
© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

How to Write Fast Numerical Code
Spring 2013
Lecture: Cost analysis and performance

Instructor: Markus Püschel

TA: Georg Ofenbeck & Daniele Spampinato

Technicalities

 Research project: Let us know

 if you know with whom you will work

 if you have already a project idea

 current status: on the web

 Deadline: March 7th

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

0

5

10

15

20

25

30

35

40

45

50

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Performance [Gflop/s]

Memory hierarchy: 20x

Vector instructions: 4x

Multiple threads: 4x

 Compiler doesn’t do the job

 Doing by hand: nightmare
3

Algorithms

Software

Compilers

Microarchitecture

performance

Algorithms

Software

Compilers

Microarchitecture

Compilers

Performance is different than other software quality features

4

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

Today

 Problem and Algorithm

 Asymptotic analysis

 Cost analysis

 Standard book: Introduction to Algorithms (2nd edition), Corman,
Leiserson, Rivest, Stein, McGraw Hill 2001)

5

Problem

 Problem: Specification of the relationship between a given input and
a desired output

 Numerical problems (this class): In- and output are numbers
(or lists, vectors, arrays, … of numbers)

 Examples
 Compute the discrete Fourier transform of a given vector x of length n

 Matrix-matrix multiplication (MMM)

 Compress an n x n image with a ratio …

 Sort a given list of integers

 Multiply by 5, y = 5x, using only additions and shifts

6

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

Algorithm

 Algorithm: A precise description of a sequence of steps to solve a
given problem

 Numerical algorithms: Dominated by arithmetic
(additions, multiplications, …)

 Examples:
 Cooley-Tukey fast Fourier transform (FFT)

 A description of MMM by definition

 JPEG encoding

 Mergesort

 y = x<<2 + x

7

Reminder: Do You Know The O?

 O(f(n)) is a … ?

 How are these related?

 O(f(n))

 Θ(f(n))

 Ω((f(n))

 O(2n) = O(3n)?

 O(log2(n)) = O(log3(n))

 O(n2 + m) = O(n2)?

Θ(f(n) = Ω(f(n)) ∩ O(f(n))

set

no

yes

no

8

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

Always Use Canonical Expressions

 Example:

 not O(2n + log(n)), but

 Canonical? If not replace:

 O(100)

 O(log2(n))

 Θ(n1.1 + n log(n))

 2n + O(log(n))

 O(2n) + log(n)

 Ω(n log(m) + m log(n))

O(n)

O(1)

O(log(n))

Θ(n1.1)

O(n)

yes

yes

9

Asymptotic Analysis of Algorithms & Problems

 Analysis of Algorithms for

 Runtime

 Space = memory requirement (or footprint)

 Asymptotic runtime of an algorithm:

 Count “elementary” steps
numerical algorithms: usually floating point operations

 State result in O-notation

 Example MMM (square and rectangular): C = A*B + C

 Runtime complexity of a problem =
Minimum of the runtimes of all possible algorithms

 Result also stated in asymptotic O-notation

Complexity is a property of a problem, not of an algorithm

10

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

Valid?

 Is asymptotic analysis still valid given this?

 Memory: yes, if the algorithm is O(f(n)), all memory effects are O(f(n))

 Vectorization, parallelization may introduce additional parameters

 Vector length ν

 Number of processors p

11

Asymptotic Analysis: Limitations

 Θ(f(n)) describes only the eventual shape of the runtime

 Constants matter

 Not clear when “eventual” starts

 n2 is likely better than 1000n2

 10000000000n is likely worse than n2

12

size n

runtime

?

?

?

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

Cost Analysis for Numerical Problems

 Goal: determine exact “cost” of an algorithm

 Cost = number of relevant operations

 Numerical code (this course):
 Number of floating point adds

 Number of floating point mults

 Possibly: Number of sin/cos, div, sqrt, …

13

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
 int i, j, k;
 for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 for (k = 0; k < n; k++)
 c[i*n+j] += a[i*n + k]*b[k*n + j];
}

Asymptotic runtime: O(n3)

Cost: (fl. adds, fl. mults) =

Cost: flops = 2n3

(n3, n3)

Cost Analysis: How To Do

 Count in algorithm or code

 Recursive code: solve recurrence
easy case (first order): blackboard
hard cases: Graham, Knuth, Patashnik, “Concrete Mathematics,” 2nd edition,
Addison Wesley 1994

 Instrument code

 Use performance counters (maybe in a later lecture)

 Intel PCM

 Intel Vtune

 Perfmon (open source)

14

http://software.intel.com/en-us/node/326559?page=1
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://perfmon2.sourceforge.net/
http://perfmon2.sourceforge.net/
http://perfmon2.sourceforge.net/

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

Master Theorem: Divide-And Conquer Algorithms

Recurrence

Solution

Stays valid if n/b is replaced by its floor or ceiling

Runtime for problem size n

a subproblems of size n/b

Cost of conquer step

15

Solving recurrences is the “exact” cost analysis equivalent

Remember: Even Exact Cost ≠ Runtime

16

2n3 flops

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

Why Cost Analysis?

 Enables performance analysis:

 Upper bound through machine’s peak performance

17

Peak performance
of this computer

performance =
cost

runtime
[flops/cycle] or [flops/sec]

90 % of peak performance

Example

 Flops? For n = 10?

 2n2 , 200

 Performance for n = 10 if runs in 400 cycles

 0.5 ops/cycle

 Assume peak performance: 2 flops/cycle
percentage peak?

 25%

18

/* Matrix-vector multiplication y = Ax + y */
void mmm(double *A, double *x, double *y, int n) {
 int i, j, k;
 for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 y[i] += A[i*n + j]*x[j];
}

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

Summary

 Asymptotic runtime gives only rough idea of runtime

 Exact number of operations (cost):

 Also no good indicator of runtime

 But enables performance analysis

 Always measure performance (if possible)

 Gives idea of efficiency

 Gives percentage of peak

19

