
How to Write Fast Numerical Code
Spring 2011
Lecture 7

Instructor: Markus Püschel

TA: Georg Ofenbeck

Last Time: Locality

 Temporal and Spatial

memory memory

Last Time: Reuse

0

5

10

15

20

25

30

35

40

45

50

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)
Gflop/s

0

5

10

15

20

25

30

16 32 64 128 256 512 1,024 2,048 4,096 8,192 16,384 32,768 65,536 131,072 262,144

input size

..

Discrete Fourier Transform (DFT) on 2 x Core 2 Duo 3 GHz (single precision)

Gflop/s

MMM: O(n) reuse FFT: O(log(n)) reuse

Today

 Caches

Cache

 Definition: Computer memory with short access time used for the
storage of frequently or recently used instructions or data

 Naturally supports temporal locality

 Spatial locality is supported by transferring data in blocks

 Core 2: one block = 64 B = 8 doubles

Main
Memory

CPU Cache

General Cache Mechanics

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3 Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized
transfer units

Smaller, faster, more expensive
memory caches a subset of
the blocks

4

4

4

10

10

10

General Cache Concepts: Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3 Cache

Memory

Data in block b is needed Request: 14

14
Block b is in cache:
Hit!

General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3 Cache

Memory

Data in block b is needed Request: 12

Block b is not in cache:
Miss!

Block b is fetched from
memory

Request: 12

12

12

12

Block b is stored in cache
• Placement policy:

determines where b goes
•Replacement policy:

determines which block
gets evicted (victim)

Types of Cache Misses (The 3 C’s)

 Compulsory (cold) miss

 Occurs on first access to a block

 Capacity miss

 Occurs when working set is larger than the cache

 Conflict miss

 Conflict misses occur when the cache is large enough, but multiple data
objects all map to the same slot

Cache Performance Metrics
 Miss Rate

 Fraction of memory references not found in cache: misses / accesses
= 1 – hit rate

 Hit Time

 Time to deliver a block in the cache to the processor

 Core 2:
3 clock cycles for L1
14 clock cycles for L2

 Miss Penalty

 Additional time required because of a miss

 Core 2: about 100 cycles for L2 miss

General Cache Organization (S, E, B)
E = 2e lines per set
E = associativity, E=1: direct mapped

S = 2s sets

set

line

0 1 2 B-1 tag v

valid bit
B = 2b bytes per cache block (the data)

Cache size:
S x E x B data bytes

Cache Read

S = 2s sets

0 1 2 B-1 tag v

valid bit
B = 2b bytes per cache block (the data)

t bits s bits b bits

Address of word:

tag set
index

block
offset

data begins at this offset

• Locate set

• Check if any line in set
has matching tag

• Yes + line valid: hit

• Locate data starting
at offset

E = 2e lines per set
E = associativity, E=1: direct mapped

Example (S=8, E=1)

int sum_array_rows(double a[16][16])

{

 int i, j;

 double sum = 0;

 for (i = 0; i < 16; i++)

 for (j = 0; j < 16; j++)

 sum += a[i][j];

 return sum;

}

B = 32 byte = 4 doubles

assume: cold (empty) cache,
a[0][0] goes here

int sum_array_cols(double a[16][16])

{

 int i, j;

 double sum = 0;

 for (j = 0; i < 16; i++)

 for (i = 0; j < 16; j++)

 sum += a[i][j];

 return sum;

} blackboard

Ignore the variables sum, i, j

Example (S=4, E=2)

int sum_array_rows(double a[16][16])

{

 int i, j;

 double sum = 0;

 for (i = 0; i < 16; i++)

 for (j = 0; j < 16; j++)

 sum += a[i][j];

 return sum;

}

B = 32 byte = 4 doubles

assume: cold (empty) cache,
a[0][0] goes here

int sum_array_cols(double a[16][16])

{

 int i, j;

 double sum = 0;

 for (j = 0; i < 16; i++)

 for (i = 0; j < 16; j++)

 sum += a[i][j];

 return sum;

} blackboard

Ignore the variables sum, i, j

What about writes?

 What to do on a write-hit?

 Write-through: write immediately to memory

 Write-back: defer write to memory until replacement of line
(needs a valid bit)

 What to do on a write-miss?

 Write-allocate: load into cache, update line in cache

 No-write-allocate: writes immediately to memory

 Core 2:

 Write-back + Write-allocate

Small Example, Part 1

Cache:
E = 1 (direct mapped)
S = 2
B = 16 (2 doubles)

Array (accessed twice in example)
x = x[0], …, x[7]

% Matlab style code

for j = 0:1

 for i = 0:7

 access(x[i])

Access pattern:
Hit/Miss:

0123456701234567

MHMHMHMHMHMHMHMH

Result: 8 misses, 8 hits
Spatial locality: yes
Temporal locality: no

x[0]

Small Example, Part 2

Cache:
E = 1 (direct mapped)
S = 2
B = 16 (2 doubles)

Array (accessed twice in example)
x = x[0], …, x[7]

% Matlab style code

for j = 0:1

 for i = 0:2:7

 access(x[i])

 for i = 1:2:7

 access(x[i])

Access pattern:
Hit/Miss:

0246135702461357

MMMMMMMMMMMMMMMM

Result: 16 misses
Spatial locality: no
Temporal locality: no

x[0]

Small Example, Part 3

Cache:
E = 1 (direct mapped)
S = 2
B = 16 (2 doubles)

Array (accessed twice in example)
x = x[0], …, x[7]

% Matlab style code

for j = 0:1

 for k = 0:1

 for i = 0:3

 access(x[i+4j])

Access pattern:
Hit/Miss:

0123012345674567

MHMHHHHHMHMHHHHH

Result: 4 misses, 8 hits (is optimal, why?)
Spatial locality: yes
Temporal locality: yes

x[0]

The Killer: Two-Power Strided Access
x = x[0], …, x[n-1], n >> cache size

Stride 1: 0123…
Spatial locality
Full cache used

Stride 2: 0 2 4 6 …
Some spatial locality
1/2 cache used

Stride 4: 0 4 8 12 …
No spatial locality
1/4 cache used

Stride 8: 0 8 16 24 …
No spatial locality
1/8 cache used

Stride 4S: 0 4S 8S 16S …
No spatial locality
1/(4S) cache used

S sets

E-way associative (here: 2)

Same for
larger stride

x[0]

The Killer: Where Does It Occur?

 Accessing two-power size 2D arrays (e.g., images) columnwise

 2d Transforms

 Stencil computations

 Correlations

 Various transform algorithms

 Fast Fourier transform

 Wavelet transforms

 Filter banks

Today

 Linear algebra software: history, LAPACK and BLAS

 Blocking: key to performance

 MMM

 ATLAS: MMM program generator

Linear Algebra Algorithms: Examples

 Solving systems of linear equations

 Eigenvalue problems

 Singular value decomposition

 LU/Cholesky/QR/… decompositions

 … and many others

 Make up most of the numerical computation across disciplines
(sciences, computer science, engineering)

 Efficient software is extremely relevant

The Path to LAPACK

 EISPACK and LINPACK
 Libraries for linear algebra algorithms

 Developed in the early 70s

 Jack Dongarra, Jim Bunch, Cleve Moler, Pete Stewart, …

 LINPACK still used as benchmark for the TOP500 (Wiki) list of most
powerful supercomputers

 Problem:
 Implementation “vector-based,” i.e., little locality in data access

 Low performance on computers with deep memory hierarchy

 Became apparent in the 80s

 Solution: LAPACK
 Reimplement the algorithms “block-based,” i.e., with locality

 Developed late 1980s, early 1990s

 Jim Demmel, Jack Dongarra et al.

http://www.top500.org/
http://en.wikipedia.org/wiki/TOP500

LAPACK and BLAS

 Basic Idea:

 Basic Linear Algebra Subroutines (BLAS, list)

 BLAS 1: vector-vector operations (e.g., vector sum)

 BLAS 2: matrix-vector operations (e.g., matrix-vector product)

 BLAS 3: matrix-matrix operations (e.g., MMM)

 LAPACK implemented on top of BLAS

 Using BLAS 3 as much as possible

LAPACK

BLAS

static

reimplemented
for each platform

Reuse: O(1)

Reuse: O(1)

Reuse: O(n)

http://www.netlib.org/blas/blasqr.pdf

Why is BLAS3 so important?

 Using BLAS3 = blocking = enabling reuse

 Cache analysis for blocking MMM (blackboard)

 Blocking (for the memory hierarchy) is the single most important
optimization for dense linear algebra algorithms

 Unfortunately: The introduction of multicore processors requires a
reimplementation of LAPACK
just multithreading BLAS is not good enough

