
How to Write Fast Numerical Code 
Spring 2011 
Lecture 4 

Instructor: Markus Püschel 

TA: Georg Ofenbeck 



Organizational 

 Class Monday 14.3. → Friday 18.3 

 Office hours: 

 Markus: Tues 14–15:00 

 Georg: Wed 14–15:00 

 Research projects 



Core 1 

Abstracted Microarchitecture: Example Core (2008) 
Throughput is measured in doubles/cycle 
Latency in cycles for one double 
1 double = 8 bytes 
Rectangles not to scale 
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Core 2 Duo: 
on die 

RAM 

Memory hierarchy: 
• Registers 
• L1 cache 
• L2 cache 
• Main memory 
• Hard disk 



Organization 

 Instruction level parallelism (ILP): an example 

 Optimizing compilers and optimization blockers 

 

Chapter 5 in Computer Systems: A Programmer's Perspective, 2nd edition, 
Randal E. Bryant and David R. O'Hallaron, Addison Wesley 2010 

 



Core 2: 
Instruction Decoding and Execution Units 

Latency/throughput (double) 
FP Add: 3, 1 
FP Mult: 5, 1 



Superscalar Processor 

 Definition: A superscalar processor can issue and execute multiple 
instructions in one cycle. The instructions are retrieved from a 
sequential instruction stream and are usually scheduled dynamically. 

 

 Benefit: without programming effort, superscalar processor can take 
advantage of the instruction level parallelism that most programs 
have 

 

 Most CPUs since about 1998 are superscalar 

 Intel: since Pentium Pro 



Hard Bounds: Pentium 4 vs. Core 2 

 Pentium 4 (Nocona) 

Instruction Latency Cycles/Issue 

Load / Store 5 1 

Integer Multiply 10 1 

Integer/Long Divide 36/106 36/106 

Single/Double FP Multiply 7 2 

Single/Double FP Add 5 2 

Single/Double FP Divide 32/46 32/46 

 Core 2 
Instruction Latency Cycles/Issue  

Load / Store 5 1 

Integer Multiply 3 1 

Integer/Long Divide 18/50 18/50 

Single/Double FP Multiply 4/5 1 

Single/Double FP Add 3 1 

Single/Double FP Divide 18/32 18/32 



Hard Bounds (cont’d) 

 How many cycles at least if 

 Function requires n float adds? 

 Function requires n float ops (adds and mults)? 

 Function requires n int mults? 



Performance in Numerical Computing 

 Numerical computing =  
computing dominated by floating point operations 

 Example: Matrix multiplication 

 Performance measure (in most cases) for a numerical function:  

 

 
 

 Theoretical peak performance on 3 GHz Core 2 (1 core)? 

 Scalar (no SSE): 6 Gflop/s 

 SSE double precision: 12 Gflop/s 

 SSE single precision: 24 Gflop/s 

#floating point operations 

runtime [s] 



Example Computation (on Pentium 4) 

 Data Types 

 Use different declarations for 
data_t 

 int 

 float 

 double 

void combine4(vec_ptr v, data_t *dest) 

{ 

  int i; 

  int length = vec_length(v); 

  data_t *d = get_vec_start(v); 

  data_t t = IDENT; 

  for (i = 0; i < length; i++) 

    t = t OP d[i]; 

  *dest = t; 

} 

 Operations 

 Use different definitions of OP 
and IDENT 

  + / 0 

  * / 1 

d[0] OP d[1] OP d[2] OP … OP d[length-1] 



Runtime of Combine4 (Pentium 4) 

 Use cycles/OP 

 

 

 

 

 

 

 

 Questions: 

 Explain red row 

 Explain gray row 

void combine4(vec_ptr v,  

  data_t *dest) 

{ 

  int i; 

  int length = vec_length(v); 

  data_t *d = get_vec_start(v); 

  data_t t = IDENT; 

  for (i = 0; i < length; i++) 

    t = t OP d[i]; 

  *dest = t; 

} 

Method Int (add/mult) Float (add/mult) 

combine4 2.2 10.0 5.0 7.0 

bound 1.0 1.0 2.0 2.0 

Cycles per OP 



Combine4 = Serial Computation (OP = *) 

 Computation (length=8) 
 ((((((((1 * d[0]) * d[1]) * d[2]) * d[3])  

* d[4]) * d[5]) * d[6]) * d[7]) 

 Sequential dependence = no ILP! Hence, 

 Performance: determined by latency of OP! 

* 

* 

1 d0 

d1 

* 

d2 
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d3 

* 

d4 

* 

d5 

* 

d6 

* 

d7 

Method Int (add/mult) Float (add/mult) 

combine4 2.2 10.0 5.0 7.0 

bound 1.0 1.0 2.0 2.0 

Cycles per element (or per OP) 



Loop Unrolling 

 Perform 2x more useful work per iteration 

void unroll2(vec_ptr v, data_t *dest) 

{ 

    int length = vec_length(v); 

    int limit = length-1; 

    data_t *d = get_vec_start(v); 

    data_t x = IDENT; 

    int i; 

    /* Combine 2 elements at a time */ 

    for (i = 0; i < limit; i+=2) { 

 x = (x OP d[i]) OP d[i+1]; 

    } 

    /* Finish any remaining elements */ 

    for (; i < length; i++) { 

 x = x OP d[i]; 

    } 

    *dest = x; 

} 



Effect of Loop Unrolling 

 Helps integer sum 

 Others don’t improve. Why? 

 Still sequential dependency 

x = (x OP d[i]) OP d[i+1]; 

Method Int (add/mult) Float (add/mult) 

combine4 2.2 10.0 5.0 7.0 

unroll2 1.5 10.0 5.0 7.0 

bound 1.0 1.0 2.0 2.0 



Loop Unrolling with Reassociation 

 Can this change the result of the computation? 

 Yes, for FP. Why? 

void unroll2_ra(vec_ptr v, data_t *dest) 

{ 

    int length = vec_length(v); 

    int limit = length-1; 

    data_t *d = get_vec_start(v); 

    data_t x = IDENT; 

    int i; 

    /* Combine 2 elements at a time */ 

    for (i = 0; i < limit; i+=2) { 

 x = x OP (d[i] OP d[i+1]); 

    } 

    /* Finish any remaining elements */ 

    for (; i < length; i++) { 

 x = x OP d[i]; 

    } 

    *dest = x; 

} 



Effect of Reassociation 

 Nearly 2x speedup for Int *, FP +, FP * 

 Reason: Breaks sequential dependency 

 

 

 Why is that? (next slide) 

x = x OP (d[i] OP d[i+1]); 

Method Int (add/mult) Float (add/mult) 

combine4 2.2 10.0 5.0 7.0 

unroll2 1.5 10.0 5.0 7.0 

unroll2-ra 1.56 5.0 2.75 3.62 

bound 1.0 1.0 2.0 2.0 



Reassociated Computation 

 What changed: 
 Ops in the next iteration can be 

started early (no dependency) 

 

 Overall Performance 
 N elements, D cycles latency/op 

 Should be (N/2+1)*D cycles: 
cycle per OP ≈ D/2 

 Measured is slightly worse for FP 
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x = x OP (d[i] OP d[i+1]); 



Loop Unrolling with Separate Accumulators 

 Different form of reassociation 

void unroll2_sa(vec_ptr v, data_t *dest) 

{ 

    int length = vec_length(v); 

    int limit = length-1; 

    data_t *d = get_vec_start(v); 

    data_t x0 = IDENT; 

    data_t x1 = IDENT; 

    int i; 

    /* Combine 2 elements at a time */ 

    for (i = 0; i < limit; i+=2) { 

       x0 = x0 OP d[i]; 

       x1 = x1 OP d[i+1]; 

    } 

    /* Finish any remaining elements */ 

    for (; i < length; i++) { 

 x0 = x0 OP d[i]; 

    } 

    *dest = x0 OP x1; 

} 



Effect of Separate Accumulators 

 Almost exact 2x speedup (over unroll2) for Int *, FP +, FP * 

 Breaks sequential dependency in a “cleaner,” more obvious way 

 

 
 x0 = x0 OP d[i]; 

 x1 = x1 OP d[i+1]; 

Method Int (add/mult) Float (add/mult) 

combine4 2.2 10.0 5.0 7.0 

unroll2 1.5 10.0 5.0 7.0 

unroll2-ra 1.56 5.0 2.75 3.62 

unroll2-sa 1.50 5.0 2.5 3.5 

bound 1.0 1.0 2.0 2.0 



Separate Accumulators 
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 x0 = x0 OP d[i]; 

 x1 = x1 OP d[i+1]; 

 What changed: 
 Two independent “streams” of 

operations 

 

 Overall Performance 
 N elements, D cycles latency/op 

 Should be (N/2+1)*D cycles: 
cycles per OP ≈ D/2 

What Now? 



Unrolling & Accumulating 

 Idea 

 Use K accumulators 

 Increase K until best performance reached 

 Need to unroll by L, K divides L 

 

 Limitations 

 Diminishing returns: 
Cannot go beyond throughput limitations of execution units 

 Large overhead for short lengths: Finish off iterations sequentially 



Unrolling & Accumulating: Intel FP * 
 Case 

 Pentium 4 

 FP Multiplication 

 Theoretical Limit: 2.00  

FP * Unrolling Factor L 

K 1 2 3 4 6 8 10 12 

1 7.00 7.00 7.01 7.00 

2 3.50 3.50 3.50 

3 2.34 

4 2.01 2.00 

6 2.00 2.01 

8 2.01 

10 2.00 

12 2.00 
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Why 4? 



Why 4? 

cycles 

Those have to be  
independent 

Latency: 7 cycles 

Based on this insight:  K = #accumulators = ceil(latency/cycles per issue) 



Unrolling & Accumulating: Intel FP + 
 Case 

 Pentium 4 

 FP Addition 

 Theoretical Limit: 2.00  

FP + Unrolling Factor L 

K 1 2 3 4 6 8 10 12 

1 5.00 5.00 5.02 5.00 

2 2.50 2.51 2.51 

3 2.00 

4 2.01 2.00 

6 2.00 1.99 

8 2.01 

10 2.00 

12 2.00 



Unrolling & Accumulating: Intel Int * 
 Case 

 Pentium 4 

 Integer Multiplication 

 Theoretical Limit: 1.00  

Int * Unrolling Factor L 

K 1 2 3 4 6 8 10 12 

1 10.00 10.00 10.00 10.01 

2 5.00 5.01 5.00 

3 3.33 

4 2.50 2.51 

6 1.67 1.67 

8 1.25 

10 1.09 

12 1.14 



Unrolling & Accumulating: Intel Int + 
 Case 

 Pentium 4 

 Integer addition 

 Theoretical Limit: 1.00 

Int + Unrolling Factor L 

K 1 2 3 4 6 8 10 12 

1 2.20 1.50 1.10 1.03 

2 1.50 1.10 1.03 

3 1.34 

4 1.09 1.03 

6 1.01 1.01 

8 1.03 

10 1.04 

12 1.11 



FP * Unrolling Factor L 

K 1 2 3 4 6 8 10 12 

1 4.00 4.00 4.00 4.01 

2 2.00 2.00 2.00 

3 1.34 

4 1.00 1.00 

6 1.00 1.00 

8 1.00 

10 1.00 

12 1.00 

FP * Unrolling Factor L 

K 1 2 3 4 6 8 10 12 

1 7.00 7.00 7.01 7.00 

2 3.50 3.50 3.50 

3 2.34 

4 2.01 2.00 

6 2.00 2.01 

8 2.01 

10 2.00 

12 2.00 

Pentium 4 

Core 2 
FP * is fully pipelined 



Summary  (ILP) 

 Instruction level parallelism may have to be made explicit in program 

 Potential blockers for compilers 

 Reassociation changes result (FP) 

 Too many choices, no good way of deciding 

 Unrolling 

 By itself does often nothing (branch prediction works usually well) 

 But may be needed to enable additional transformations (here: 
reassociation) 

 

 How to program this example? 

 Solution 1: program generator generates alternatives and picks best 

 Solution 2: use model based on latency and throughput 



Organization 

 Instruction level parallelism (ILP): an example 

 Optimizing compilers and optimization blockers 

 Overview 

 Removing unnecessary procedure calls 

 Code motion 

 Strength reduction 

 Sharing of common subexpressions 

 Optimization blocker: Procedure calls 

 Optimization blocker: Memory aliasing 

 Summary 

Compiler is likely  
to do that 



Optimizing Compilers 

 Use optimization flags, default is no optimization (-O0)! 

 Good choices for gcc: -O2, -O3, -march=xxx, -m64 

 Try different flags and maybe different compilers 



Example 

 Compiled without flags:  
~1300 cycles 

 Compiled with -O3 -m64 -march=… -fno-tree-vectorize 
~150 cycles 

 Core 2 Duo 

double a[4][4]; 

double b[4][4]; 

double c[4][4]; # set to zero 

 

/* Multiply 4 x 4 matrices a and b  */ 

void mmm(double *a, double *b, double *c, int n) { 

    int i, j, k; 

    for (i = 0; i < 4; i++) 

 for (j = 0; j < 4; j++) 

             for (k = 0; k < 4; k++) 

          c[i*4+j] += a[i*4 + k]*b[k*4 + j]; 

} 

Prevents use of SSE 



Optimizing Compilers 

 Compilers are good at: mapping program to machine 

 register allocation 

 code selection and ordering (instruction scheduling) 

 dead code elimination 

 eliminating minor inefficiencies 

 Compilers are not good at: algorithmic restructuring 

 For example to increase ILP, locality, etc. 

 Cannot deal with choices 

 Compilers are not good at: overcoming “optimization blockers” 

 potential memory aliasing 

 potential procedure side-effects 



Limitations of Optimizing Compilers 

 If in doubt, the compiler is conservative 

 Operate under fundamental constraints 

 Must not change program behavior under any possible condition 

 Often prevents it from making optimizations when would only affect behavior 
under pathological conditions 

 Most analysis is performed only within procedures 

 Whole-program analysis is too expensive in most cases 

 Most analysis is based only on static information 

 Compiler has difficulty anticipating run-time inputs 

 Not good at evaluating or dealing with choices 



Organization 

 Instruction level parallelism (ILP): an example 

 Optimizing compilers and optimization blockers 

 Overview 

 Removing unnecessary procedure calls 

 Code motion 

 Strength reduction 

 Sharing of common subexpressions 

 Optimization blocker: Procedure calls 

 Optimization blocker: Memory aliasing 

 Summary 

Compiler is likely  
to do that 



Example: Data Type for Vectors 

/* data structure for vectors */ 

typedef struct{ 

 int len; 

 double *data; 

} vec; 

/* retrieve vector element and store at val */ 

int get_vec_element(*vec, idx, double *val) 

{ 

 if (idx < 0 || idx >= v->len) 

  return 0; 

 *val = v->data[idx]; 

 return 1; 

} 

len 

data 

0 1 len-1 



Example: Summing Vector Elements 

/* sum elements of vector */ 

double sum_elements(vec *v, double *res)  

{ 

  int i; 

  n = vec_length(v); 

  *res = 0.0; 

  double val; 

   

  for (i = 0; i < n; i++) { 

    get_vec_element(v, i, &val); 

    *res += val; 

  } 

  return res; 

} 

/* retrieve vector element and store at val */ 

int get_vec_element(*vec, idx, double *val) 

{ 

  if (idx < 0 || idx >= v->len) 

 return 0; 

  *val = v->data[idx]; 

  return 1; 

} 

Overhead for every fp +: 
• One fct call 
• One < 
• One >= 
• One || 
• One memory variable 

access 
 

Slowdown:  
probably 10x or more 



Removing Procedure Call 

/* sum elements of vector */ 

double sum_elements(vec *v, double *res)  

{ 

  int i; 

  n = vec_length(v); 

  *res = 0.0; 

  double *data = get_vec_start(v); 

   

  for (i = 0; i < n; i++) 

  *res += data[i]; 

  return res; 

} 

/* sum elements of vector */ 

double sum_elements(vec *v, double *res)  

{ 

  int i; 

  n = vec_length(v); 

  *res = 0.0; 

  double val; 

   

  for (i = 0; i < n; i++) { 

    get_vec_element(v, i, &val); 

  *res += val; 

  } 

  return res; 

} 



Removing Procedure Calls 

 Procedure calls can be very expensive 

 Bound checking can be very expensive 

 Abstract data types can easily lead to inefficiencies 

 Usually avoided for in superfast numerical library functions 

 

 Watch your innermost loop! 

 

 Get a feel for overhead versus actual computation being performed 



Organization 

 Instruction level parallelism (ILP): an example 

 Optimizing compilers and optimization blockers 

 Overview 

 Removing unnecessary procedure calls 

 Code motion 

 Strength reduction 

 Sharing of common subexpressions 

 Optimization blocker: Procedure calls 

 Optimization blocker: Memory aliasing 

 Summary 

Compiler is likely  
to do that 



void set_row(double *a, double *b, 

   long i, long n) 

{ 

    long j; 

    for (j = 0; j < n; j++) 

 a[n*i+j] = b[j]; 

} 

Code Motion 

 Reduce frequency with which computation is performed 

 If it will always produce same result 

 Especially moving code out of loop (loop-invariant code motion) 

 Sometimes also called precomputation 

    long j; 

    int ni = n*i; 

    for (j = 0; j < n; j++) 

 a[ni+j] = b[j]; 

void set_row(double *a, double *b, 

   long i, long n) 

{ 

    long j; 

    for (j = 0; j < n; j++) 

 a[n*i+j] = b[j]; 

} 

a 

b 



Organization 

 Instruction level parallelism (ILP): an example 

 Optimizing compilers and optimization blockers 

 Overview 

 Removing unnecessary procedure calls 

 Code motion 

 Strength reduction 

 Sharing of common subexpressions 

 Optimization blocker: Procedure calls 

 Optimization blocker: Memory aliasing 

 Summary 

Compiler is likely  
to do that 



Strength Reduction 

 Replace costly operation with simpler one 

 Example: Shift/add instead of multiply or divide 
 16*x → x << 4 

 Utility machine dependent 

 Example: Recognize sequence of products 

 

 

 

 

 

for (i = 0; i < n; i++) 

  for (j = 0; j < n; j++) 

    a[n*i + j] = b[j]; 

int ni = 0; 

for (i = 0; i < n; i++) { 

  for (j = 0; j < n; j++) 

    a[ni + j] = b[j]; 

  ni += n; 

} 



Organization 

 Instruction level parallelism (ILP): an example 

 Optimizing compilers and optimization blockers 

 Overview 

 Removing unnecessary procedure calls 

 Code motion 

 Strength reduction 

 Sharing of common subexpressions 

 Optimization blocker: Procedure calls 

 Optimization blocker: Memory aliasing 

 Summary 

Compiler is likely  
to do that 



Share Common Subexpressions 

 Reuse portions of expressions 

 Compilers often not very sophisticated in exploiting arithmetic properties 

/* Sum neighbors of i,j */ 

up =    val[(i-1)*n + j  ]; 

down =  val[(i+1)*n + j  ]; 

left =  val[i*n     + j-1]; 

right = val[i*n     + j+1]; 

sum = up + down + left + right; 

int inj = i*n + j; 

up =    val[inj - n]; 

down =  val[inj + n]; 

left =  val[inj - 1]; 

right = val[inj + 1]; 

sum = up + down + left + right; 

3 mults: i*n, (i–1)*n, (i+1)*n 1 mult: i*n 



Organization 

 Instruction level parallelism (ILP): an example 

 Optimizing compilers and optimization blockers 

 Overview 

 Removing unnecessary procedure calls 

 Code motion 

 Strength reduction 

 Sharing of common subexpressions 

 Optimization blocker: Procedure calls 

 Optimization blocker: Memory aliasing 

 Summary 

Compiler is likely  
to do that 


