263-2300-00: How To Write Fast Numerical Code
Solution Assignment 1
Due Date: Thu March 10 17:00
http://www.inf.ethz.ch/personal /markusp/teaching/263-2300-ETH-spring11/course.html

1. (30pts) Solve the recurrence g1 = 10, g2 = 6,
gn:2*gn/2+3*gn/4a n:2kvk22
Solving means determining a closed form for g,.
Solution:
We substitute n = 2 and g, = gox = fi and get fo = 10, fi = 6 and

fe=2%fr_1+3% fr 2 (1)

The generating function for fi, £ > 0 is

F(x) =) fyxa* (2)
k=0
Now we multiply (1) by #* and sum up from k = 2:
ka*l”k:2*ka—1*$k+32fk—2*xk (3)
k=2 k=2 k=2
The following holds:
Y fixab =F(z)— fo— frra (4)
k=2
D fiorxat = a(F(z) ~ fo) xa (5)
k=2
Z foo*xxF =2 x F(x) (6)
k=2
Substituting (4), (5) and (6) in (3) and yields
F(z) = fo = fix 2 = 2(a(F(2) - fo)) + 32 F (), (7)
and hence fot (F1— 2f0)
+ (/1 —2f0)x
F(g) = 20 \J1 = 2J0)%
@) = o 5 ®)
Plugging in the inital values,
142 — 10
P =1 55w)
Now we do PFE (partial fraction expansion):
142z — 10
Flr)= ——m—F—— 1
() (1-32)(1+x) (10)
A B
@) =15 T 12 (11)

Using the formula from class, we get the values A = 4 and B = 6. (Alternative: at this point we know
that f; = A3 + B(—1)*; this means one can get A, B by inserting the two initial values to obtain a
two linear equations in two unknowns; this method is more work though.)

263-2300-00 SS11 / Assignment 1 Pg1lof 5 Computer Science
Instructor: Markus Piischel ETH Zurich

http://www.inf.ethz.ch/personal/markusp/teaching/263-2300-ETH-spring11/course.html

Expanding F(x) back into a series yields:
F(z)=4) 3" +6) (-1)ka* (12)
k=0 k=0

From what we read off
F,=4%3% 46 (—1)F (13)

Translating back into exponential form yields the final result

On = 4 % 310g2 (n) + 6 % (_1)10g2(")
4 % nlos23) 4 g« (_1)105%2(”)

k=1
2. (20pts) Proof that fr = a* *c+ 3 @’ % s;,_; solves the recurrence fo =c¢, fr, = a * fr_1 + sp, k > 1.
i=0

Simplest solution: Just check that the formula satisfies the recurrence.

0% ¢ = ¢ as desired.

Initial condition: fy =a
Recurrence:
k—2
a* fr14+sp = ald®lxc+ Z a’ % s, 1_4) + sk
i=0

|
N}

k
= d*sc+(a a' % sp_1_;) + sk

i

>
|
=}

2
= a"xc+ () axsp 1)+ s

[}

7=
k—2+1
= a¥xc+(Z at Tttt Sk—1—(i—1)) + Sk
i=041
k-1
= d'sxc+ (Zai*sk,i) + s
i=1
k-1
= d'sxc+ (Zai*sk,i) —a% % s_o + sk
i=0

k—1
= d'sxc+ E a' * Sp_;
i=0

= J

as desired.
Solution by induction:

We prove by induction therefore first proving the initial element

k-1
a* fr_1+ sk zak*c—l—Zai*sk_i
i=0
with fo = c and k =1 yields
0
a*cC—+ 81 :al*c—i—Zao*sl
i=0
263-2300-00 SS11 / Assignment 1 Pg 2 of 5 Computer Science

Instructor: Markus Piischel ETH Zurich

We then move on to proof that it holds for any element via

k
1 .
ax* fr+ Sgr1 = a®th w4 E a* * Spy1—j

i=0
k—1

_ k i

= ax[a"*xc+ a' * Sp—i] + Sk+1
i=0

k

= a(k“) * Cc 4+ Z a’ x Sk+1—i
i=0

k—1
= gFt! *c—l—a*Zai * Sp—; + Sk+1

i=0

k+1—-1
= a"*lxe + a * Z at~ !« Sk—(i—1) T Sk+1

k+1—1
= a"*lxe + Z at % Sk—(i—1) T Sk4+1
i=1
k
= a"*lxe+ Z a' * Sp_(i—1) — a® * Sk—(0—1) T Sk+1
i=0
k
ax fp+ Spp1 = a* e+ Z al % S(k41)—i)
i=0

3. (20pts) You know that O(n + 1) = O(n). Similarly, simplify the following as much as possible and
briefly justify.

O(2n +1)
(2n +n+1)
(1.01™ 4 nb)
(n?m + nlog(n) + mlog(m))
(

0
0
0
O(2n+log, (n))

Solution:

O(2”2H) = 0(2”2), cause in 2" x 2 the 2 is a constant factor that can be removed

0(2”2“’“) = 0(2"2+”), same logic as above - just that you can not remove the 2" as its not
constant

O(1.01" + n®) = O(1.01™), n® is O(1.01") because limy, ;o0 127 = 0

O(n?*m + nlog(n) + mlog(m)) = O(n*m + mlog(m)) We can remove nlog(n) cause it will be
always dominated by n?, while we cannot remove m log(m) since it is not comparable to either of
the other terms.

O(2nt1ee2()) = O(2" x 21°8(")) = O(n2™), similar to (b) we cannot remove any term, only modify
it as shown.

4. (30pts) The Strassen algorithm (see http://en.wikipedia.org/wiki/Strassen_algorithm), named
after Volker Strassen, showed for the first time that the standard approach for square matrix multipli-
cation, which requires ©(n?) many operations, is not optimal. It works as follows.

263-2300-00 SS11 / Assignment 1 Pg 3 of 5 Computer Science
Instructor: Markus Piischel ETH Zurich

http://en.wikipedia.org/wiki/Strassen_algorithm

We assume for this exercise n = 2% and that A, B, C are all n x n. Strassen’s algorithm for computing
C = AB partitions the matrices into blocks of half the size:

Aii Aig _(Bi1 Bip _(Cia Cip
A= (Az,l Az,z) b= (Bz,l Bz,2> ¢= (02,1 02,2)
Then first the following seven intermediate matrices are computed:
My = (A11+ A22)(B1a + Bapg)
My = (A21 + A22)(B11)
Mz = Ay 1(Bi2 — Bs2)
My = Az 2(Ba21 — Bi1)
Ms = (A11+ A1 2)Bays

Ms = (A21 — A11)(B1g + Bi2)
M7 = (A2 — As2)(Bay + Bapa)

and from these the four blocks of C, and hence C, as

Cip =M+ My — Ms + My
Ci2 = Ms+ Ms
Co1 = My + M,y
02’2:M17M2+M3+M6

Answer the following:

(a) The above shows that the algorithm decomposes matrix multiplication into v matrix multiplica-
tions of half the size and v matrix additions of half the size. What is v and v?

(b) We define the cost measure C(n) = (A(n), M(n)), where A(n) is the number of (scalar) additions
and M (n) the number of (scalar) multiplications required for matrix multiplication. First deter-
mine recursive formulas for A(n) and M (n) for Strassen’s algorithm. Second, solve these to get
the exact addition and multiplication count if Strassen’s algorithm is applied recursively for all
occurring matrix multiplications. Show your work.

Solution:

(a) u="7and v =18. A straight forward solution would require 8 matrix multiplications of half the
size.

(b) Every matrix multiplication is divided into in 7 matrix multiplications and 18 matrix additions
(both of half the size). For matrices of size 1 x 1, 1 multiplication and no addition is required.
Therefore the recurrence for the number of scalar multiplications is

M(n) = 7% M(n/2), M(1)=1.

Since the 18 matrix additions of half the size require 18(n/2)? = (9/2)n? additions, the recurrence
for the number of additions is

A(n) =7x A(n/2) + gn2, A(1) = 0.

As usual, we first translate the recurrences by substituting n = 2%, m(k) = M(n), and a(k) =

A(n):
m(k) = Tm(k—1), m(0)=1
9
alk) = Ta(k—1)+ 54’“, a(0) = 0.
Now we use the formula proven in task 2 of this exercise sheet. This gives us for the multiplications:
k=1
m(k) =T 1+ 7' x0="7F
i=0
263-2300-00 SS11 / Assignment 1 Pg 4 of 5 Computer Science

Instructor: Markus Piischel ETH Zurich

M(n) — 7log2(n) _ nlog2(7)

For the additions:

k—1
ak) = 7’“*0—}—27’* % (4879
i=0
k—1
9 7.
_ e 4k Y
PR
k
9 -1
— 4k: 4
2 (3—1)
= 6(7" —4*

A(n) = 6(710g2(n) _ 4log2(n)) = gnlos2(7) _ gp2

Total operations count is therefore

C(n) = o8V — 6n? = O(n'oe2(")

Attached a small table with values calculated for the number of operations.

n | #Muls | #Adds
2 7 18
4 49 198
8 343 1674
16 2401 12870
32 | 16807 | 94698
263-2300-00 SS11 / Assignment 1 Pg 5 of 5 Computer Science

Instructor: Markus Piischel

ETH Zurich

