
How to Write Fast Numerical Code
Spring 2011
Lecture 16

Instructor: Markus Püschel

TA: Georg Ofenbeck

Midterm
27 people
average: 65

Today

 SMVM continued

Sparse MVM (SMVM)

 y = y + Ax, A sparse but known

● = +

y y x A

CSR

 Assumptions:

 A is m x n

 K nonzero entries

b c c

a

b b

c

A as matrix

b c c a b b c

0 1 3 1 2 3 2

0 3 4 6 7

values

col_idx

row_start

A in CSR:

length K

length K

length m+1

BCSR (Blocks of Size r x c)

 Assumptions:

 A is m x n

 Block size r x c

 Kr,c nonzero blocks

b c c

a

b b

c

A as matrix (r = c = 2)

b c 0 c 0 0 c 0 b b c 0

0 2 2

0 2 4

b_values

b_col_idx

b_row_start

A in BCSR (r = c = 2):

length rcKr,c

length Kr,c

length m/r+1

Model: Example

Gain by blocking (dense MVM) Overhead (average) by blocking

16/9 = 1.77

1.4

1.4/1.77 = 0.79 (no gain)

* =

Model: Doing that for all r and c
and picking best

Typical Result

BCRS model

BCSR exhaustive
search

Analytical
upper bound
how obtained?
(blackboard)

CRS

Figure: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for
Sparse Matrix Kernels, Int’l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004

Principles in Bebop/Sparsity Optimization

 SMVM is memory bound

 Optimization for memory hierarchy = increasing locality
 Blocking for registers (micro-MMMs)

 Requires change of data structure for A

 Optimizations are input dependent (on sparse structure of A)

 Fast basic blocks for small sizes (micro-MMM):
 Unrolled, scalar replacement (enables better compiler optimization)

 Search for the fastest over a relevant set of algorithm/implementation
alternatives (parameters r, c)
 Use of performance model (versus measuring runtime) to evaluate expected

gain

Different from ATLAS

SMVM: Other Ideas

 Value compression

 Index compression

 Pattern-based compression

 Cache blocking

 Special scenario: Multiple inputs

Value Compression

 Situation: Matrix A contains many duplicate values

 Idea: Store only unique ones plus index information

b c c

a

b b

c

b c c a b b c

0 1 3 1 2 3 2

0 3 4 6 7

values

col_idx

row_start

A in CSR:

1 2 2 0 1 1 2

0 1 3 1 2 3 2

0 3 4 6 7

values

col_idx

row_start

A in CSR-VI:

a b c

Kourtis, Goumas, and Koziris, Improving the Performance of Multithreaded
Sparse Matrix-Vector Multiplication using Index and Value Compression, pp. 511-519, ICPP 2008

Index Compression

 Situation: Matrix A contains sequences of nonzero entries

 Idea: Use special byte code to jointly compress col_idx and row_start

row_start

col_idx

byte code

Coding Decoding

Willcock and Lumsdaine, Accelerating Sparse Matrix Computations
via Data Compression, pp. 307-316, ICS 2006

Pattern-Based Compression

 Situation: After blocking A, many blocks have the same nonzero
pattern

 Idea: Use special BCSR format to avoid storing zeros;
needs specialized micro-MVM kernel for each pattern

b c c

a

b b

c

A as matrix

b c 0 c 0 0 c 0 b b c 0

Values in 2 x 2 BCSR

b c c c b b c

Values in 2 x 2 PBR

+ bit string: 1101 0100 1110

Belgin, Back, and Ribbens, Pattern-based Sparse Matrix Representation
for Memory-Efficient SMVM Kernels, pp. 100-109, ICS 2009

Cache Blocking

 Idea: divide sparse matrix into blocks of sparse matrices

 Experiments:

 Requires very large matrices (x and y do not fit into cache)

 Speed-up up to 2.2x, only for few matrices, with 1 x 1 BCSR

Figure: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for
Sparse Matrix Kernels, Int’l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004

Special scenario: Multiple inputs

 Situation: Compute SMVM y = y + Ax for several independent x

 Blackboard

 Experiments:
up to 9x speedup for 9 vectors

Source: Eun-Jin Im, Katherine A. Yelick, Richard Vuduc. SPARSITY: An Optimization Framework for
Sparse Matrix Kernels, Int’l Journal of High Performance Comp. App., 18(1), pp. 135-158, 2004

