
How to Write Fast Numerical Code
Spring 2011
Lecture 5

Instructor: Markus Püschel

TA: Georg Ofenbeck

Organizational

 Class Monday 14.3. → Friday 18.3

 Office hours:

 Markus: Tues 14–15:00

 Georg: Wed 14–15:00

 Research projects

 11 groups, 23 people

 I need to approve the projects

Last Time: ILP

 Latency/throughput (Pentium 4 fp mult: 7/2)

*

*

1 d0

d1

*

d2

*

d3

*

d4

*

d5

*

d6

*

d7

*

*

1 d1

d3

*

d5

*

d7

*

*

*

1 d0

d2

*

d4

*

d6

Twice as fast

Last Time: Why ILP?

cycles

Those have to be
independent

Latency: 7 cycles

Based on this insight: K = #accumulators = ceil(latency/cycles per issue)

2 cycles/issue

Organization

 Instruction level parallelism (ILP): an example

 Optimizing compilers and optimization blockers

 Overview

 Removing unnecessary procedure calls

 Code motion

 Strength reduction

 Sharing of common subexpressions

 Optimization blocker: Procedure calls

 Optimization blocker: Memory aliasing

 Summary

Compiler is likely
to do that

void lower(char *s)

{

 int i;

 for (i = 0; i < strlen(s); i++)

 if (s[i] >= 'A' && s[i] <= 'Z')

 s[i] -= ('A' - 'a');

}

Optimization Blocker #1: Procedure Calls

 Procedure to convert string to lower case

/* My version of strlen */

size_t strlen(const char *s)

{

 size_t length = 0;

 while (*s != '\0') {

 s++;

 length++;

 }

 return length;

}

O(n)

O(n2) instead of O(n)

Improving Performance

 Move call to strlen outside of loop

 Since result does not change from one iteration to another

 Form of code motion/precomputation

void lower(char *s)

{

 int i;

 int len = strlen(s);

 for (i = 0; i < len; i++)

 if (s[i] >= 'A' && s[i] <= 'Z')

 s[i] -= ('A' - 'a');

}

void lower(char *s)

{

 int i;

 for (i = 0; i < strlen(s); i++)

 if (s[i] >= 'A' && s[i] <= 'Z')

 s[i] -= ('A' - 'a');

}

Optimization Blocker: Procedure Calls
 Why couldn’t compiler move strlen out of inner loop?

 Procedure may have side effects

 Compiler usually treats procedure call as a black box that cannot be
analyzed

 Consequence: conservative in optimizations

 In this case the compiler may actually do if strlen is recognized as
built-in function

Organization

 Instruction level parallelism (ILP): an example

 Optimizing compilers and optimization blockers

 Overview

 Removing unnecessary procedure calls

 Code motion

 Strength reduction

 Sharing of common subexpressions

 Optimization blocker: Procedure calls

 Optimization blocker: Memory aliasing

 Summary

Compiler is likely
to do that

Optimization Blocker: Memory Aliasing

 Code updates b[i] (= memory access) on every iteration

 Does compiler optimize this away? No!

/* Sums rows of n x n matrix a

 and stores in vector b */

void sum_rows1(double *a, double *b, long n) {

 long i, j;

 for (i = 0; i < n; i++) {

 b[i] = 0;

 for (j = 0; j < n; j++)

 b[i] += a[i*n + j];

 }

}

a

b

Σ

Reason: Possible Memory Aliasing

 If memory is accessed, compiler assumes the possibility of
side effects

 Example:

double A[9] =

 { 0, 1, 2,

 4, 8, 16},

 32, 64, 128};

double B[3] = A+3;

sum_rows1(A, B, 3);

i = 0: [3, 8, 16]

init: [4, 8, 16]

i = 1: [3, 22, 16]

i = 2: [3, 22, 224]

Value of B:

/* Sums rows of n x n matrix a

 and stores in vector b */

void sum_rows1(double *a, double *b, long n) {

 long i, j;

 for (i = 0; i < n; i++) {

 b[i] = 0;

 for (j = 0; j < n; j++)

 b[i] += a[i*n + j];

 }

}

Removing Aliasing

 Scalar replacement:

 Copy array elements that are reused into temporary variables

 Perform computation on those variables

 Enables register allocation and instruction scheduling

 Assumes no memory aliasing (otherwise possibly incorrect)

/* Sums rows of n x n matrix a

 and stores in vector b */

void sum_rows2(double *a, double *b, long n) {

 long i, j;

 for (i = 0; i < n; i++) {

 double val = 0;

 for (j = 0; j < n; j++)

 val += a[i*n + j];

 b[i] = val;

 }

}

Optimization Blocker: Memory Aliasing
 Memory aliasing:

Two different memory references write to the same location

 Easy to have happen in C

 Since allowed to do address arithmetic

 Direct access to storage structures

 Hard to analyze = compiler cannot figure it out

 Hence is conservative

 Solution: Scalar replacement in innermost loop

 Copy memory variables that are reused into local variables

 Basic scheme:

 Load: t1 = a[i], t2 = b[i+1], ….

 Compute: t4 = t1 * t2; ….

 Store: a[i] = t12, b[i+1] = t7, …

More Difficult Example

 Matrix multiplication: C = A*B + C

 Which array elements are reused?

 All of them! But how to take advantage?

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */

void mmm(double *a, double *b, double *c, int n) {

 int i, j, k;

 for (i = 0; i < n; i++)

 for (j = 0; j < n; j++)

 for (k = 0; k < n; k++)

 c[i*n+j] += a[i*n + k]*b[k*n + j];

}

a b

i

j

*

c

=
c

+

Step 1: Blocking (Here: 2 x 2)

 Blocking, also called tiling = partial unrolling + loop exchange

 Assumes associativity (= compiler will not do it)

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */

void mmm(double *a, double *b, double *c, int n) {

 int i, j, k;

 for (i = 0; i < n; i+=2)

 for (j = 0; j < n; j+=2)

 for (k = 0; k < n; k+=2)

 for (i1 = i; i1 < i+2; i1++)

 for (j1 = j; j1 < j+2; j1++)

 for (k1 = k; k1 < k+2; k1++)

 c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];

}

a b

i1

j1

*

c

=
c

+

Step 2: Unrolling Inner Loops
c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */

void mmm(double *a, double *b, double *c, int n) {

 int i, j, k;

 for (i = 0; i < n; i+=2)

 for (j = 0; j < n; j+=2)

 for (k = 0; k < n; k+=2)

 <body>

}

 Every array element a[…], b[…],c[…] used twice

 Now scalar replacement can be applied
(so again: loop unrolling is done with a purpose)

<body>

c[i*n + j] = a[i*n + k]*b[k*n + j] + a[i*n + k+1]*b[(k+1)*n + j]

 + c[i*n + j]

c[(i+1)*n + j] = a[(i+1)*n + k]*b[k*n + j] + a[(i+1)*n + k+1]*b[(k+1)*n + j]

 + c[(i+1)*n + j]

c[i*n + (j+1)] = a[i*n + k]*b[k*n + (j+1)] + a[i*n + k+1]*b[(k+1)*n + (j+1)]

 + c[i*n + (j+1)]

c[(i+1)*n + (j+1)] = a[(i+1)*n + k]*b[k*n + (j+1)]

 + a[(i+1)*n + k+1]*b[(k+1)*n + (j+1)] + c[(i+1)*n + (j+1)]

Organization

 Instruction level parallelism (ILP): an example

 Optimizing compilers and optimization blockers

 Overview

 Removing unnecessary procedure calls

 Code motion

 Strength reduction

 Sharing of common subexpressions

 Optimization blocker: Procedure calls

 Optimization blocker: Memory aliasing

 Summary

Compiler is likely
to do that

Summary

 One can easily loose 10x, 100x in runtime or even more

 What matters besides operation count:

 Coding style (unnecessary procedure calls, unrolling, reordering, …)

 Algorithm structure (instruction level parallelism, locality, …)

 Data representation (complicated structs or simple arrays)

20x
4x SSE

4x threading

Summary: Optimize at Multiple Levels

 Algorithm:

 Evaluate different algorithm choices

 Restructuring may be needed (ILP, locality)

 Data representations:

 Careful with overhead of complicated data types

 Best are arrays

 Procedures:

 Careful with overhead

 They are black boxes for the compiler

 Loops:

 Often need to be restructured (ILP, locality)

 Unrolling often necessary to enable other optimizations

 Watch the innermost loop bodies

Numerical Functions

 Use arrays if possible

 Unroll to some extent

 To make ILP explicit

 To enable scalar replacement and hence register allocation for variables
that are reused

Organization

 Benchmarking: Basics

Section 3.2 in the tutorial http://spiral.ece.cmu.edu:8080/pub-
spiral/abstract.jsp?id=100

http://spiral.ece.cmu.edu:8080/pub-spiral/abstract.jsp?id=100
http://spiral.ece.cmu.edu:8080/pub-spiral/abstract.jsp?id=100
http://spiral.ece.cmu.edu:8080/pub-spiral/abstract.jsp?id=100
http://spiral.ece.cmu.edu:8080/pub-spiral/abstract.jsp?id=100
http://spiral.ece.cmu.edu:8080/pub-spiral/abstract.jsp?id=100
http://spiral.ece.cmu.edu:8080/pub-spiral/abstract.jsp?id=100
http://spiral.ece.cmu.edu:8080/pub-spiral/abstract.jsp?id=100

Benchmarking

 First: Verify your code!

 Measure runtime in seconds for a set of relevant input sizes

 Determine performance [flop/s]

 Assumes negligible number of other ops (division, sin, cos, …)

 Needs arithmetic cost:

 Obtained statically (cost analysis since you understand the algorithm)

 or dynamically (tool that counts, or replace ops by counters through
macros)

 Compare to theoretical peak performance

 Careful: Different algorithms may have different op count, i.e., best
flop/s is not always best runtime

How to measure runtime?

 C clock()

 process specific, low resolution, very portable

 gettimeofday

 measures wall clock time, higher resolution, somewhat portable

 Performance counter (e.g., TSC on Pentiums)

 measures cycles (i.e., also wall clock time), highest resolution, not portable

 Careful:

 measure only what you want to measure

 ensure proper machine state
(e.g., cold or warm cache = input data is or is not in cache)

 measure enough repetitions

 check how reproducible; if not reproducible: fix it

 Getting proper measurements is not easy at all!

Example: Timing MMM
 Assume MMM(A,B,C,n) computes

 C = C + AB, A,B,C are nxn matrices

double time_MMM(int n)

{ // allocate

 double *A=(double*)malloc(n*n*sizeof(double));

 double *B=(double*)malloc(n*n*sizeof(double));

 double *C=(double*)malloc(n*n*sizeof(double));

 // initialize

 for(int i=0; i<n*n; i++){

 A[i] = B[i] = C[i] = 0.0;

 }

 init_MMM(A,B,C,n); // if needed

 // warm up cache (for warm cache timing)

 MMM(A,B,C,n);

 // time

 ReadTime(t0);

 for(int i=0; i<TIMING_REPETITIONS; i++)

 MMM(A,B,C,n);

 ReadTime(t1);

 // compute runtime

 return (double)((t1-t0)/TIMING_REPETITIONS);

}

Problems with Timing

 Too few iterations: inaccurate non-reproducible timing

 Too many iterations: system events interfere

 Machine is under load: produces side effects

 Multiple timings performed on the same machine

 Bad data alignment of input/output vectors: align to multiples of cache line
(on Core: address is divisible by 64)

 Time stamp counter (if used) overflows

 Machine was not rebooted for a long time: state of operating system causes
problems

 Computation is input data dependent: choose representative input data

 Computation is inplace and data grows until an exception is triggered
(computation is done with NaNs)

 You work on a laptop that has dynamic frequency scaling

 Always check whether timings make sense, are reproducible

Benchmarks in Writing

 Specify platform, compiler and version, compiler flags used

 Plot: Very readable

 Title, x-label, y-label should be there

 Fonts large enough

 Enough contrast (no yellow on white please)

 Proper number format

 No: 13.254687; yes: 13.25

 No: 2.0345e-05 s; yes: 20.3 μs

 No: 100000 B; maybe: 100,000 B; yes: 100 KB

Markus Püschel
Computer Science

0

1

2

3

4

5

6

7

4 5 6 7 8 9 10 11 12 13

DFT 2n (single precision) on Pentium 4, 2.53 GHz
[Gflop/s]

n

Spiral SSE

Intel MKL

Spiral C

Spiral C vectorized

Horizontal
y-label

Left alignment

Attractive font (sans serif, avoid Arial)

Main line
emphasized

(red, thicker)

No y-axis
(superfluous)

Background/grid
inverted for

better layering

No legend; makes decoding easier

