Optimizations Keleded to the Virtual Hemory Sy	s de
Background: (6re) - the processor works with virtuel addresses - all caeles work with physical addresses - both address spaces are organized in pages typical page size: 4KB - so the address translation translates virtuel page numbers into physical page numbers	
Core: virtual address address physical address physical physical address physical physical physical physical address physical physical physical physical physical address physical physical physical physical physical address physical physica	See See
Notes: VPN = virtual page number VPO = " offset PPN = phytical page number PPO = " offset SI = set indox BO = Slock offset address translation: VPN -> PPN VPO = PPO = SIUBO -> cache lookup can stant VPO = PPO = SIUBO -> cache VPN -> PPN translation is frished?	
address translation - uses a cache called translation lookastole buffer - Gre 2: two levels of caches for loads - TLBO: 16 entries - one TLB - one TLB - 64 entries - of entries - one TLB	TLB
Consequence: Repeatedly accessing a working set the	

Solution 1: use larger pyes may require different kernel (05) and C std library
Solution 2 (if possible): copy workly set into contiguous me more; =) less pages are used
flow does this affect MMM?
N = D 3NB ijk loop order, N = D 3NB
which memory regions are repeateally accessed?
which memory regions are repeatedly accessed? - block row of a: is configuous - all of b: is configuous - the of c: can be spread over Nis pages if 17 > 512 = (512 doubles = 4418 = page sie
Sut: typically ND 2 (00 < size (DTCBI) so at most 2 cycles penally per vow
=) not worth to copy (or come)
Rut: He BLAS 3 function agence has this interface:
dgemm (a, b, c, N, 4, M, Ida, lob, loc) matrix matrix positions dinemposs dinemposs
The leading dimensions enable deemin to be called on submetrices of larger matrices:
$a \rightarrow \Box$ $b \rightarrow \Box$ $K = c \rightarrow \Box$
which nevery regions are repeatedly accessed? Idc
- Slow vow of a: spread over $\leq N_0$ pages - all of δ : spread over $\leq K$ pages \leftarrow - tile of c : spread over $\leq N_0$ pages

Here copy may pay for large enough K

(ode:

(all of 13 reused: possibly copy

for i=0: Na: N-1

(block vow of A reused: possibly copy

for j=0: Na: M-1

(tile of C reused: vossibly copy

for K=0: NB: K-1