limm→∞ sm is to be computed then, using the transformation
h = 1/m and T (h) = sm, the problem is reduced to limh=0 T (h) = a0.

To compute the sequence {Pn(0)} for n = 0, 1, 2, . . . it is best to use Aitken-
Neville interpolation (see [3]). The hope is that the diagonal of the Aitken-Neville
scheme will converge to a0. This is indeed the case if there exists an asymptotic
expansion for T (h) of the form

T (h) = a0 + a1h+ · · ·+ akh
k +Rk(h) with |Rk(h)| < Ckh

k+1, (3)

and if the sequence {hi} is chosen such that

hi+1 < chi with some 0 < c < 1,

7

i.e. if the sequence {hi} converges sufficiently rapidly to zero. In this case, the
diagonals of the Aitken-Neville scheme converge faster to a0 than the columns,
see [1].

Since we extrapolate for x = 0 the recurrence for computing the Aitken-Neville
scheme simplifies to

Tij = hiTi−1,j−1 − hi−jTi,j−1

hi − hi−j
. (4)

Furthermore if we choose the special sequence

hi = h02−i, (5)

then the recurrence becomes

Tij = 2jTi,j−1 − Ti−1,j−1

2j − 1 . (6)

Note that this scheme can also be interpreted as an algorithm for elimination
of lower order error terms by taking the appropriate linear combinations. This
process is called Richardson Extrapolation and is the same as Aitken–Neville
extrapolation.

Consider the expansion

T (h) = a0 + a1h
2 + a2h

4 + a3h
6 + · · · ,

T
(
h
2
)

= a0 + a1
(
h
2
)2 + a2

(
h
2
)4 + a3

(
h
2
)6 + · · · ,

T
(
h
4
)

= a0 + a1
(
h
4
)2 + a2

(
h
4
)4 + a3

(
h
4
)6 + · · · .

(7)

Forming the quantities

T11 =
4T
(
h
2
)
− T (h)

3 and T21 =
4T
(
h
4
)
− T

(
h
2
)

3 ,

we obtain
T11 = a0 − 1

4a2h
4 − 5

16a3h
6 + · · · ,

T21 = a0 − 1
64a2h

4 − 5
1024a3h

6 + · · · .
Thus we have eliminated the term with h2. Continuing with the linear combination

T22 = 16T21 − T11

15 = a0 + 1
64a3h

6 + · · ·

we eliminate the next term with h4.
Often in the asymptotic expansion (3) the odd powers of h are missing, and

T (h) = a0 + a2h
2 + a4h

4 + · · · (8)

holds. In this case it is advantageous to extrapolate with a polynomial in the
variable x = h2. This way we obtain faster approximations of (8) of higher order.
Instead of (4) we then use

Tij =
h2
iTi−1,j−1 − h2

i−jTi,j−1

h2
i − h2

i−j
. (9)

8

Moreover, if we use the sequence (5) for hi, we obtain the recurrence

Tij = 4jTi,j−1 − Ti−1,j−1

4j − 1 , (10)

which is used in the Romberg Algorithm for computing integrals.
For the special choice of the sequence hi according to (5) we obtain the

following extrapolation algorithm:

function A=ANS(x,factor);
% ANS Aitken-Neville-Scheme for x, factor is 2 or 4
K=length(x);
A(1,1)=x(1);
for i=2:K

A(i,1)=x(i); vhj=1;
for j=2:i

vhj=vhj*factor;
A(i,j)=(vhj*A(i,j-1)-A(i-1,j-1))/(vhj-1);

end;
end

Let’s turn now to the series with the inverse squares. We have mentioned
before that this series is a special case (for z = 2) of the ζ-function

ζ(z) =
∞∑
k=1

1
kz
.

To compute ζ(2) we apply the Aitken-Neville scheme to extrapolate the limit of
partial sums:

sm =
m∑
k=1

1
k2 , ζ(2) = lim

n→∞
sm.

So far we did not investigate the asymptotic behavior of sm. Assuming that all
powers of 1/m are present, we extrapolate with (6).
% compute partial sums s_m=\sum_{k=1}^(2^m), k=1,..,K
K=8;
y=[1:2^K]; y=1./y.^2;
for j=0:K-1

s=sum(y(1:2^j)); x(j+1)=s;
end
x=x’;
A=ANS(x,2)

We get the following results (we truncated the numbers to save space):

1.00000
1.25000 1.50000
1.42361 1.59722 1.629629
1.52742 1.63123 1.642569 1.644418529
1.58434 1.64127 1.644617 1.644909465 1.6449421945
1.61416 1.64398 1.644893 1.644933169 1.6449347501 1.64493451001
1.62943 1.64469 1.644928 1.644934037 1.6449340953 1.64493407423 1.644934067322
1.63715 1.64487 1.644933 1.644934065 1.6449340678 1.64493406692 1.644934066809 1.644934066805390

9

We have used 27 = 128 terms of the series and obtained as extrapolated value
for the limit A8,8 = 1.644934066805390. The error is π2 −A8,8 = 4.28 · 10−11 so
the extrapolation works well.

Asymptotic Expansion of ζ-function Consider the partial sum

sm−1 =
m−1∑
k=1

1
kz

= ζ(z)−
∞∑
k=m

1
kz
.

Applying the Euler-MacLaurin Summation Formula (for a derivation see [3]) to
the tail we get the asymptotic expansion

∞∑
k=m

1
kz
∼ 1
z − 1

1
mz−1 + 1

2
1
mz

+ 1
z − 1

∑
j=1

(
1− z

2j

)
B2j

mz−1+2j .

The Bk are the Bernoulli numbers:

B0 = 1, B1 = −1
2 , B2 = 1

6 , B4 = − 1
30 , B6 = 1

42 , B8 = − 1
30 , . . .

and B3 = B5 = B7 = . . . = 0. In general the series on the right hand side does
not converge. Thus we get

m−1∑
k=1

1
kz

+ 1
2

1
mz
∼ ζ(z)− 1

z − 1
∑
j=0

(
1− z

2j

)
B2j

mz−1+2j .

For z = 3 we obtain an asymptotic expansion with only even exponents
m−1∑
k=1

1
k3 + 1

2
1
m3 ∼ ζ(3)− 1

2m2 −
1

4m4 + 1
12m6 −

1
12m8 ± · · · (11)

And for z = 2 we obtain
m−1∑
k=1

1
k2 + 1

2
1
m2 ∼ ζ(2)− B0

m
− B2

m3 −
B4

m5 − · · · (12)

which is an expansion with only odd exponents.
Knowing these asymptotic expansions, there is no need to accelerate conver-

gence by extrapolation. For instance we can choose m = 1000 and use (11) to
compute

m−1∑
k=1

1
k3 + 1

2
1
m3 + 1

2m2 + 1
4m4 −

1
12m6 = 1.202056903159593

and obtain ζ(3) to machine precision.
If, however, knowing only that the expansion has even exponents, we can

extrapolate

10

K=8; m=1;
for j=1:K

s=0;
for k=1:m-1

s=s+1/k^3;
end
x(j)=s+1/2/m^3;
m=2*m;

end
A=ANS(x’,4)

and get A8,8 = 1.202056903159594, and thus ζ(3) also to machine precision.
Could we also take advantage if the asymptotic development as e.g. in (12)

contains only odd exponents? We need to modify the extrapolation scheme
following the idea of Richardson by eliminating lower order error terms. If

T (h) = a0 + a1h+ a2h
3 + a3h

5 + a4h
7 + · · ·

we form the extrapolation scheme

T11 = T (h)
T12 = T (h/2) T22 = 2T12 − T11

T31 = T (h/4) T32 = 2T32 − T12 T33 = 23T32 − T22

23 − 1
...

...
...

. . .

Then Tk2 has eliminated the term with h and Tk3 has also eliminated the term
with h3. In general, for hi = h02−i, we extrapolate the limit limk→∞ xk by
initializing Ti1 = xi, i = 1, 2, 3, . . . and

Tij = 22j−3Tij−1 − Ti−1j−1

22j−3 − 1 , i = 2, 3, . . . , j = 2, 3, . . . , i

This scheme is computed by the following function:

function A=ANSodd(x);
% ANSodd extrapolation for x with only odd exponents
K=length(x);
A(1,1)=x(1);
for i=2:K

A(i,1)=x(i); vhj=2;
for j=2:i

A(i,j)=(vhj*A(i,j-1)-A(i-1,j-1))/(vhj-1);
vhj=vhj*4;

end;
end

We now extrapolate again the partial sum for the inverse squares:

11

K=8; m=1;
for j=1:8

s=0;
for k=1:m-1

s=s+1/k^2;
end
x(j)=s+1/2/m^2;
m=2*m;

end
A=ANSodd(x)

This time we converge to machine precision (we omitted again digits to save
space):

0.500
1.125 1.750000
1.392 1.659722 1.64682539
1.519 1.646857 1.64502024 1.64496201552
1.582 1.645177 1.64493716 1.64493448049 1.64493426368
1.613 1.644964 1.64493416 1.64493407101 1.64493406778 1.644934067405063
1.629 1.644937 1.64493407 1.64493406688 1.64493406685 1.644934066849075 1.644934066848803
1.637 1.644934 1.64493406 1.64493406684 1.64493406684 1.644934066848226 1.644934066848226 1.644934066848226

4.4 The ε-Algorithm

In this section we again follow the theory given in [3]. Aitken’s ∆2-Acceleration
uses as model for the asymptotic behavior of the error

xn − s ∼ Cρn.

By replacing “∼” with “=” and by using three consecutive iterations we obtained
in Section 4.2 a nonlinear system for ρ, C and s. Solving for s we obtain a new
sequence {x′}. A generalization of this was proposed by Shanks [6]. Consider the
asymptotic error model

xn − s ∼
k∑
i=1

aiρ
n
i , for k > 1.

Replacing again “∼” with “=” and using 2k + 1 consecutive iterations we get a
system of nonlinear equations

xn+j = sn,k +
k∑
i=1

aiρ
n+j
i , j = 0, 1, . . . , 2k.

Assuming we can solve this system, we obtain a new sequence x′n = sn,k. This is
called a Shanks Transformation.

Solving this nonlinear system is not easy and becomes quickly unwieldy. In
order to find a different characterization for the Shanks Transformation, let

12

Pk(x) = c0 + c1x+ · · ·+ ckx
k be the polynomial with zeros ρ1, . . . , ρk, normalized

such that
∑
ci = 1, and consider the equations

c0(xn − sn,k) = c0

k∑
i=1

aiρ
n
i

c1(xn+1 − sn,k) = c1

k∑
i=1

aiρ
n+1
i

... =
...

ck(xn+k − sn,k) = ck

k∑
i=1

aiρ
n+k
i .

Adding all these equations, we obtain the sum

k∑
j=0

cj(xn+j − sn,k) =
k∑
i=1

aiρ
n
i

k∑
j=0

cjρ
j
i︸ ︷︷ ︸

Pk(ρi)=0

,

and since
∑
ci = 1, the extrapolated value becomes

sn,k =
k∑
j=0

cjxn+j . (13)

Thus sn,k is a linear combination of successive iterates, a weighted average. If we
knew the coefficients cj of the polynomial, we could directly compute sn,k.

Wynn established in 1956, see [8], the remarkable result that the quantities
sn,k can be computed recursively. This procedure is called the ε-algorithm. Let
ε

(n)
−1 = 0 and ε(n)

0 = xn for n = 0, 1, 2, From these values, the following table
using the recurrence relation

ε
(n)
k+1 = ε

(n+1)
k−1 + 1

ε
(n+1)
k − ε(n)

k

(14)

is constructed:
ε

(0)
−1

ε
(0)
0

ε
(1)
−1 ε

(0)
1

ε
(1)
0 ε

(0)
2

ε
(2)
−1 ε

(1)
1 ε

(0)
3

ε
(2)
0 ε

(1)
2 · · ·

ε
(3)
−1 ε

(2)
1 · · ·

ε
(3)
0 · · ·

ε
(4)
−1 · · ·

(15)

13

Wynn showed that ε(n)
2k = sn,k and ε(n)

2k+1 = 1
Sk(∆xn) , where Sk(∆xn) denotes the

Shanks transformation of the sequence of the differences ∆xn = xn+1− xn. Thus
every second column in the ε-table is in principle of interest. For the Matlab
implementation, we write the ε-table in the lower triangular part of the matrix
E, and since the indices in Matlab start at 1, we shift appropriately:

0 = ε
(0)
−1 = E11,

0 = ε
(1)
−1 = E21 x1 = ε

(0)
0 = E22,

0 = ε
(2)
−1 = E31 x2 = ε

(1)
0 = E32 ε

(0)
1 = E33,

0 = ε
(3)
−1 = E41 x3 = ε

(2)
0 = E42 ε

(1)
1 = E43 ε

(0)
2 = E44.

(16)

We obtain the algorithm

function [s,Er]=EpsilonAlgorithm(x);
% EPSILONALGORITHM computes the eps-scheme E for sequence x.
% Output is the reduced scheme Er (only even columns) and
% diagonal element s.
n=length(x);
E=zeros(n+1,n+1);
for i=1:n

E(i+1,2)=x(i);
end
for i=3:n+1

for j=3:i
D=E(i,j-1)-E(i-1,j-1);
if D==0, s=E(i,j-1); return, end
E(i,j)=E(i-1,j-2)+1/D;

end
end
Er=E(2:end,2:2:end); s=E(end,end);

The performance of the ε-algorithm is shown by accelerating the partial sums
of the series

1− 1
2 + 1

3 −
1
4 ± · · · = ln 2.

We first compute the partial sums and then apply the ε-algorithm

format short e
k=4;
v=1;
for j=1:2*k+1

y(j)=v/j; v=-v;
end
x=cumsum(y);
[s,Er]=EpsilonAlgorithm(x);
Er
log(2)-s

We obtain the result

14

Er =
1.0000e+00 0 0 0 0
5.0000e-01 0 0 0 0
8.3333e-01 7.0000e-01 0 0 0
5.8333e-01 6.9048e-01 0 0 0
7.8333e-01 6.9444e-01 6.9333e-01 0 0
6.1667e-01 6.9242e-01 6.9309e-01 0 0
7.5952e-01 6.9359e-01 6.9317e-01 6.9315e-01 0
6.3452e-01 6.9286e-01 6.9314e-01 6.9315e-01 0
7.4563e-01 6.9335e-01 6.9315e-01 6.9315e-01 6.9315e-01

>> log(2)-s
ans = -1.5179e-07

It is quite remarkable that we can obtain a result with about 7 decimal digits of
accuracy by extrapolation using only partial sums of the first 9 terms, especially
since the last partial sum still has no correct digit!

References

1. J. Stoer and R. Bulirsch, Introduction to Numerical Analysis. Springer, 1991.
2. George E. Forsythe, How Do You Solve a Quadratic Equation?. Stanford Technical

Report No. CS40, June 16, 1966
3. Walter Gander, Martin J. Gander, Felix Kwok, Scientific Computing, an Introduc-

tion Using Maple and Matlab. Springer Verlag, 2014.
4. Juraj Hromkovič, Algorithmic Adventures. Springer Berlin Heidelberg, 2009.
5. Konrad Knopp, Theorie und Anwendungen der unendlichen Reihen. Springer Verlag,

1947.
6. Daniel Shanks Non-linear transformation of divergent and slowly convergent se-

quences. Journal of Mathematics and Physics, 1955, Vol. 34, pp. 1–42.
7. Urs Stammbach, Die harmonische Reihe: Historisches und Mathematisches. El.

Math. 54 (1999), 93-106.
8. P. Wynn, On a device for computing the em(Sn)-transformation. MTAC, 1956, Vol.

10, pp. 91-96.

15

