
Instructor: Markus Püschel

TA: Georg Ofenbeck

How to Write Fast Numerical Code
Spring 2011, Lecture 1

Picture: www.tapety-na-pulpit.org

Today

 Motivation for this course

 Organization of this course

Audio/image/video processing

Scientific Computing

Physics/biology simulations

Consumer Computing

Computing
 Unlimited need for performance

 Large set of applications, but …

 Relatively small set of critical
components (100s to 1000s)

 Matrix multiplication

 Discrete Fourier transform (DFT)

 Viterbi decoder

 Shortest path computation

 Stencils

 Solving linear system

 ….

Embedded Computing

Signal processing, communication, control

Scientific Computing (Clusters/Supercomputers)

data.giss.nasa.gov www.foresight.org

Climate modelling Finance simulations Molecular dynamics

Other application areas:
 Fluid dynamics
 Chemistry
 Biology
 Medicine
 Geophysics

Methods:
 Mostly linear algebra
 PDE solving
 Linear system solving
 Finite element methods

Consumer Computing (Desktop, …)

Photo/video processing Audio coding Security

Image compression

Methods:
 Linear algebra
 Transforms
 Filters
 Others

Original JPEG JPEG2000

Embedded Computing (Low-power processors)

Sensor networks Cars Robotics

Computation needed:
 Signal processing
 Control
 Communication

www.dei.unipd.it www.microway.com.au www.ece.drexel.edu

Methods:
 Linear algebra
 Transforms, Filters
 Coding

Research (Examples from Carnegie Mellon)

Biometrics Medical Imaging

Bioimaging
Computer vision

Bhagavatula/Savvides Moura

Kovacevic

Kanade

Classes of Performance-Critical Functions

 Transforms

 Filters/correlation/convolution/stencils/interpolators

 Dense linear algebra functions

 Sparse linear algebra functions

 Coder/decoders

 … several others

See also the 13 dwarfs/motifs in
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf

How Hard Is It to Get Fast Code?

Problem “compute Fourier transform”

Algorithm theory

Optimal algorithm

Software developer

Compiler

Source code

Fast executable

“fast Fourier transform”
O(nlog(n)) or 4nlog(n) + 3n

e.g., a C function

How well does this work?

or ?

The Problem: Example 1

0

1

2

16 64 256 1k 4k 16k 64k 256k 1M

DFT (single precision) on Intel Core i7 (4 cores, 2.66 GHz)
Performance [Gflop/s]

Straightforward
“good” C code (1 KB)

The Problem: Example 1

0

5

10

15

20

25

30

35

40

16 64 256 1k 4k 16k 64k 256k 1M

DFT (single precision) on Intel Core i7 (4 cores, 2.66 GHz)
Performance [Gflop/s]

Straightforward
“good” C code (1 KB)

The Problem: Example 1

0

5

10

15

20

25

30

35

40

16 64 256 1k 4k 16k 64k 256k 1M

DFT (single precision) on Intel Core i7 (4 cores, 2.66 GHz)
Performance [Gflop/s]

Straightforward
“good” C code (1 KB)

Fastest code (1 MB)

 Vendor compiler, best flags

 Roughly same operations count

12x

35x

The Problem: Example 2

 Vendor compiler, best flags

 Exact same operations count (2n3)

 What is going on?

0

5

10

15

20

25

30

35

40

45

50

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Gflop/s

160x

Triple loop (< 1KB)

Fastest code (100 KB)

Evolution of Processors (Intel)

Evolution of Processors (Intel)

Era of
parallelism

And There Will Be Variety …

Source: IEEE SP Magazine, Vol. 26, November 2009

Core i7

Nvidia G200

TI TNETV3020 Tilera Tile64

Arm Cortex A9

0

5

10

15

20

25

30

35

40

16 64 256 1k 4k 16k 64k 256k 1M

DFT (single precision) on Intel Core i7 (4 cores, 2.66 GHz)
Performance [Gflop/s]

Multiple threads: 3x

Vector instructions: 3x

Memory hierarchy: 5x

 Compiler doesn’t do the job

 Doing by hand: nightmare

...
t282 = _mm_addsub_ps(t268, U247);
t283 = _mm_add_ps(t282, _mm_addsub_ps(U247, _mm_shuffle_ps(t275, t275, _MM_SHUFFLE(2, 3, 0, 1))));
t284 = _mm_add_ps(t282, _mm_addsub_ps(U247, _mm_sub_ps(_mm_setzero_ps(), ………)
s217 = _mm_addsub_ps(t270, U247);
s218 = _mm_addsub_ps(_mm_mul_ps(t277, _mm_set1_ps((-0.70710678118654757))), ………)
t285 = _mm_add_ps(s217, s218);
t286 = _mm_sub_ps(s217, s218);
s219 = _mm_shuffle_ps(t278, t280, _MM_SHUFFLE(1, 0, 1, 0));
s220 = _mm_shuffle_ps(t278, t280, _MM_SHUFFLE(3, 2, 3, 2));
s221 = _mm_shuffle_ps(t283, t285, _MM_SHUFFLE(1, 0, 1, 0));
...

0

5

10

15

20

25

30

35

40

45

50

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Gflop/s

Memory hierarchy: 20x

Vector instructions: 4x

Multiple threads: 4x

 Compiler doesn’t do the job

 Doing by hand: nightmare

Summary and Facts I

 Implementations with same operations count can have vastly different
performance (up to 100x and more)

 A cache miss can be 100x more expensive than an operation

 Vector instructions

 Multiple cores = processors on one die

 Minimizing operations count ≠ maximizing performance

 End of free speed-up for legacy code

 Future performance gains through increasing parallelism

Summary and Facts II

 It is very difficult to write the fastest code
 Tuning for memory hierarchy

 Vector instructions

 Efficient parallelization (multiple threads)

 Requires expert knowledge in algorithms, coding, and architecture

 Fast code can be large
 Can violate “good” software engineering practices

 Compilers often can’t do the job
 Often intricate changes in the algorithm required

 Parallelization/vectorization still unsolved

 Highest performance is in general non-portable

Performance/Productivity
Challenge

Current Solution

 Legions of programmers implement and optimize the same
functionality for every platform and whenever a new platform comes
out.

Better Solution: Autotuning

 Automate (parts of) the implementation or optimization

 Research efforts
 Linear algebra: Phipac/ATLAS, LAPACK,

Sparsity/Bebop/OSKI, Flame

 Tensor computations

 PDE/finite elements: Fenics

 Adaptive sorting

 Fourier transform: FFTW

 Linear transforms: Spiral

 …others

 New compiler techniques

Proceedings of the IEEE special issue, Feb. 2005

Promising new area but
much more work needed …

This Course

 Obtain an understanding of performance (runtime)

 Learn how to write fast code for numerical problems

 Focus: Memory hierarchy and vector instructions

 Principles studied using important examples

 Applied in homeworks and a semester-long research project

 Learn about autotuning

Algorithms

Fast implementations of
numerical problems

Software

Compilers

Computer architecture

Today

 Motivation for this course

 Organization of this course

About this Course
 Team

 Me

 TA: Georg Ofenbeck

 Office hours: to be determined

 Email address for any questions: fastcode@lists.inf.ethz.ch

 Course website has ALL information

mailto:fastcode@lists.inf.ethz.ch

About this Course (cont’d)

 Requirements

 solid C programming skills

 matrix algebra

 Master student or above

 Grading

 40% research project

 20% midterm exam

 40% homework

 Friday slot

 Gives you scheduled time to work together

 Occasionally I will move lecture there

Research Project

 Team up in pairs

 Topic: Very fast implementation of a numerical problem

 Until March 9th: suggest to me a problem or I give you a problem
Tip: pick something from your research or that you are interested in

 Show “milestones” during semester

 Write 4 page standard conference paper (template will be provided)

 Give short presentation end of semester

 Submit final code (early semester break)

Midterm Exam

 Some algorithm analysis

 Memory hierarchy

 Other

 There is no final exam

Homework

 Exercises on algorithm/performance analysis (Math)

 Implementation exercises

 Concrete numerical problems

 Study the effect of program optimizations, use of compilers, use of special
instructions, etc. (Writing C code + creating runtime/performance plots)

 Some templates will be provided

 Does everybody have access to an Intel processor?

 Homework scheduled to leave time for research project

 Small part of homework grade for neatness

 Late homework policy:

 No deadline extensions, but

 3 late days for the entire semester

 You can use at most 2 for a homework

Academic Integrity

 Zero tolerance cheating policy (cheat = fail + being reported)

 Homeworks

 All single-student

 Don’t look at other students code

 Don’t copy code from anywhere

 Ok to discuss things – but then you have to do it alone

 Code may be checked with tools

Background Material

 Course website

 Chapter 5 in:
Computer Systems: A Programmer's Perspective, 2nd edition
Randal E. Bryant and David R. O'Hallaron
(several ones are in the library)
web: http://csapp.cs.cmu.edu/

 Prior version of this course:
spring 2008 at ECE/CMU

http://csapp.cs.cmu.edu/
http://csapp.cs.cmu.edu/
http://people.inf.ethz.ch/markusp/teaching/18-645-CMU-spring08/course.html

Class Participation

 I’ll start on time

 It is important to attend

 Many things I’ll teach are not in books

 I’ll use part slides part blackboard

 Ask questions

 I will provide some anonymous feedback mechanism
(maybe every 3–4 weeks)

