

(1)	
 Query	
 image	
 (2)	
 Extract	
 image	
 superpixels	
 (4)	
 Output	
 of	
 fusing	
 likelihood	
 maps	

1	

road	
 person	

0	

1	

road	
 person	

1	

road	

person	

1	

	
 road	

person	

Background	
 superpixel	
 (road)	

Foreground	
 superpixel	
 (person)	

(a)	
 (b)	

(a)	
 (b)	

(3)	
 Combine	
 likelihood	
 scores	
 from	

mul;ple	
 classifiers	

…	

…	

Figure 1. Overview of the fusing classifiers approach. Likelihood scores from multiple models (3a) and (3b) are combined to produce the
final likelihoods at superpixels. Likelihood scores of foreground classes (e.g. person) are boosted via our combination technique. The
unbalanced (skewed) model in (3a) produces biased likelihoods towards background classes (e.g. road). This is reflected in the much larger
score (bigger circle) for the road class when compared to the person class and other less-represented classes. For the balanced classifier in
(3b), the scores are more balanced and less-represented classes get a higher chance (bigger circle) of being recognized.

classes in the dataset. The normalized cost D(lsi = c|si) of
assigning label c to superpixel si is given by:

D(lsi = c|si) = 1− 1

1 + e−Lunbal(si,c)
, (1)

where Lunbal(si, c) is the log-likelihood ratio score of label
c, given by Lunbal(si, c) =

1
2 log(P (si|c)/P (si|c̄)), where

c̄ = C \ c is the set of all labels except c, and P (si|c) is
the likelihood of superpixel si given c. We learn a boosted
decision tree (BDT) [4] model to obtain the label likeli-
hoods Lunbal(si, c). For implementation, we use the pub-
licly available boostDT 1 library. At this stage, we train the
BDT model using all superpixels in the training set, which
represent an unbalanced distribution of class labels C.

3.3. Smoothing and Inference

We formulate our optimization problem as that of maxi-
mum a posteriori (MAP) estimation of the final labeling L
using Markov Random Field (MRF) inference. Using only
the estimated likelihoods in the previous section to classify
superpixels yields noisy classifications. Adding a smooth-
ing term V (lsi , lsj) to the MRF energy function attempts to
overcome that issue by punishing neighboring superpixels
having semantically irrelevant labels. Our baseline attempts
to minimize the following energy function:

E(L) =
∑
si∈S

D(lsi = c|si) + λ
∑

(i,j)∈A

V (lsi , lsj). (2)

where A is the set of adjacent superpixel indices and
V (lsi , lsj) is the penalty of assigning labels lsi and lsj to
two neighboring pixels, computed from counts in the train-
ing set combined with the constant Potts model following
the approach of [29]. λ is the smoothing constant. We per-
form inference using the α-expansion method with the code
of [2, 14, 1].

1http://web.engr.illinois.edu/ dhoiem/software/

In the next two sections, we present our main contribu-
tions of how we improve the superpixel classification step
(section 4) and how we incorporate scene-level context to
achieve better results (section 5).

4. Improving Superpixel Label Costs
While foreground objects are usually the most notice-

able regions in a scene image, they are often misclassified
by parsing algorithms. For example, in a city street scene, a
human viewer would typically first notice the people, signs
and cars before noticing the buildings and road. However,
for scene parsing algorithms, foreground regions are often
misclassified as being part of the surrounding background
due to two main reasons. First, in the superpixel classifi-
cation step, any classifier would naturally favor more dom-
inant classes to minimize the overall training error. Sec-
ond, in the MRF smoothing step, many of the superpixels
which were correctly classified as foreground objects, are
smoothed out by neighboring background pixels.

We propose to improve the label likelihood score at each
superpixel to achieve a more accurate parsing output. We
design different classifiers that offer complementary infor-
mation about the data. All the designed models are then
combined to derive a consensus decision. The overview of
our fusing classifiers approach is shown in Figure 1. At test
time, the label likelihood scores of all the BDT models are
merged to produce the final scores at superpixels.

4.1. Fusing Classifiers

Our method is inspired from ensemble classifier tech-
niques that train multiple classifiers and combine them to
reach a better decision. Such techniques are specifically
useful if the classifiers are different [13]. In other words,
the error reduction is related to the uncorrelation between
the trained models [30], i.e. the overall error is reduced if
the classifiers misclassify different data points. Also, it has

0

20

40

60

80

100

bu
ild

in
g
se

a

m
ou

nt
ai
n
fie

ld
sk

y
tre

e
ro

ad

gr
as

s
sa

nd
riv

er

pl
an

t
ro

ck

br
id
ge

w
in
do

w

cr
os

sw
al
k

si
de

w
al
k

ca
r

ba
lc
on

y

do
or

st
ai
rc

as
e

aw
ni
ng

fe
nc

e
bo

at

pe
rs

on bu
s
co

w
po

le
si
gn bi

rd

st
re

et
lig

ht
su

n

m
oo

n

C
o

r
r
e
c
t

C
la

s
s
if

ic
a
ti

o
n

 R
a
te

 %

Unbalanced

Balanced (all classes)

Balanced (x% classes)

Balanced (x/2% classes)

Figure 2. Classification rates (%) of individual classes for the dif-

ferent classification models trained on SIFTflow. Classes are or-

dered in descending order by the mean number of pixels they oc-

cupy (frequency) in scene images. Our goal is to decrease the

correlation between the trained models.

been shown that partitioning the training set performs better

than partitioning the feature space for large datasets [30].

We have observed that the classification error of a given

class is related to the mean number of pixels it occupies in

the scene images, as shown by the blue line in Figure 2.

This agrees with the findings of previous methods [28, 33]

that the classification error rate is related to the frequency

of classes in the training set. However, we go beyond that

by considering the frequency of the classes on the image

level, which targets the problem of smoothing out the less-

represented classes by a neighbouring background class.

To this end, we train three BDT models with the follow-

ing training data criteria: (1) a balanced subsample of all

classes C in the dataset, (2) a balanced subsample of classes

occupying an average of less than x% of their images, and

(3) a balanced subsample of classes occupying an average

of less than ⌈x/2⌉% of their images.

The motivation beyond these choices is to reduce the

correlation between the trained BDT models as shown in

Figure 2. While the unbalanced classifier mainly misclas-

sifies the less-represented classes, the balanced classifiers

recover some of these classes while making more mistakes

on the more represented classes. By combining the like-

lihoods from all the classifiers, a better overall decision is

reached that improves the overall coverage of classes (Fig-

ure 1). We observed that the addition of more classifiers did

not improve the performance for any of our datasets.

The final cost of assigning a label c to a superpixel si
can then be represented as the combination of the likelihood

scores of all classifiers:

D(lsi = c|si) = 1−
1

1 + e−Lcomb(si,c)
(3)

where Lcomb(si, c) is the combined likelihood score ob-

tained by the weighted sum of the scores from all classifiers:

Lcomb(si, c) =
∑

j=1,2,3,4

wj(c)Lj(si, c), (4)

where Lj(si, c) is the score from the jth classifier, and

wj(c) is the normalized weight of the likelihood score of

class c in the jth classifier.

4.2. Normalized Weight Learning

We learn the weights w ≡ [wj(c)] of all classes C in of-

fline settings using the training set. We compute the weights

separately for each classifier. The weight w̃j(c) of class c
for the jth classifier is computed as the average ratio of the

sum of all likelihoods of class c, to the sum of all likelihoods

of all classes ci ∈ C\c of all superpixels si ∈ S:

w̃j(c) =
|Cj |

C

∑
si∈S Lj(si, c)∑

si∈S

∑
ci∈C\c Lj(si, ci)

(5)

where |Cj | is the number of classes covered by the jth clas-

sifier and not covered by any other classifier with a smaller

number of classes.

The normalized weight wj(c) of class c can then be com-

puted as: wj(c) = w̃j(c)/
∑

j=1,2,3,4 w̃j(c). Normalizing

the output likelihoods in this manner gives a better chance

for all classifiers to be considered in the result with an em-

phasis on less-represented classes. In sec. 6, we show the

superior performance of our fusion scheme to other tradi-

tional fusion mechanisms: averaging and median rule.

5. Scene-Level Global Context

When exploiting scene parsing problems, it is useful

to incorporate the semantics of the scene in the labeling

pipeline. For example, if we know that a given scene is a

beach scene, we will expect to find labels like sea, sand,

and sky with a much higher probability than expecting to

find labels like car, building, or fence. We use the initial

labeling results of a test image in estimating the likelihoods

of all labels c ∈ C (sec. 5.1). The likelihoods are estimated

globally over an image, i.e. there is a unique cost per label

per image. We then plug the global label costs into a second

MRF inference step to produce better results (sec. 5.2).

Our approach, unlike previous methods, does not limit

the number of labels to those present in the retrieval set but

instead uses the set to compute the likelihood of class labels

in a k-nn fashion. The likelihoods are normalized by counts

over the whole dataset and smoothed to give a chance to la-

bels not in the retrieval set. We also employ the likelihoods

in MRF optimization, not for filtering the number of labels.

5.1. Context­Aware Global Label Costs

We propose to incorporate semantic context through us-

ing label statistics instead of global visual features. The

intuition behind such choice is that ranking by global vi-

sual features often fails to retrieve similar images on the

scene level [29, 33]. For example, a highway scene could

fusion), which is fusing classifiers by averaging their like-

lihoods, and (vi) baseline + FC (median fusion), which is

fusing classifiers by taking the median of their likelihoods.

We also report results of (vii) full (without FV), which is full

system without using the Fisher Vector features.

We fix x = 5 (sec.4.1), a value that was obtained through

empirical evaluation on a small subset of the training set.

6.1. Results

We compare our results with state-of-the-art methods on

SIFTflow in Table 1. We have set K = 64 top-ranked train-

ing images for computing the global context likelihoods

(sec. 5.1). Our full system achieves 81.7% per-pixel accu-

racy, and 50.1% per-class accuracy, which outperforms the

state-of-the-art method of [33] (79.8% / 48.7%). Results

show that our fusing classifiers step significantly boosts the

coverage of foreground classes, where the per-class accu-

racy increases by around 15% over the baseline method.

Our semantic context (sec. 5) improves both the per-pixel

and per-class accuracies through optimizing for fewer labels

which are more semantically meaningful. Fisher Vectors

improved the recognition by around 3%. In Figure 6, we

show examples of parsing results on the SIFTflow dataset.

Method Per-pixel Per-class

Liu et al. [18] 76.7 N/A

Farabet et al. [7] 78.5 29.5

Farabet et al. [7] balanced 74.2 46.0

Eigen and Fergus [6] 77.1 32.5

Singh and Kosecka [25] 79.2 33.8

Tighe and Lazebnick [29] 77.0 30.1

Tighe and Lazebnick [28] 78.6 39.2

Yang et al. [33] 79.8 48.7

Baseline 78.3 33.2

Baseline (with balanced BDT) 76.2 45.5

Baseline + FC (NL fusion) 80.5 48.2

Baseline + FC (average fusion) 78.6 46.3

Baseline + FC (median fusion) 77.3 46.8

Full without Fisher Vectors 77.5 47.0

Full 81.7 50.1

Table 1. Comparison with state-of-the-art per-pixel and per-class

accuracies (%) on the SIFTflow dataset.

Table 2 compares the performance of the same variants

of our system with the state-of-the-art methods on the large-

scale LMSun dataset. LMSun is more challenging than

SIFTflow in terms of the number of images, the number of

classes, and the presence of both indoor and outdoor scenes.

Accordingly, we use a larger value of K = 200 in equation

6. Our method achieves near record performance in per-

pixel accuracy (61.2%), while placing second in per-class

accuracy. The effectiveness of the fusing classifiers tech-

nique is shown in the improvement of both per-pixel (by

3%) and per-class (by 4.5%) accuracies over the baseline

system. The global context step improves the class cover-

age by around 2%. Figure 7 shows the output of our scene

43 44 45 46 47 48 49 50
78.5

79

79.5

80

80.5

81

81.5

82

10

20 30

40

50
60 70

80
90

100 200

300

400

Mean percentage of correct pixels per class

M
e

a
n

 p
e

rc
e

n
ta

g
e

 o
f

c
o

rr
e

c
t

p
ix

e
ls

No global context

K = 1

K = 20

K = 50

K = 100

K = 200

K = 500

K = 1000

Figure 4. Analysis of the performance when varying the number

of trees for training the BDT model, at different values of top K

images for the global context step on the SIFTflow dataset. The

y-axis shows the per-pixel accuracies (%) and the x-axis show the

per-class accuracies (%) for different numbers of trees.

parsing system on some images from LMSun.

Method Per-pixel Per-class

Tighe and Lazebnick [29] 54.9 7.1

Tighe and Lazebnick [28] 61.4 15.2

Yang et al. [33] 60.6 18.0

Baseline 57.3 9.5

Baseline (with balanced BDT) 45.4 13.8

Baseline + FC (NL fusion) 60.0 14.2

Baseline + FC (average fusion) 60.5 11.4

Baseline + FC (median fusion) 59.2 14.7

Full without Fisher Vectors 58.2 13.6

Full 61.2 16.0

Table 2. Comparison with state-of-the-art per-pixel and per-class

accuracies (%) on the LMSun dataset.

0

sk
y

bu
ild

in
g

tre
e

m
ou

nt
ai
n
ro

ad se
a

fie
ld ca

r

sa
nd

riv
er

pl
an

t

gr
as

s

w
in
do

w

si
de

w
al
k
ro

ck

br
id
ge

do
or

fe
nc

e

pe
rs

on

st
ai
rc

as
e

aw
ni
ng

si
gn

bo
at

cr
os

sw
al
k
po

le
bu

s

ba
lc
on

y

st
re

et
lig

ht
su

n
bi
rd

av
er

ag
e

X−Axis Label

 0

sk
y

bu
ild

in
g 0

20

40

60

80

100

sk
y

bu
ild

in
g

tre
e

m
ou

nt
ai
n
ro

ad se
a

fie
ld ca

r

sa
nd

riv
er

pl
an

t

gr
as

s

w
in
do

w

si
de

w
al
k

ro
ck

br
id
ge

do
or

fe
nc

e

pe
rs

on

st
ai
rc

as
e

aw
ni
ng

si
gn

bo
at

cr
os

sw
al
k
po

le
bu

s

ba
lc
on

y

st
re

et
lig

ht
su

n
bi
rd

av
er

ag
e

Baseline

Fused Classifiers

Full System

0

sk
y

bu
ild

in
g

Figure 5. Classification rates (%) of individual classes for the base-

line, fused classifiers, and the full system on SIFTflow. Classes are

sorted from most frequent to least frequent.

We next analyze the performance of our system when

varying the number of trees T for training the BDT model

(sec. 4.1), and the number of top training images K in

the global label costs (sec. 5.1). Figure 4 shows the per-

pixel accuracy (on the y-axis) and the per-class accuracy

(on the x-axis) as a function of T for a variety of Ks. In-

creasing the value of T generally produces better classifica-

Full System Ground truth Image

Unbalanced Balanced

Full System Ground truth Image

Full System Ground truth Image

Full System Ground truth Image Full System Ground truth Image

Full System Ground truth Image
Unbalanced Balanced

Unbalanced Balanced Unbalanced Balanced

Unbalanced Balanced Unbalanced Balanced

Figure 6. Examples of parsing results on the SIFTflow dataset (best viewed in color). Top left is the original image, on its right is the
ground truth labeling, bottom left is the output from the baseline, on its right the output of the balanced classifier. Finally, the output of the
full system is on the far right (third column). The unbalanced classifier often misses the foreground classes by oversmoothing the results.
The balanced classifier performs better with foreground classes, but yields more noisy classification. The full system combines the benefits
of both classifiers, improving both the overall accuracy and the coverage of foreground classes (e.g., building, bridge, window, and person)

tion models that better describe the training data. At T ≥
400, performance levels off. As shown, our global label
costs consistently improve the performance over the base-
line method with no global context. Using more training
images (higher K) improves the performance through con-
sidering more semantically-relevant scene images. How-
ever, performance starts to decrease for very high values of
K (e.g., K = 1000) as more noisy images start to be added.

Figure 5 shows the per-class recognition rate for the
baseline, combined classifiers, and the full system on SIFT-
flow. Our fusing classifiers technique produces more bal-
anced likelihood scores that cover a wider range of classes.
The semantic context step removes outlier labels and re-
covers missing labels, which improves the recognition rates
of both common and rare classes. Recovered classes in-
clude field, grass, bridge, and sign. Failure cases include
extremely rare classes, e.g. cow, bird, desert, and moon.

6.2. Running Time

We analyzed the runtime performance for both SIFT-
flow and LMSun (without feature extraction) on a four-core

2.84GHz CPU with 32GB of RAM without code optimiza-
tion. For the SIFTflow dataset, training the classifier takes
an average of 15 minutes per class. We run the training
process in parallel. The training time highly depends on
the feature dimensionality. At test time, superpixel clas-
sification is efficient, with an average of 1 second per im-
age. Computing global label costs takes 3 seconds. Finally,
MRF inference takes less than one second. We run MRF
inference twice for the full pipeline. LMSun is much larger
than SIFTflow. It takes 3 hours for training the classifier,
less than a minute for superpixel classification per image,
less than 1 minute for MRF inference, and ∼2 minutes for
global label cost computation.

6.3. Discussion

Our scene parsing method is generally scalable as it does
not require any offline training in a batch fashion. However,
the time required for training a BDT classifier increases lin-
early with increasing the number of data points. This is
challenging with large datasets like LMSun. Randomly sub-
sampling the dataset has a negative impact on the overall

