
How to Write Fast Numerical Code
Spring 2011
Lecture 4

Instructor: Markus Püschel

TA: Georg Ofenbeck

Organizational

 Class Monday 14.3. → Friday 18.3

 Office hours:

 Markus: Tues 14–15:00

 Georg: Wed 14–15:00

 Research projects

Core 1

Abstracted Microarchitecture: Example Core (2008)
Throughput is measured in doubles/cycle
Latency in cycles for one double
1 double = 8 bytes
Rectangles not to scale

Hard disk
~500 GB

fadd

fmul

ALU

load

store

Main
Memory
(RAM)
4 GB

L2 cache
4 MB

16-way
64B CB

L1 Icache

both
32 KB
8-way
64B CB

L1 Dcache

16 FP
register

internal
registers

instruction
decoder

(up to 5 ops/cycle) instruction pool
(up to 96 “in flight”)

execution
units

•out of order execution
•superscalar

CISC ops
RISC
μops issue

6 μops/
cycle

lat: 3
tp: 2

lat: 14
tp: 1

lat: 100
tp: 1/4

lat: millions
tp: 1/250

ISA

Core 1

Core 2 L2
 c

ac
h

e

Core 2 Duo:
on die

RAM

Memory hierarchy:
• Registers
• L1 cache
• L2 cache
• Main memory
• Hard disk

Organization

 Instruction level parallelism (ILP): an example

 Optimizing compilers and optimization blockers

Chapter 5 in Computer Systems: A Programmer's Perspective, 2nd edition,
Randal E. Bryant and David R. O'Hallaron, Addison Wesley 2010

Core 2:
Instruction Decoding and Execution Units

Latency/throughput (double)
FP Add: 3, 1
FP Mult: 5, 1

Superscalar Processor

 Definition: A superscalar processor can issue and execute multiple
instructions in one cycle. The instructions are retrieved from a
sequential instruction stream and are usually scheduled dynamically.

 Benefit: without programming effort, superscalar processor can take
advantage of the instruction level parallelism that most programs
have

 Most CPUs since about 1998 are superscalar

 Intel: since Pentium Pro

Hard Bounds: Pentium 4 vs. Core 2

 Pentium 4 (Nocona)

Instruction Latency Cycles/Issue

Load / Store 5 1

Integer Multiply 10 1

Integer/Long Divide 36/106 36/106

Single/Double FP Multiply 7 2

Single/Double FP Add 5 2

Single/Double FP Divide 32/46 32/46

 Core 2
Instruction Latency Cycles/Issue

Load / Store 5 1

Integer Multiply 3 1

Integer/Long Divide 18/50 18/50

Single/Double FP Multiply 4/5 1

Single/Double FP Add 3 1

Single/Double FP Divide 18/32 18/32

Hard Bounds (cont’d)

 How many cycles at least if

 Function requires n float adds?

 Function requires n float ops (adds and mults)?

 Function requires n int mults?

Performance in Numerical Computing

 Numerical computing =
computing dominated by floating point operations

 Example: Matrix multiplication

 Performance measure (in most cases) for a numerical function:

 Theoretical peak performance on 3 GHz Core 2 (1 core)?

 Scalar (no SSE): 6 Gflop/s

 SSE double precision: 12 Gflop/s

 SSE single precision: 24 Gflop/s

#floating point operations

runtime [s]

Example Computation (on Pentium 4)

 Data Types

 Use different declarations for
data_t

 int

 float

 double

void combine4(vec_ptr v, data_t *dest)

{

 int i;

 int length = vec_length(v);

 data_t *d = get_vec_start(v);

 data_t t = IDENT;

 for (i = 0; i < length; i++)

 t = t OP d[i];

 *dest = t;

}

 Operations

 Use different definitions of OP
and IDENT

 + / 0

 * / 1

d[0] OP d[1] OP d[2] OP … OP d[length-1]

Runtime of Combine4 (Pentium 4)

 Use cycles/OP

 Questions:

 Explain red row

 Explain gray row

void combine4(vec_ptr v,

 data_t *dest)

{

 int i;

 int length = vec_length(v);

 data_t *d = get_vec_start(v);

 data_t t = IDENT;

 for (i = 0; i < length; i++)

 t = t OP d[i];

 *dest = t;

}

Method Int (add/mult) Float (add/mult)

combine4 2.2 10.0 5.0 7.0

bound 1.0 1.0 2.0 2.0

Cycles per OP

Combine4 = Serial Computation (OP = *)

 Computation (length=8)
 ((((((((1 * d[0]) * d[1]) * d[2]) * d[3])

* d[4]) * d[5]) * d[6]) * d[7])

 Sequential dependence = no ILP! Hence,

 Performance: determined by latency of OP!

*

*

1 d0

d1

*

d2

*

d3

*

d4

*

d5

*

d6

*

d7

Method Int (add/mult) Float (add/mult)

combine4 2.2 10.0 5.0 7.0

bound 1.0 1.0 2.0 2.0

Cycles per element (or per OP)

Loop Unrolling

 Perform 2x more useful work per iteration

void unroll2(vec_ptr v, data_t *dest)

{

 int length = vec_length(v);

 int limit = length-1;

 data_t *d = get_vec_start(v);

 data_t x = IDENT;

 int i;

 /* Combine 2 elements at a time */

 for (i = 0; i < limit; i+=2) {

 x = (x OP d[i]) OP d[i+1];

 }

 /* Finish any remaining elements */

 for (; i < length; i++) {

 x = x OP d[i];

 }

 *dest = x;

}

Effect of Loop Unrolling

 Helps integer sum

 Others don’t improve. Why?

 Still sequential dependency

x = (x OP d[i]) OP d[i+1];

Method Int (add/mult) Float (add/mult)

combine4 2.2 10.0 5.0 7.0

unroll2 1.5 10.0 5.0 7.0

bound 1.0 1.0 2.0 2.0

Loop Unrolling with Reassociation

 Can this change the result of the computation?

 Yes, for FP. Why?

void unroll2_ra(vec_ptr v, data_t *dest)

{

 int length = vec_length(v);

 int limit = length-1;

 data_t *d = get_vec_start(v);

 data_t x = IDENT;

 int i;

 /* Combine 2 elements at a time */

 for (i = 0; i < limit; i+=2) {

 x = x OP (d[i] OP d[i+1]);

 }

 /* Finish any remaining elements */

 for (; i < length; i++) {

 x = x OP d[i];

 }

 *dest = x;

}

Effect of Reassociation

 Nearly 2x speedup for Int *, FP +, FP *

 Reason: Breaks sequential dependency

 Why is that? (next slide)

x = x OP (d[i] OP d[i+1]);

Method Int (add/mult) Float (add/mult)

combine4 2.2 10.0 5.0 7.0

unroll2 1.5 10.0 5.0 7.0

unroll2-ra 1.56 5.0 2.75 3.62

bound 1.0 1.0 2.0 2.0

Reassociated Computation

 What changed:
 Ops in the next iteration can be

started early (no dependency)

 Overall Performance
 N elements, D cycles latency/op

 Should be (N/2+1)*D cycles:
cycle per OP ≈ D/2

 Measured is slightly worse for FP

*

*

1

*

*

*

d1 d0

*

d3 d2

*

d5 d4

*

d7 d6

x = x OP (d[i] OP d[i+1]);

Loop Unrolling with Separate Accumulators

 Different form of reassociation

void unroll2_sa(vec_ptr v, data_t *dest)

{

 int length = vec_length(v);

 int limit = length-1;

 data_t *d = get_vec_start(v);

 data_t x0 = IDENT;

 data_t x1 = IDENT;

 int i;

 /* Combine 2 elements at a time */

 for (i = 0; i < limit; i+=2) {

 x0 = x0 OP d[i];

 x1 = x1 OP d[i+1];

 }

 /* Finish any remaining elements */

 for (; i < length; i++) {

 x0 = x0 OP d[i];

 }

 *dest = x0 OP x1;

}

Effect of Separate Accumulators

 Almost exact 2x speedup (over unroll2) for Int *, FP +, FP *

 Breaks sequential dependency in a “cleaner,” more obvious way

 x0 = x0 OP d[i];

 x1 = x1 OP d[i+1];

Method Int (add/mult) Float (add/mult)

combine4 2.2 10.0 5.0 7.0

unroll2 1.5 10.0 5.0 7.0

unroll2-ra 1.56 5.0 2.75 3.62

unroll2-sa 1.50 5.0 2.5 3.5

bound 1.0 1.0 2.0 2.0

Separate Accumulators

*

*

1 d1

d3

*

d5

*

d7

*

*

*

1 d0

d2

*

d4

*

d6

 x0 = x0 OP d[i];

 x1 = x1 OP d[i+1];

 What changed:
 Two independent “streams” of

operations

 Overall Performance
 N elements, D cycles latency/op

 Should be (N/2+1)*D cycles:
cycles per OP ≈ D/2

What Now?

Unrolling & Accumulating

 Idea

 Use K accumulators

 Increase K until best performance reached

 Need to unroll by L, K divides L

 Limitations

 Diminishing returns:
Cannot go beyond throughput limitations of execution units

 Large overhead for short lengths: Finish off iterations sequentially

Unrolling & Accumulating: Intel FP *
 Case

 Pentium 4

 FP Multiplication

 Theoretical Limit: 2.00

FP * Unrolling Factor L

K 1 2 3 4 6 8 10 12

1 7.00 7.00 7.01 7.00

2 3.50 3.50 3.50

3 2.34

4 2.01 2.00

6 2.00 2.01

8 2.01

10 2.00

12 2.00

A
cc

u
m

u
la

to
rs

Why 4?

Why 4?

cycles

Those have to be
independent

Latency: 7 cycles

Based on this insight: K = #accumulators = ceil(latency/cycles per issue)

Unrolling & Accumulating: Intel FP +
 Case

 Pentium 4

 FP Addition

 Theoretical Limit: 2.00

FP + Unrolling Factor L

K 1 2 3 4 6 8 10 12

1 5.00 5.00 5.02 5.00

2 2.50 2.51 2.51

3 2.00

4 2.01 2.00

6 2.00 1.99

8 2.01

10 2.00

12 2.00

Unrolling & Accumulating: Intel Int *
 Case

 Pentium 4

 Integer Multiplication

 Theoretical Limit: 1.00

Int * Unrolling Factor L

K 1 2 3 4 6 8 10 12

1 10.00 10.00 10.00 10.01

2 5.00 5.01 5.00

3 3.33

4 2.50 2.51

6 1.67 1.67

8 1.25

10 1.09

12 1.14

Unrolling & Accumulating: Intel Int +
 Case

 Pentium 4

 Integer addition

 Theoretical Limit: 1.00

Int + Unrolling Factor L

K 1 2 3 4 6 8 10 12

1 2.20 1.50 1.10 1.03

2 1.50 1.10 1.03

3 1.34

4 1.09 1.03

6 1.01 1.01

8 1.03

10 1.04

12 1.11

FP * Unrolling Factor L

K 1 2 3 4 6 8 10 12

1 4.00 4.00 4.00 4.01

2 2.00 2.00 2.00

3 1.34

4 1.00 1.00

6 1.00 1.00

8 1.00

10 1.00

12 1.00

FP * Unrolling Factor L

K 1 2 3 4 6 8 10 12

1 7.00 7.00 7.01 7.00

2 3.50 3.50 3.50

3 2.34

4 2.01 2.00

6 2.00 2.01

8 2.01

10 2.00

12 2.00

Pentium 4

Core 2
FP * is fully pipelined

Summary (ILP)

 Instruction level parallelism may have to be made explicit in program

 Potential blockers for compilers

 Reassociation changes result (FP)

 Too many choices, no good way of deciding

 Unrolling

 By itself does often nothing (branch prediction works usually well)

 But may be needed to enable additional transformations (here:
reassociation)

 How to program this example?

 Solution 1: program generator generates alternatives and picks best

 Solution 2: use model based on latency and throughput

Organization

 Instruction level parallelism (ILP): an example

 Optimizing compilers and optimization blockers

 Overview

 Removing unnecessary procedure calls

 Code motion

 Strength reduction

 Sharing of common subexpressions

 Optimization blocker: Procedure calls

 Optimization blocker: Memory aliasing

 Summary

Compiler is likely
to do that

Optimizing Compilers

 Use optimization flags, default is no optimization (-O0)!

 Good choices for gcc: -O2, -O3, -march=xxx, -m64

 Try different flags and maybe different compilers

Example

 Compiled without flags:
~1300 cycles

 Compiled with -O3 -m64 -march=… -fno-tree-vectorize
~150 cycles

 Core 2 Duo

double a[4][4];

double b[4][4];

double c[4][4]; # set to zero

/* Multiply 4 x 4 matrices a and b */

void mmm(double *a, double *b, double *c, int n) {

 int i, j, k;

 for (i = 0; i < 4; i++)

 for (j = 0; j < 4; j++)

 for (k = 0; k < 4; k++)

 c[i*4+j] += a[i*4 + k]*b[k*4 + j];

}

Prevents use of SSE

Optimizing Compilers

 Compilers are good at: mapping program to machine

 register allocation

 code selection and ordering (instruction scheduling)

 dead code elimination

 eliminating minor inefficiencies

 Compilers are not good at: algorithmic restructuring

 For example to increase ILP, locality, etc.

 Cannot deal with choices

 Compilers are not good at: overcoming “optimization blockers”

 potential memory aliasing

 potential procedure side-effects

Limitations of Optimizing Compilers

 If in doubt, the compiler is conservative

 Operate under fundamental constraints

 Must not change program behavior under any possible condition

 Often prevents it from making optimizations when would only affect behavior
under pathological conditions

 Most analysis is performed only within procedures

 Whole-program analysis is too expensive in most cases

 Most analysis is based only on static information

 Compiler has difficulty anticipating run-time inputs

 Not good at evaluating or dealing with choices

Organization

 Instruction level parallelism (ILP): an example

 Optimizing compilers and optimization blockers

 Overview

 Removing unnecessary procedure calls

 Code motion

 Strength reduction

 Sharing of common subexpressions

 Optimization blocker: Procedure calls

 Optimization blocker: Memory aliasing

 Summary

Compiler is likely
to do that

Example: Data Type for Vectors

/* data structure for vectors */

typedef struct{

 int len;

 double *data;

} vec;

/* retrieve vector element and store at val */

int get_vec_element(*vec, idx, double *val)

{

 if (idx < 0 || idx >= v->len)

 return 0;

 *val = v->data[idx];

 return 1;

}

len

data

0 1 len-1

Example: Summing Vector Elements

/* sum elements of vector */

double sum_elements(vec *v, double *res)

{

 int i;

 n = vec_length(v);

 *res = 0.0;

 double val;

 for (i = 0; i < n; i++) {

 get_vec_element(v, i, &val);

 *res += val;

 }

 return res;

}

/* retrieve vector element and store at val */

int get_vec_element(*vec, idx, double *val)

{

 if (idx < 0 || idx >= v->len)

 return 0;

 *val = v->data[idx];

 return 1;

}

Overhead for every fp +:
• One fct call
• One <
• One >=
• One ||
• One memory variable

access

Slowdown:
probably 10x or more

Removing Procedure Call

/* sum elements of vector */

double sum_elements(vec *v, double *res)

{

 int i;

 n = vec_length(v);

 *res = 0.0;

 double *data = get_vec_start(v);

 for (i = 0; i < n; i++)

 *res += data[i];

 return res;

}

/* sum elements of vector */

double sum_elements(vec *v, double *res)

{

 int i;

 n = vec_length(v);

 *res = 0.0;

 double val;

 for (i = 0; i < n; i++) {

 get_vec_element(v, i, &val);

 *res += val;

 }

 return res;

}

Removing Procedure Calls

 Procedure calls can be very expensive

 Bound checking can be very expensive

 Abstract data types can easily lead to inefficiencies

 Usually avoided for in superfast numerical library functions

 Watch your innermost loop!

 Get a feel for overhead versus actual computation being performed

Organization

 Instruction level parallelism (ILP): an example

 Optimizing compilers and optimization blockers

 Overview

 Removing unnecessary procedure calls

 Code motion

 Strength reduction

 Sharing of common subexpressions

 Optimization blocker: Procedure calls

 Optimization blocker: Memory aliasing

 Summary

Compiler is likely
to do that

void set_row(double *a, double *b,

 long i, long n)

{

 long j;

 for (j = 0; j < n; j++)

 a[n*i+j] = b[j];

}

Code Motion

 Reduce frequency with which computation is performed

 If it will always produce same result

 Especially moving code out of loop (loop-invariant code motion)

 Sometimes also called precomputation

 long j;

 int ni = n*i;

 for (j = 0; j < n; j++)

 a[ni+j] = b[j];

void set_row(double *a, double *b,

 long i, long n)

{

 long j;

 for (j = 0; j < n; j++)

 a[n*i+j] = b[j];

}

a

b

Organization

 Instruction level parallelism (ILP): an example

 Optimizing compilers and optimization blockers

 Overview

 Removing unnecessary procedure calls

 Code motion

 Strength reduction

 Sharing of common subexpressions

 Optimization blocker: Procedure calls

 Optimization blocker: Memory aliasing

 Summary

Compiler is likely
to do that

Strength Reduction

 Replace costly operation with simpler one

 Example: Shift/add instead of multiply or divide
 16*x → x << 4

 Utility machine dependent

 Example: Recognize sequence of products

for (i = 0; i < n; i++)

 for (j = 0; j < n; j++)

 a[n*i + j] = b[j];

int ni = 0;

for (i = 0; i < n; i++) {

 for (j = 0; j < n; j++)

 a[ni + j] = b[j];

 ni += n;

}

Organization

 Instruction level parallelism (ILP): an example

 Optimizing compilers and optimization blockers

 Overview

 Removing unnecessary procedure calls

 Code motion

 Strength reduction

 Sharing of common subexpressions

 Optimization blocker: Procedure calls

 Optimization blocker: Memory aliasing

 Summary

Compiler is likely
to do that

Share Common Subexpressions

 Reuse portions of expressions

 Compilers often not very sophisticated in exploiting arithmetic properties

/* Sum neighbors of i,j */

up = val[(i-1)*n + j];

down = val[(i+1)*n + j];

left = val[i*n + j-1];

right = val[i*n + j+1];

sum = up + down + left + right;

int inj = i*n + j;

up = val[inj - n];

down = val[inj + n];

left = val[inj - 1];

right = val[inj + 1];

sum = up + down + left + right;

3 mults: i*n, (i–1)*n, (i+1)*n 1 mult: i*n

Organization

 Instruction level parallelism (ILP): an example

 Optimizing compilers and optimization blockers

 Overview

 Removing unnecessary procedure calls

 Code motion

 Strength reduction

 Sharing of common subexpressions

 Optimization blocker: Procedure calls

 Optimization blocker: Memory aliasing

 Summary

Compiler is likely
to do that

