
© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

How to Write Fast Numerical Code
Spring 2013
Lecture: Dense linear algebra, LAPACK, MMM optimizations in ATLAS

Instructor: Markus Püschel

TA: Georg Ofenbeck & Daniele Spampinato

Today

 Linear algebra software: history, LAPACK and BLAS

 Blocking (BLAS 3): key to performance

 How to make MMM fast: ATLAS, model-based ATLAS

2

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

Linear Algebra Algorithms: Examples

 Solving systems of linear equations

 Eigenvalue problems

 Singular value decomposition

 LU/Cholesky/QR/… decompositions

 … and many others

 Make up most of the numerical computation across disciplines
(sciences, computer science, engineering)

 Efficient software is extremely relevant

3

The Path to LAPACK

 EISPACK and LINPACK (early 70s)
 Libraries for linear algebra algorithms

 Jack Dongarra, Jim Bunch, Cleve Moler, Gilbert Stewart

 LINPACK still the name of the benchmark for the TOP500 (Wiki) list of
most powerful supercomputers

 Problem:
 Implementation vector-based = low operational intensity

(e.g., MMM as double loop over scalar products of vectors)

 Low performance on computers with deep memory hierarchy (in the 80s)

 Solution: LAPACK
 Reimplement the algorithms “block-based,” i.e., with locality

 Developed late 1980s, early 1990s

 Jim Demmel, Jack Dongarra et al.

4

http://www.top500.org/
http://en.wikipedia.org/wiki/TOP500

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

Matlab

 Invented in the late 70s by Cleve Moler

 Commercialized (MathWorks) in 84

 Motivation: Make LINPACK, EISPACK easy to use

 Matlab uses LAPACK and other libraries but can only call it if you
operate with matrices and vectors and do not write your own loops

 A*B (calls MMM routine)

 A\b (calls linear system solver)

5

LAPACK and BLAS

 Basic Idea:

 Basic Linear Algebra Subroutines (BLAS, list)

 BLAS 1: vector-vector operations (e.g., vector sum)

 BLAS 2: matrix-vector operations (e.g., matrix-vector product)

 BLAS 3: matrix-matrix operations (e.g., MMM)

 LAPACK implemented on top of BLAS

 Using BLAS 3 as much as possible

LAPACK

BLAS

static

reimplemented
for each platform

I(n) =

O(1)

O(1)

O(
p
C)

cache
size

6

http://www.netlib.org/blas/blasqr.pdf

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

Why is BLAS3 so important?

 Using BLAS3 (instead of BLAS 1 or 2) in LAPACK
= blocking
= high operational intensity I
= high performance

 Remember (blocking MMM):

* =

* =

I(n) =

O(1)

O(
p
C)

7

Today

 Linear algebra software: history, LAPACK and BLAS

 Blocking (BLAS 3): key to performance

 How to make MMM fast: ATLAS, model-based ATLAS

8

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

MMM: Complexity?

 Usually computed as C = AB + C

 Cost as computed before

 n3 multiplications + n3 additions = 2n3 floating point operations

 = O(n3) runtime

 Blocking

 Increases locality (see previous example)

 Does not decrease cost

 Can we reduce the op count?

9

Strassen’s Algorithm

 Strassen, V. "Gaussian Elimination is Not Optimal," Numerische
Mathematik 13, 354-356, 1969
Until then, MMM was thought to be Θ(n3)

 Recurrence: T(n) = 7T(n/2) + O(n2) = O(nlog2(7)) ≈ O(n2.808)

 Fewer ops from n=654, but …

 Structure more complex → performance crossover much later

 Numerical stability inferior

 Can we reduce more?

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20

MMM: Cost by definition/Cost Strassen

log2(n)

crossover: 654

10

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

MMM Complexity: What is known

 Coppersmith, D. and Winograd, S.: "Matrix Multiplication via
Arithmetic Programming," J. Symb. Comput. 9, 251-280, 1990

 MMM is O(n2.376)

 MMM is obviously Ω(n2)

 It could well be close to Θ(n2)

 Practically all code out there uses 2n3 flops

 Compare this to matrix-vector multiplication:
 Known to be Θ(n2) (Winograd), i.e., boring

11

MMM: Memory Hierarchy Optimization

 Huge performance difference for large sizes

 Great case study to learn memory hierarchy optimization

 12

matrix size

MMM (square real double) Core 2 Duo 3Ghz

triple loop

ATLAS generated

theoretical scalar peak

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

ATLAS

 BLAS program generator and library (web, successor of PhiPAC)

 Idea: automatic porting

 People can also contribute handwritten code

 The generator uses empirical search over implementation
alternatives to find the fastest implementation
no vectorization or parallelization: so not really used anymore

 We focus on BLAS 3 MMM

 Search only over cost 2n3 algorithms
(cost equal to triple loop)

LAPACK

BLAS

static

regenerated
for each platform

13

ATLAS Architecture

Detect
Hardware

Parameters

ATLAS Search
Engine

(MMSearch)

NR
MulAdd

L*

L1Size
ATLAS MM

Code Generator
(MMCase)

xFetch
MulAdd
Latency

NB
MU,NU,KU MiniMMM

Source

Compile,
Execute,
Measure

MFLOPS

Hardware parameters:
• L1Size: size of L1 data cache
• NR: number of registers
• MulAdd: fused multiply-add available?
• L* : latency of FP multiplication

Search parameters:
• for example blocking sizes
• span search space
• specify code
• found by orthogonal line search

source: Pingali, Yotov, Cornell U. 14

http://math-atlas.sourceforge.net/

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

ATLAS

Detect
Hardware

Parameters

ATLAS
Search Engine

NR
MulAdd

L*

L1Size

ATLAS MMM
Code Generator

xFetch
MulAdd
Latency

NB
MU,NU,KU MiniMMM

Source

Compile
Execute

Measure

Mflop/s

Model-Based ATLAS

Detect
Hardware

Parameters
Model NR

MulAdd
L*

L1I$Size ATLAS MMM
Code Generator

xFetch
MulAdd
Latency

NB
MU,NU,KU MiniMMM

Source

L1Size

• Search for parameters replaced by model to compute them
• More hardware parameters needed

source: Pingali, Yotov, Cornell U. 15

Optimizing MMM

 Blackboard

 References:

"Automated Empirical Optimization of Software and the ATLAS project" by R.
Clint Whaley, Antoine Petitet and Jack Dongarra. Parallel Computing, 27(1-
2):3-35, 2001

K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali, P. Stodghill,
Is Search Really Necessary to Generate High-Performance BLAS?, Proceedings
of the IEEE, 93(2), pp. 358–386, 2005.

Our presentation is based on this paper

16

http://www.google.ch/url?sa=t&source=web&cd=4&ved=0CDwQFjAD&url=http://www.netlib.org/lapack/lawnspdf/lawn147.pdf&rct=j&q=Automated Empirical Optimization of Software and the ATLAS project&ei=lw2HTdTSHIKCOu-4iNkI&usg=AFQjCNEjPGwZfZ873yvNHH1vvrC6WBpmwQ&sig2=1c42eaC-A1isMp2wVF_9mQ&cad=rja
http://www.google.ch/url?sa=t&source=web&cd=1&ved=0CB4QFjAA&url=http://iss.ices.utexas.edu/Publications/Papers/ieee05.pdf&rct=j&q=is search really necessary&ei=eQ2HTbiJF9GcOujT3f4I&usg=AFQjCNEDyTDYDsdUlfRCDwqWruxqB0gNEA&sig2=OLYrHfxZu51kS0ykj6tZWA&cad=rja
http://www.google.ch/url?sa=t&source=web&cd=1&ved=0CB4QFjAA&url=http://iss.ices.utexas.edu/Publications/Papers/ieee05.pdf&rct=j&q=is search really necessary&ei=eQ2HTbiJF9GcOujT3f4I&usg=AFQjCNEDyTDYDsdUlfRCDwqWruxqB0gNEA&sig2=OLYrHfxZu51kS0ykj6tZWA&cad=rja
http://www.google.ch/url?sa=t&source=web&cd=1&ved=0CB4QFjAA&url=http://iss.ices.utexas.edu/Publications/Papers/ieee05.pdf&rct=j&q=is search really necessary&ei=eQ2HTbiJF9GcOujT3f4I&usg=AFQjCNEDyTDYDsdUlfRCDwqWruxqB0gNEA&sig2=OLYrHfxZu51kS0ykj6tZWA&cad=rja
http://www.google.ch/url?sa=t&source=web&cd=1&ved=0CB4QFjAA&url=http://iss.ices.utexas.edu/Publications/Papers/ieee05.pdf&rct=j&q=is search really necessary&ei=eQ2HTbiJF9GcOujT3f4I&usg=AFQjCNEDyTDYDsdUlfRCDwqWruxqB0gNEA&sig2=OLYrHfxZu51kS0ykj6tZWA&cad=rja

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

Remaining Details

 Register renaming and the refined model for x86

 TLB effects

17

Dependencies

 Read-after-write (RAW) or true dependency

 Write after read (WAR) or antidependency

 Write after write (WAW) or output dependency

r1 = r3 + r4
r2 = 2r1

W
R

nothing can be done
no ILP

r1 = r2 + r3
r2 = r4 + r5

R
W

dependency only by
name → rename

r1 = r2 + r3
r = r4 + r5

now ILP

r1 = r2 + r3
…
r1 = r4 + r5

W

W

dependency only by
name → rename

r1 = r2 + r3
…
r = r4 + r5

now ILP

18

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

Resolving WAR

 Compiler: Use a different register, r = r6

 Hardware (if supported): register renaming

 Requires a separation of architectural and physical registers

 Requires more physical than architectural registers

r1 = r2 + r3
r2 = r4 + r5

R
W

dependency only by
name → rename

r1 = r2 + r3
r = r4 + r5

now ILP

19

Register Renaming

 Hardware manages mapping architectural → physical registers

 More physical than logical registers

 Hence: more instances of each ri can be created

 Used in superscalar architectures (e.g., Intel Core) to increase ILP by
resolving WAR dependencies

r1

r2

r3

rn

ISA
architectural (logical) registers physical registers

20

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

Scalar Replacement Again

 How to avoid WAR and WAW in your basic block source code

 Solution: Single static assignment (SSA) code:

 Each variable is assigned exactly once

 <more>
 s266 = (t287 - t285);
 s267 = (t282 + t286);
 s268 = (t282 - t286);
 s269 = (t284 + t288);
 s270 = (t284 - t288);
 s271 = (0.5*(t271 + t280));
 s272 = (0.5*(t271 - t280));
 s273 = (0.5*((t281 + t283) - (t285 + t287)));
 s274 = (0.5*(s265 - s266));
 t289 = ((9.0*s272) + (5.4*s273));
 t290 = ((5.4*s272) + (12.6*s273));
 t291 = ((1.8*s271) + (1.2*s274));
 t292 = ((1.2*s271) + (2.4*s274));
 a122 = (1.8*(t269 - t278));
 a123 = (1.8*s267);
 a124 = (1.8*s269);
 t293 = ((a122 - a123) + a124);
 a125 = (1.8*(t267 - t276));
 t294 = (a125 + a123 + a124);
 t295 = ((a125 - a122) + (3.6*s267));
 t296 = (a122 + a125 + (3.6*s269));
 <more>

no duplicates

21

Micro-MMM Standard Model

 MU*NU + MU + NU ≤ NR – ceil((Lx+1)/2)

 Core: MU = 2, NU = 3

 Code sketch (KU = 1)

● =

a

b

c

rc1 = c[0,0], …, rc6 = c[1,2] // 6 registers
loop over k {
 load a // 2 registers
 load b // 3 registers
 compute // 6 indep. mults, 6 indep. adds, reuse a and b
}
c[0,0] = rc1, …, c[1,2] = rc6

reuse in a, b, c

22

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

Extended Model (x86)

 MU = 1, NU = NR – 2 = 14

 Code sketch (KU = 1)

● =
a b c

reuse in c

rc1 = c[0], …, rc14 = c[13] // 14 registers
loop over k {
 load a // 1 register
 rb = b[1] // 1 register
 rb = rb*a // mult (two-operand)
 rc1 = rc1 + rb // add (two-operand)
 rb = b[2] // reuse register (WAR: renaming resolves it)
 rb = rb*a
 rc2 = rc2 + rb
 …
}
c[0] = rc1, …, c[13] = rc14 Summary:

- no reuse in a and b
+ larger tile size for c since for b only one register is used 23

Experiments

 Unleashed: Not generated =
hand-written contributed code

 Refined model for computing
register tiles on x86

 Blocking is for L1 cache

 Result: Model-based is
comparable to search-based
(except Itanium)

graph: Pingali, Yotov, Cornell U.

ATLAS generated

24

© Markus Püschel
Computer Science

How to write fast numerical code

Spring 2013

Remaining Details

 Register renaming and the refined model for x86

 TLB effects

 Blackboard

25

