
ETH login ID:

(Please print in capital letters)

Full name:

263-2300: How to Write Fast Numerical Code
ETH Computer Science, Spring 2014
Midterm Exam
Monday, April 14, 2014

Instructions

• Make sure that your exam is not missing any sheets, then write your full name and
login ID on the front.

• No extra sheets are allowed.

• The exam has a maximum score of 100 points.

• No books, notes, calculators, laptops, cell phones, or other electronic devices are
allowed.

Problem 1 (12)

Problem 2 (15 = 3 + 12)

Problem 3 (17 = 6 + 5 + 6)

Problem 4 (15 = 3 + 3 + 3 + 3 + 3)

Problem 5 (17 = 14 + 3)

Problem 6 (24 = 3 + 3 + 3 + 3 + 12)

Total (100)

1 of 10



Problem 1 (12 points)

The function vecsum implements z = x+ y, where z, x, and y are vectors of length N .

void vecsum(double * z, const double * x, const double * y, size_t N) {
int i;
for (i = 0; i < N; i++)

z[i] = x[i] + y[i];
}

We make the following assumptions:

• The peak performance of the CPU is π = 1 add/cycle.

• The system has two levels of cache.

• All caches are write-back/write-allocate.

• L1 cache size: 64 kB; L1 read bandwidth: 1 double/cycle.

• L2 cache size: 2 MB; L2 read bandwidth: 0.5 double/cycle.

• RAM read bandwidth: 0.25 double/cycle.

• The variables i and N are stored in registers.

• A double is 8 bytes.

The performance of vecsum is measured as average over many executions. Sketch the
expected performance plot for N up to 200’000. N is on the x-axis and the y-axis shows
the percentage of peak performance (between 0% and 100%) achieved. Provide enough
details and also short explanations so we can verify your reasoning.

2 of 10



Problem 2 (15 = 3 + 12 points)

Consider the following code, which processes an M ×N matrix A. (Note that for this
question it does not matter what the function does.)

void func(float A[M][N], float th) {

int i,j,k,l;
float r,c,t;

srand(time(NULL));

for (i = 0; i < M; i++)
for (j = 0; j < N; j++) {

r = c = 0.f;

for (k = j+1; k < N; k++) {
t = (float)(rand())/RAND_MAX;
c += t*a[i][k];

}
for (l = i+1; l < M; l++) {

t = (float)(rand())/RAND_MAX;
if (t > th)

r += a[l][j];
else

r -= a[l][j];
}

a[i][j] += c*r;
}

}

1. Define a detailed floating point cost measure C(M,N) for the function func. Ignore
integer operations, function calls, and comparisons.

2. Compute the cost C(M,N).

Note: Lower-order terms (and only those) may be expressed using big-O notation
(this means: as the final result something like 3n+O(log(n)) would be ok but O(n) is not).

The following formula may be helpful:
∑n−1

i=0 (n− i) =
∑n

i=1 i = n(n+1)
2

= n2

2
+O(n).

3 of 10



Problem 3 (17 = 6 + 5 + 6 points)

Assume you are using a system with the following features:

• A CPU that can issue 3 double precision multiplications and 1 double precision
addition per cycle.

• The interconnection between CPU and main memory has a maximal bandwidth of 4
bytes/cycle.

Answer the following two questions:

1. Draw the roofline plot for this system. The units for x-axis and y-axis are
performance in flops/cycle and operational intensity in flops/byte, both in log scale.
The plot will contain two lines determining upper bounds on the achievable
performance.

2-5 2-4 2-3 2-2 2-1 20 21 22 23 24 25 26 27

Operational intensity [flops/byte]

2-5

2-4

2-3

2-2

2-1

20

21

22

23

24

25

26

27

Pe
rfo

rm
an

ce
 [f

lo
ps

/c
yc

le
]

4 of 10



2. Consider the following code:

void filter(double m[64][64], double r[62][62]) {

for(i = 1; i < 63; i++)
for(j = 1; j < 63; j++)
r[i-1][j-1] = r[i-1][j-1]

+ m[i-1][j-1] - m[i-1][j] + m[i-1][j+1]
- 2*m[i][j-1] + 2*m[i][j+1]
+ m[i+1][j];

}

Assuming a cold write-back/write-allocate cache with block size B > 8 bytes and
that the cache can hold the whole matrices m and r, compute the following. You can
approximate 62 with 64 where convenient:

(a) The operational intensity of this code (ignore write-backs).

(b) An upper bound (as tight as possible) on performance.

Show your work.

5 of 10



Problem 4 (15 = 3 + 3 + 3 + 3 + 3 points)

Mark the following statements as true (T) or false (F). Explanations are not needed. We
denote with I(n) the operational intensity of a function executed on some input of size n.
Wrong answers give negative points but you cannot get less than 0 points for this problem.
You can leave questions unanswered.

� Doubling the cache size doubles I.

� Doubling the cache size can increase I.

� Assume that we can compute the cost (flop count) of an algorithm for a certain input of
size n. Then, assuming a cold-cache scenario, we can compute a valid (possibly loose)
upper bound for I(n) for all possible C functions that implement this algorithm
executed on that input.

� A function with a cost in O(n2) is certainly compute bound.

� A function with I(n) ∈ O(1) is certainly memory bound.

6 of 10



Problem 5 (17 = 14 + 3 points)

Consider the following code for a matrix-matrix multiplication (c = ab+ c):

// a, b, c are n x n matrices (data type double)
for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

for (k = 0; k < n; k++)
c[i][j] = c[i][j] + a[i][k]*b[k][j];

Assume the code is run on a system with a last-level cache of size C bytes and with a
cache block size of B = 32 bytes. Further, we assume that 40n < C < 8n2.

1. Estimate the number of cache misses as a function of n. Ignore accesses to the matrix
c and possible conflict misses.

2. Compute the operational intensity I(n) based on the previous result.

7 of 10



Problem 6 (24 = 3 + 3 + 3 + 3 + 12 points)

We define an image as follow (of course you know that sizeof(char) == 1):

typedef struct {
unsigned char red;
unsigned char green;
unsigned char blue;
unsigned char alpha;

} Pixel;

Pixel image[N][16];

And we consider a system based on the following assumptions:

• The system has a write-back/write-allocate cache of size C bytes.

• The cache is 4-way set-associative.

• The cache block size is B = 64 bytes.

• The cache uses an LRU replacement policy.

Answer the following questions (note: the image is read Pixel by Pixel):

1. What is the miss rate if we read the whole image row-wise and C = 64N bytes?

2. What is the miss rate if we read the whole image row-wise and C = 4N bytes?

8 of 10



3. What is the miss rate if we read the whole image column-wise and C = 64N bytes?

4. What is the miss rate if we read the whole image column-wise and C = 4N bytes?

9 of 10



5. We now assume an image of size 4-by-4 pixels and a small cache with block size
B = 8 bytes, one set, and a total size of 16 bytes. Provide the hit/miss sequence for
the following code. All assignments are executed processing first the right-hand side
from left to right. The entire sequence will have a length of 4× 6 = 24.

int i,j;
for(i = 1; i < 3; i++)

for(j = 1; j < 3; j++) {
image[i][j].alpha = image[i-1][j].alpha * image[i][j-1].alpha;
image[i][j].red = image[i-1][j].red * image[i][j-1].red;

}

Note it helps to sketch the cache and image.

bla

10 of 10


