How to Write Fast Numerical Code

Spring 2011, Lecture 1

eorg Ofenbeck

Picture: www.tapety-na-pulpit.org

) ’

-

Today

m Motivation for this course

m Organization of this course

Scientific Computing

Physics/biology simulations

Consumer Computing

Audio/image/video processing

Embedded Computing

Signal processing, communication, control

Computing

m Unlimited need for performance

m Large set of applications, but ...

m Relatively small set of critical
components (100s to 1000s)

Matrix multiplication

Discrete Fourier transform (DFT)
Viterbi decoder

Shortest path computation
Stencils

Solving linear system

Scientific Computing (Clusters/Supercomputers)

" N data.giss.nasa.gou\{q 7) www.foresight.org
1 S 4 =
¥ | (j
o T
| @
R v - .,
PRy . . = I \
Climate modelling Finance simulations Molecular dynamics
Other application areas: Methods:
= Fluid dynamics = Mostly linear algebra
= Chemistry = PDE solving
= Biology = Linear system solving
= Medicine = Finite element methods
|

Geophysics

Consumer Computing (Desktop, ...)

Audio coding Security

JPEG JPEG2000

Methods:

= Linear algebra
® Transforms

= Filters

= QOthers

Image compression

Embedded Computing (Low-power processors)

www.dei.unipd.it www.ece.drexel.edu www.microway.com.au

Robotics

Sensor networks
Computation needed: Methods:
= Signal processing = Linear algebra
= Control = Transforms, Filters

= Communication = Coding

Research (Examples from Carnegie Mellon)

Bhagavatula/Savvides Moura

Kovacevic

P | -

Bioimaging

P A ~ v
L "
j N (3 -
n
- r
- ;- .

Computer vision

Classes of Performance-Critical Functions

m Transforms

m Filters/correlation/convolution/stencils/interpolators
m Dense linear algebra functions

m Sparse linear algebra functions

m Coder/decoders

m .. several others

See also the 13 dwarfs/motifs in
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf

How Hard Is It to Get Fast Code?

Problem

v

Algorithm theory

l

Optimal algorithm

|

Software developer

|

Source code

|

Compiler

!

Fast executable

“compute Fourier transform”

“fast Fourier transform”
O(nlog(n)) or 4nlog(n) + 3n

e.g., a C function

How well does this work?

The Problem: Example 1

DFT (single precision) on Intel Core i7 (4 cores, 2.66 GHz)

Performance [Gflop/s]
2

Straightforward
“good” C code (1 KB)

The Problem: Example 1

DFT (single precision) on Intel Core i7 (4 cores, 2.66 GHz)

Performance [Gflop/s]
40

35
30
25
20
15

10

Straightforward
“good” C code (1 KB)
0 <
16 64 256 1k 4k 16k 64k 256k 1M

The Problem: Example 1

DFT (single precision) on Intel Core i7 (4 cores, 2.66 GHz)

Performance [Gflop/s]
40

35

30
Fastest code (1 MB)
25

20

15

10

Straightforward
“good” C code (1 KB)

16 64 256 1k 4k 16k 64k 256k 1M

m Vendor compiler, best flags
m Roughly same operations count

The Problem: Example 2

Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz

Gflop/s
50
45
40 T —
- Fastest code (100 KB)
30
25
20
15
10
5
Triple loop (< 1KB)
° 0 1,000 2,000 3,(I)OO 4,(5(;0 5,(')OO 6,(I)00 7,600 8,60()

matrix size
m Vendor compiler, best flags

m Exact same operations count (2n3)

m Whatis going on?

9,000

Evolution of Processors (Intel)

Floating point peak performance [Gflop/s]
CPU frequency [GHz]

100
10
— _ f’{ Core 2 Duo Core i7
—— Pentium 4
1
Pentium III
Pentium II free speedup

Pentium Pro
0.1
single precision
——@)— double precision
—J— CPU frequency

Pentium

|} L] L L} L] | | L] L] L] L] T

1993 1995 1997 1999 2001 2003 2005 2007

2009

Evolution of Processors (Intel)

R 4
Floating point peak performance [Gflop/s] ..°'.
CPU frequency [GHz] ..."
100 ’
Era of
k ired .
work require parallelism

10
.....OQ......>
K / Core i7
~—— pentium 4 Core 2 Duo
1
Pentium III
Pentium II free speedup
Pentium Pro
0.1

single precision
——@)— double precision
—J— CPU frequency

Pentium

1993 1995 1997

I T

1999 2001 2003 2005 2007 2009

And There Will Be Variety ...

Arm Cortex A9

One
to Four
Cores

Three-Way
Qut-of-Order

Three-Way
Out-of-Order

Core Core

Snoop
Controller

Core i/

Four-Way Four-Way
OutotOrder | M1 B[60 ordar
Cora, Two-Way Core, Two-Way
EMT o SMT
32 kB 32 kB 32 kB 32 kB
IL1 DL IL1 DL
= - TI TNETV3020
To L1 Program Memory
Quick Path Mamory Controller

‘| Cedx+ CPU

N

,
v
[l
Dﬂ Dmﬂ

Data DEIE Dem ta

Data Path 1 Data Path 2
u u U u U EI 2 °

e i e e e e | R W
)
}

o i i i i | b
}
)

! }

I I

To L1 Data Memory Controllsr

Cluster 1

Cluster2

Nvidia G200

/ InsLDhn Insll]

-E
-E

Ta'ulnra Fimm + Tm‘rn L1 (}ame

m T Dy et Dk |
T T
o

\ Tmmm Fllars + Taﬂnn; Ll cmm

> Ten Total Clustars

| Texture L2 Cache HAh:lricOperdiml.HI

ROP + Memory ROP + Memory
Controller Controller

Eight Total L2s, Atomic
Op Units and Mem
Controllars

Tilera Tile64

[l 110
§iEH

liii.iii!.liii []

iinmiiiiimiiiiimﬂﬁm-ﬁﬁ

liii.iiii.liii iii!

imji-iimmmiiimmmﬁi
siisgRpeiesdidissoieacigReaceiayeta i eed

11 T11T] 90

111 {E]

AT o

jiii

illll

iii-'ﬁii

i !iﬁ.iiii

T T [0
im iiii.im

!iii'!iii'iiii

Source: IEEE SP Magazine, Vol. 26, November 2009

DFT (single precision) on Intel Core i7 (4 cores, 2.66 GHz)
Performance [Gflop/s]

t282 = _mm_addsub_ps(t268, U247);

t283 mm_add_ps(t282, _mm_addsub_ps(U247, _mm_shuffle_ps(t275, t275, _MM_SHUFFLE(2, 3, 0, 1))));
t284 mm_add_ps(t282, _mm_addsub_ps(U247, _mm_sub_ps(_mm_setzero_ps(),

s217 mm_addsub_ps(t270, U247);

s218
t285
t286

mm_addsub_ps(_mm_mul_ps(t277, _mm_setl_ps((-0.70710678118654757))),

mm_add_ps(s217, s218);
mm_sub_ps(s217, s218);
s219 mm_shuffle_ps(t278, t280, _MM_SHUFFLE(1, 0, 1, 0));
$220 mm_shuffle_ps(t278, t280, _MM_SHUFFLE(3, 2, 3, 2));
s221 = _mm_shuffle_ps(t283, t285, _MM_SHUFFLE(1, @, 1, 0));

Vector instructions: 3x

m Compiler doesn’t do the job
m Doing by hand: nightmare

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz

Multiple threads: 4x

Vector instructions: 4x

& &

Memory hierarchy: 20x

e

I |

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

| I 1

m Compiler doesn’t do the job
m Doing by hand: nightmare

Summary and Facts |

m Implementations with same operations count can have vastly different
performance (up to 100x and more)

= A cache miss can be 100x more expensive than an operation
= Vector instructions
= Multiple cores = processors on one die

m Minimizing operations count # maximizing performance

m End of free speed-up for legacy code

= Future performance gains through increasing parallelism

Summary and Facts Il

m ltis very difficult to write the fastest code
® Tuning for memory hierarchy

" Vector instructions
= Efficient parallelization (multiple threads)
= Requires expert knowledge in algorithms, coding, and architecture

m Fast code can be large

= Canviolate “good” software engineering practices

m Compilers often can’t do the job

= Often intricate changes in the algorithm required
Parallelization/vectorization still unsolved

m Highest performance is in general non-portable

Performance/Productivity
Challenge

Current Solution

AL AAALAAALA A A

m Legions of programmers implement and optimize the same
functionality for every platform and whenever a new platform comes
out.

Better Solution: Autotuning

m Automate (parts of) the implementation or optimization
oA e e e @ @

m Research efforts

= Linear algebra: Phipac/ATLAS, LAPACK, D P O NI A e O,
Sparsity/Bebop/OSKI, Flame s

= Tensor computations
= PDE/finite elements: Fenics
= Adaptive sorting
® Fourier transform: FFTW
" Linear transforms: Spiral
= .others
= New compiler techniques

Promising new area but
much more work needed ... Proceedings of the IEEE special issue, Feb. 2005

This Course

Fast implementations of
numerical problems

Algorithms

Software

Compilers

Computer architecture

m Obtain an understanding of performance (runtime)

m Learn how to write fast code for numerical problems
" Focus: Memory hierarchy and vector instructions
" Principles studied using important examples
= Applied in homeworks and a semester-long research project

m Learn about autotuning

Today

m Organization of this course

About this Course

m Team
= Me
" TA: Georg Ofenbeck

m Office hours: to be determined

m Email address for any questions: fastcode@Iists.inf.ethz.ch

m Course website has ALL information

mailto:fastcode@lists.inf.ethz.ch

About this Course (cont’d)

m Requirements
= solid C programming skills
" matrix algebra
= Master student or above

m Grading
= 40% research project
= 20% midterm exam
= 40% homework

m Fridayslot
= Gives you scheduled time to work together
® Qccasionally I will move lecture there

Research Project

m Team up in pairs
m Topic: Very fast implementation of a numerical problem

m Until March 9th: suggest to me a problem or | give you a problem
Tip: pick something from your research or that you are interested in

m Show “milestones” during semester
m Write 4 page standard conference paper (template will be provided)
m Give short presentation end of semester

m Submit final code (early semester break)

Midterm Exam

m Some algorithm analysis
m Memory hierarchy

m Other

m There is no final exam

Homework

Exercises on algorithm/performance analysis (Math)

Implementation exercises
" Concrete numerical problems

= Study the effect of program optimizations, use of compilers, use of special
instructions, etc. (Writing C code + creating runtime/performance plots)

= Some templates will be provided
= Does everybody have access to an Intel processor?

Homework scheduled to leave time for research project
Small part of homework grade for neatness

Late homework policy:
= No deadline extensions, but
= 3 late days for the entire semester
" You can use at most 2 for a homework

Academic Integrity

m Zero tolerance cheating policy (cheat = fail + being reported)

m Homeworks
= All single-student
= Don’t look at other students code
" Don’t copy code from anywhere
= Ok to discuss things — but then you have to do it alone

m Code may be checked with tools

Background Material

m Course website

m Chapter 5in:
Computer Systems: A Programmer's Perspective, 2nd edition
Randal E. Bryant and David R. O'Hallaron
(several ones are in the library)
web: http://csapp.cs.cmu.edu/

m Prior version of this course:
spring 2008 at ECE/CMU

http://csapp.cs.cmu.edu/
http://csapp.cs.cmu.edu/
http://people.inf.ethz.ch/markusp/teaching/18-645-CMU-spring08/course.html

Class Participation

m I’'ll start on time

m Itisimportant to attend
= Many things I'll teach are not in books
= |’ll use part slides part blackboard

m Ask questions

m | will provide some anonymous feedback mechanism
(maybe every 3—-4 weeks)

