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Today 

 Linear algebra software: history, LAPACK and BLAS 

 Blocking (BLAS 3): key to performance 

 How to make MMM fast: ATLAS, model-based ATLAS 
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Linear Algebra Algorithms: Examples 

 Solving systems of linear equations 

 Eigenvalue problems 

 Singular value decomposition 

 LU/Cholesky/QR/… decompositions 

 … and many others 

 

 

 Make up most of the numerical computation across disciplines 
(sciences, computer science, engineering) 

 Efficient software is extremely relevant 
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The Path to LAPACK 

 EISPACK and LINPACK (early 70s) 
 Libraries for linear algebra algorithms  

 Jack Dongarra, Jim Bunch, Cleve Moler, Gilbert Stewart 

 LINPACK still the name of the benchmark for the TOP500 (Wiki) list of 
most powerful supercomputers 

 Problem:  
 Implementation vector-based = low operational intensity 

(e.g., MMM as double loop over scalar products of vectors) 

 Low performance on computers with deep memory hierarchy (in the 80s) 

 Solution: LAPACK 
 Reimplement the algorithms “block-based,” i.e., with locality 

 Developed late 1980s, early 1990s 

 Jim Demmel, Jack Dongarra et al. 
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http://www.top500.org/
http://en.wikipedia.org/wiki/TOP500
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Matlab 

 Invented in the late 70s by Cleve Moler 

 Commercialized (MathWorks) in 84 

 Motivation: Make LINPACK, EISPACK easy to use 

 Matlab uses LAPACK and other libraries but can only call it if you 
operate with matrices and vectors and do not write your own loops 

 A*B (calls MMM routine) 

 A\b (calls linear system solver) 
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LAPACK and BLAS 

 Basic Idea: 

 

 

 

 Basic Linear Algebra Subroutines (BLAS, list) 

 BLAS 1: vector-vector operations (e.g., vector sum) 

 BLAS 2: matrix-vector operations (e.g., matrix-vector product) 

 BLAS 3: matrix-matrix operations (e.g., MMM) 

 LAPACK implemented on top of BLAS 

 Using BLAS 3 as much as possible 

LAPACK 

BLAS 

static 

reimplemented 
for each platform 

I(n) =

O(1)

O(1)

O(
p
C)

cache 
size 
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http://www.netlib.org/blas/blasqr.pdf
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Why is BLAS3 so important? 

 Using BLAS3 (instead of BLAS 1 or 2) in LAPACK 
= blocking  
= high operational intensity I  
= high performance 

 Remember (blocking MMM): 

 

* = 

* = 

I(n) =

O(1)

O(
p
C)
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Today 

 Linear algebra software: history, LAPACK and BLAS 

 Blocking (BLAS 3): key to performance 

 How to make MMM fast: ATLAS, model-based ATLAS 
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MMM: Complexity? 

 Usually computed as C = AB + C 

 Cost as computed before 

 n3 multiplications + n3 additions = 2n3 floating point operations 

 = O(n3) runtime 

 Blocking 

 Increases locality (see previous example) 

 Does not decrease cost 

 Can we reduce the op count? 
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Strassen’s Algorithm 

 Strassen, V. "Gaussian Elimination is Not Optimal," Numerische 
Mathematik 13, 354-356, 1969 
Until then, MMM was thought to be Θ(n3) 

 Recurrence: T(n) = 7T(n/2) + O(n2) = O(nlog2(7)) ≈ O(n2.808) 

 Fewer ops from n=654, but … 

 Structure more complex → performance crossover much later 

 Numerical stability inferior 

 

 Can we reduce more? 
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MMM Complexity: What is known 

 Coppersmith, D. and Winograd, S.: "Matrix Multiplication via 
Arithmetic Programming," J. Symb. Comput. 9, 251-280, 1990 

 MMM is O(n2.376) 

 

 MMM is obviously Ω(n2) 

 It could well be close to Θ(n2) 

 Practically all code out there uses 2n3 flops 

 

 Compare this to matrix-vector multiplication:  
 Known to be Θ(n2) (Winograd), i.e., boring 
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MMM: Memory Hierarchy Optimization 

 Huge performance difference for large sizes 

 Great case study to learn memory hierarchy optimization 

 12 

matrix size 

MMM (square real double) Core 2 Duo 3Ghz 

triple loop 

ATLAS generated 

theoretical scalar peak 
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ATLAS 

 BLAS program generator and library (web, successor of PhiPAC) 

 Idea: automatic porting 

 

 

 

 People can also contribute handwritten code 

 The generator uses empirical search over implementation 
alternatives to find the fastest implementation 
no vectorization or parallelization: so not really used anymore 

 We focus on BLAS 3 MMM 

 Search only over cost 2n3 algorithms  
(cost equal to triple loop) 

LAPACK 

BLAS 

static 

regenerated 
for each platform 
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ATLAS Architecture 

Detect 
Hardware 

Parameters 

ATLAS Search 
Engine 

(MMSearch) 

NR 
MulAdd 

L* 

L1Size 
ATLAS MM 

Code Generator 
(MMCase) 

xFetch 
MulAdd 
Latency 

NB 
MU,NU,KU MiniMMM 

Source 

Compile, 
Execute, 
Measure 

MFLOPS 

Hardware parameters: 
• L1Size: size of L1 data cache 
• NR: number of registers 
• MulAdd: fused multiply-add available? 
• L* : latency of FP multiplication 

Search parameters: 
• for example blocking sizes 
• span search space 
• specify code 
• found by orthogonal line search 

source: Pingali, Yotov, Cornell U. 14 

http://math-atlas.sourceforge.net/
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ATLAS 

Detect 
Hardware 

Parameters 

ATLAS  
Search Engine 

NR 
MulAdd 

L* 

L1Size 

ATLAS MMM 
Code Generator 

xFetch 
MulAdd 
Latency 

NB 
MU,NU,KU MiniMMM 

Source 

Compile 
Execute 

Measure 

Mflop/s 

Model-Based ATLAS 

Detect 
Hardware 

Parameters 
Model NR 

MulAdd 
L* 

L1I$Size ATLAS MMM 
Code Generator 

xFetch 
MulAdd 
Latency 

NB 
MU,NU,KU MiniMMM 

Source 

L1Size 

• Search for parameters replaced by model to compute them 
• More hardware parameters needed 

source: Pingali, Yotov, Cornell U. 15 

Optimizing MMM 

 Blackboard 

 References: 

"Automated Empirical Optimization of Software and the ATLAS project" by R. 
Clint Whaley, Antoine Petitet and Jack Dongarra. Parallel Computing, 27(1-
2):3-35, 2001 
 

K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali, P. Stodghill,  
Is Search Really Necessary to Generate High-Performance BLAS?, Proceedings 
of the IEEE, 93(2), pp. 358–386, 2005. 

Our presentation is based on this paper 
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http://www.google.ch/url?sa=t&source=web&cd=4&ved=0CDwQFjAD&url=http://www.netlib.org/lapack/lawnspdf/lawn147.pdf&rct=j&q=Automated Empirical Optimization of Software and the ATLAS project&ei=lw2HTdTSHIKCOu-4iNkI&usg=AFQjCNEjPGwZfZ873yvNHH1vvrC6WBpmwQ&sig2=1c42eaC-A1isMp2wVF_9mQ&cad=rja
http://www.google.ch/url?sa=t&source=web&cd=1&ved=0CB4QFjAA&url=http://iss.ices.utexas.edu/Publications/Papers/ieee05.pdf&rct=j&q=is search really necessary&ei=eQ2HTbiJF9GcOujT3f4I&usg=AFQjCNEDyTDYDsdUlfRCDwqWruxqB0gNEA&sig2=OLYrHfxZu51kS0ykj6tZWA&cad=rja
http://www.google.ch/url?sa=t&source=web&cd=1&ved=0CB4QFjAA&url=http://iss.ices.utexas.edu/Publications/Papers/ieee05.pdf&rct=j&q=is search really necessary&ei=eQ2HTbiJF9GcOujT3f4I&usg=AFQjCNEDyTDYDsdUlfRCDwqWruxqB0gNEA&sig2=OLYrHfxZu51kS0ykj6tZWA&cad=rja
http://www.google.ch/url?sa=t&source=web&cd=1&ved=0CB4QFjAA&url=http://iss.ices.utexas.edu/Publications/Papers/ieee05.pdf&rct=j&q=is search really necessary&ei=eQ2HTbiJF9GcOujT3f4I&usg=AFQjCNEDyTDYDsdUlfRCDwqWruxqB0gNEA&sig2=OLYrHfxZu51kS0ykj6tZWA&cad=rja
http://www.google.ch/url?sa=t&source=web&cd=1&ved=0CB4QFjAA&url=http://iss.ices.utexas.edu/Publications/Papers/ieee05.pdf&rct=j&q=is search really necessary&ei=eQ2HTbiJF9GcOujT3f4I&usg=AFQjCNEDyTDYDsdUlfRCDwqWruxqB0gNEA&sig2=OLYrHfxZu51kS0ykj6tZWA&cad=rja
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Remaining Details 

 Register renaming and the refined model for x86 

 TLB effects 
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Dependencies 

 Read-after-write (RAW) or true dependency 

 

 

 

 Write after read (WAR) or antidependency 

 

 

 

 Write after write (WAW) or output dependency 

r1 = r3 + r4 
r2 = 2r1 

W 
R 

nothing can be done 
no ILP 

r1 = r2 + r3 
r2 = r4 + r5 

R 
W 

dependency only by  
name → rename 

r1 = r2 + r3 
r  = r4 + r5 

now ILP 

r1 = r2 + r3 
… 
r1 = r4 + r5 

W 
 

W 

dependency only by  
name → rename 

r1 = r2 + r3 
… 
r  = r4 + r5 

now ILP 
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Resolving WAR 

 Compiler: Use a different register, r = r6  

 Hardware (if supported): register renaming 

 Requires a separation of architectural and physical registers 

 Requires more physical than architectural registers 

r1 = r2 + r3 
r2 = r4 + r5 

R 
W 

dependency only by  
name → rename 

r1 = r2 + r3 
r  = r4 + r5 

now ILP 
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Register Renaming 

 Hardware manages mapping architectural → physical registers 

 More physical than logical registers 

 Hence: more instances of each ri can be created 

 Used in superscalar architectures (e.g., Intel Core) to increase ILP by 
resolving WAR dependencies 

r1 

r2 

r3 

rn 

ISA 
architectural (logical) registers physical registers 
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Scalar Replacement Again 

 How to avoid WAR and WAW in your basic block source code 

 Solution: Single static assignment (SSA) code: 

 Each variable is assigned exactly once 

    <more> 
    s266 = (t287 - t285); 
    s267 = (t282 + t286); 
    s268 = (t282 - t286); 
    s269 = (t284 + t288); 
    s270 = (t284 - t288); 
    s271 = (0.5*(t271 + t280)); 
    s272 = (0.5*(t271 - t280)); 
    s273 = (0.5*((t281 + t283) - (t285 + t287))); 
    s274 = (0.5*(s265 - s266)); 
    t289 = ((9.0*s272) + (5.4*s273)); 
    t290 = ((5.4*s272) + (12.6*s273)); 
    t291 = ((1.8*s271) + (1.2*s274)); 
    t292 = ((1.2*s271) + (2.4*s274)); 
    a122 = (1.8*(t269 - t278)); 
    a123 = (1.8*s267); 
    a124 = (1.8*s269); 
    t293 = ((a122 - a123) + a124); 
    a125 = (1.8*(t267 - t276)); 
    t294 = (a125 + a123 + a124); 
    t295 = ((a125 - a122) + (3.6*s267)); 
    t296 = (a122 + a125 + (3.6*s269)); 
    <more> 

no duplicates 
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Micro-MMM Standard Model 

 MU*NU + MU + NU ≤ NR – ceil((Lx+1)/2) 

 Core: MU = 2, NU = 3 

 

 

 

 Code sketch (KU = 1) 

● = 

a 

b 

c 

rc1 = c[0,0], …, rc6 = c[1,2] // 6 registers 
loop over k { 
  load a  // 2 registers 
  load b  // 3 registers 
  compute // 6 indep. mults, 6 indep. adds, reuse a and b 
} 
c[0,0] = rc1, …, c[1,2] = rc6 

reuse in a, b, c 
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Extended Model (x86) 

 MU = 1, NU = NR – 2 = 14 

 

 

 Code sketch (KU = 1) 

● = 
a b c 

reuse in c 

rc1 = c[0], …, rc14 = c[13] // 14 registers 
loop over k { 
  load a          // 1 register 
  rb  = b[1]      // 1 register 
  rb  = rb*a      // mult (two-operand) 
  rc1 = rc1 + rb  // add  (two-operand) 
  rb = b[2]       // reuse register (WAR: renaming resolves it) 
  rb = rb*a        
  rc2 = rc2 + rb 
  … 
} 
c[0] = rc1, …, c[13] = rc14 Summary: 

-  no reuse in a and b 
+ larger tile size for c since for b only one register is used 23 

Experiments 

 Unleashed: Not generated = 
hand-written contributed code 

 Refined model for computing 
register tiles on x86 

 Blocking is for L1 cache 

 

 Result: Model-based is 
comparable to search-based 
(except Itanium) 

 

graph: Pingali, Yotov, Cornell U. 

ATLAS generated 
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Remaining Details 

 Register renaming and the refined model for x86 

 TLB effects 

 Blackboard 
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