Informatik II (D-ITET)

Tutorial 10

TA: Anwar Hithnawi, E-mail: hithnawi@inf.ethz.ch
Distributed Systems Group, ETH Zürich
Outlook

- Exercise 9: Solution discussion
- Exercise 10: Overview (Mergsort, Hanoi Towers, Reversi)

Sorry, Boss. hab 'n Attest von meinem Arzt. Mehr als 5 Kilo darf ich nicht tragen.

x1 g1, w1
x2 g2, w2
x3 g3, w3
x4 g4, w4
x5 g5, w5
Hints U9.A1

The general Knapsack problem

- k items x_1, \ldots, x_k and each has known value and weight
- Choice of items, such that total weight is not exceeded
- Optimization problem: Maximize the value of the chosen items

a) Theory
b) Brute force approach
c) Backtracking approach
d) Comparison of Brute force und Backtracking approaches
U9.A1 – Subset

- How many different possibilities does our thief have?
 - $S =$ Set of items at our disposal
 - The thief can only take a subset home
 - The thief can also choose the empty subset \emptyset (lazy thief) or the whole set S (strong thief with big bag)!

- $\#\text{items} := \#\text{elements in the power set of } S$
- Example:
 - $S = \{x_1, x_2\}$, $|S| = K = 2$
 - 4 Subsets: $\emptyset, \{x_1\}, \{x_2\}, \{x_1, x_2\}$
What does "Backtracking" mean?
- Principle: "trial and error"

Example: Looking for a maze exit
- Decide upon a direction
- Continue in this direction
- If eventually unsuccessful
 - Return and choose another direction
- If eventually successful
 - Done…
U9.A1b,c – Hints for the implementation

- **class Selection** is well documented
- Beware: If you increase the configuration (if you put a new item in the bag, A1c), the new status has to be updated
- Example of selections for S
 - $M=\{x_1, x_2, x_3, x_4\}$, $|S|=K=4$
 - Subsets: $\emptyset, \{x_1\}, \{x_2\}, \{x_3\}, \{x_4\}, \{x_1, x_2\}, \{x_1, x_3\}, ...$

$$(b_1, b_2, b_3, b_4) = (0,0,0,0)$$
$$(b_1, b_2, b_3, b_4) = (1,0,0,0)$$
$$(b_1, b_2, b_3, b_4) = (0,1,0,0)$$
$$(b_1, b_2, b_3, b_4) = (1,0,1,0)$$

- Does the simple thief strategy always deliver the optimal solution?
 - Yes, because it is going through all configurations

- Is there always one single optimal solution?
 - No, there can be multiple optimal solutions
 - Proof by counter-example:
 - Item <Weight, Value>
 - [1,1], [2,1], [3,2]
 - $W_{max} = 3$
 - Solution 1 = [true, true, false]
 - Solution 2 = [false, false, true]
U9.A2 – Game Theory

- Components of a game tree
 - Root → Beginning (state before any move)
 - Node → Possible state of the game
 - Edge → Move
 - Leaf → End of the game (final state)
L9.A2d – The α-β algorithm

- The α-β algorithm
 - Reduces the game tree through pruning, but delivers the MinMax value of the root in the same way as the MinMax algorithm
 - The MinMax algorithm evaluates the whole search tree. In this case, nodes that don’t influence the outcome (choice of the branch at the root) are also evaluated. The Alpha-Beta search ignores those nodes.

- α
 - The largest known value of all MAX treaments of the MIN nodes
 - Is relevant for the evaluation of Min nodes (Evaluation of the successors can be aborted as soon as the computed return value is below α)

- β
 - The largest known value of all MIN treaments of the MAX nodes
 - Is relevant for the evaluation of Max nodes (Evaluation of the successors can be aborted as soon as the computed return value is above β)
L9.A3a – Min-Max

- Two helping methods:
 - \(\text{max}(...) \)
 - \(\text{min}(...) \)

- **Idea:** \(\text{max}() \) and \(\text{min}() \) call each other in turns

- Until we reach depth \(d \)
 - \(\text{nextMove}() \)

```java
class BestMove {
    public Coordinates coord;
    public int value;
    public boolean cut;
    //whether it was cut at the maximum recursion depth
}

public Coordinates nextMove(GameBoard gb) {
    BestMove bestMove = null;
    bestMove = max(d, gb, 0);
    return bestMove.coord;
}
```
L9.A3a – Min-Max – max(…)

```java
private BestMove max(int maxDepth, GameBoard gb, int depth) {
    if (depth == maxDepth) return new BestMove(eval(gb), null, true);
    ArrayList<Coordinates> availableMoves = getMovesFor(myColor, gb);
    if (availableMoves.isEmpty()) {
        if (gb.isMoveAvailable(otherColor)) {
            BestMove result = min(maxDepth, gb, depth + 1);
            return new BestMove(result.value, null, false);
        } else
            return new BestMove(finalResult(gb), null, false);
    }
    BestMove bestMove = new BestMove(minEval(gb) - 1, null, false);
    for (Coordinates coord : availableMoves) {
        GameBoard hypothetical = gb.clone();
        hypothetical.checkMove(myColor, coord);
        hypothetical.makeMove(myColor, coord);
        BestMove result = min(maxDepth, hypothetical, depth + 1);
        bestMove.cut = bestMove.cut || result.cut;
        if (result.value > bestMove.value) {
            bestMove.coord = coord;
            bestMove.value = result.value;
        }
    }
    return bestMove;
}
```
L9.A3b – timeLimit

- Timeout per move:
 - `nextMove()` has to return a valid move before the time-out of `timeLimit` milliseconds
 - `nextMove()`

```java
public Coordinates nextMove(GameBoard gb) {
    long timeout = System.currentTimeMillis() + timeLimit - 10;
    BestMove bestMove = null;
    try {
        bestMove = max(1, timeout, gb, 0);
    } catch (Timeout e) {
        throw new AssertionError("oh oh, not enough time for depth 1");
    }
    return null;
}
try{
    for (int i = 2; bestMove.cut; i++)
        bestMove = max(i, timeout, gb, 0);
} catch (Timeout e) {
}
return bestMove.coord;
```
L9.A3b – timeLimit – Timeout

class Timeout extends Throwable{

}

private BestMove max(int maxDepth, long timeout, GameBoard gb, int depth)
 throws Timeout
{
 if (System.currentTimeMillis() > timeout)
 throw new Timeout();

 if(depth == maxDepth){
 return new BestMove(eval(gb), null, true);
 }

 ...

 return bestMove;
}
L9.A3c – Evaluation function

- Propositions for possible, static evaluations:
 - **Agility**
 - How many moves are possible for me / my opponent?
 - **Rows**
 - How many rows of connected counters are there?
 - How long are they? Their location is also interesting!
 - A fully occupied border is really good, while a long sequence in the opponent's can potentially allow for good moves
 - **How many counters...**
 - Will be flipped by a given move and in how many directions? Are the counters lying inside the board or in the borders?
 - **How many counters...**
 - Of a specific color are lying on the board? (That might be the evaluation function for the final game, when a thorough analysis of the search tree is possible. In the middle of the game, this might be inappropriate.)
 - **Positions**
 - To be evaluated on the field (e.g. corner points)
Outlook

- Exercise 9: Solution discussion
- Exercise 10: Overview (Megsort, Hanoi Towers, Reversi)
Mergesort

- Is a recursive and stable sort algorithm, which is based on the divide and conquer principle
- Was developed in 1945 by John von Neumann

Divide and conquer principle

- Separate the enemies to vanquish them
- Political and military strategy
- Was already applied in the Roman empire

John von Neumann
1903 Budapest – 1957 Washington
U10.A1a – Manual work

- Mergesort
 - Consider the data to be sorted as a list and decompose it into smaller lists, which will have to be sorted
 - The smaller sorted lists are merged together in a zipper way, until one common list is achieved

http://upload.wikimedia.org/wikipedia/commons/c/cc/Merge-sort-example-300px.gif
U10.A1b – Implementation

- **ISort** defines an interface
 - `ISort.sort` takes an `ArrayList` and return a new sorted `ArrayList`

- **MergeSort.java** (build)
 - Implement the `ISort` interface
 - Tip: recursive helping method
 - Tip: one does not always build a new list, but one can play with beginning-end indices
10 "measured points"

- Make sure that the random arrays are built beyond the time measurements!

- Repeat the measurements
 - Ignore both min and max (extreme values)
 - Take the average of n measurements (overall n+2 measurement runs)

- Build a diagram
 - Your favorite tool (e.g.: GNUplot, Excel, Matlab, …)
 - Deliver a graphic
 - Interpretation must add up!
U10.A2 – Hanoi Towers

- In the lecture
 - Recursive solution to the problem

- The only possibility is to move the bottommost (largest) disc from tower 1 to tower 3:
 - (a) There is nothing else on tower 1
 - (b) Tower 3 is empty

- From (a) and (b) derives:
 - All other discs are on tower 2!
 - At first, the n-1 other discs must be moved from tower 1 to tower 2
U10.A2 – Hanoi Towers

- Solution for the 3-disc case
 - Name the 3 towers from left to right 1, 2, 3 and the discs from the smallest to the largest A, B, C
 - Then use the number-letter pair to indicate where a disc has to be moved
 - C2 means for example that the largest disc has to be moved to the tower in the middle.

- Steps for the solution:
 - A3, B2, A2, C3, A1, B3, A3 (7 steps)
U10.A2.a/b

- Identify regularities:
 - For each step in the execution of the recursive algorithm of the lecture, exactly one tower is not necessary.
 - When shifting a tower of height 4 in 15 steps, give the sequence of tower number that is not used.
U10.A2b,c – Pseudo-code

- Describe all "developed" algorithms in pseudo-code
 - For the starting tower of height 4
 - Are adaptations necessary when starting with a tower of height 5?
Hints for U10.A3 – Reversi (Part 4)

<table>
<thead>
<tr>
<th>Player</th>
<th>nextMove()</th>
</tr>
</thead>
<tbody>
<tr>
<td>HumanPlayer</td>
<td>Waits for entry from command line</td>
</tr>
<tr>
<td>RandomPlayer</td>
<td>nextMove()</td>
</tr>
<tr>
<td></td>
<td>Chooses a random (but valid!) next move</td>
</tr>
<tr>
<td>GreedyPlayer</td>
<td>nextMove()</td>
</tr>
<tr>
<td></td>
<td>Chooses the next move by means of an easy and non-recursive evaluation function</td>
</tr>
<tr>
<td>MinMaxPlayer</td>
<td>nextMove()</td>
</tr>
<tr>
<td></td>
<td>Choose the next move by means of a Minimax analysis through a new evaluation function</td>
</tr>
<tr>
<td>α-β-Player</td>
<td>nextMove()</td>
</tr>
<tr>
<td></td>
<td>Chooses the next move by means of the $\alpha - \beta$ analysis with your own evaluation function</td>
</tr>
</tbody>
</table>

Download

Excercise 7

Excercise 8

Excercise 9

Excercise 10
Hints for U10.A3a – Reversi (Part 4)

- Build an evaluation function, which follows the \(\alpha \)-\(\beta \) process, which produces the same result as the pure Minmax method of the previous exercise sheet

- \(\alpha \)-\(\beta \) algorithm
 - Beware that in this exercise the algorithm of the lecture is requested, not one of its adaptation
 - Implement a move abort through a throwable timeout
Reversi Tournament

- Wednesday, May 29, 2013, 14:15, CABinett (Stuz2).
- Submission:
 - Deadline: Wednesday, May 22, 2013, 23:59 (Zürich Time)
 - Send to Leyna Sadamori (leyna.sadamori@inf.ethz.ch)
 - You can work alone or in groups of two

- A few pieces of advice concerning the tournament
 - Start with writing the Idea for the evaluation function in pseudo-code
 - Keep developing the pseudo-code
 - The pseudo-code yields hints about how the information about the next move should be computed
 - Keep implementing the different versions of the pseudo-code for the tournament player
Have Fun!