

Probabilistic Bag-of-Hyperlinks Model for Entity Linking

Octavian Ganea Marina Ganea Aurelien Lucchi Carsten Eickhoff Thomas Hofmann

Department of Computer Science ETH Zürich, Switzerland

April 15, 2016

Today's Menu

Clean and effective solution for entity disambiguation

- State-of-the-art method (on Gerbil platform [Usbeck et al. 2015])
- Expands on the seminal works of
 - [Ferragina et al. 2010]
 - [Hoffart et al. 2011]
 - [Han et al. 2011]
 - [Ratinov et al. 2011]

Entity Linking Stages

Thomas Müller, the midfielder of Germany, scored one goal against Brazil in the final of the cup.

Entity Linking Stages: Mention Detection (MD)

Thomas Müller, the midfielder of Germany, scored one goalagainstBrazilin the finalof the cup.

Not our focus

- Assume mentions are given as input in all experiments
- Typically found using a NER system

Entity Linking Stages: Candidate Selection

Local Disambiguation

- Commonness (see e.g. [Milne et al. 2008], [Ferragina et al. 2010])
- Mention-Entity baseline: $e_i^* = \underset{e \in \mathcal{E}}{\operatorname{arg\,max}} P(e_i | m_i)$
- Estimated from Wikipedia statistics

$$P(e|m) \approx \frac{\text{\# links with } m \text{ that point to } e}{\text{\# links with anchor } m}$$

	CoNL	L test A	CoNLL test B			
Baselines	R@MI	R@MA	R@MI R@MA			
Mention-Entity	69.73	69.30	67.98	72.75		

Table 1: Accuracy gains of individual PBoH components .

Local Disambiguation

Local Disambiguation: Surrounding Context

Local Disambiguation: Surrounding Context

- Context = text window around mention (say of size 100)
- Similar context models: [Ratinov et al. 2011], [Blanco et al. 2015]
- Bag-of-words context model:

$$P(c|e) = \prod_{w \in c} P(w|e) \qquad P(w|e) \approx \frac{\# \text{times } w \text{ in context of link to } e}{\# \text{words surrounding links to } e}$$

Smoothing: absolute discounting with backoff interpolation

Local Disambiguation: Surrounding Context

- ► Bayes' rule (w/ conditional indepence assumption: $c \perp m \mid e$) $P(e|m,c) \propto P(e|m)P(c|e) = P(e|m) \prod_{w \in c} P(w|e)$ (Local Context)
- Incremental accuracy:

	CoNL	L test A	CoNLL test B			
Baselines	R@MI	R@MA	R@MI R@MA			
Mention-Entity	69.73	69.30	67.98	72.75		
Local Context	82.50	81.56	85.46	84.08		

- Challenge: should not disambiguate single mentions in isolation
- [Han et al. 2011], [Ratinov et al. 2011], [Guo et al. 2014]
- We want to leverage entity entity co-linking statistics:

$$P(e, e') \approx \frac{\# \text{articles have links to } e \text{ and } e'}{\# \text{articles}}$$

Log-linear model:

$$P(\mathbf{e}|\mathbf{m}) = P(e_1 \dots e_n | m_1 \dots m_n) = \frac{1}{Z(\mathbf{m})} \exp\left[\sum_{1 \le i \le n} \rho_{m_i, e_i} + \sum_{1 \le i < j \le n} \lambda_{e_i, e_j}\right]$$

Markov Network and Factor Graph

Probabilistic model: pairwise Markov Random Field

Markov assumption: mentions independent given entities.

$$\Rightarrow P(\mathbf{e}|\mathbf{m}) \propto P(\mathbf{e})P(\mathbf{m}|\mathbf{e}) = \underbrace{P(e_1, \dots, e_n)}_{\text{prior}} \cdot \underbrace{\prod_{i=1}^n P(m_i|e_i)}_{\text{likelihood}}$$

• Challenge: estimate
$$P(\mathbf{e}) = P(e_1, \ldots, e_n)$$

Markov Network and Factor Graph

Plug-in estimators:

$$\begin{split} \rho_{m,e} &= \log(P(e|m)), \quad \forall e, m\\ \lambda_{e,e'} &= \log\left(\frac{P(e,e')}{P(e)P(e')}\right), \quad \forall e, e' \end{split}$$

Uncalibrated model

- Related to Bethe free energy (see paper)
- Exact for directed acyclic graphs. Approximation for loopy graphs.

	CoNL	L test A	CoNLL test B			
Baselines	R@MI	R@MA	R@MI	R@MA		
Mention-Entity	69.73	69.30	67.98	72.75		
Local Context	82.50	81.56	85.46	84.08		
Uncalibrated	69.77	69.95	75.87	75.12		

Calibrated Model

Uncalibrated model:

$$P(\mathbf{e}|\mathbf{m}) = \frac{1}{Z(\mathbf{m})} \exp\left[\underbrace{\sum_{1 \le i \le n} \rho_{m_i, e_i}}_{\substack{1 \le i \le j \le n}} + \underbrace{\sum_{1 \le i < j \le n} \lambda_{e_i, e_j}}_{\substack{1 \le i < j \le n}}_{\substack{\text{prior} \\ \text{scales with } n}} + \underbrace{\sum_{1 \le i < j \le n} \lambda_{e_i, e_j}}_{\substack{1 \le i < j \le n}}\right]$$

Calibrated Model

Uncalibrated model:

$$P(\mathbf{e}|\mathbf{m}) = \frac{1}{Z(\mathbf{m})} \exp\left[\underbrace{\sum_{1 \le i \le n} \rho_{m_i, e_i}}_{\substack{1 \le i \le j \le n}} + \underbrace{\sum_{1 \le i < j \le n} \lambda_{e_i, e_j}}_{\substack{1 \le i < j \le n}}_{\substack{\text{prior} \\ \text{scales with } n}} + \underbrace{\sum_{1 \le i < j \le n} \lambda_{e_i, e_j}}_{\substack{1 \le i < j \le n}}\right]$$

Calibrated model:

$$P(\mathbf{e}|\mathbf{m}) = \frac{1}{Z(\mathbf{m})} \exp\left[\sum_{1 \le i \le n} \rho_{m_i, e_i} + \frac{2}{n-1} \cdot \sum_{1 \le i < j \le n} \lambda_{e_i, e_j}\right]$$

Based on a combinatorial argument (details in the paper)

Calibrated Model

$$P(\mathbf{e}|\mathbf{m}) = \frac{1}{Z(\mathbf{m})} \exp\left[\sum_{1 \le i \le n} \rho_{m_i, e_i} + \frac{2}{n-1} \cdot \sum_{1 \le i < j \le n} \lambda_{e_i, e_j}\right]$$

where

$$\begin{split} \rho_{m,e} &= \log(P(e|m)), \quad \forall e,m \\ \lambda_{e,e'} &= \log\left(\frac{P(e,e')}{P(e)P(e')}\right), \quad \forall e,e' \end{split}$$

	CoNL	L test A	CoNLL test B			
Baselines	R@MI	R@MA	R@MI	R@MA		
Mention-Entity	69.73	69.30	67.98	72.75		
Local Context	82.50	81.56	85.46	84.08		
Uncalibrated	69.77	69.95	75.87	75.12		
Calibrated	75.09	74.25	74.76	78.28		

Final Model

- Introduce parameters ζ and τ to control the importance of the context factors and of the entity-entity interaction factors.
- PBoH model (Probabilistic Bag of Hyperlinks):

$$\log P(\mathbf{e}|\mathbf{m}, \mathbf{c}) \propto \sum_{i=1}^{n} \log P(e_i|m_i) +$$
mention - entity compatibility
$$\zeta \sum_{i=1}^{n} \sum_{w_j \in c_i} \log P(w_j|e_i) +$$
context - entity interactions
$$\frac{2\tau}{n-1} \sum_{i < j} \log \left(\frac{P(e_i, e_j)}{P(e_i) P(e_j)}\right)$$
entity - entity coherence

Incremental accuracy

	Datasets							
	CoNL	L test A	CoNLL test B					
Baselines	R@MI	R@MA	R@MI	R@MA				
Mention-Entity	69.73	69.30	67.98	72.75				
Uncalibrated	69.77	69.95	75.87	75.12				
Calibrated	75.09	74.25	74.76	78.28				
Local Context	82.50	81.56	85.46	84.08				
РВоН	85.53	85.09	87.51	86.39				

Table 1: Accuracy gains of individual PBoH components.

Inference & Learning

- ► MAP inference: $\mathbf{e}^* = \underset{\mathbf{e} \in \mathcal{E}^n}{\operatorname{arg\,max}} P(\mathbf{e} | \mathbf{m}, \mathbf{c})$
- Exact inference intractable; resort to approximate inference : loopy belief propagation (similar to [Ferragina et al. 2010])
- ► Fast empirical convergence (typically < 3 iterations, ~400ms/doc)
- Learning all pairwise parameters ρ , λ was not successful
- Entity candidate pruning:
 - First, top 64 entities based on P(e|m)
 - Then, keep only top 10 based on P(e|m, c)

periments														
F1@MI F1@MA	ACE2004	CoNLL-Comp.	CoNLL-Test A	CoNLL-Test B	CoNLL-Train	AQUAINT	DBpediaSpotl.	IITB	KORE50	µposts14-Test	μposts14-Trair	MSNBC	N3-Reuters-12	N3-RSS-500
AGDISTIS	65.83	60.27	59.06	58.32	61.05	60.10	36.61	41.23	34.16	42.43	50.39	75.42	67.95	59.88
	77.63	56.97	53.36	58.03	57.53	58.62	33.25	43.38	30.20	61.08	62.87	73.82	75.52	70.80
Babelfy	63.20	78.00	75.77	80.36	78.01	72.27	51.05	57.13	73.12	47.20	50.60	78.17	58.61	69.17
	76.71	73.81	71.26	74.52	74.22	73.23	51.97	55.36	69.77	62.11	61.02	75.73	59.87	76.00
DBpediaSpotlight	70.38	58.84	54.90	57.69	60.04	74.03	69.27	65.44	37.59	56.43	56.26	69.27	56.44	57.63
	80.02	60.59	54.11	61.34	62.23	73.13	67.23	62.81	32.90	71.63	67.99	69.82	58.77	65.03
Dexter	18.72	48.46	45.44	48.59	49.25	38.28	26.70	28.53	17.20	31.27	35.21	36.86	32.74	31.11
	16.97	45.29	42.17	46.20	45.85	38.15	22.75	28.48	12.54	44.02	42.07	39.42	31.85	33.55
EntityClassifier.eu	12.74	46.6	44.13	44.02	47.83	21.67	22.59	18.46	27.97	29.12	32.69	41.24	28.4	21.77
	12.3	42.86	42.36	41.31	43.36	19.59	18.0	19.54	25.2	39.53	38.41	40.3	24.84	22.2
Kea	80.08	73.39	70.9	72.64	74.22	81.84	73.63	72.03	57.95	63.4	64.67	85.49	63.2	69.29
	87.57	73.26	67.91	73.31	74.47	81.27	76.60	70.52	53.17	76.54	74.32	87.4	64.45	75.93
NERD-ML	54.89	54.62	52.85	52.59	55.55	49.68	46.8	51.08	29.96	38.65	39.83	64.03	54.96	61.22
	72.22	52.35	49.6	51.34	53.23	46.06	45.59	49.91	24.75	57.91	53.74	67.28	62.9	67.3
TagMe 2	81.93	72.07	69.07	70.62	73.2	76.27	63.31	57.23	57.34	56.81	59.14	75.96	59.32	78.05
	89.09	71.19	66.5	70.38	72.45	75.12	65.1	55.8	54.67	71.66	70.45	77.05	67.55	83.2
WAT	80.0	83.82	81.82	84.34	84.21	76.82	65.18	61.14	58.99	59.56	61.96	77.72	64.38	68.21
	86.49	83.59	80.25	84.12	84.22	77.64	68.24	59.36	53.13	73.89	72.65	79.08	65.81	76.0
Wikipedia Miner	77.14	64.72	61.65	60.71	66.48	75.96	62.57	58.59	41.63	54.88	55.93	64.25	60.05	64.54
	86.36	66.17	61.67	63.19	67.93	74.63	61.43	56.98	35.0	69.29	67.0	64.68	66.51	72.23
РВоН	87.19	86.72	86.63	87.39	86.59	86.64	79.48	62.47	61.70	74.19	73.08	89.54	76.54	71.24
	90.40	86.85	85.48	86.32	87.30	86.14	80.13	61.04	55.83	84.48	81.25	89.62	83.31	78.33

Table 2: Micro and macro F1 scores on the Gerbil¹ (v1.1.4) platform. We highlight the best system and the 2^{nd} best system.

¹[Usbeck et al. 2015]

Conclusions

- Presented a new state of the art entity disambiguation system
- Light-weight probabilistic model based on simple data statistics scalable to massive amounts of data.
- Plug-in parameter estimators
- Loopy belief propagation inference technique
- Very good generalization performance across many datasets
- Future work:
 - Alleviate data sparseness using low-dimensional entity vector representations
 - Joint MD and ED

Code soon:github.com/dalab/pboh-entity-linking

References

Ferragina, Paolo and Scaiella, Ugo (2010)

Tagme: on-the-fly annotation of short text fragments (by wikipedia entities)

Usbeck, Ricardo et al. (2015)

GERBIL: General Entity Annotator Benchmarking Framework

Blanco, Roi et al. (2015)

Fast and Space-Efficient Entity Linking in Queries

Hoffart, Johannes et al. (2011)

Robust disambiguation of named entities in text

Collective entity linking in web text: a graph-based method

Guo, Zhaochen and Barbosa, Denilson (2014) Robust Entity Linking via Random Walks

Milne, David and Witten, Ian H (2008)

Learning to link with wikipedia

Ratinov, Lev et al. (2011)

Local and global algorithms for disambiguation to wikipedia

Thank you!

