next up previous
Next: About this document ... Up: Near Optimal Multiple Sequence Previous: The last step

Bibliography

1
S. Altschul and B. W. Erickson.
Optimal sequence alignment using affine gap costs.
J. Mol. Biol., 48:603 -1 6, 1986.

2
V. Bafna, E. Lawler, and P. Pevzner.
Approximation algorithms for multiple sequence alignment.
Proc. 5th Symp. on Combinatorial Pattern Matching, pages 43 - 53, 1994.

3
P. Baldi, Y. Chauvin, T. Hunkapiller, and M. A. McClure.
Hidden markov models of biological primary sequence information.
Proc. Natl. Acad. Sci. USA, 91:1059-1063, 1994.

4
S. A. Benner, M. A. Cohen, and G. H. Gonnet.
Empirical and structural models for insertions and deletions in the divergent evolution of proteins.
J. Molecular Biology, 229:1065-1082, 1993.

5
H. Carillo and D. Lipman.
The multiple sequence alignment problem in biology.
SIAM J. Appl. Math., 48(5):1073-1082, 1988.

6
M. O. Dayhoff, R. M. Schwartz, and B. C. Orcutt.
A model for evolutionary change in proteins.
In M. O. Dayhoff, editor, Atlas of Protein Sequence and Structure, volume 5, pages 345-352. 1978.

7
D. Feng and R. F. Doolittle.
Progressive sequence alignment as a prerequisite to correct phylogenetic trees.
J. Mol. Evol., 25:351 - 60, 1987.

8
L. R. Foulds and R. L. Graham.
The steiner problem in phylogeny is np-complete.
Proc. Natl. Academy Science, 3:43 - 49, 1982.

9
G. H. Gonnet.
A tutorial introduction to computational biochemistry using Darwin.
1994.

10
G. H. Gonnet, M. A. Cohen, and S. A. Benner.
Exhaustive matching of the entire protein sequence database.
Science, 256:1443-1445, 1992.

11
G. H. Gonnet and C. Korostensky.
Evaluation measures of multiple sequence alignments.
J. Comp. Biol., 1999.
submitted.

12
O. Gotoh.
An improved algorithm for matching biological sequences.
J. Mol. Biol., 162:705-708, 1982.

13
M. Groetschel and O. Holland.
Solution of large-scale symmetric traveling salesman problems.
Math. Programming, pages 141 - 202, 1991.

14
S. Gupta, J. Kececioglu, and A. Schaffer.
Making the shortest-paths approach to sum-of-pairs multiple sequence alignment more space efficient in practice.
Proc. 6th Symp. on Combinatorial Pattern Matching, pages 128 - 43, 1995.

15
S. K. Gupta, J. Kececioglu, and A. A. Schaffer.
Improving the practical space and time efficiency of the shortest-paths approach to sum-of-pairs multiple sequence alignment.
In J. Computational Biology, 1996.

16
D. Gusfield.
Efficient methods for multiple sequence alignment with guaranteed error bounds.
Bull. Math. Biol., 55:141 - 54, 1993.

17
S. Henikoff and J. G. Henikoff.
Amino acid substitution matrices from protein blocks.
Proc. Natl. Academy Science, 89:10915 - 19, 1992.

18
S. Henikoff and J. G. Henikoff.
Blocks database and its applicatioins.
In R. F. Doolittle, editor, Methods in Enzymology, volume 266 of Computer methods for macromolecular sequence analysis, pages 88 - 105. Academic Press, New York, 1996.

19
M. Hirosawa, Y. Totoki, M. Hoshida, and M. Ishikawa.
Comprehensive study on iterative algorithms of multiple sequence alignment.
CABIOS, 11(1):13 - 18, 1995.

20
T. Jiang and L. Wang.
On the complexity of multiple sequence alignment.
J. Comp. Biol., 1:337 - 48, 1994.

21
T. Jiang, L. Wang, and E. L. Lawler.
Approximation algorithms for tree alignment with a given phylogeny.
Algorithmica, 16:302 - 15, 1996.

22
D. Johnson.
More approaches to the travelling salesman guide.
Nature, 330:525, December 1987.

23
D. Johnson.
Local optimization and the traveling salesman problem.
In Proc. 17th Colloq. on Automata, Languages and Programming, volume 443 of Lecture Notes in Computer Science, pages 446 - 461, Berlin, 1990. Springer Verlag.

24
J. Kececioglu.
The maximum weight trace problem in multiple sequence alignment.
Proc. 4th Symp. on Combinatorial Pattern Matching, pages 106 - 19, 1993.

25
A. Krogh, M. Brown, I. S. Mian, K. Sjolander, and D. Haussler.
Hidden markov models in computational biology: Applications to protein modeling.
J. Molecular Biology, 235:1501-1531, 1994.

26
H. Martinez.
A flexible multiple sequence alignment program.
Nucleic Acids Res., 16:1683 - 1691, 1988.

27
M. McClure, T. Vasi, and W. Fitch.
Comparative analysis of mutliple protein sequence alignment methods.
J. Mol. Biol. Evol, 11(4):571 - 592, 1994.

28
S. B. Needleman and C. D. Wunsch.
A general method applicable to the search for similarities in the amino acid sequence of two proteins.
J. Mol. Biol., 48:443-453, 1970.

29
M. Padberg and G. Rinaldi.
A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems.
SIAM Review, 33:60 - 100, 1991.

30
R. Roui and J. Kececioglu.
Approximation algorithms for multiple sequence alignments under a fixed evolutionary tree.
Discrete Applied Mathematics, pages 355 - 366, 1998.

31
D. Sankoff and R. Cedergren.
Simultaneous comparison of tree or more sequences related by a tree.
In D. Sankoff and G. Kruskal, editors, Time Warps, String Edits, and Marcomolecules: the Theory and Practice of Seqeunce Comparison, volume 28, pages 253 - 263. Addison Wesley, Reading MA, 1983.

32
T. F. Smith and M. S. Waterman.
Identification of common molecular subsequences.
J. Mol. Biol., 147:195-197, 1981.

33
W. Taylor.
Multiple sequence alignment by a pairwise algorithm.
Comput. Appl. Biosci., 3:81 -87, 1987.

34
W. Taylor.
A flexible method to align a large number of sequences.
J. Mol. Evol., 28:161 - 169, 1988.

35
J. Thompson, D. Higgins, and T. Gibson.
Clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice.
Nucleic Acids Research, 22:4673-4680, 1994.

36
L. Wang and D. Gusfield.
Improved approximation algorithms for tree alignment.
Proc. 7th Symp. on Combinatorial Pattern Matching, pages 220 - 33, 1996.

37
M. Waterman and M. Perlwitz.
Line geometries for sequence comparison.
Bull. Math. Biol., 46:567 - 577, 1984.

38
A. Wong, S. Chan, and D. Chiu.
A multiple sequence comparison method.
Society for Mathematical Biology, 55(2):465-486, 1993.


Chantal Korostensky
1999-07-14