
Cyclic Reduction – History and Applications

Walter Gander and Gene H. Golub

ETH Zurich and Stanford University

Abstract. We discuss the method of Cyclic Reduction for solving special systems
of linear equations that arise when discretizing partial differential equations. In
connection with parallel computations the method has become very important.

This paper has been published in the Proceedings of the Workshop on
Scientific Computing : 10-12 March, 1997, Hong Kong, editor-in-chief, Gene
Howard Golub ; managing editor, Shiu Hong Liu ; editors, Franklin T. Luk,
Robert James Plemmons. Springer Verlag, New York, 1997.

1 Introduction

Cyclic Reduction has proved to be an algorithm which is very powerful for
solving structured matrix problems. In particular for matrices which are
(block) Toeplitz and (block) tri-diagonal, the method is especially useful.
The basic idea is to eliminate half the unknowns, regroup the equations and
again eliminate half the unknowns. The process is continued ad nauseum.
This simple idea is useful in solving the finite difference approximation to
Poisson’s equation in a rectangle and for solving certain recurrences. The al-
gorithm easily parallelizes and can be used on a large variety of architectures
[7]. New uses of Cyclic Reduction continue to be developed – see, for instance,
the recent publication by Amodio and Paprzycki [1].

In this paper, we give a historical treatment of the algorithm and show
some of the important applications. Our aim has not been to be exhaustive,
rather we wish to give a broad view of the method.

In Section 2, we describe the algorithm for a general tri-diagonal matrix
and a block tri-diagonal matrix. We show how the process need not be com-
pleted. Section 3 describes the method for solving Poisson’s equation in two
dimensions. We give details of the stabilized procedure developed by O. Bune-
man. We also describe a technique developed by Sweet [11] for making the
method more useful in a parallel environment. The final Section describes
the influence of the method on developing more general procedures.

II Walter Gander and Gene H. Golub

2 Classical Algorithm

2.1 Scalar Cyclic Reduction

Consider the tridiagonal linear system Ax = v where

A =


d1 f1

e2 d2 f2

.
en−1 dn−1 fn−1

en dn

 . (1)

The fundamental operation in Cyclic Reduction is the simultaneous elimina-
tion of odd-indexed unknowns. This operation may be described as a block
LU-factorization of a permutation of the rows and columns of the matrix A.
Let S be the permutation matrix such that

S(1, 2, . . . , n)T = (1, 3, . . . , |2, 4, . . .)T

The permuted matrix SAST becomes:

SAST =



d1 f1

d3 e3 f3

.
e2 f2 d2

e4
. . . d4

.


.

Eliminating the odd-indexed unknowns is equivalent to computing a partial
LU-factorization [2]; viz

SAST =



1 0
.

1 0
l1 m1 1

l2
.
. . . 1





d1 f1

d3 e3 f3

.

0 d
(1)
1 f

(1)
1

. . . e
(1)
2 d

(1)
2

. . .

0
.


. (2)

For n even, this decomposition is computed for i = 1, . . . , n
2 − 1 as

mi = f2i/d2i+1, li = e2i/d2i−1, ln/2 = en/dn−1

f
(1)
i = −mif2i+1, e

(1)
i+1 = −li+1e2i+1

d
(1)
i = d2i − lif2i−1 −mie2i+i, d

(1)
n/2 = dn − ln/2fn−1

Cyclic Reduction – History and Applications III

Since the Schur complement is tridiagonal we may iterate and again eliminate
the odd-indexed unknowns of the reduced system. G. Golub recognized (cf.
[10]) that Cyclic Reduction is therefore equivalent to Gaussian elimination
without pivoting on a permuted system (PAPT)(Px) = Pv. The permuta-
tion matrix P reorders the vector (1, 2, . . . , n) such that the odd multiples of
20 come first, followed by the odd multiples of 21, the odd multiples of 22,
etc.; e.g. for n = 7 we get the permuted system

d1 f1

d3 e3 f3

d5 f5 e5

d7 e7

e2 f2 d2

e6 f6 d6

e4 f4 d4





x1

x3

x5

x7

x2

x6

x4


=



v1

v3

v5

v7

v2

v6

v4


. (3)

The connection to Gaussian elimination allows us to conclude that if elimina-
tion with diagonal pivots is stable then Cyclic Reduction will also be stable. If
A is strictly diagonal dominant or symmetric positive definite then this holds
for PAPT . No pivoting is necessary in these cases and therefore Cyclic Re-
duction is well defined and stable. However, fill-in is generated in the process
and this increases the operation count. Cyclic Reduction requires about 2.7
times more operations than Gaussian elimination and thus has a redundancy
of 2.7 [2].

2.2 Block Cyclic Reduction

We use the notation of Heller [8] and consider a block tridiagonal linear
system Ax = v, i.e.

Ejxj−1 + Djxj + Fjxj+1 = vj , j = 1, . . . , n, E1 = Fn = 0. (4)

where xj and vj ∈ Rm and the blocks are m×m matrices Ej , Dj and Fj so
that the dimension of the matrix A is nm.

Consider three consecutive equations which we arrange in a tableau:

Eq# x2j−2 x2j−1 x2j x2j+1 x2j+2 rhs
2j − 1 E2j−1 D2j−1 F2j−1 v2j−1

2j E2j D2j F2j v2j

2j + 1 E2j+1 D2j+1 F2j+1 v2j+1

In order to eliminate x2j−1 and x2j+1 we multiply equation #(2j − 1) with
−E2j(D2j−1)−1, equation #(2j + 1) with −F2j(D2j+1)−1 and add these to
equation #(2j). The result is a new equation

Eq# x2j−2 x2j−1 x2j x2j+1 x2j+2 rhs
j E′

j 0 D′
j 0 F ′j v′j

IV Walter Gander and Gene H. Golub

where

E′
j = −E2j(D2j−1)−1E2j−1 (5)

D′
j = D2j − E2j(D2j−1)−1F2j−1 − F2j(D2j+1)−1E2j+1 (6)

F ′j = −F2j(D2j+1)−1F2j+1 (7)

v′j = v2j − E2j(D2j−1)−1v2j−1 − F2j(D2j+1)−1v2j+1. (8)

Eliminating in this way the odd indexed unknowns, we obtain a block tridiag-
onal reduced system. The elimination can of course only be performed if the
diagonal block matrices are non-singular. Instead of inverting these diagonal
blocks (or better solving the corresponding linear systems) it is sometimes
possible to eliminate the odd unknowns by matrix multiplications: Multi-
ply equation #(2j − 1) with E2jD2j+1, equation #(2j) with D2j−1D2j+1,
equation #(2j + 1) with F2jD2j−1 and add. If

D2j−1D2j+1E2j = E2jD2j+1D2j−1 and
D2j−1D2j+1F2j = F2jD2j−1D2j+1,

then the matrices of the unknowns with odd indices vanish. However, if the
matrices do not commute then we cannot eliminate by matrix multiplications.
In case of the discretized Poisson equation (20) the matrices do commute.

Eliminating the unknowns with odd indices thus results in a new tridiag-
onal system for the even unknowns. The new system is half the size of the
original system. We can iterate the procedure and eliminate again the odd
unknowns in the new system.

2.3 Divide and Conquer Algorithm

If we reorder Equation (4) for the first step of Cyclic Reduction by separating
the unknowns with odd and even indices we obtain:(

D1 F
G D2

) (
xo

xe

)
=

(
vo

ve

)
(9)

where D1 and D2 are diagonal block-matrices and F and G are block-
bidiagonal. Eliminating the unknowns with odd indices xo = (x1, x3, . . .)T

means computing the reduced system of equations for the unknowns with
even indices xe = (x2, x4, . . .)T by forming the Schur complement:

(D2 −GD−1
1 F)xe = ve −GD−1

1 vo. (10)

It is also possible to eliminate the unknowns with even indices, thus forming
the equivalent system:

(
D1 − FD−1

2 G 0
0 D2 −GD−1

1 F

) (
xo

xe

)
=

(
vo − FD−1

2 ve

ve −GD−1
1 vo

)
. (11)

Cyclic Reduction – History and Applications V

Notice that by this operation the system (11) splits in two independent
block-tridiagonal systems for the two sets of unknowns xo and xe. They can
be solved independently and this process can be seen as the first step of a
divide and conquer algorithm. The two smaller systems can be split again
in the same way in two subsystems which can be solved independently on
different processors.

2.4 Incomplete Cyclic Reduction

Cyclic Reduction reduces Ax = v in k steps to A(k)x(k) = v(k). At any level k
it is possible to solve the reduced system and compute by back-substitution
the solution x = x(0).

Hockney [9] already noticed that often the off-diagonal block-elements
of the reduced system decrease in size relatively to the diagonal elements
at a quadratic rate. Therefore it is possible to terminate the reduction phase
earlier, neglect the off diagonal elements and solve approximately the reduced
system: y(k) ≈ x(k). Back-substitution with y(k) yields y ≈ x. This procedure
is called incomplete Cyclic Reduction.

Considering the block-tridiagonal matrices

B(k) =
(
−(D(k)

j)−1E
(k)
j , 0,−(D(k)

j)−1F
(k)
j

)
,

Heller [8] proves that for diagonally dominant systems i.e. if ‖B(0)‖∞ < 1,
then

1. Cyclic Reduction is well defined and ‖x− y‖∞ = ‖x(k) − y(k)‖∞
2. ‖B(i+1)‖∞ ≤ ‖B(i)‖2∞
3. ‖x(k) − y(k)‖∞/‖x(k)‖∞ ≤ ‖B(k)‖∞.

S. Bondeli and W. Gander [3] considered scalar incomplete Cyclic Reduc-
tion for the the special n× n tridiagonal system Ax = v

a 1
1 a 1

1
.
. . . a 1

1 a





x1

x2

...
xn−1

xn

 =



v1

v2

...
vn−1

vn

 . (12)

Such systems have to be solved in the Fourier algorithm discussed in Sec-
tion 3.4. Cyclic Reduction reduces this system in step k to A(k)x(k) = v(k)

where

VI Walter Gander and Gene H. Golub

A(k) =



ak bk

bk ak bk

bk
.
. . . ak bk

bk ak

 . (13)

As shown in [3], it is also possible to obtain an explicit expression for ak:

1. If |a| = 2 then the diagonal and off-diagonal elements are

bk = − sign (a)/2k (14)
ak = sign (a)/2k−1 . (15)

2. If |a|>2 the diagonal elements produced by the reduction phase are given
by

ak = sign (a)
√

a2 − 4 coth
(
|y0|2k

)
, (16)

where

y0 =
{

ln
(√

a2 − 4 + a
)
− ln 2 if a > 2

− ln
(√

a2 − 4− a
)

+ ln 2 if a < −2 .

While bk → 0 the sequence ak converges quadratically to

sign (a)
√

a2 − 4, (17)

and it is possible to take advantage of that fact. One can predict, depend-
ing on a and the machine precision, the number of Cyclic Reduction-steps
until ak may be assumed to be constant. E.g. for a = 2.5 the 14 leading
decimal digits of ak are constant for for k ≥ 5 [3]. Thus we can apply
incomplete Cyclic Reduction to solve the special system. Furthermore
by making use of the explicit expressions for ak the computation can be
vectorized.

3 Poisson’s Equation

We will now consider a special block tridiagonal system of equations that
arises when discretizing Poisson’s equation

∆u(x, y) = f(x, y) (18)

on some rectangular domain defined by a < x < b, c < y < d. Let

∆x =
b− a

m + 1
, ∆y =

d− c

n + 1
(19)

Cyclic Reduction – History and Applications VII

be the step sizes of the grid and denote by uij the approximation for the
function value u(xi, yj) at xi = a + i∆x and yj = c + j∆y. For simplicity, we
shall assume hereafter that ∆x = ∆y. If we use central difference approxima-
tions for the Laplace operator ∆ and if we assume Dirichlet zero boundary
conditions then we obtain the linear system

Tu = g (20)

with a block tridiagonal matrix

T =


A I

I A
. . .

. I
I A

 ∈ Rnm×nm, (21)

I ∈ Rm×m is the identity matrix and

A =


−4 1

1 −4
. . .

. 1
1 −4

 ∈ Rm×m. (22)

The unknown vector u contains the rows of the matrix uij i.e.

u =


u1

u2

...
un

 ∈ Rnm where uj =


u1j

u2j

...
umj

 ∈ Rm. (23)

The right hand side is partitioned similarly:

gij = (∆y)2f(xi, yj), gj =


g1j

g2j

...
gmj

 ∈ Rm and g =


g1

g2

...
gm

 ∈ Rnm.

3.1 Cyclic Reduction with Matrix Multiplications

Elimination of the unknowns with odd indices can be done by matrix multi-
plications since for the system (20) the matrices Dj = A and Fj = Ej = I
do commute. As pointed out in [5], the block matrices of the system of equa-
tions one obtains when discretizing Poisson’s equation in a rectangle using
the nine-point formula do also commute. Thus in this case elimination can
also be done with matrix multiplication.

VIII Walter Gander and Gene H. Golub

Assume n = 2k+1 − 1 and consider again three consecutive equations

Eq# u2j−2 u2j−1 u2j u2j+1 u2j+2 rhs
2j − 1 I A I g2j−1

2j I A I g2j

2j + 1 I A I g2j+1.

In order to eliminate u2j−1 and u2j+1 we multiply equation #(2j) with −A
and add all three equations. The result is the new equation

Eq# u2j−2 u2j−1 u2j u2j+1 u2j+2 rhs
j I 0 2I −A2 0 I g2j−1 −Ag2j + g2j+1.

The recurrence relations corresponding to (5) are simpler. With A(0) = A

and g
(0)
j = gj the r-th reduction step is described by

A(r+1) = 2I − (A(r))2 (24)

g
(r+1)
j = g

(r)
2j−1 −A(r)g

(r)
2j + g

(r)
2j+1, j = 1, . . . , 2k+1−r − 1. (25)

Thus after r reduction steps the remaining system of equation has the size
(2k+1−r − 1)× (2k+1−r−1):

u(j−1)2r + A(r)uj2r + u(j+1)j2r = g
(r)
j , j = 1, . . . , 2k+1−r − 1. (26)

(Notice that in (26) we have assumed that u0 = un+1 = 0).
After k reduction steps we are left with one block m×m system

A(k)u2k = g
(k)
1 . (27)

After determining u2k back-substitution is performed in which Equation (26)
is solved for uj2k while u(j−1)2r and u(j+1)j2r are known from the previous
level.

For Equation (27) and in the back-substitution phase, linear equations
with the matrices A(r) must be solved. Furthermore transforming the right
hand side (25) needs matrix-vector multiplications with A(r). We show in the
next section how these operations can be executed efficiently.

As shown in [5] block-Cyclic Reduction can also for be applied for matrices
generated by periodic boundary conditions, i.e. when the (1, n) and the (n, 1)
block of T (20) is non-zero.

Unfortunately as mentioned in [5] the process described above is numeri-
cally unstable.

3.2 Computational Simplifications

From (24) we notice that A(r) = P2r (A) is a polynomial in A of degreee 2r

which as we will see can be factorized explicitly. Thus A(r) does not need to be

Cyclic Reduction – History and Applications IX

computed numerically – the operator A(r) will be stored in factorized form.
From (24) it follows that the polynomials satisfy the recurrence relation:

P1(x) = x, P2r+1(x) = 2− P 2
2r (x).

It is interesting that the polynomials P2r have a strong connection to the
Chebychev polynomials Tn(t) which are defined by expanding cos nϕ in pow-
ers of cos ϕ:

Tn(cos ϕ) = cos nϕ.

Using the well known trigonometric identity

cos(k + l)ϕ + cos(k − l)ϕ = 2 cos lϕ cos kϕ (28)

we obtain for l = 1 the famous three term recurrence relation (t = cos ϕ)

Tk+1(t) = 2tTk(t)− Tk−1(t). (29)

More generally, relation (28) translates to the “short cut” recurrence

Tk+l(t) = 2Tl(t)Tk(t)− Tk−l(t).

Specializing by choosing k = l we obtain

T2k(t) = 2T 2
k (t)− T0(t) = 2T 2

k (t)− 1 (30)

almost the same recurrence as for P2r . Multiplying (30) by −2 and substi-
tuting k = 2r, we obtain

−2T2r+1(t) = 2− (2T2r (t))2 = 2− (−2T2r (t))2.

Thus the polynomials −2T2r (t) obey the same recurrence relation as P2r .
However, since P1(x) = x and −2T1(t) = −2t we conclude that x = −2t and
therefore

P2r (x) = −2T2r

(
−x

2

)
, r ≥ 0. (31)

The properties of the Chebychev polynomials are well known and by (31),
we can translate them to P2r (x). The zeros of P2r are

λ
(k)
i = −2 cos

(
2i− 1
2r+1

π

)
, i = 1, 2, . . . , 2r

and since for r ≥ 1 the leading coefficient of P2r (x) is −1, the factorization
is

P2r (x) = −
2r∏

i=1

(x− λ
(k)
i), thus A(r) = −

2r∏
i=1

(A− λ
(k)
i I). (32)

X Walter Gander and Gene H. Golub

Multiplication. To compute u = A(r)v = P2r (A)v we have now several
possibilities:

1. Using (24) we could generate A(r) explicitly. Notice that A is tridiagonal
but A(r) will soon be a full matrix with very large elements.

2. Using the recurrence relation for Chebychev polynomials (29) we obtain
for t = −x/2 using (31) a three term recurrence relation for Pn(x)

Pn+1(x) = −xPn(x)− Pn−1(x).

Now we can generate a sequence of vectors zi = Pi(A)v starting with
z0 = −2v and z1 = Av by

zi = −Azi−1 − zi−2, i = 2, 3, . . . , 2r.

Then u = z2r = P2r (A)v = A(r)v. In [5] it is proved that the resulting
algorithm cyclic odd-even reduction and factorization (CORF) based on
this procedure is numerically unstable.

3. Using the product of linear factors (32) we compute z0 = −v and

zi = (A− λ
(k)
i I)zi−1, i = 1, 2, . . . , 2r

and obtain u = z2r . This seems to be the best way to go.

Solving Block Equations. To solve A(r)v = u for v we have also several
possibilities:

1. Generate A(r) explicitly and use Gaussian elimination. This simple ap-
proach is not a good idea since A(r) will be an ill-conditioned full matrix
with large elements [5].

2. Using again the product of linear factors (32) we initialize z0 = −u, solve
sequentially the tridiagonal systems

(A− λ
(k)
i I)zi = zi−1, i = 1, 2, . . . , 2r (33)

and obtain v = z2r .
3. A parallel algorithm was proposed using the following idea of R. Sweet

[11] using a partial fraction expansion. Since the zeros of P2r (x) are all
simple the partial fraction expansion of the reciprocal value is

1
P2r (x)

= − 1∏2r

i=1(x− λ
(k)
i)

=
2r∑

i=1

c
(r)
i

x− λ
(k)
i

,

where

c
(r)
i =

1

P ′2r (λ(k)
i)

= −
2r∏

j=1
j 6=i

(
λ

(k)
j − λ

(k)
i

)−1

.

Cyclic Reduction – History and Applications XI

Therefore we can express

v =
(
A(r)

)−1

u = (P2r (A))−1
u =

2r∑
i=1

c
(r)
i (A− λ

(k)
i I)−1u

where now the 2r linear systems (A − λ
(k)
i I)−1u in the sum may be

computed independently and in parallel. As discussed by Calvetti et al.
in [6], partial fraction expansion may be more sensitive to roundoff errors
in the presence of close poles.

3.3 Buneman’s Algorithm

It has been observed that block Cyclic Reduction using the recurrence relation
(25)

g
(r+1)
j = g

(r)
2j−1 −A(r)g

(r)
2j + g

(r)
2j+1, j = 1, . . . , 2k+1−r − 1

to update the right hand side is numerically unstable. O. Buneman [4,5]
managed to stabilize the algorithm by rearranging the computation of the
right hand side in a clever way.

In his approach the right hand side is represented as

g
(r)
j = A(r)p

(r)
j + q

(r)
j

and the vectors p
(r)
j and q

(r)
j are computed recursively in the following way.

Initialize p
(0)
j = 0 and q

(0)
j = gj . Then for j = 1, . . . , 2k+1−r − 1

1. Solve A(r−1)v = p
(r−1)
2j−1 + p

(r−1)
2j+1 − q

(r−1)
j for v

2. p
(r)
j = p

(r−1)
j − v

3. q
(r)
j = q

(r−1)
2j−1 + q

(r−1)
2j+1 − 2p

(r)
j .

There is also a simplification in the back-substituting phase. In order to
compute uj2r from

u(j−1)2r + A(r)uj2r + u(j+1)j2r = A(r)p
(r)
j + q

(r)
j

we rearrange the equation to

A(r) (uj2r − p
(r)
j)︸ ︷︷ ︸

v

= q
(r)
j − u(j−1)2r − u(j+1)j2r

solve for v and obtain uj2r = p
(r)
j + v.

XII Walter Gander and Gene H. Golub

3.4 Fourier Algorithm

Using the eigen-decomposition of the matrix A it is possible to transform
the block tridiagonal system (20) to m independent tridiagonal linear n× n
systems of the form (12). These systems can then be solved e.g. in parallel
by incomplete Cyclic Reduction.

The key for this procedure is the fact that the eigenvalues and -vectors of
the matrix A (22) can be computed explicitly. It is well known that

B =


2 −1

−1 2
. . .

. −1
−1 2

 ∈ Rm×m

has the eigenvalues λi eigenvectors Q with

qij =

√
2

m + 1
sin

ijπ

m + 1
, λi = 2− 2 cos

iπ

m + 1
. (34)

This result may be generalized to matrices of the form

C =


a b

b a
. . .

. b
b a

 .

Since C = −bB + (a + 2b)I we conclude that the eigenvectors are the same
and that the eigenvalues of C are λ̃i = −bλi + a + 2b. The eigenvalues of A
are obtained for b = 1 and a = −4.

Thus we can decompose the matrix A (22) as A = QΛQT . Introducing
this decomposition in the system (20) and multiplying each block equation
from the left by QT we obtain

QT uj−1 + ΛQT uj + QT uj+1 = QT gj , j = 1, . . . , n.

If we introduce new variables ûj = QT uj the system (20) becomes

ûj−1 + Λûj + ûj+1 = ĝj , j = 1, . . . , n.

Finally by permuting the unknowns by grouping together the components
with the same index of ûj

ũj = (ûi,1, ûi2, . . . , ûin)T

Cyclic Reduction – History and Applications XIII

and by permuting the equations in the same way, the system (20) is trans-
formed into m decoupled tridiagonal systems of equations

T1

T2

. . .
Tm




ũ1

ũ2

...
ũm

 =


g̃1

g̃2

...
g̃m

 (35)

Ti =


λi 1

1 λi
. . .

. 1
1 λi

 ∈ Rn.

Summarizing we obtain the following algorithm to solve Equation (20):

1. Compute the eigen-decomposition A = QΛQT using the explicit expres-
sion (34).

2. Transform the right hand side ĝj = QT gj , j = 1, . . . , n.
3. Permute equations and unknowns and solve the m decoupled equations

(35) in parallel.
4. Compute the solution by the back-transformation uj = Qûj .

Notice that for the transformations in the second and forth step the fast
Fourier transform may be used [9].

For solving the special decoupled linear systems we have the choice of sev-
eral methods. First they may be solved efficiently using Gaussian elimination
in parallel on different processors. Because of the special structure [1, λk, 1]
of the tridiagonal matrix the elements of the LU decomposition converge and
may be assigned their limit [3].

A second possibility is to compute the eigen-decomposition of [1, λk, 1] =
Q̃DkQ̃T . The eigenvectors are the same for all the decoupled systems, so only
one decomposition has to be computed. However, this method is more expen-
sive than Gaussian elimination. To solve one system by applying Q̃D−1

k Q̃T

to the right hand side we need O(n2) operations while Gaussian elimination
only needs O(n).

Finally we may solve these special systems in parallel using the incomplete
Cyclic Reduction described in Section 2.4. The operation count is higher than
for Gaussian elimination but still of O(n). The advantage of this method is
that one can make use of a vector arithmetic unit if it is available on a single
processor [3].

4 Conclusions

Cyclic Reduction was originally proposed by Gene Golub as a very simple
recursive algorithm to solve tridiagonal linear systems. This algorithm turned

XIV Walter Gander and Gene H. Golub

out to be extremely useful and efficient for modern computer architectures
(vector- and parallel processing).

Applied and specialized to the block tridiagonal linear system that is
obtained by discretizing Poisson’s equation, it became the key for the de-
velopment of Fast Poisson Solvers. Fast Poisson solvers have, in addition,
stimulated very much the ideas and development of Domain Decomposition
and embedding techniques.

Cyclic Reduction – History and Applications XV

References

1. Amodio, P., Paprzycki, M.: A Cyclic Reduction Approach to the Numerical
Solution of Boundary Value ODEs. SIAM J. Sci. Comput. Vol. 18, No. 1,
(1997) 56–68

2. Arbenz, P., Hegland M.: The Stable Parallel Solution of General Banded Linear
Systems. Technical Report #252, Computer Science Dept. ETH Zürich, 1996.

3. Bondeli, S., Gander, W.: Cyclic Reduction for Special Tridiagonal Matrices.
SIAM J. for Matrix Analysis Vol. 15 (1994)

4. Buneman, O.: A Compact Non-iterative Poisson Solver. Rep. 294, Stanford
University, Institute for Plasma Research, Stanford, Calif. (1969)

5. Buzbee, B. L., Golub, G. H., Nielson, C. W.: On Direct Methods for Solving
Poisson’s Equations. SIAM J. Numerical Analysis, 7 (4) (1970) 627–656

6. Calvetti, D., Gallopoulos, E., Reichel, L.: Incomplete partial fractions for par-
allel evaluation of rational matrix functions. Journal of Computational and
Applied Mathematics 59 (1995) 349–380

7. Golub, G. H., Ortega, J. M.: Scientific Computing. An Introduction with Par-
allel Computing. Academic Press, Inc., (1993)

8. Heller, D.: Some Aspects of the Cyclic Reduction Algorithm for Block Tridiag-
onal Linear Systems. SIAM J. Numer. Anal., 13 (4) (1976) 484–496

9. Hockney, R.W.: A Fast Direct Solution of Poisson’s Equation Using Fourier
Analysis. J. Assoc. Comput. Mach. 12 (1965) 95–113

10. Lambiotte, J., Voigt, R.: The Solution of Tridiagonal Linear Systems on the
CDC Star100 Computer. ACM Trans. Math. Softw. 1 (1975) 308–329

11. Sweet, R. A.: , A Parallel and Vector Variant of the Cyclic Reduction Algorithm.
SIAM J. Sci. and Statist. Computing 9 (4) (1988) 761–765

