
© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

How to Write Fast Numerical Code
Spring 2013
Lecture: Memory hierarchy, locality, caches

Instructor: Markus Püschel

TA: Georg Ofenbeck & Daniele Spampinato

0

1

2

3

4

5

6

7

4 5 6 7 8 9 10 11 12 13

DFT 2
n
 (single precision) on Pentium 4, 2.53 GHz

[Gflop/s]

n

Spiral SSE

Intel MKL

Spiral scalar

Spiral vectorized

Horizontal
y-label

Left alignment
Attractive font (sans serif, avoid Arial)
Calibri, Helvetica, Gill Sans MT, …

Main line
possibly

emphasized
(red, thicker) No y-axis

(superfluous)

Background/grid
inverted for

better layering

No legend; makes decoding easier

2

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

Organization

 Temporal and spatial locality

 Memory hierarchy

 Caches

Chapter 5 in Computer Systems: A Programmer's Perspective, 2nd edition,
Randal E. Bryant and David R. O'Hallaron, Addison Wesley 2010
Part of these slides are adapted from the course associated with this book

3

Problem: Processor-Memory Bottleneck

Main
Memory

CPU Reg

Processor performance
doubled about
every 18 months Bus bandwidth

evolved much slower

Core 2 Duo:
Peak performance:
2 SSE two operand ops/cycles
consumes up to 64 Bytes/cycle

Core 2 Duo:
Bandwidth
2 Bytes/cycle

Solution: Caches/Memory hierarchy

4

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

Typical Memory Hierarchy

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(tapes, distributed file systems, Web servers)

Local disks hold files
retrieved from disks on
remote network servers

Main memory holds disk blocks
retrieved from local disks

on-chip L2
cache (SRAM)

L1 cache holds cache lines retrieved from
L2 cache

CPU registers hold words retrieved from
 L1 cache

L2 cache holds cache lines retrieved
from main memory

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
costlier
per byte

5

1 Core

Abstracted Microarchitecture: Example Core 2 (2008) and Core i7 Sandybridge (2011)
Throughput (tp) is measured in doubles/cycle. For example: 2 (4)
Latency (lat) is measured in cycles
1 double floating point (FP) = 8 bytes
Rectangles not to scale

Hard disk
≥ 0.5 TB

fadd

fmul

ALU

load

store

Main
Memory

(RAM)
4 GB

L2 cache
4 MB

16-way
64B CB

L1 Icache

both:
32 KB
8-way
64B CB

L1 Dcache

16 FP
register

internal
registers

instruction
decoder

(up to 5 ops/cycle) instruction pool
(up to 96 (168) “in flight”)

execution
units

double FP:
scalar tp:
• 1 add/cycle
• 1 mult/cycle

vector (SSE) tp
• 1 vadd/cycle = 2 adds/cycle
• 1 vmult/cycle = 2 mults/cycle

CISC ops
RISC
μops

issue
6 μops/

cycle

lat: 3 (4)
tp: 2 (4)

lat: 14 (12)
tp: 1 (4)

lat: 100
tp: 1/4

lat: millions
tp: ~1/250
 (~1/100)

ISA

Core #1

Core #2

Core 2 Duo:
on die

RAM

Memory hierarchy:
• Registers
• L1 cache
• L2 cache
• Main memory
• Hard disk

Core i7 Sandy Bridge:
Core #1

Core #2

Core #3

Core #4

L2

L2

L2

L2

L2

L3

on die

RAM

Core 2 Core i7

256 KB L2 cache
2–8MB L3 cache: lat 26-31, tp 4
RAM: tp 1
vector (AVX) tp
• 1 vadd/cycle = 4 adds/cycle
• 1 vmult/cycle = 4 mults/cycle

out of order execution
superscalar

© Markus Püschel
Computer Science Source: Intel manual (chapter 2)

depends
on platform

CB = cache block

depends
on platform

6

http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

Why Caches Work: Locality

 Locality: Programs tend to use data and instructions with addresses
near or equal to those they have used recently
History of locality

 Temporal locality:

Recently referenced items are likely
to be referenced again in the near future

 Spatial locality:

Items with nearby addresses tend
to be referenced close together in time

memory

memory

7

Example: Locality?

 Data:

 Temporal: sum referenced in each iteration

 Spatial: array a[] accessed in stride-1 pattern

 Instructions:

 Temporal: loops cycle through the same instructions

 Spatial: instructions referenced in sequence

 Being able to assess the locality of code is a crucial skill for a
performance programmer

sum = 0;
for (i = 0; i < n; i++)
 sum += a[i];
return sum;

8

http://portal.acm.org/citation.cfm?id=1070856&CFID=14583291&CFTOKEN=68731695&ret=1
http://portal.acm.org/citation.cfm?id=1070856&CFID=14583291&CFTOKEN=68731695&ret=1

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

Locality Example #1

int sum_array_rows(int a[M][N])
{
 int i, j, sum = 0;

 for (i = 0; i < M; i++)
 for (j = 0; j < N; j++)
 sum += a[i][j];
 return sum;
}

9

Locality Example #2

int sum_array_cols(int a[M][N])
{
 int i, j, sum = 0;

 for (j = 0; j < N; j++)
 for (i = 0; i < M; i++)
 sum += a[i][j];
 return sum;
}

10

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

Locality Example #3

int sum_array_3d(int a[M][N][K])
{
 int i, j, k, sum = 0;

 for (i = 0; i < M; i++)
 for (j = 0; j < N; j++)
 for (k = 0; k < K; k++)
 sum += a[k][i][j];
 return sum;
}

How to improve locality?

11

Operational Intensity Again

 Definition: Given a program P, assume cold (empty) cache

 Examples: Determine asymptotic bounds on I(n)

 Vector sum: y = x + y

 Matrix-vector product: y = Ax

 Fast Fourier transform

 Matrix-matrix product: C = AB + C

12

O(1)

O(1)

O(log(n))

O(n)

Operational intensity: I(n) =
W(n)

Q(n)

#flops (input size n)

#bytes transferred cache ↔ memory
(for input size n)

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

Compute/Memory Bound

 A function/piece of code is:

 Compute bound if it has high operational intensity

 Memory bound if it has low operational intensity

 Relationship between operational intensity and locality?

 Operational intensity » locality

13

Effects

0

5

10

15

20

25

30

35

40

45

50

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

matrix size

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double)
Gflop/s

0

5

10

15

20

25

30

16 32 64 128 256 512 1,024 2,048 4,096 8,192 16,384 32,768 65,536 131,072 262,144

input size

.

Discrete Fourier Transform (DFT) on 2 x Core 2 Duo 3 GHz (single)
Gflop/s

MMM: I(n) ≤ O(n) FFT: I(n) ≤ O(log(n))

Up to 80-90% peak
Performance can be maintained
outside L2 cache
Cache miss time compensated/hidden
by computation

Up to 40-50% peak
Performance drop outside L2 cache
Most time spent transferring data

14

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

Cache

 Definition: Computer memory with short access time used for the
storage of frequently or recently used instructions or data

 Naturally supports temporal locality

 Spatial locality is supported by transferring data in blocks

 Core 2: one block = 64 B = 8 doubles

Main
Memory

CPU Cache

15

General Cache Mechanics

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3 Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized
transfer units

Smaller, faster, more expensive
memory caches a subset of
the blocks

4

4

4

10

10

10

16

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

General Cache Concepts: Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3 Cache

Memory

Data in block b is needed Request: 14

14
Block b is in cache:
Hit!

17

General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3 Cache

Memory

Data in block b is needed Request: 12

Block b is not in cache:
Miss!

Block b is fetched from
memory

Request: 12

12

12

12

Block b is stored in cache
• Placement policy:

determines where b goes
•Replacement policy:

determines which block
gets evicted (victim)

18

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

Types of Cache Misses (The 3 C’s)

 Compulsory (cold) miss

Occurs on first access to a block

 Capacity miss

Occurs when working set is larger than the cache

 Conflict miss

Conflict misses occur when the cache is large enough, but multiple data
objects all map to the same slot

 Not a clean classification but still useful

19

Cache Performance Metrics

 Miss Rate

 Fraction of memory references not found in cache: misses / accesses
= 1 – hit rate

 Hit Time

 Time to deliver a block in the cache to the processor

 Core 2:
3 clock cycles for L1
14 clock cycles for L2

 Miss Penalty

 Additional time required because of a miss

 Core 2: about 100 cycles for L2 miss

20

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

Cache Structure

 Draw a direct mapped cache (E = 1, B = 4 doubles, S = 8)

 Show how blocks are mapped into cache

21

Example (S=8, E=1)

int sum_array_rows(double a[16][16])
{
 int i, j;
 double sum = 0;

 for (i = 0; i < 16; i++)
 for (j = 0; j < 16; j++)
 sum += a[i][j];
 return sum;
}

B = 32 byte = 4 doubles

assume: cold (empty) cache,
a[0][0] goes here

int sum_array_cols(double a[16][16])
{
 int i, j;
 double sum = 0;

 for (j = 0; j < 16; i++)
 for (i = 0; i < 16; j++)
 sum += a[i][j];
 return sum;
} blackboard

Ignore the variables sum, i, j

22

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

Cache Structure

 Add associativity (E = 2, B = 4 doubles, S = 8)

 Show how elements are mapped into cache

23

Example (S=4, E=2)

B = 32 byte = 4 doubles

assume: cold (empty) cache,
a[0][0] goes here

blackboard

Ignore the variables sum, i, j

int sum_array_rows(double a[16][16])
{
 int i, j;
 double sum = 0;

 for (i = 0; i < 16; i++)
 for (j = 0; j < 16; j++)
 sum += a[i][j];
 return sum;
}

int sum_array_cols(double a[16][16])
{
 int i, j;
 double sum = 0;

 for (j = 0; j < 16; i++)
 for (i = 0; i < 16; j++)
 sum += a[i][j];
 return sum;
}

24

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

General Cache Organization (S, E, B)
E = 2e lines per set
E = associativity, E=1: direct mapped

S = 2s sets

set

line

0 1 2 B-1 tag v

valid bit
B = 2b bytes per cache block (the data)

Cache size:
S x E x B data bytes

25

Cache Read

S = 2s sets

0 1 2 B-1 tag v

valid bit
B = 2b bytes per cache block (the data)

t bits s bits b bits

Address of word:

tag set
index

block
offset

data begins at this offset

• Locate set

• Check if any line in set
has matching tag

• Yes + line valid: hit

• Locate data starting
at offset

E = 2e lines per set
E = associativity, E=1: direct mapped

26

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

Small Example, Part 1

Cache:
E = 1 (direct mapped)
S = 2
B = 16 (2 doubles)

Array (accessed twice in example)
x = x[0], …, x[7]

% Matlab style code
for j = 0:1
 for i = 0:7
 access(x[i])

Access pattern:
Hit/Miss:

0123456701234567

MHMHMHMHMHMHMHMH

Result: 8 misses, 8 hits
Spatial locality: yes
Temporal locality: no

x[0]

27

Small Example, Part 2

Cache:
E = 1 (direct mapped)
S = 2
B = 16 (2 doubles)

Array (accessed twice in example)
x = x[0], …, x[7]

% Matlab style code
for j = 0:1
 for i = 0:2:7
 access(x[i])
 for i = 1:2:7
 access(x[i])

Access pattern:
Hit/Miss:

0246135702461357

MMMMMMMMMMMMMMMM

Result: 16 misses
Spatial locality: no
Temporal locality: no

x[0]

28

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

Small Example, Part 3

Cache:
E = 1 (direct mapped)
S = 2
B = 16 (2 doubles)

Array (accessed twice in example)
x = x[0], …, x[7]

% Matlab style code
for j = 0:1
 for k = 0:1
 for i = 0:3
 access(x[i+4j])

Access pattern:
Hit/Miss:

0123012345674567

MHMHHHHHMHMHHHHH

Result: 4 misses, 12 hits (is optimal, why?)
Spatial locality: yes
Temporal locality: yes

x[0]

29

Terminology

 Direct mapped cache:

 Cache with E = 1

 Means every block from memory has a unique location in cache

 Fully associative cache

 Cache with S = 1 (i.e., maximal E)

 Means every block from memory can be mapped to any location in cache

 In practice to expensive to build

 LRU (least recently used) replacement

 when selecting which block should be replaced (happens only for E > 1),
the least recently used one is chosen

30

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

What about writes?

 What to do on a write-hit?

 Write-through: write immediately to memory

 Write-back: defer write to memory until replacement of line

 What to do on a write-miss?

 Write-allocate: load into cache, update line in cache

 No-write-allocate: writes immediately to memory

Write-back/write-allocate (Core)

$

mem

CPU

Write-hit

$

mem

CPU

Write-miss

1: load

2: update update

Write-through/no-write-allocate

$

mem

CPU

Write-hit

$

mem

CPU

Write-miss

1: update

2: update update

31

Example: (Blackboard)

 z = x + y, x, y, z vector of length n

 assume they fit jointly in cache + cold cache

 memory traffic Q(n)?

 operational intensity I(n)?

32

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

Locality Optimization: Blocking

 Example: MMM (blackboard)

33

The Killer: Two-Power Strided Working Sets

% t = 1,2,4,8,… a 2-power
% size of working set: n/t
for (i = 0; i < n; i += t)
 access(x[i])
for (i = 0; i < n; i += t)
 access(x[i])

Cache: E = 2, B = 4 doubles

x[0]

t = 1: t = 2: t = 4: t = 8: t ≥ 4S:

Spatial locality
Temporal locality:
if n/t ≤ C

Some spatial locality
Temporal locality:
if n/t ≤ C/2

No spatial locality
Temporal locality:
if n/t ≤ C/4

No spatial locality
Temporal locality:
if n/t ≤ C/8

No spatial locality
Temporal locality:
if n/t ≤ 2

blackboard

34

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

The Killer: Where Can It Occur?

 Accessing two-power size 2D arrays (e.g., images) columnwise

 2d Transforms

 Stencil computations

 Correlations

 Various transform algorithms

 Fast Fourier transform

 Wavelet transforms

 Filter banks

35

Summary

 It is important to assess temporal and spatial locality in the code

 Cache structure is determined by three parameters

 You should be able to roughly simulate a computation on paper

 Blocking to improve locality

 Two-power strides are problematic (conflict misses)

36

