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Last Time: Locality 

 Temporal and Spatial 

memory memory 



Last Time: Reuse 
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MMM: O(n) reuse FFT: O(log(n)) reuse 



Today 

 Caches 



Cache 

 Definition: Computer memory with short access time used for the 
storage of frequently or recently used instructions or data 

 

 

 

 

 Naturally supports temporal locality 

 Spatial locality is supported by transferring data in blocks 

 Core 2: one block = 64 B = 8 doubles 

Main 
Memory 

CPU Cache 



General Cache Mechanics 
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Memory 
Larger, slower, cheaper memory 
viewed as partitioned into “blocks” 

Data is copied in block-sized 
transfer units 
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General Cache Concepts: Hit 
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Memory 

Data in block b is needed Request: 14 

14 
Block b is in cache: 
Hit! 



General Cache Concepts: Miss 

0 1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 

8 9 14 3 Cache 

Memory 

Data in block b is needed Request: 12 

Block b is not in cache: 
Miss! 

Block b is fetched from 
memory 

Request: 12 
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Block b is stored in cache 
• Placement policy: 

determines where b goes 
•Replacement policy: 

determines which block 
gets evicted (victim) 



Types of Cache Misses (The 3 C’s) 

 Compulsory (cold) miss 

 Occurs on first access to a block 

 Capacity miss 

 Occurs when working set is larger than the cache 

 Conflict miss 

 Conflict misses occur when the cache is large enough, but multiple data 
objects all map to the same slot 

 



Cache Performance Metrics 
 Miss Rate 

 Fraction of memory references not found in cache: misses / accesses 
= 1 – hit rate 

 Hit Time 

 Time to deliver a block in the cache to the processor 

 Core 2: 
3 clock cycles for L1 
14 clock cycles for L2 

 Miss Penalty 

 Additional time required because of a miss 

 Core 2: about 100 cycles for L2 miss 



General Cache Organization (S, E, B) 
E = 2e lines per set  
E = associativity, E=1: direct mapped 

S = 2s sets 

set 

line 

0 1 2 B-1 tag v 

valid bit 
B = 2b bytes per cache block (the data) 

Cache size: 
S x E x B data bytes 



Cache Read 

S = 2s sets 

0 1 2 B-1 tag v 

valid bit 
B = 2b bytes per cache block (the data) 

t bits s bits b bits 

Address of word: 

tag set 
index 

block 
offset 

data begins at this offset 

• Locate set 

• Check if any line in set 
has matching tag 

• Yes + line valid: hit 

• Locate data starting 
at offset 

E = 2e lines per set  
E = associativity, E=1: direct mapped 



Example (S=8, E=1) 

int sum_array_rows(double a[16][16]) 

{ 

    int i, j; 

    double sum = 0; 

 

    for (i = 0; i < 16; i++) 

        for (j = 0; j < 16; j++) 

            sum += a[i][j]; 

    return sum; 

} 

B = 32 byte = 4 doubles 

assume: cold (empty) cache, 
a[0][0] goes here 

int sum_array_cols(double a[16][16]) 

{ 

    int i, j; 

    double sum = 0; 

 

    for (j = 0; i < 16; i++) 

        for (i = 0; j < 16; j++) 

            sum += a[i][j]; 

    return sum; 

} blackboard 

Ignore the variables sum, i, j 



Example (S=4, E=2) 

int sum_array_rows(double a[16][16]) 

{ 

    int i, j; 

    double sum = 0; 

 

    for (i = 0; i < 16; i++) 

        for (j = 0; j < 16; j++) 

            sum += a[i][j]; 

    return sum; 

} 

B = 32 byte = 4 doubles 

assume: cold (empty) cache, 
a[0][0] goes here 

int sum_array_cols(double a[16][16]) 

{ 

    int i, j; 

    double sum = 0; 

 

    for (j = 0; i < 16; i++) 

        for (i = 0; j < 16; j++) 

            sum += a[i][j]; 

    return sum; 

} blackboard 

Ignore the variables sum, i, j 



What about writes? 

 What to do on a write-hit? 

 Write-through: write immediately to memory 

 Write-back: defer write to memory until replacement of line 
(needs a valid bit) 

 What to do on a write-miss? 

 Write-allocate: load into cache, update line in cache 

 No-write-allocate: writes immediately to memory 

 Core 2: 

 Write-back + Write-allocate 

 



Small Example, Part 1 

Cache: 
E = 1 (direct mapped) 
S = 2 
B = 16 (2 doubles) 

Array (accessed twice in example)  
x = x[0], …, x[7] 

% Matlab style code 

for j = 0:1 

   for i = 0:7 

      access(x[i]) 

Access pattern: 
Hit/Miss: 

0123456701234567 

MHMHMHMHMHMHMHMH 

Result: 8 misses, 8 hits 
Spatial locality: yes 
Temporal locality: no 

x[0] 



Small Example, Part 2 

Cache: 
E = 1 (direct mapped) 
S = 2 
B = 16 (2 doubles) 

Array (accessed twice in example)  
x = x[0], …, x[7] 

% Matlab style code 

for j = 0:1 

   for i = 0:2:7 

      access(x[i]) 

   for i = 1:2:7 

      access(x[i]) 

Access pattern: 
Hit/Miss: 

0246135702461357 

MMMMMMMMMMMMMMMM 

Result: 16 misses 
Spatial locality: no 
Temporal locality: no 

x[0] 



Small Example, Part 3 

Cache: 
E = 1 (direct mapped) 
S = 2 
B = 16 (2 doubles) 

Array (accessed twice in example)  
x = x[0], …, x[7] 

% Matlab style code 

for j = 0:1 

   for k = 0:1 

      for i = 0:3 

         access(x[i+4j]) 

Access pattern: 
Hit/Miss: 

0123012345674567 

MHMHHHHHMHMHHHHH 

Result: 4 misses, 8 hits (is optimal, why?) 
Spatial locality: yes 
Temporal locality: yes 

x[0] 



The Killer: Two-Power Strided Access 
x = x[0], …, x[n-1], n >> cache size 

Stride 1: 0123… 
Spatial locality 
Full cache used 

Stride 2: 0 2 4 6 … 
Some spatial locality 
1/2 cache used 

Stride 4: 0 4 8 12 … 
No spatial locality 
1/4 cache used 

Stride 8: 0 8 16 24 … 
No spatial locality 
1/8 cache used 

Stride 4S: 0 4S 8S 16S … 
No spatial locality 
1/(4S) cache used 

S sets 

E-way associative (here: 2) 

Same for 
larger stride 

x[0] 



The Killer: Where Does It Occur? 

 Accessing two-power size 2D arrays (e.g., images) columnwise 

 2d Transforms 

 Stencil computations 

 Correlations 

 Various transform algorithms 

 Fast Fourier transform 

 Wavelet transforms 

 Filter banks 



Today 

 Linear algebra software: history, LAPACK and BLAS 

 Blocking: key to performance 

 MMM 

 ATLAS: MMM program generator 



Linear Algebra Algorithms: Examples 

 Solving systems of linear equations 

 Eigenvalue problems 

 Singular value decomposition 

 LU/Cholesky/QR/… decompositions 

 … and many others 

 

 

 Make up most of the numerical computation across disciplines 
(sciences, computer science, engineering) 

 Efficient software is extremely relevant 



The Path to LAPACK 

 EISPACK and LINPACK 
 Libraries for linear algebra algorithms  

 Developed in the early 70s 

 Jack Dongarra, Jim Bunch, Cleve Moler, Pete Stewart, … 

 LINPACK still used as benchmark for the TOP500 (Wiki) list of most 
powerful supercomputers 

 Problem:  
 Implementation “vector-based,” i.e., little locality in data access 

 Low performance on computers with deep memory hierarchy 

 Became apparent in the 80s 

 Solution: LAPACK 
 Reimplement the algorithms “block-based,” i.e., with locality 

 Developed late 1980s, early 1990s 

 Jim Demmel, Jack Dongarra et al. 

http://www.top500.org/
http://en.wikipedia.org/wiki/TOP500


LAPACK and BLAS 

 Basic Idea: 

 

 

 

 Basic Linear Algebra Subroutines (BLAS, list) 

 BLAS 1: vector-vector operations (e.g., vector sum) 

 BLAS 2: matrix-vector operations (e.g., matrix-vector product) 

 BLAS 3: matrix-matrix operations (e.g., MMM) 

 LAPACK implemented on top of BLAS 

 Using BLAS 3 as much as possible 

LAPACK 

BLAS 

static 

reimplemented 
for each platform 

Reuse: O(1) 

Reuse: O(1) 

Reuse: O(n) 

http://www.netlib.org/blas/blasqr.pdf


Why is BLAS3 so important? 

 Using BLAS3 = blocking = enabling reuse 

 Cache analysis for blocking MMM (blackboard) 

 

 Blocking (for the memory hierarchy) is the single most important 
optimization for dense linear algebra algorithms 

 

 Unfortunately: The introduction of multicore processors requires a 
reimplementation of LAPACK  
just multithreading BLAS is not good enough 

 


