Informatik II (D-ITET)

Tutorial 2

TA: Anwar Hithnawi, E-mail: hithnawi@inf.ethz.ch
Distributed Systems Group, ETH Zürich
Outlook

- Exercise 1 solution discussion
- Exercise 2 tackles (trees, recursion, sorting)
Solution Ex1.Q1

\[f(a,b) = a \times b = \begin{cases}
 a & , b = 1 \\
 f(2a, b/2) & , b \text{ gerade} \\
 a + f(2a, (b-1)/2) & , \text{sonst}
\end{cases} \]

- Is the proof by induction over \(a \) possible?
 It is **not** possible to prove the correctness by induction over \(a \)
 The induction base already fails for \(b > 1 \)!
 The size of \(a \) is ever-growing
 - No conclusion is possible on already proven cases and no induction hypothesis can be formulated

- Does the algorithm terminate?
 Yes, if we can make the value of \(b \) reach 1
 Is that the case?
 Yes! Because \(b \) is always halved in each call of the function
 - After \(\lfloor \log_2(b) \rfloor \) step, the value of \(b=1 \) is reached!
Solution Ex1.Q1c

How do we prove the correctness of the algorithm when the smallest case is $b=0$?

$$f(a,b) = a \times b = \begin{cases} 0, & b = 0 \\ f(2a, b/2), & b \text{ gerade} \\ a + f(2a, (b-1)/2), & \text{sonst} \end{cases}$$

$$\forall a \in \mathbb{IN}, \forall b \in \{0, \ldots, n\} : f(a, b) = a \cdot b$$

In 1b) we have shown that the case of $b=1$ is always reached. Since the integer division of 1 by 2 gives 0, then the case of $b = 0$ is also always reached. No change in the proof of this step is required.
Solution Ex1.Q2a – Recursive method calls

gerade(int x)

```java
public static boolean gerade( int x ){
    if( x == 0 ) return true;
    return !gerade( x-1 );
}
```

⇒ x (or x+1)

verdopple(int x)

```java
public static int verdopple( int x ){
    if( x == 0 ) return 0;
    return 2 + verdopple( x-1 );
}
```

⇒ x (or x+1)

halbiere(int x)

```java
public static int halbiere( int x ){
    if( x == 0 ) return 0;
    if( x == 1 ) return 0;
    return halbiere( x-2 ) + 1;
}
```

⇒ ⌊x/2⌋ (or ⌊x/2⌋ +1)
Solution Ex1.Q2b

- The total number of calls to the three methods in terms of \(a \) and \(b \) by a single call to \(f \)

```java
private static int f(int a, int b) {
    if (b == 0) return 0;
    if (gerade(b)) return f(verdopple(a), halbiere(b));
    else return a + f(verdopple(a), halbiere(b));
}
```

- In each case \(\text{gerade}(b) \), \(\text{verdopple}(a) \) and \(\text{halbiere}(b) \) are called. The number of calls (with results from part A2a) is therefore at most

\[
b+1 + a+1 + \lfloor b/2 \rfloor + 1 \approx a + 3b/2 + 3
\]
Solution Ex1.Q2c

- Total number of method calls:

It is not $(\text{# calls of } f) \times (\text{# Total number of calls for a single instance of } f)$

With the results of 2b), we get:

\[
N(a, b) = \left(a + \frac{3b}{2} + 3 \right) + N\left(2a, \frac{b}{2}\right) = \ldots = \sum_{i=0}^{k-1} 2^i a + \sum_{i=1}^{k} \frac{3b}{2^i} + k \cdot 3
\]

The recursion terminates when $b = 0$. This is reached after $k = \lfloor \log_2 b \rfloor + 1$ calls, because b is halved after each step.

In the end, you are going to get $\approx 2ab - a + 3b$
/**
 * This function implements the ancient Egyptian multiplication.
 *
 * @param a must be a positive integer
 * @param b must be a positive integer
 * @return the product of a and b
 * @throws IllegalArgumentException
 */

public static int mult(int a, int b) throws IllegalArgumentException {
 if (a < 1) throw new IllegalArgumentException("Parameter a must be a positive integer but is " + a);
 if (b < 1) throw new IllegalArgumentException("Parameter b must be a positive integer but is " + b);
 return f(a, b);
}
public static int mult(int a, int b) {
 try {

 if (a <= 0)
 throw new IllegalArgumentException("A negativ!");
 } catch (IllegalArgumentException e) { // Exception Handler

 . . .
 }
}
Outlook

- Exercise 1 solution discussion
- Exercise 2 tackles (trees, recursion, sorting)
Exercise 2

1. Rooted Trees (theory)
 a. Representation of tree using (i) Klammerdarstellung: brackets and (ii) eingerückte Form: indented
 b. Given brackets representation, (i) draw tree and (ii) give indented format
 c. Can the tree in 1b be reconstructed no ambiguously (uniquely reconstructible)? Why/Why not?
 d. For the trees in 1a and 1b: Give (i) height of tree [1 node has height 1], (ii) longest paths [trees are directed!], and (iii) set of leaves

2. Recursive Sorting
 a. Constructor: Create array of given size and fill with random numbers
 b. Build method toString
 c. Create recursiveSort(int until) to sort numbers in descending order

3. Binary Trees
 - Check Trees
Trees

It's a Christmas tree with a heap of presents underneath!

...we're not inviting you home next year.
Overview on some different types of trees

- **General Tree**: Every node has X child nodes
- **Binary Tree**: Each node has at most two child nodes
- **Binary/Ternary Search Tree (BST)**: Nodes are saved in an ordered form
- **Trie (from «Retrieval»)**: Not the content but the position of the node that matters, i.e. edges carry information! (e.g. Suffix tree → text autocomplete)

Task: Deal with different representations of trees!
Q2: Recursive Sorting

- **Constructor**
 - Produce array of randomly generated numbers
 - Import Random Class (package: import java.util.Random)

```java
//RandomGenerator
Random r = new Random();

//Array...

//1 random number generieren:
r.nextInt(1000);
```

- **Method toString()**

 * Example: the string-representation of
 * int array[] = {1, 2, 3} is '[1, 2, 3]'

```java
String s = "[";
for ( int i=0; i < array.length, i++ )
    ...
return s;
```
Q2: Recursive Sorting

- \texttt{recursiveSort}(\texttt{int until})

- Core idea of recursion is to reduce the problem to smaller instances of the same problem ...

- NOW! Given a list of \((N)\) element

 To order list of \(i\) elements in descending order, I need the following...

 ... Sorting the first \((i - 1)\) elements with descending order

 ... Search for the largest element in the list reminder

 ... place it in the first place of the list reminder

- The empty list is a sorted list
recursiveSort(4)

recursiveSort(3)

recursiveSort(2)

recursiveSort(1)

Ist sortiert!

2 <- findLargest(0,3)
swap(0,2)

2 <- findLargest(1,3)
swap(1,2)

3 <- findLargest(2,3)
swap(2,3)

Swap is not necessary anymore...

→ List sorted in descending order!
Q2: Recursive Sorting

c) Implement `recursiveSort(int until)`:

Sorts numbers in array in descending order

- **Beginning of recursion**: `recursiveSort(length)` sorts the whole array in descending order

- **Assumption of recursion**: `recursiveSort(until-1)` sorts until-1 largest numbers in first until-1 positions

- **Step**: Largest number from the rest of the array is swapped with number at position until-1 → Now the first until numbers are sorted.

- **End of recursion**: An empty array is sorted already
Q3: Binary Tree as an Array

- Binary trees can be saved as arrays given proper interpretation are set

- The idea is as follow:
 - Set the root of the tree to have an index 0
 - The next two array positions from (i) are saved, namely the position (2i + 1) and (2i + 2)
 - What is the size of the array that stores the binary tree?

\[2^{\text{height}-1} \leq \text{array.length} < 2^\text{height}\]
char[] tree = new char[7];

 tree[0] = 'A';
 tree[1] = 'B';
 tree[2] = 'C';
 tree[3] = 'D';
 tree[4] = ' ';
 tree[5] = 'F';
 tree[6] = 'E';

Is this also possible with general (= non-binary) trees?
Q3: Binary Tree as an Array

- Implementation of `toString()`: Provides trees in indented form

 - `toString()` call → `toString(int node, String indentation)`
 E.g. `toString(0," ");`

- Method `checkTree()`

 hints:

 - Root at index 0
 - Direct successor i to `2i + 1` and `2i + 2`
 - `2^{height-1} ≤ array.length < 2^{height}`

- Check if this applies for the passed array

 - Test: Every element has a parent node
 - "The root is its own father."
 - What about the empty nodes?

Indentation is difficult!

→ Realize `toString()` recursively and provide number of white spaces as input.
Trees in Computer Science...

Images: http://kitabundsunnah.wordpress.com/, http://www.cs.lmu.edu/courses
Tree traversal...

- **Pre-Order** «root, left, right»
- **In-Order** «left, root, right»
- **Post-Order** «left, right, root»

```plaintext
preOrder(node) {
    print(node)
    if left != null then preOrder(left)
    if right != null then preOrder(right)
}
```

8, 3, 1, 6, 4, 7, 10, 14, 13
Tree traversal...

inOrder(node) {
 if left != null then preOrder(left)
 print(node)
 if right != null then preOrder(right)
}

- **Pre-Order** «root, left, right»
 - 8, 3, 1, 6, 4, 7, 10, 14, 13

- **In-Order** «left, root, right»
 - 1, 3, 4, 6, 7, 8, 10, 13, 14

- **Post-Order** «left, right, root»
Tree traversal...

postOrder(node) {
 if left != null then preOrder(left)
 if right != null then preOrder(right)
 print(node)
}

- **Pre-Order** «root, left, right»

- **In-Order** «left, root, right»

- **Post-Order** «left, right, root»

```
postOrder(node) {
    if left != null then preOrder(left)
    if right != null then preOrder(right)
    print(node)
}
```

```
8, 3, 1, 6, 4, 7, 10, 14, 13
```

```
1, 3, 4, 6, 7, 8, 10, 13, 14
```

```
1, 4, 7, 6, 3, 13, 14, 10, 8
```
Eclipse more tricks...

- Display keyboard shortcuts: Control + Shift + L
- Auto-formatting: Control + Shift + F
- Auto-completion: Control + Space
Have Fun!