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matrix size 

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz 
Performance [Gflop/s] 

Memory hierarchy: 20x 

Vector instructions: 4x 

Multiple threads: 4x 

 Compiler doesn’t do the job 

 Doing by hand: nightmare 
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Algorithms 

Software 

Compilers 

Microarchitecture 

performance 

Algorithms 

Software 

Compilers 

Microarchitecture 

Compilers 

Performance is different than other software quality features 
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Today 

 Problem and Algorithm 

 Asymptotic analysis 

 Cost analysis 

 

 Standard book: Introduction to Algorithms (2nd edition), Corman, 
Leiserson, Rivest, Stein, McGraw Hill 2001) 
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Problem 

 Problem: Specification of the relationship between a given input and 
a desired output 

 Numerical problems (this class): In- and output are numbers  
(or lists, vectors, arrays, … of numbers) 

 Examples 
 Compute the discrete Fourier transform of a given vector x of length n 

 Matrix-matrix multiplication (MMM) 

 Compress an n x n image with a ratio … 

 Sort a given list of integers 

 Multiply by 5, y = 5x,  using only additions and shifts 
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Algorithm 

 Algorithm: A precise description of a sequence of steps to solve a 
given problem 

 Numerical algorithms: Dominated by arithmetic  
(additions, multiplications, …) 

 Examples: 
 Cooley-Tukey fast Fourier transform (FFT) 

 A description of MMM by definition 

 JPEG encoding 

 Mergesort 

 y = x<<2 + x 
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Reminder: Do You Know The O? 

 O(f(n)) is a … ?   

 How are these related?  

 O(f(n)) 

 Θ(f(n)) 

 Ω((f(n)) 

 O(2n) = O(3n)?    

 O(log2(n)) = O(log3(n))   

 O(n2 + m) = O(n2)?   

Θ(f(n) = Ω(f(n)) ∩ O(f(n)) 

set 

no 

yes 

no 
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Always Use Canonical Expressions 

 Example:  

 not O(2n + log(n)), but 

 Canonical? If not replace: 

 O(100)    

 O(log2(n))    

 Θ(n1.1 + n log(n))   

 2n + O(log(n))   

 O(2n) + log(n)   

 Ω(n log(m) + m log(n))  

 

O(n) 

O(1) 

O(log(n)) 

Θ(n1.1) 

O(n) 

yes 

yes 
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Asymptotic Analysis of Algorithms & Problems 

 Analysis of Algorithms for 

 Runtime 

 Space = memory requirement (or footprint) 

 Asymptotic runtime of an algorithm: 

 Count “elementary” steps  
numerical algorithms: usually floating point operations  

 State result in O-notation 

 Example MMM (square and rectangular): C = A*B + C 

 Runtime complexity of a problem =  
Minimum of the runtimes of all possible algorithms 

 Result also stated in asymptotic O-notation 

Complexity is a property of a problem, not of an algorithm 
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Valid? 

 Is asymptotic analysis still valid given this? 

 

 

 

 

 

 

 Memory: yes, if the algorithm is O(f(n)), all memory effects are O(f(n)) 

 Vectorization, parallelization may introduce additional parameters 

 Vector length ν 

 Number of processors p 

11 

Asymptotic Analysis: Limitations 

 Θ(f(n)) describes only the eventual shape of the runtime 

 

 

 

 

 

 

 

 Constants matter 

 Not clear when “eventual” starts 

 n2 is likely better than 1000n2 

 10000000000n is likely worse than n2 
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size n 

runtime 

? 

? 

? 
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Cost Analysis for Numerical Problems 

 Goal: determine exact “cost” of an algorithm 

 Cost = number of relevant operations  

 Numerical code (this course): 
 Number of floating point adds 

 Number of floating point mults 

 Possibly: Number of sin/cos, div, sqrt, … 
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/* Multiply n x n matrices a and b  */ 
void mmm(double *a, double *b, double *c, int n) { 
    int i, j, k; 
    for (i = 0; i < n; i++) 
        for (j = 0; j < n; j++) 
            for (k = 0; k < n; k++) 
        c[i*n+j] += a[i*n + k]*b[k*n + j]; 
} 

Asymptotic runtime: O(n3) 

Cost: (fl. adds, fl. mults) = 

Cost: flops = 2n3 

(n3, n3) 

Cost Analysis: How To Do 

 Count in algorithm or code 

 Recursive code: solve recurrence  
easy case (first order): blackboard 
hard cases: Graham, Knuth, Patashnik, “Concrete Mathematics,” 2nd edition, 
Addison Wesley 1994  

 Instrument code 

 Use performance counters (maybe in a later lecture) 

 Intel PCM 

 Intel Vtune 

 Perfmon (open source) 
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http://software.intel.com/en-us/node/326559?page=1
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://perfmon2.sourceforge.net/
http://perfmon2.sourceforge.net/
http://perfmon2.sourceforge.net/
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Master Theorem: Divide-And Conquer Algorithms 

Recurrence 

Solution 

Stays valid if n/b is replaced by its floor or ceiling 

Runtime for problem size n 

a subproblems of size n/b 

Cost of conquer step 

15 

Solving recurrences is the “exact” cost analysis equivalent 

Remember: Even Exact Cost ≠ Runtime 
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2n3 flops 
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Why Cost Analysis? 

 Enables performance analysis: 

 

 

 

 Upper bound through machine’s peak performance 
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Peak performance 
of this computer 

performance =  
cost 

runtime 
[flops/cycle] or [flops/sec] 

90 % of peak performance 

Example 

 Flops? For n = 10? 

 2n2 , 200 

 Performance for n = 10 if runs in 400 cycles 

 0.5 ops/cycle 

 Assume peak performance: 2 flops/cycle 
percentage peak? 

 25% 
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/* Matrix-vector multiplication y = Ax + y */ 
void mmm(double *A, double *x, double *y, int n) { 
    int i, j, k; 
    for (i = 0; i < n; i++) 
        for (j = 0; j < n; j++) 
    y[i] += A[i*n + j]*x[j]; 
} 
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Summary 

 Asymptotic runtime gives only rough idea of runtime 

 Exact number of operations (cost):  

 Also no good indicator of runtime 

 But enables performance analysis 

 Always measure performance (if possible) 

 Gives idea of efficiency 

 Gives percentage of peak 
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