Informatik II (D-ITET)

Tutorial 12

TA: Anwar Hithnawi, E-mail: hithnawi@inf.ethz.ch
Distributed Systems Group, ETH Zürich
L11.A1 – Sorting by Search Trees

1. Build a binary search tree out of the elements
 \(O(n \cdot \log n) \)
2. Traverse the tree in-order and copy the elements back into the array
 \(O(n) \)

- In the best case, the values in the list are well-mixed → balanced tree
- In the worst case, the values in the list are sorted in ascending or descending order → degenerate tree

- Complexity
 - In best case: \(O(n \cdot \log n) \)
 - In average case: \(O(n \cdot \log n) \)
 - In worst case: \(O(n^2) \)
L11.A2 – Complexity Analysis

// Fragment 1
for (int i=0; i<n; i++)
a++;

Computation:
a++ is executed \(n \) times
\[\rightarrow \text{Total executions: } n \sim O(n) \]

// Fragment 2
for (int i=0; i<2n; i++)
a++;
for (int j=0; j<n; j++)
a++;

Computation:
• a++ is executed \(2n \) times
• a++ is executed \(n \) times
\[\rightarrow \text{Total executions: } 2n+n=3n \sim O(n) \]
L11.A2

// Fragment 3
 for (int i=0; i<n; i++)
 for (int j=0; j<n; j++)
 a++;

Computation:
• Outer loop is executed \(n \) times
• Inner loop executes \(a++ \) \(n \) times

→ Total executions:
\[n \times n = n^2 \sim O(n^2) \]
// Fragment 4

```cpp
for (int i=0; i<n; i++)
    for (int j=0; j<i; j++)
        a++;
```

Computation:
- Outer loop is executed n times
- Inner loop executes $a++$ i times

Total complexity: $i = 1 + 2 + \cdots + n = \sum_{i=1}^{n} i = \frac{n(n-1)}{2}$

$\sim O(n^2)$
// Fragment 5
while(n >= 1)
 n = n/2;

Berechnung:
- while-Schleife ruft $\frac{n}{2}$ Mal die Operation $n = n/2$ auf

$$\frac{n}{2 \cdot 2 \cdot \ldots \cdot 2} = 1 \iff n = 2^x$$

x mal

\Rightarrow Gesamtaufwand $= x = \log_2(n) \sim O(\log_2(n))$
L11.A2

// Fragment 6
for (int i=0; i<n; i++)
 for (int j=0; j<n*n; j++)
 for (int k=0; k<j; k++)
 a++;

Computation:
• Outer loop is executed n times
• Following loop is executed n^2 times
• Inner loop executes $a++$ n times

Total complexity: $n \cdot j = n \cdot (1 + 2 + \cdots + n^2)$

$$= n \cdot \sum_{j=1}^{n^2} j = n \cdot \frac{n^2(n^2 - 1)}{2} \sim O(n^5)$$
L11.A3 – Complexity (I)

\[t'_{op} = \frac{1}{3} t_{op} \]

- Time per operation
- Input size
- Total running time

\[M' \]
\[T'_\text{tot} \]
L11.A3 – Complexity (II)

<table>
<thead>
<tr>
<th>$O(...)$</th>
<th>T_{tot}</th>
<th>T'_{tot}</th>
<th>$T'{tot} = T{tot}$</th>
</tr>
</thead>
</table>
| $O(n)$ | $T_{tot} = t_{op} \cdot M_1$ | $T'_{tot} = t'_{op} \cdot M'_1$ | $t'_{op} \cdot M'_1 = t_{op} \cdot M_1 \Rightarrow \frac{1}{3} t_{op} \cdot M'_1 = t_{op} \cdot M_1$ \[
\Rightarrow M'_1 = 3M_1 \]
| $O(n^2)$ | $T_{tot} = t_{op} \cdot M_2^2$ | $T'_{tot} = t'_{op} \cdot M'_2^2$ | $t'_{op} \cdot M'_2^2 = t_{op} \cdot M_2^2 \Rightarrow \frac{1}{3} t_{op} \cdot M'_2^2 = t_{op} \cdot M_2^2$ \[
\Rightarrow M'_2^2 = 3M_2^2 \Rightarrow M'_2 = \sqrt{3}M_2 \]
| $O(2^n)$ | $T_{tot} = t_{op} \cdot 2^{M_3}$ | $T'_{tot} = t'_{op} \cdot 2^{M'_3}$ | $t'_{op} \cdot 2^{M'_3} = t_{op} \cdot 2^{M_3} \Rightarrow \frac{1}{3} t_{op} \cdot 2^{M'_3} = t_{op} \cdot 2^{M_3}$ \[
\Rightarrow 2^{M'_3} = 2^{M_3} \cdot 3 \Rightarrow M'_3 = M_3 + \log_2 3 \]
| $O(\log_2 n)$ | $T_{tot} = t_{op} \cdot \log_2 M_4$ | $T'_{tot} = t'_{op} \cdot \log_2 M'_4$ | $t'_{op} \cdot \log_2 M'_4 = t_{op} \cdot \log_2 M_4$ \[
\Rightarrow \frac{1}{3} t_{op} \cdot \log_2 M'_4 = t_{op} \cdot \log_2 M_4$ \[
\Rightarrow \log_2 M'_4 = 3 \cdot \log_2 M_4 \Rightarrow M'_4 = 2^{3 \log_2 M_4}$ \[
\Rightarrow M'_4 = \left(2^{\log_2 M_4}\right)^3 \Rightarrow M'_4 = (M_4)^3 \]
L11.A3 – Complexity (II)

<table>
<thead>
<tr>
<th>Laufzeit</th>
<th>max. Grösse alt</th>
<th>max. Grösse neu</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>M_1</td>
<td>$M'_1 = 3M_1$</td>
</tr>
<tr>
<td>n^2</td>
<td>M_2</td>
<td>$M'_2 = \sqrt{3}M_2$</td>
</tr>
<tr>
<td>2^n</td>
<td>M_3</td>
<td>$M'_3 = M_3 + \log_2 3$</td>
</tr>
<tr>
<td>$\log n$</td>
<td>M_4</td>
<td>$M'_4 = (M_4)^3$</td>
</tr>
</tbody>
</table>
L11.A4 – A knight on a chess board
L11.A4 – Numbers...

<table>
<thead>
<tr>
<th>Board</th>
<th>Number of knight’s tours</th>
<th>Number of closed knight’s tours</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 x 4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5x5</td>
<td>1728</td>
<td>0</td>
</tr>
<tr>
<td>6x6</td>
<td>9862</td>
<td>≥ 5</td>
</tr>
<tr>
<td>8x8</td>
<td>?</td>
<td>1.6 \cdot 10^{15}</td>
</tr>
</tbody>
</table>

Check out: http://en.wikipedia.org/wiki/Knight's_tour
L11.A4b – Backtracking

- Find a path…
 - which goes over all fields
 - and visits each field only once

- Early termination
 - There is no maximum depth relatively simple
 - Backtracking when the next field already in the path

- Search efficiency
 - Code static values in a static manner
 - Linear search(ArrayList) replace with your own position-set-query
HINTS ON U12

A1 – Heapsort
A2 – Parallelized Mergesort (Threads)
A3 – Recursive Problem Solving
A4 – Master Solution
U12.A1 – Heap

A heap is a binary tree in which:

- All levels (except possibly the last) are completely filled
- The last level is filled from the left
- For all k nodes (except the root):
 - $\text{value}(\text{previous}(k)) \leq \text{value}(k)$ in a MIN-Heap
 - Or \geq in a MAX-Heap

Properties (MIN-Heap):

- Root has the smallest value
- All paths from the root to a leaf are monotonically increasing
U12.A1 – Heap

Heap as tree

Heap as Array

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>6</th>
<th>10</th>
<th>12</th>
<th>13</th>
<th>11</th>
<th>17</th>
<th>18</th>
<th>16</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

insert
U12.A1a,b – Properties of Heaps

- How many elements are in a heap of height \(h \) containing minimum and maximum?

- Is a sorted array a heap (if it is interpreted as a binary tree)? And vice versa?
Phase 1
Array converted to Heap

Phase 2
Read sorted Heap: remove from the root

6 5 3 1 8 7 2 4

2-phases

As in A1c
Take care of requirements for sort (copy!)
Note: all HeapSort operations are 'in-place'
U12.A2 – Parallelized Merge Sort

a) Much is up to you

- u10a1.ISort you still (hopefully) have
- ISort.sort: returns a sorted copy of the vector
- Your MergeSort class should provide a way to select the number of parallel threads

b) 1'000'000 Integers

- A main class to perform the measurements
- Here also U10.A1 offers a reference
- An important indication of your measurements is the number of available CPU cores on your system (Google helps)
- Don't forget the explanation!
U12.A3 – Recursive Problem Solving

- The company Springli intends to bring a new chocolate on the market

- Acceptance of all rectangular formats with a maximum of n bits must be tested

- How many formats in terms of n must the company Springli test in the market?

- Hint:
 - For n = 1, 2, 3, 4, 5, 6 exists 1, 3, 5, 8, 10, 14 formats.
U12.A3 – Springli Formats (I)

\[n = 1 \rightarrow 1 \text{ Format} \]
U12.A3 – Springli Formats (II)

\[n = 2 \rightarrow 3 \text{ Formats} \]
U12.A3 – Springli Formats (III)

\[n = 3 \rightarrow 5 \text{ Formats} \]
U12.A3 – Springli Formats (IV)

\(n = 4 \rightarrow 8 \) Formats
n = 5 → 10 Formats

U12.A3 – Springli Formats (V)
U12.A3 – Springli Formats

Recursive Solution:

\[\text{Formats}(n) = \text{Formats}(n-1) + \ldots \]
In the textbook “Data Structures and Problem Solving Using Java” by Marc Allen Weiss, why do you think there are questions, but no master solution?
That's it!
Enjoy the summer and good luck with the exam!