
How to Write Fast Numerical Code
Spring 2011
Lecture 7

Instructor: Markus Püschel

TA: Georg Ofenbeck

Last Time: Locality

 Temporal and Spatial

memory memory

Last Time: Reuse

0

5

10

15

20

25

30

35

40

45

50

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)
Gflop/s

0

5

10

15

20

25

30

16 32 64 128 256 512 1,024 2,048 4,096 8,192 16,384 32,768 65,536 131,072 262,144

input size

..

Discrete Fourier Transform (DFT) on 2 x Core 2 Duo 3 GHz (single precision)

Gflop/s

MMM: O(n) reuse FFT: O(log(n)) reuse

Today

 Caches

Cache

 Definition: Computer memory with short access time used for the
storage of frequently or recently used instructions or data

 Naturally supports temporal locality

 Spatial locality is supported by transferring data in blocks

 Core 2: one block = 64 B = 8 doubles

Main
Memory

CPU Cache

General Cache Mechanics

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3 Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized
transfer units

Smaller, faster, more expensive
memory caches a subset of
the blocks

4

4

4

10

10

10

General Cache Concepts: Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3 Cache

Memory

Data in block b is needed Request: 14

14
Block b is in cache:
Hit!

General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3 Cache

Memory

Data in block b is needed Request: 12

Block b is not in cache:
Miss!

Block b is fetched from
memory

Request: 12

12

12

12

Block b is stored in cache
• Placement policy:

determines where b goes
•Replacement policy:

determines which block
gets evicted (victim)

Types of Cache Misses (The 3 C’s)

 Compulsory (cold) miss

 Occurs on first access to a block

 Capacity miss

 Occurs when working set is larger than the cache

 Conflict miss

 Conflict misses occur when the cache is large enough, but multiple data
objects all map to the same slot

Cache Performance Metrics
 Miss Rate

 Fraction of memory references not found in cache: misses / accesses
= 1 – hit rate

 Hit Time

 Time to deliver a block in the cache to the processor

 Core 2:
3 clock cycles for L1
14 clock cycles for L2

 Miss Penalty

 Additional time required because of a miss

 Core 2: about 100 cycles for L2 miss

General Cache Organization (S, E, B)
E = 2e lines per set
E = associativity, E=1: direct mapped

S = 2s sets

set

line

0 1 2 B-1 tag v

valid bit
B = 2b bytes per cache block (the data)

Cache size:
S x E x B data bytes

Cache Read

S = 2s sets

0 1 2 B-1 tag v

valid bit
B = 2b bytes per cache block (the data)

t bits s bits b bits

Address of word:

tag set
index

block
offset

data begins at this offset

• Locate set

• Check if any line in set
has matching tag

• Yes + line valid: hit

• Locate data starting
at offset

E = 2e lines per set
E = associativity, E=1: direct mapped

Example (S=8, E=1)

int sum_array_rows(double a[16][16])

{

 int i, j;

 double sum = 0;

 for (i = 0; i < 16; i++)

 for (j = 0; j < 16; j++)

 sum += a[i][j];

 return sum;

}

B = 32 byte = 4 doubles

assume: cold (empty) cache,
a[0][0] goes here

int sum_array_cols(double a[16][16])

{

 int i, j;

 double sum = 0;

 for (j = 0; i < 16; i++)

 for (i = 0; j < 16; j++)

 sum += a[i][j];

 return sum;

} blackboard

Ignore the variables sum, i, j

Example (S=4, E=2)

int sum_array_rows(double a[16][16])

{

 int i, j;

 double sum = 0;

 for (i = 0; i < 16; i++)

 for (j = 0; j < 16; j++)

 sum += a[i][j];

 return sum;

}

B = 32 byte = 4 doubles

assume: cold (empty) cache,
a[0][0] goes here

int sum_array_cols(double a[16][16])

{

 int i, j;

 double sum = 0;

 for (j = 0; i < 16; i++)

 for (i = 0; j < 16; j++)

 sum += a[i][j];

 return sum;

} blackboard

Ignore the variables sum, i, j

What about writes?

 What to do on a write-hit?

 Write-through: write immediately to memory

 Write-back: defer write to memory until replacement of line
(needs a valid bit)

 What to do on a write-miss?

 Write-allocate: load into cache, update line in cache

 No-write-allocate: writes immediately to memory

 Core 2:

 Write-back + Write-allocate

Small Example, Part 1

Cache:
E = 1 (direct mapped)
S = 2
B = 16 (2 doubles)

Array (accessed twice in example)
x = x[0], …, x[7]

% Matlab style code

for j = 0:1

 for i = 0:7

 access(x[i])

Access pattern:
Hit/Miss:

0123456701234567

MHMHMHMHMHMHMHMH

Result: 8 misses, 8 hits
Spatial locality: yes
Temporal locality: no

x[0]

Small Example, Part 2

Cache:
E = 1 (direct mapped)
S = 2
B = 16 (2 doubles)

Array (accessed twice in example)
x = x[0], …, x[7]

% Matlab style code

for j = 0:1

 for i = 0:2:7

 access(x[i])

 for i = 1:2:7

 access(x[i])

Access pattern:
Hit/Miss:

0246135702461357

MMMMMMMMMMMMMMMM

Result: 16 misses
Spatial locality: no
Temporal locality: no

x[0]

Small Example, Part 3

Cache:
E = 1 (direct mapped)
S = 2
B = 16 (2 doubles)

Array (accessed twice in example)
x = x[0], …, x[7]

% Matlab style code

for j = 0:1

 for k = 0:1

 for i = 0:3

 access(x[i+4j])

Access pattern:
Hit/Miss:

0123012345674567

MHMHHHHHMHMHHHHH

Result: 4 misses, 8 hits (is optimal, why?)
Spatial locality: yes
Temporal locality: yes

x[0]

The Killer: Two-Power Strided Access
x = x[0], …, x[n-1], n >> cache size

Stride 1: 0123…
Spatial locality
Full cache used

Stride 2: 0 2 4 6 …
Some spatial locality
1/2 cache used

Stride 4: 0 4 8 12 …
No spatial locality
1/4 cache used

Stride 8: 0 8 16 24 …
No spatial locality
1/8 cache used

Stride 4S: 0 4S 8S 16S …
No spatial locality
1/(4S) cache used

S sets

E-way associative (here: 2)

Same for
larger stride

x[0]

The Killer: Where Does It Occur?

 Accessing two-power size 2D arrays (e.g., images) columnwise

 2d Transforms

 Stencil computations

 Correlations

 Various transform algorithms

 Fast Fourier transform

 Wavelet transforms

 Filter banks

Today

 Linear algebra software: history, LAPACK and BLAS

 Blocking: key to performance

 MMM

 ATLAS: MMM program generator

Linear Algebra Algorithms: Examples

 Solving systems of linear equations

 Eigenvalue problems

 Singular value decomposition

 LU/Cholesky/QR/… decompositions

 … and many others

 Make up most of the numerical computation across disciplines
(sciences, computer science, engineering)

 Efficient software is extremely relevant

The Path to LAPACK

 EISPACK and LINPACK
 Libraries for linear algebra algorithms

 Developed in the early 70s

 Jack Dongarra, Jim Bunch, Cleve Moler, Pete Stewart, …

 LINPACK still used as benchmark for the TOP500 (Wiki) list of most
powerful supercomputers

 Problem:
 Implementation “vector-based,” i.e., little locality in data access

 Low performance on computers with deep memory hierarchy

 Became apparent in the 80s

 Solution: LAPACK
 Reimplement the algorithms “block-based,” i.e., with locality

 Developed late 1980s, early 1990s

 Jim Demmel, Jack Dongarra et al.

http://www.top500.org/
http://en.wikipedia.org/wiki/TOP500

LAPACK and BLAS

 Basic Idea:

 Basic Linear Algebra Subroutines (BLAS, list)

 BLAS 1: vector-vector operations (e.g., vector sum)

 BLAS 2: matrix-vector operations (e.g., matrix-vector product)

 BLAS 3: matrix-matrix operations (e.g., MMM)

 LAPACK implemented on top of BLAS

 Using BLAS 3 as much as possible

LAPACK

BLAS

static

reimplemented
for each platform

Reuse: O(1)

Reuse: O(1)

Reuse: O(n)

http://www.netlib.org/blas/blasqr.pdf

Why is BLAS3 so important?

 Using BLAS3 = blocking = enabling reuse

 Cache analysis for blocking MMM (blackboard)

 Blocking (for the memory hierarchy) is the single most important
optimization for dense linear algebra algorithms

 Unfortunately: The introduction of multicore processors requires a
reimplementation of LAPACK
just multithreading BLAS is not good enough

