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Last Time: Locality 

 Temporal and Spatial 

memory memory 



Last Time: Reuse 
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MMM: O(n) reuse FFT: O(log(n)) reuse 



Today 

 Caches 



Cache 

 Definition: Computer memory with short access time used for the 
storage of frequently or recently used instructions or data 

 

 

 

 

 Naturally supports temporal locality 

 Spatial locality is supported by transferring data in blocks 

 Core 2: one block = 64 B = 8 doubles 

Main 
Memory 

CPU Cache 



General Cache Mechanics 
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viewed as partitioned into “blocks” 
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transfer units 

Smaller, faster, more expensive 
memory caches a  subset of 
the blocks 

4 

4 

4 

10 

10 

10 



General Cache Concepts: Hit 

0 1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 

8 9 14 3 Cache 

Memory 

Data in block b is needed Request: 14 

14 
Block b is in cache: 
Hit! 



General Cache Concepts: Miss 
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Data in block b is needed Request: 12 

Block b is not in cache: 
Miss! 

Block b is fetched from 
memory 

Request: 12 
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Block b is stored in cache 
• Placement policy: 

determines where b goes 
•Replacement policy: 

determines which block 
gets evicted (victim) 



Types of Cache Misses (The 3 C’s) 

 Compulsory (cold) miss 

 Occurs on first access to a block 

 Capacity miss 

 Occurs when working set is larger than the cache 

 Conflict miss 

 Conflict misses occur when the cache is large enough, but multiple data 
objects all map to the same slot 

 



Cache Performance Metrics 
 Miss Rate 

 Fraction of memory references not found in cache: misses / accesses 
= 1 – hit rate 

 Hit Time 

 Time to deliver a block in the cache to the processor 

 Core 2: 
3 clock cycles for L1 
14 clock cycles for L2 

 Miss Penalty 

 Additional time required because of a miss 

 Core 2: about 100 cycles for L2 miss 



General Cache Organization (S, E, B) 
E = 2e lines per set  
E = associativity, E=1: direct mapped 

S = 2s sets 

set 

line 

0 1 2 B-1 tag v 

valid bit 
B = 2b bytes per cache block (the data) 

Cache size: 
S x E x B data bytes 



Cache Read 

S = 2s sets 

0 1 2 B-1 tag v 

valid bit 
B = 2b bytes per cache block (the data) 

t bits s bits b bits 

Address of word: 

tag set 
index 

block 
offset 

data begins at this offset 

• Locate set 

• Check if any line in set 
has matching tag 

• Yes + line valid: hit 

• Locate data starting 
at offset 

E = 2e lines per set  
E = associativity, E=1: direct mapped 



Example (S=8, E=1) 

int sum_array_rows(double a[16][16]) 

{ 

    int i, j; 

    double sum = 0; 

 

    for (i = 0; i < 16; i++) 

        for (j = 0; j < 16; j++) 

            sum += a[i][j]; 

    return sum; 

} 

B = 32 byte = 4 doubles 

assume: cold (empty) cache, 
a[0][0] goes here 

int sum_array_cols(double a[16][16]) 

{ 

    int i, j; 

    double sum = 0; 

 

    for (j = 0; i < 16; i++) 

        for (i = 0; j < 16; j++) 

            sum += a[i][j]; 

    return sum; 

} blackboard 

Ignore the variables sum, i, j 



Example (S=4, E=2) 

int sum_array_rows(double a[16][16]) 

{ 

    int i, j; 

    double sum = 0; 

 

    for (i = 0; i < 16; i++) 

        for (j = 0; j < 16; j++) 

            sum += a[i][j]; 

    return sum; 

} 

B = 32 byte = 4 doubles 

assume: cold (empty) cache, 
a[0][0] goes here 

int sum_array_cols(double a[16][16]) 

{ 

    int i, j; 

    double sum = 0; 

 

    for (j = 0; i < 16; i++) 

        for (i = 0; j < 16; j++) 

            sum += a[i][j]; 

    return sum; 

} blackboard 

Ignore the variables sum, i, j 



What about writes? 

 What to do on a write-hit? 

 Write-through: write immediately to memory 

 Write-back: defer write to memory until replacement of line 
(needs a valid bit) 

 What to do on a write-miss? 

 Write-allocate: load into cache, update line in cache 

 No-write-allocate: writes immediately to memory 

 Core 2: 

 Write-back + Write-allocate 

 



Small Example, Part 1 

Cache: 
E = 1 (direct mapped) 
S = 2 
B = 16 (2 doubles) 

Array (accessed twice in example)  
x = x[0], …, x[7] 

% Matlab style code 

for j = 0:1 

   for i = 0:7 

      access(x[i]) 

Access pattern: 
Hit/Miss: 

0123456701234567 

MHMHMHMHMHMHMHMH 

Result: 8 misses, 8 hits 
Spatial locality: yes 
Temporal locality: no 

x[0] 



Small Example, Part 2 

Cache: 
E = 1 (direct mapped) 
S = 2 
B = 16 (2 doubles) 

Array (accessed twice in example)  
x = x[0], …, x[7] 

% Matlab style code 

for j = 0:1 

   for i = 0:2:7 

      access(x[i]) 

   for i = 1:2:7 

      access(x[i]) 

Access pattern: 
Hit/Miss: 

0246135702461357 

MMMMMMMMMMMMMMMM 

Result: 16 misses 
Spatial locality: no 
Temporal locality: no 

x[0] 



Small Example, Part 3 

Cache: 
E = 1 (direct mapped) 
S = 2 
B = 16 (2 doubles) 

Array (accessed twice in example)  
x = x[0], …, x[7] 

% Matlab style code 

for j = 0:1 

   for k = 0:1 

      for i = 0:3 

         access(x[i+4j]) 

Access pattern: 
Hit/Miss: 

0123012345674567 

MHMHHHHHMHMHHHHH 

Result: 4 misses, 8 hits (is optimal, why?) 
Spatial locality: yes 
Temporal locality: yes 

x[0] 



The Killer: Two-Power Strided Access 
x = x[0], …, x[n-1], n >> cache size 

Stride 1: 0123… 
Spatial locality 
Full cache used 

Stride 2: 0 2 4 6 … 
Some spatial locality 
1/2 cache used 

Stride 4: 0 4 8 12 … 
No spatial locality 
1/4 cache used 

Stride 8: 0 8 16 24 … 
No spatial locality 
1/8 cache used 

Stride 4S: 0 4S 8S 16S … 
No spatial locality 
1/(4S) cache used 

S sets 

E-way associative (here: 2) 

Same for 
larger stride 

x[0] 



The Killer: Where Does It Occur? 

 Accessing two-power size 2D arrays (e.g., images) columnwise 

 2d Transforms 

 Stencil computations 

 Correlations 

 Various transform algorithms 

 Fast Fourier transform 

 Wavelet transforms 

 Filter banks 



Today 

 Linear algebra software: history, LAPACK and BLAS 

 Blocking: key to performance 

 MMM 

 ATLAS: MMM program generator 



Linear Algebra Algorithms: Examples 

 Solving systems of linear equations 

 Eigenvalue problems 

 Singular value decomposition 

 LU/Cholesky/QR/… decompositions 

 … and many others 

 

 

 Make up most of the numerical computation across disciplines 
(sciences, computer science, engineering) 

 Efficient software is extremely relevant 



The Path to LAPACK 

 EISPACK and LINPACK 
 Libraries for linear algebra algorithms  

 Developed in the early 70s 

 Jack Dongarra, Jim Bunch, Cleve Moler, Pete Stewart, … 

 LINPACK still used as benchmark for the TOP500 (Wiki) list of most 
powerful supercomputers 

 Problem:  
 Implementation “vector-based,” i.e., little locality in data access 

 Low performance on computers with deep memory hierarchy 

 Became apparent in the 80s 

 Solution: LAPACK 
 Reimplement the algorithms “block-based,” i.e., with locality 

 Developed late 1980s, early 1990s 

 Jim Demmel, Jack Dongarra et al. 

http://www.top500.org/
http://en.wikipedia.org/wiki/TOP500


LAPACK and BLAS 

 Basic Idea: 

 

 

 

 Basic Linear Algebra Subroutines (BLAS, list) 

 BLAS 1: vector-vector operations (e.g., vector sum) 

 BLAS 2: matrix-vector operations (e.g., matrix-vector product) 

 BLAS 3: matrix-matrix operations (e.g., MMM) 

 LAPACK implemented on top of BLAS 

 Using BLAS 3 as much as possible 

LAPACK 

BLAS 

static 

reimplemented 
for each platform 

Reuse: O(1) 

Reuse: O(1) 

Reuse: O(n) 

http://www.netlib.org/blas/blasqr.pdf


Why is BLAS3 so important? 

 Using BLAS3 = blocking = enabling reuse 

 Cache analysis for blocking MMM (blackboard) 

 

 Blocking (for the memory hierarchy) is the single most important 
optimization for dense linear algebra algorithms 

 

 Unfortunately: The introduction of multicore processors requires a 
reimplementation of LAPACK  
just multithreading BLAS is not good enough 

 


