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ABSTRACT
Compared to planar (i.e., two-dimensional) NAND flash memory,
3D NAND flash memory uses a new flash cell design, and vertically
stacks dozens of silicon layers in a single chip. This allows 3D
NAND flash memory to increase storage density using a much less
aggressive manufacturing process technology than planar NAND
flash memory. The circuit-level and structural changes in 3D NAND
flash memory significantly alter how different error sources affect
the reliability of the memory.

In this paper, through experimental characterization of real, state-
of-the-art 3D NAND flash memory chips, we find that 3D NAND
flash memory exhibits three new error sources that were not previ-
ously observed in planar NAND flash memory: (1) layer-to-layer
process variation, a new phenomenon specific to the 3D nature of
the device, where the average error rate of each 3D-stacked layer
in a chip is significantly different; (2) early retention loss, a new
phenomenon where the number of errors due to charge leakage
increases quickly within several hours after programming; and (3) re-
tention interference, a new phenomenon where the rate at which
charge leaks from a flash cell is dependent on the data value stored
in the neighboring cell.

Based on our experimental results, we develop new analytical
models of layer-to-layer process variation and retention loss in 3D
NAND flash memory. Motivated by our new findings and models,
we develop four new techniques to mitigate process variation and
early retention loss in 3D NAND flash memory. Our first technique,
Layer Variation Aware Reading (LaVAR), reduces the effect of layer-
to-layer process variation by fine-tuning the read reference voltage
separately for each layer. Our second technique, Layer-Interleaved
Redundant Array of Independent Disks (LI-RAID), uses information
about layer-to-layer process variation to intelligently group pages
under the RAID error recovery technique in a manner that reduces
the likelihood that the recovery of a group fails significantly earlier
than the recovery of other groups. Our third technique, Retention
Model Aware Reading (ReMAR), reduces retention errors in 3D
NAND flash memory by tracking the retention time of the data
using our new retention model and adapting the read reference
voltage to data age. Our fourth technique, Retention Interference
Aware Neighbor-Cell Assisted Correction (ReNAC), adapts the read
reference voltage to the amount of retention interference a page
has experienced, in order to re-read the data after a read operation
fails. These four techniques are complementary, and can be com-
bined together to significantly improve flash memory reliability.
Compared to a state-of-the-art baseline, our techniques, when com-
bined, improve flash memory lifetime by 1.85×. Alternatively, if a

NAND flash vendor wants to keep the lifetime of the 3D NAND
flash memory device constant, our techniques reduce the storage
overhead required to hold error correction information by 78.9%.
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1 INTRODUCTION
Solid-state drives (SSDs), which consist of NAND flash memory
chips, are a popular data storage medium in modern computer
systems. Traditionally, NAND flash memory has employed a planar
(i.e., two-dimensional) architecture, where the entire chip resides on
a single layer of silicon. In planar NAND flash memory, a flash cell
is made using a floating-gate transistor, where data is represented
by the amount of charge stored in the transistor’s floating gate.
The amount of charge stored in the floating gate determines the
threshold voltage of the flash cell transistor (i.e., the voltage at which
the transistor turns on).

For planar NAND flash memory, to continually increase the SSD
capacity and decrease the cost-per-bit of the SSD, flash vendors
have been aggressively scaling NAND flash memory to smaller
manufacturing process technology nodes. This, however, comes at
the cost of lower reliability [9, 13, 69]. Due to a combination of ma-
nufacturing process technology limitations and reduced reliability
of planar NAND flash memory, it has become increasingly difficult
for vendors to continue to scale the density of planar NAND flash
memory chips [11, 31, 80].

To overcome this scaling challenge, 3D NAND flash memory has
recently been introduced [39, 45, 80]. Although 3D NAND flash
memory is already being deployed at large scale in new computer
systems, there is a lack of available knowledge on the error cha-
racteristics of real 3D NAND flash memory chips, which makes
it harder to estimate the reliability characteristics of systems that
employ such chips. Previous publicly-available experimental stu-
dies on NAND flash memory errors using real flash memory chips
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(e.g., [4–9, 11, 13–16, 64, 69, 81]) have mostly been on planar NAND
flash memory devices.1

We identify that 3D NAND flash memory has three fundamen-
tal differences from the most recent generation (i.e., 10–15 nm) of
planar NAND flash memory, which lead to new error characteris-
tics for 3D NAND flash memory that we observe experimentally:
(1) 3D NAND flash memory currently uses a different flash cell
architecture than planar NAND flash memory. Instead of using a
floating-gate transistor, a cell in 3D NAND flash memory consists
of a charge trap transistor [86], which stores charge within an in-
sulator. (2) Unlike planar NAND flash memory, 3D NAND flash
memory vertically stacks multiple layers of silicon together within
a single chip. Modern 3D NAND flash memory chips typically con-
tain 24–96 stack layers [1, 39, 45, 50, 80, 90]. Due to the high layer
count, 3D NAND flash memory can provide high storage density
without needing to scale the process technology as aggressively
as was done for planar NAND flash memory. (3) While modern
planar NAND flash memory uses a manufacturing process techno-
logy node as small as 10–15 nm [58, 90], 3D NAND flash memory
currently uses a much larger manufacturing process technology
node (e.g., 30–50 nm [86]).

Our goal in this work is to (1) identify and understand the
new error characteristics of 3D NAND flash memory (i.e., those
that did not exist previously in planar NAND flash memory), and
(2) develop new techniques to mitigate prevailing 3D NAND flash
memory errors. We aim to achieve these goals via rigorous expe-
rimental characterization of real, state-of-the-art 3D NAND flash
memory chips from a major flash vendor. Based on our compre-
hensive characterization and analysis, we identify three new error
characteristics that were not previously observed in planar NAND
flash memory, but are fundamental to the new architecture of 3D
NAND flash memory:

(1) 3D NAND flash memory exhibits layer-to-layer process varia-
tion, a new phenomenon specific to the 3D nature of the device,
where the average error rate of each 3D-stacked layer in a chip
is significantly different from one another (Section 4.2). We
are the first to provide detailed experimental characterization
results of layer-to-layer process variation in real flash devices
in open literature. Our results show that the raw bit error rate
in the middle layer can be 6× the raw bit error rate in the top
layer.

(2) 3D NAND flash memory experiences early retention loss, a new
phenomenon where the number of errors due to charge leakage
increases quickly within several hours after programming, but
then increases at a much slower rate (Section 4.3). We are the
first to perform an extended-duration observation of early re-
tention loss. While a prior study [23] examines the impact of
early retention loss over only the first 5 minutes after data is
written, we examine the impact of early retention loss over the
course of 24 days. Our results show that the retention error
rate in a 3D NAND flash memory block quickly increases by
an order of magnitude within ∼3 hours after programming.

1With the exception of our very recent prior work [65], which examined two specific
important aspects of 3D NAND flash memory reliability: temperature and self-recovery
effects.

(3) 3D NAND flash memory experiences retention interference, a
new phenomenon where the rate at which charge leaks from
a flash cell is dependent on the amount of charge stored in
neighboring flash cells (Section 4.4). Our results show that
charge leaks at a lower rate (i.e., the retention loss speed is
slower) when the vertically-adjacent cell is in a state that holds
more charge (i.e., a higher-voltage state).

Our experimental observations indicate that we must revisit
the error models and the error mitigation mechanisms devised
for planar NAND flash memory, as they are no longer accurate
for 3D NAND flash memory behavior. To this end, we develop
new analytical models of (1) the layer-to-layer process variation
in 3D NAND flash memory (Section 5.1), and (2) retention loss in
3D NAND flash memory (Section 5.2). Our models estimate the
raw bit error rate (RBER), threshold voltage distribution, and the
optimal read reference voltage (i.e., the voltage at which the RBER
is minimized when applied during a read operation) for each flash
page. Both models are useful for developing techniques to mitigate
raw bit errors in 3D NAND flash memory.

We propose four new techniques to mitigate the unique layer-to-
layer process variation and early retention loss errors observed in
3D NAND flash memory. Each technique makes use of our new ana-
lytical models of layer-to-layer process variation and retention loss
in 3D NAND flash memory. Our first technique, Layer Variation
Aware Reading (LaVAR), reduces process variation by fine-tuning
the read reference voltage independently for each layer. Our se-
cond technique, Layer-Interleaved Redundant Array of Independent
Disks (LI-RAID), improves reliability by changing how pages are
grouped under the RAID error recovery technique. LI-RAID uses
information about layer-to-layer process variation to reduce the
likelihood that the RAID recovery of a group could fail significantly
earlier during the flash lifetime than the recovery of other groups.
Our third technique, Retention Model Aware Reading (ReMAR),
reduces retention errors in 3D NAND flash memory by tracking
the retention time of the data using our retention model and adap-
ting the read reference voltage to data age. Our fourth technique,
Retention Interference Aware Neighbor-Cell Assisted Correction
(ReNAC), adapts the read reference voltage to the amount of re-
tention interference and re-reads the data after a read operation
fails, in order to correct the cells affected by retention interference.
These four techniques are complementary, and can be combined
together to significantly improve flash memory reliability. Compa-
red to a state-of-the-art baseline, our techniques, when combined,
improve flash memory lifetime by 1.85×. Alternatively, if a NAND
flash vendor wants to keep the lifetime of the 3D NAND flash me-
mory device constant, our techniques reduce the storage overhead
required to hold error correction information by 78.9%.

This paper makes the following key contributions:
• It presents the first comprehensive experimental characterization
of real, state-of-the-art 3D NAND flash memory chips, and provi-
des an in-depth analysis of layer-to-layer process variation, early
retention loss, and retention interference, which are three new
error characteristics inherent to 3D NAND flash memory.

• It develops new analytical models for (1) layer-to-layer process
variation and (2) early retention loss, which can be used to esti-
mate the raw bit error rate, mean and standard deviation of the
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threshold voltage distribution of each state, and the optimal read
reference voltages.

• It develops four new mechanisms, LaVAR, LI-RAID, ReMAR, and
ReNAC, to mitigate the three new error characteristics we have
identified in 3D NAND flash memory. It evaluates these techni-
ques, and shows that, when applied together, they improve 3D
NAND flash memory lifetime by 1.85×, or reduce the storage
overhead for error correction by 78.9% if we keep the lifetime
constant, compared to a state-of-the-art baseline.

2 BACKGROUND
In this section, we first provide necessary background on the ba-
sics of NAND flash memory (Section 2.1). Next, we briefly discuss
the different known sources of errors within planar NAND flash
memory (Section 2.2). For an extended background on NAND flash
memory, we refer the reader to our prior works [9–11].

2.1 NAND Flash Memory Basics
In NAND flash memory, each flash cell consists of a transistor that
can store charge. A flash cell represents a certain data value based
on the threshold voltage (Vth ) of its transistor, which is determined
by the amount of charge stored in it. In multi-level cell (MLC) flash
memory, each cell stores two bits of data. A threshold voltage win-
dow (i.e., state) is assigned for each possible two-bit value. Figure 1a
shows the four possible states (i.e., ER, P1, P2, P3) in MLC NAND
flash memory, along with their corresponding bit values. As a result
of manufacturing process variation, the threshold voltage of cells
programmed to the same state follow a Gaussian-like distribution
across the voltage window of the state [9, 14, 64, 81], depicted as a
probability density curve in Figure 1a.
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Figure 1: (a) Threshold voltage distribution and read refe-
rence voltages for MLC NAND flash memory; (b) Internal
organization of a flash block.

A NAND flash memory chip contains thousands of flash blocks,
which are two-dimensional arrays of flash cells. Figure 1b shows the
internal organization of a flash block. Each block contains dozens of
rows (i.e.,wordlines) of flash cells, where each row typically contains
64K to 128K cells. All of the cells on the same wordline are read
and programmed together as a group. MLC NAND flash memory
partitions the two bits of each flash cell in a wordline across two
pages, which are the unit of data programmed at a time (typically
8 kB). The least significant bits (LSBs) of all cells in one wordline
form the LSB page of that wordline, and the most significant bits
(MSBs) of these cells form the MSB page. The sources and drains of
cells across different wordlines in the same block are connected in
series to form a bitline.

Reads and writes to the flash memory are managed by an SSD
controller. The controller reads a page from a flash block by applying
a read reference voltage (Vr ef ) to the wordline that holds the page.
A cell switches on only if Vth > Vr ef . Figure 1a shows the three
read reference voltages (Va ,Vb , andVc ) that are used to distinguish
between each state. A sense amplifier is attached to each bitline to
detect if the cell is switched on. In order to detect the state of a
particular cell on the bitline, the controller applies a pass-through
voltage (Vpass ) to the wordlines of all unread cells in the flash
block. This turns on the unread cells, allowing the value of the cell
that is being read to propagate through the bitline to the sense
amplifier. To guarantee that all unread cells are on, Vpass is set to
the maximum possible threshold voltage [5, 9].

Before new data can be written (i.e., programmed) to a flash page,
the controller must first erase the entire block (i.e., 512 to 1024 pages)
that the page belongs to, due to wiring constraints. After erase, all of
the cells in the erased block are reset to the ER state. To program a
flash cell, the controller sends the data to be programmed to the flash
chip, which repeatedly pulses a high programming voltage on a cell
to increase a cell’s threshold voltage until the cell reaches its target
state. This iterative programming approach is called incremental
step pulse programming (ISPP) [3, 69, 89, 91]. Each pair of erase and
program operations is referred to as a program/erase (P/E) cycle.

2.2 Errors in NAND Flash Memory
As vendors work to increase the density of NAND flash memory,
they use aggressive manufacturing process technology scaling to
reduce the size of a flash cell. As a result, each cell has a smaller ca-
pacity to store charge, and the cells move closer to each other. These
changes reduce the reliability of the NAND flash memory, thereby
increasing the probability of flash memory errors in newer genera-
tions of planar (i.e., two-dimensional) NAND flash memory. Errors
occur when the cell threshold voltage (Vth ) unintentionally changes
or is read incorrectly, which can alter the cell state observed by the
controller. Errors can be induced by a range of sources [4–9, 11, 13–
16, 65, 69], which we divide into four categories: process variation
errors, retention errors, write-induced errors, and read-induced
errors. We briefly describe each error source below, and refer the
reader to the prior work cited below for detailed explanations of
each error source. A comprehensive treatment of different types of
NAND flash memory errors and mitigation mechanisms for them
can be found in our recent survey papers [9, 11].
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Process variation errors occur as a result of the fabrication process.
Within a single chip, different flash cells have different attributes,
due to the lithography limitations of modernmanufacturing process
technologies [13, 84]. As a result, there is inherent variation among
the cells, and some cells have a higher error rate than other cells.

Retention errors [6–8] are a type of error that increase and accu-
mulate over time after a flash cell is programmed. A retention error
occurs because charge leaks out of the transistor over time. As
charge leaks from a cell, the cell’s threshold voltage (Vth ) decreases.
In planar NAND flash memory, retention errors are the dominant
source of all flash memory errors [6–8, 13], if aggressive refresh
techniques [7, 8, 63] are not employed.

Write-induced errors occur during program or erase operations.
P/E cycling errors (or program/erase variation errors) [14, 64, 81]
are errors that occur immediately after erasing and programming a
flash page. These errors occur because of the inaccuracy of each
program and erase operation. This inaccuracy causes some cells
to be programmed into a state other than its desired target state.
As more P/E cycles take place over the lifetime of a flash cell, the
repeated stress causes more electrons to become trapped within the
transistor, which is known as wearout. Wearout increases the in-
accuracy during program and erase operations, thereby increasing
the number of P/E cycling errors. Cell-to-cell program interference
errors [15, 16] are another type of write-induced error that increa-
ses the threshold voltage of a cell and thereby increases the RBER,
when an adjacent cell in another wordline is being programmed.
Since parasitic capacitance coupling exists between cells within
close proximity of each other, when a high programming voltage
is applied on one cell, the capacitance coupling adds charge to the
transistors of the adjacent cells, increasing the program interference
errors.

Read-induced errors occur during read operations. Read errors [24,
29, 42] are a type of read-induced error where two reads to a flash
cell may return different data values. A read error occurs when the
read reference voltage is close to the cell’s threshold voltage. Such
an error occurs when random fluctuations on the bitline cause the
sense amplifier to detect the wrong data. Read disturb errors [5, 81]
are another type of read-induced error where reading a page in
a flash block may change the values stored in (i.e., increase the
RBER) of other pages in the same block. This type of error occurs
due to the application of the pass-through voltage (Vpass ) to unread
cells. When one cell on a bitline is being read, applyingVpass to the
unread cells can induce a weak programming effect on the unread
cells, slowly transferring electrons into the unread cells’ transistors
and increasing the threshold voltage of the unread cells.

To mitigate these errors, SSDs use error-correcting codes (ECC)
on the data. ECC has a fixed error correction capability: it can correct
only a limited number of errors, beyond which the data is no longer
correctable. When a flash page is uncorrectable, we say that the
SSD has reached the end of its lifetime.

3 ARCHITECTURAL DIFFERENCES
BETWEEN 3D NAND AND PLANAR NAND

3D NAND flash memory (or 3D NAND) has three fundamental dif-
ferences from the most recent generation (i.e., 10–15 nm) of planar

NAND flash memory: (1) the flash cell design, (2) the organiza-
tion of flash cells within a chip, and (3) the manufacturing process
technology node.

Flash Cell Design. In both planar and 3D NAND flash memory,
each flash cell consists of a transistor that can store charge, where
the amount of charge determines the threshold voltage of the cell
(i.e., the voltage at which the cell turns on). The vast majority of
planar NAND flash memory uses a floating-gate transistor (FG) for
each cell. Figure 2a illustrates the design of a floating-gate cell. A
control gate sits at the top of the transistor. Read, program, and
erase operations all apply a voltage onto the control gate to turn
on the cell or to add charge to the transistor. A floating gate sits in
the middle of the transistor. The floating gate is a conductor that
stores the transistor’s charge, and is sandwiched by oxide layers.
The oxide layers minimize the amount of charge that leaks out of
the floating gate. At the bottom of the cell is the substrate, which
has two terminals on either end, marked source (S) and drain (D).
When the voltage applied on the control gate is higher than the
voltage of the charge stored in the floating gate, an electrical channel
forms between the source and drain, connecting them together. The
floating gate voltage can be increased or decreased by applying
a large positive or negative voltage, respectively, to the control
gate, which induces Fowler-Nordheim tunneling [27] of electrons
through the oxide.
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Figure 2: The design of (a) a floating-gate cell, and (b) a 3D
charge trap cell.

Instead of floating-gate transistors, most existing 3D NAND
flash memory designs use a charge trap transistor (CT) for each cell.
Figure 2b illustrates the design of a charge trap cell. The substrate,
and therefore the channel between source and drain, sits vertically
in the center of the cell. A charge trap layer wraps around the
substrate. The charge trap layer takes the place of the floating gate,
storing the transistor’s charge. However, unlike the floating gate,
the charge trap layer is an insulator. The control gate still exists in
a charge trap cell, but it now wraps around the charge trap layer.

Flash Chip Organization. Figure 3 illustrates the physical or-
ganization of flash cells in 3D NAND flash memory. The charge
trap transistor design allows the bitline (BL in Figure 3) of a block
to stand vertically (i.e., along the z-axis) in the chip. In other words,
the bitline now connects together one charge trap cell from each
layer of the chip, as the cells are stacked on top of each other. Note
that all of the cells along the z-axis share the same charge trap insu-
lator, akin to how transistors are connected together on a bitline in
planar NAND flash memory. The control gates of cells in the same
layer, along the y-axis, are connected together to form a wordline.
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In this figure, we show a simple example where the cells in the
same y–z plane form a flash block. In reality, to form larger flash
blocks, multiple stacks of flash cells are connected together to form
longer bitlines, thus increasing the number of wordlines within a
block. Multiple such flash blocks are aligned along the x-axis to
form a flash chip.
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Figure 3: 3D NAND flash memory organization.

Manufacturing Process Technology. Compared with the
most recent generation of planar NAND flash memory (i.e., 10–
15 nm), 3D NAND flash memory uses a much larger manufactu-
ring process technology node (e.g., 30–50 nm) [86]. Because 3D
NAND flash memory has a large number of layers (typically 24–
96 [1, 39, 45, 50, 80, 90]), it can reach the same storage density of the
most recent planar NAND flash memory generation while using
much larger flash cells.

4 CHARACTERIZATION OF 3D NAND FLASH
MEMORY ERRORS

Our goal is to identify and understand new error characteristics
in 3D NAND flash memory, through rigorous experimental charac-
terization of real, state-of-the-art 3D NAND flash memory chips.
We use the observations and analyses obtained from such charac-
terization to (1) compare how the reliability of a 3D NAND flash
memory chip differs from that of a planar NAND flash memory
chip, (2) develop a model of how each new error source affects the
error rate of 3D NAND flash memory, (3) understand if and how
these reliability characteristics will change with future generations
of 3D NAND flash memory, and (4) develop mechanisms that can
mitigate new error sources in 3D NAND flash memory.

For our characterization, we use the methodology discussed
in Section 4.1. First, we perform a detailed characterization and
analysis of three error characteristics that are drastically different
in 3D NAND flash memory than in planar NAND flash memory:
layer-to-layer process variation (Section 4.2), early retention loss
(Section 4.3), and retention interference (Section 4.4). In addition
to identifying new error sources in 3D NAND flash memory, we
use our methodology to corroborate and quantify 3D NAND error
characteristics that are a result of error sources that were previ-
ously identified in planar NAND flash memory, including retention

loss [6–9, 11, 23, 80], P/E cycling [9, 11, 14, 64, 80, 81], program in-
terference [4, 9, 11, 15, 16, 80], read disturb [5, 9, 11, 81], and process
variation [13, 84]. We summarize our findings for these error types
in Section 4.5, and provide detailed results on our characterization
of these previously-identified error sources in Appendix A.

4.1 Methodology
We experimentally characterize several real, state-of-the-art 3D
MLC NAND flash memory chips from a single vendor.2, 3 We use
a NAND flash characterization platform similar to prior work [4–
9, 11–16, 64, 65, 81], which allows us to issue read-retry commands
directly to the flash chip. The read-retry command [9, 14] allows us
to fine-tune the read reference voltage used for each read operation.
The smallest amount by which we can change the read reference
voltage is called a voltage step. We conduct all experiments at room
temperature (20 ◦C).

We use two metrics to evaluate 3D NAND flash memory reliabi-
lity. First, we show the raw bit error rate (RBER), which is the rate
at which errors occur in the data before error correction. We show
the RBER for when we read data using the optimal read reference
voltage (Vopt ), which is the read reference voltage that generates
the fewest errors in the data.4

Second, we show how the various error sources change the thres-
hold voltage distribution. These changes (i.e., shifting and widening)
in threshold voltage distribution directly lead to raw bit errors in the
flash memory. To obtain the distribution, we first use the read-retry
command to sweep over all possible voltage values, to identify the
threshold voltage of each cell.5 Then, we use this data to calculate
the probability density of each state at every possible threshold
voltage value. As part of our analysis, we fit the threshold voltage
distribution of each state to a Gaussian distribution. We use the
mean of the Gaussian model to represent how the distribution shifts
as a result of errors, and we use the standard deviation of the model
to represent how the distribution widens. Throughout this paper,
we present normalized voltage values, as the actual voltage values
are proprietary to NAND flash memory vendors. A normalized
voltage of 1 represents a single fixed voltage step.

We show two examples in Figure 4 to visualize how well this sim-
ple Gaussian model captures the change in the measured threshold
voltage distribution. Figure 4 shows the measured and modeled
distributions under two conditions: (1) after 0 P/E cycles, 0-day
retention time [6], and 0 read disturbs (i.e., the data contains few
errors); and (2) after 10K P/E cycles, 3-day retention time [6], and
900K read disturbs (i.e., the data contains a high number of errors).
Dotted points plot the measured threshold voltage distributions
from the real 3D NAND memory chips. Note that we are unable
to show the ER state distribution when the P/E cycle count is low

2The trends we observe from the characterization are expected be similar for 3D
charge trap flash memory manufactured by different vendors, as their 3D flash memory
organizations are similar in design.
3We normalize the actual number of stacked layers of the chips and leave out the
exact process technology to protect the anonymity of the flash vendor and to avoid
revealing proprietary information.
4We show RBER at the optimal read reference voltage to accurately represent the
reliability of NAND flash memory, as SSD controllers tune the read reference voltage
to a near-optimal point to extend the NAND flash lifetime [6, 9, 64, 76].
5We refer to prior work for more detail on the methodology to obtain the threshold
voltage distribution [14, 64, 81].
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(i.e., the black dots), because the erase operation cleanly resets
the threshold voltage to a negative value that is lower than the
observable voltage range under a low P/E cycle count. We use a
solid line to show a fitted Gaussian distribution for each state. The
Kullback-Leibler divergence error values [64, 81] of the fitted Gauss-
ian distributions are 0.034 and 0.23.6 We observe, from this figure,
that after the chip is used, the threshold voltage distribution shifts
due to P/E cycling, retention loss, and read disturb, reducing the
error margins between neighboring states, and leading to more raw
bit errors in the data. Thus, depicting and understanding how thres-
hold voltage distributions are affected by various factors helps us
understand how raw bit errors occur and thus devise mechanisms
to mitigate various errors more effectively.
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Figure 4: 3D NAND threshold voltage distribution before
(black) and after (red) the data is subject to a high number of
errors (due to P/E cycling, retention loss, and read disturb).

In the following sections, we directly show themean and the stan-
dard deviation of the fitted threshold voltage distributions instead
of the distribution itself, to simplify the presentation of our results.

Limitations. In our experiments, we randomly sampled 27 flash
blocks throughout our characterizations. Note that each sampled
flash block consists of tens of millions of flash cells. Thus, we believe
that our observations are representative of the general behavior
that takes place in the model of 3D NAND chips that we tested.
While adding more data samples (i.e., flash blocks to test) can add
to the statistical strength of our results, we do not believe that
this would change the general qualitative findings that we make
and the models that we develop in this work. This is because the
new error characteristics we observe are caused by the underlying
architecture of 3D NAND flash memory (see Section 3).

Note that we do not characterize chip-to-chip process variation,
as an accurate study of such variation requires a large-scale study
of a large number (e.g., hundreds) of 3D NAND flash memory chips,
which we do not have access to. Hence, we leave such a large-scale
study for future work.

4.2 Layer-to-Layer Process Variation
Process variation refers to the variation in the attributes of flash cells
when they are fabricated (see Section 2.2). Due to process variation,

6A KL-divergence error of x means that the model loses x natural units of information
(i.e., nats) due to modeling error.

some flash cells can have a higher RBER than others, making these
cells the limiting factor of overall flash memory reliability. In 3D
NAND flash memory, process variation can occur along all three
axes of the memory (see Figure 3). Among the three axes, we expect
the variation along the z-axis (i.e., layer-to-layer variation) to be
the most significant, due to the new challenge of stacking multiple
flash cells across layers. Prior work has shown that current circuit
etching technologies are unable to produce identical 3D NAND
cells when punching through multiple stacked layers, leading to
significant variation in the error characteristics of flash cells that
reside in different layers [38, 92].

To characterize layer-to-layer process variation errors within a
flash block, we first wear out the block by programming random
data to each page in the block until the block endures 10K P/E cycles.
Then, we compare the collective characteristics of the flash cells in
one layer with those in another layer. We repeat this experiment
for flash blocks on multiple chips to verify all of our findings.

Observations. Figure 5 shows the RBER variation along the
z-axis (i.e., across layers) for a flash block that has endured 10K
P/E cycles. The chips we use for characterization have between
30 and 40 layers. We normalize the number of layers from 0 (the
top-most layer) to 100 (the bottom-most layer) by multiplying the
actual layer number with a constant, to maintain the anonymity
of the chip vendors. Figure 5a breaks down the errors according to
the originally-programmed state and the current state of each cell;
Figure 5b breaks down the errors into MSB and LSB page errors. In
Figure 5b, the solid curve and the dotted curve show the results for
two blocks that were randomly selected from two different flash
chips. We make five observations from Figure 5. First, ER ↔ P1
and P1↔ P2 errors vary significantly across layers, while P2↔ P3
errors remain similar across layers. The variation in ER↔ P1 errors
is mainly caused by the large variation in mean threshold voltage
of the ER state across layers; the variation in P1 ↔ P2 is caused
by the variation in the threshold voltage distribution width of the
P1 state across layers (Section A.4). Second, both the MSB and LSB
error rates vary significantly across layers. We call this phenom-
enon layer-to-layer process variation. For example, MSB page on
normalized layer 55 in the middle (i.e., Max MSB) has an RBER
21× that of normalized layer 0. Third, MSB error rates are much
higher than LSB error rates in a majority of the layers, on average
by 2.4×. We call this phenomenon MSB–LSB RBER variation. MSB
error rates are usually higher than LSB error rates because rea-
ding an MSB page requires two read reference voltages (Va andVc ),
whereas reading an LSB page requires only one (Vb ). Fourth, the
top half of the layers have lower error rates than the bottom half.
This is likely caused by the variation in the flash cell size across
layers. Fifth, the RBER variation we observe is consistent across two
randomly-selected blocks from two different chips. This indicates
that layer-to-layer process variation and MSB–LSB RBER variation
are consistent characteristics of 3D NAND flash memory.

Figure 6 shows how the optimal read reference voltages vary
across layers. Three subfigures show the optimal read reference
voltages forVa ,Vb , andVc . Wemake two observations from Figure 6.
First, the optimal voltages for Va and Vb vary significantly across
layers, but the optimal voltage forVc does not change by much. This
is because process variation mainly affects the threshold voltage
distributions of the ER and P1 states, whereas the threshold voltage
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Figure 5: Variation of RBER across layers.

distributions of the P2 and P3 states, which are more accurately
controlled by ISPP (see Section 2), are similar across layers. We
discuss this further in Appendix A.4. Second, the optimal read
reference voltages forVa andVb are lower for cells in the top half of
the layers than for cells in the bottom half. This is because process
variation significantly affects the threshold voltage of the ER and
P1 states (see Appendix A.4).
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Figure 6: Variation of optimal read reference voltage across
layers.

Insights.We show that the phenomena of layer-to-layer process
variation and MSB-LSB RBER variation, which are unique to 3D
NAND flash memory, are significant. We refer to Appendix A.4 for
a comparison between layer-to-layer process variation and bitline-
to-bitline process variation. In the future, as 3D NAND flash devices
scale along the z-axis, more layers will be stacked vertically along
each bitline. This will likely further exacerbate the effect of layer-
to-layer process variation, making it even more important to study
and mitigate its negative effects.

4.3 Early Retention Loss
Retention errors are flash memory errors that accumulate after data
has been programmed to the flash cells [6–8] (see Section 2.2). Be-
cause 3D NAND flash memory typically uses a different cell design
(i.e., the charge trap cell described in Section 3) than planar NAND

flash memory (which uses floating-gate cells), it has drastically
different retention error characteristics. The charge trap flash cells
used in 3D NAND flash memory suffer from early retention loss, i.e.,
fast charge loss within a few seconds. This phenomenon has been
observed by prior works using circuit-level characterization [21, 23].
However, due to limitations of the circuit-level characterization
methodology used by these prior works, openly-available charac-
terizations of early retention loss in 3D charge trap NAND flash
devices document retention loss behavior for up to only 5 minutes
after the data is written (i.e., for a maximum retention time of 5 mi-
nutes). This limited window is insufficient for understanding early
retention loss under real workloads, which typically have much
longer retention time requirements [63], i.e., the length of time that
has elapsed since programming until the data is accessed again.

Our goal is to experimentally characterize early retention loss
in 3D NAND flash memory for a large range of retention times
(e.g., from several minutes to several weeks). First, we randomly
select 11 flash blocks within each chip and write pseudo-random
data to each page within the block to wear the blocks out. We wear
out each block to a different P/E cycle count, so that we have error
data for every 1K P/E cycles between 0 and 10K P/E cycles.7 Then,
we program pseudo-random data to each flash block, and wait for
up to 24 days under room temperature. To characterize retention
loss, we measure the RBER and the threshold voltage distribution
at nine different retention times, ranging from 7 minutes to 24 days.
To minimize the impact of other errors, and to allow us to include
very low retention times, we characterize only the first 72 flash
pages within each block. We believe that the observations we make
on these flash cells are representative of the entire chip, and we
can generalize the observations to a majority of 3D NAND flash
memory cells. We analyze the threshold voltage distribution in
Appendix A.2.

Observations. Figure 7 shows the comparison between the re-
tention error rate of 3D NAND and planar NAND flash memory at
10,000 P/E cycles using both a logarithmic time scale on the x-axis
(Figure 7a) and a linear time scale on the x-axis (Figure 7b) for diffe-
rent retention times after programming. To make this comparison,
we perform the same experiment as above for planar NAND flash
memory chips. Due to limitations of the available data, we extend
our data to the same retention time range using a linear model that
was proposed by prior work [65, 69]: log(RBER) = A · log(t) + B,
where t is the retention time, and A and B are parameters of the
linear model. The dotted portions of the lines represent the RBER
that is predicted by the linear model.

We make two observations from this figure. First, in Figure 7a,
we observe that the retention error rate changes much more slowly
for planar NAND flash memory than for 3D NAND flash memory.
Although the 3D NAND flash memory chip has lower RBER than
the planar NAND flash memory chip shortly after programming,
the RBER becomes higher on the 3D NAND flash memory chip
after 7 × 103 seconds (∼2 hours) of retention time. This means that
3D NAND flash memory is more susceptible to the retention loss
phenomenon than planar NANDflashmemory. Second, in Figure 7b,
we observe that the RBER of 3D NAND flash memory quickly

7For all experiments throughout the paper, we consistently assume a 0.5-second dwell
time, which is the length of time between consecutive program/erase operations [65].
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increases by an order of magnitude in 104 seconds (∼3 hours), and
by another order of magnitude in 106 seconds (∼11 days). However,
we do not observe a large difference in retention loss between low
and high retention times for planar NAND flash memory (also
shown by prior works [6, 69]). This shows that the retention loss
is steep when retention time is low, but the retention loss flattens
out when the retention time is high. This is a result of the early
retention loss phenomenon in 3D NAND flash memory.

Early retention loss can be caused by two possible reasons. First,
the tunnel oxide layer is thinner in 3D NAND flash memory than
in planar NAND flash memory [86, 97]. Since a 3D charge trap cell
uses an insulator to store charge, which is immune to the short
circuiting caused by stress-induced leakage current (SILC) [26, 73],
the tunnel oxide layer in 3D NAND flash memory is designed to be
thinner to improve programming speed [80]. This causes charge to
leak very fast soon after programming. Second, cells connected on
the same bitline share the same charge trap layer. As a result, charge
that is programmed to a flash cell quickly leaks to adjacent cells that
are on the same bitline due to electron diffusion through the shared
charge trap layer [23], which we discuss further in Section 4.4.
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Figure 7: Retention error rate comparison between 3D
NAND and planar NAND flash memory at 10K P/E cycles.
Dotted portions of lines represent the RBER predicted by
the linear model proposed by prior work [65, 69]. We show
the retention time on the x-axis using both (a) a logarithmic
time scale and (b) a linear time scale.

Figure 8 plots how the optimal read reference voltage changes
with retention time. The three subfigures show the optimal voltages
for Va , Vb , and Vc . We make three observations from this figure.
First, the relation between the optimal read reference voltages
of Vb or Vc and the retention time can be modeled as [65, 69]:
V = A · log(t) + B, similar to the logarithm of RBER (which we
discuss above). Second, the optimal read reference voltages for Vb
and Vc decrease significantly as retention time increases, whereas
Va remains relatively constant. Third, due to the early retention
loss phenomenon, the optimal read reference voltages forVb andVc
change rapidly when the retention time is low (e.g.,Vc changes by 5
voltage steps within the first 3 hours), but they change slowly when
the retention time is high (e.g., Vc changes by another 5 voltage
steps after 11 days).

Insights. We compare the errors caused by retention loss in
3D NAND flash memory to that in planar NAND flash memory,
using our results in Figure 7 and the results reported in prior
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Figure 8: Optimal read reference voltages for different reten-
tion times. Note that the x-axis uses a logarithmic time scale.

work [6, 7, 69]. We find two major differences in 3D NAND flash
memory, which we summarize below. More results and insights are
in Appendix A.2. First, 3D NAND flash memory is more suscepti-
ble to retention errors than planar NAND flash memory, and its
error rate increases much faster when the retention time is low
than when the retention time is high. This is a result of the early
retention loss phenomenon in 3D NAND flash memory, which is
due to the use of a different flash cell design and thus is likely to
remain in future generations of 3D NAND flash memory. Second,
the optimal read reference voltages for Vb and Vc in 3D NAND
flash memory change significantly with retention time. However,
in planar NAND flash memory, the optimal voltage for Vb does
not change by much [6], indicating that retention loss is a more
pressing phenomenon in 3D NAND flash memory. This makes ad-
justing the optimal read reference voltages even more important
for 3D NAND flash memory than for planar NAND flash memory.
We conclude that it is necessary to develop novel mechanisms to
mitigate the early retention loss phenomenon in 3D NAND flash
memory.

4.4 Retention Interference
Retention interference is the phenomenon that the speed of reten-
tion loss for a cell depends on the threshold voltage of a vertically-
adjacent neighbor cell whose charge trap layer is directly connected
to the victim cell along the bitline. Retention interference is uni-
que to 3D NAND flash memory, as cells along the same bitline
in 3D NAND flash memory share the same charge trap layer. If
two neighboring cells have different threshold voltages over time,
charge can leak away from the cell with a higher threshold voltage
to the cell with a lower threshold voltage [23]. Figure 9 shows an
example of this phenomenon, where charge leaks from the top cell
(which is in a higher-voltage state) to the bottom cell (which is in
a lower-voltage state) through the shared charge trap layer. This
charge leakage reduces the threshold voltage of the top cell while
increasing the threshold voltage of the bottom cell.

We use the same data used for retention loss in Section 4.3 to
observe the effects of retention interference. To eliminate any noise
due to program interference, we use only the neighboring cells that
are programmed before the victim cells to establish the retention

8
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Figure 9: Retention interference phenomenon: a vertically-
adjacent cell leaks charge into a victim cell.

interference correlation, as these cells do not induce program inter-
ference on the victim cells. We also ignore victim cells that are in the
ER state, as they are significantly affected by program interference
even though they are programmed after their neighbors [4]. Once
program interference is eliminated, the cells should experience a
similar threshold voltage shift due to retention loss except for the
effects of retention interference. To find the retention interference,
we first group all of the victim cells based on their threshold voltage
states and the states of their neighboring cells. Then, we compare
the amount by which the threshold voltages shift over a 24-day
retention time, for each group, to observe how the cells are affected
by the retention interference caused by neighboring cells.

Observations. Figure 10 shows the average threshold voltage
shift over a 24-day retention time, broken down by the state of the
victim cell (V) and the state of the neighboring cell (N). Each bar
represents a different (V, N) pair. Different shades represent the
different states of the neighboring cell, as labeled in the legend.
Every 4 bars are grouped by the state of the victim cell, as labeled
on the y-axis. The length of each bar represents the amount of thres-
hold voltage shift over the 24-day retention time. From Figure 10,
we observe that the threshold voltage shift over retention time is
lower when the neighboring cell is in a higher-voltage state (e.g.,
the P3 state).

0 5 10 15 20

V=P1

V=P2

V=P3

# of Voltage Steps Shifted Over 24-Day Retention Time

N=P3
N=P2
N=P1
N=ER

The higher the neighbor-cell state,
the lower the threshold voltage shift

Figure 10: Retention interference phenomenon observed at
10K P/E cycles.

Insights. We are the first to quantify the retention interference
phenomenon in 3D NAND flash memory. Our observation from
Figure 10 shows that the amount of retention loss for a flash cell
is correlated with its neighboring cell’s state. We expect retention
interference to become stronger as we shrink the manufacturing
process technology node in future 3D NAND flash memory devices.
This is because the distance between neighboring cells will decrease,

and fewer electrons will be stored within each flash cell, increasing
the susceptibility of a cell to interference from neighboring cells.

4.5 Other Error Characteristics
In addition to the three new error sources we find in 3D NAND
flash memory, we also characterize the behavior of other known
error sources in 3D NAND flash memory and compare them to their
behavior in planar NAND flash memory. We present a high-level
summary of our findings for these errors here, and provide detailed
results and analyses for them in Appendix A:
• Unlike in planar NAND flash memory, we do not find any evi-
dence of program errors [4, 64, 81] in 3D NAND flash memory
(Section A.1.1).

• P/E cycling error in 3D NAND flash memory follows a linear
trend, which is similar to that in planar NAND flash memory
using an older manufacturing process technology node (e.g., 20–
24 nm) [14]. However, in sub-20 nm planar NAND flash memory,
P/E cycling error exhibits a power law trend [64, 81] (Appen-
dix A.1.2).

• 3D NAND flash memory experiences 40% less program inter-
ference than 20–24 nm planar NAND flash memory (Appen-
dix A.1.3).

• 3D NAND flash memory experiences 96.7% weaker read disturb
than 20–24 nm planar NAND flash memory. The impact of read
disturb is low enough in 3D NAND flash memory that it does
not require significant error mitigation (Appendix A.3.2).

Note that these differences are mainly due to the larger manufactu-
ring process technology nodes currently used in 3D NAND flash
memory, and thus are not the focus of this paper. In comparison,
the new error characteristics that we focus on (layer-to-layer pro-
cess variation, early retention loss, and retention interference) are
caused by the architectural and circuit-level changes introduced in
3D NAND flash memory.

4.6 Summary
We summarize the key differences between 3D NAND and planar
NAND flash memory, in terms of error characteristics and the ex-
pected trends for future 3D NAND flash memory devices, in Table 1.
The first column of this table lists each attribute that we study.
The second column shows the key difference in the observation
that we find in 3D NAND flash memory versus planar NAND flash
memory, for each attribute that we study. The third column shows
the fundamental cause of each difference. The last column descri-
bes the expected trend of this difference in future 3D NAND flash
memory devices. We provide the necessary characterizations and
models that help us quantitatively understand these differences in
Appendix A.1.2, A.1.3, A.2, A.3.1, A.3.2, and A.4.

5 3D NAND FLASHMEMORY ERRORMODELS
In the previous sections, we have established a basic understanding
of the similarities and differences between 3D NAND and planar
NAND flash memory in terms of error characteristics and reliability.
In this section, we quantify these differences by developing ana-
lytical models of the process variation (Section 5.1) and retention
loss (Section 5.2) phenomena in 3D NAND flash memory. These
models are useful for at least two major purposes. First, the insights
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obtained from using these models can motivate and enable us to
develop new error mitigation mechanisms for 3D NAND flash me-
mory. Second, the retention model and the model parameters are
also useful for comparing the reliability of newer or older generati-
ons of planar NAND flash memory with our tested 3D NAND flash
memory chips. We focus on developing these models using our
existing characterization data from real 3D NAND flash memory
chips (some of which was presented in Section 4). In Section 6, we
discuss (1) how to efficiently learn the models for each chip on-
line within the SSD controller by performing the characterization
and model fitting online, and (2) how to use the online models to
develop mechanisms that improve the lifetime of 3D NAND flash
memory.

5.1 RBER Variation Model
Since the layer-to-layer variation in 3D NAND flash memory causes
variation in RBER within a flash block, it is no longer sufficient
to use a single RBER value to represent the reliability of all pages
in that block. Instead, we model the variation in per-page RBER
within a flash block as a gamma distribution (i.e., дamma(x ,a, s) =
xa−1e−

x
s

Γ(a)sa ). In this model, x is the RBER; a is the shape parameter,
which controls how the RBER distribution is skewed; and s is the
scale parameter, which controls the width of the RBER distribution.

Figure 11 shows the probability density for per-page RBERwithin
a block that has endured 10K P/E cycles. The bars show the mea-
sured per-page RBERs categorized into 50 bins, and the blue and
orange curves are the fitted gamma distributions whose parameters
are shown on the legend. The blue bars and curve represent the
measured and fitted RBER distributions when the pages are read
using the variation-agnostic Vopt . To find the variation-agnostic
Vopt , we use techniques designed for planar NAND flash memory
to learn a single optimal read reference voltage (Vopt ) for each flash
block, such that the chosen voltage minimizes the overall RBER
across the entire block [64, 76]. The orange bars and curve represent
the measured and fitted RBER distributions when the pages are
read using the variation-aware Vopt , on a per-page basis. To find
the variation-aware Vopt , we use techniques that are described in
Section 6.1 to efficiently learn an optimal read reference voltage for
each page in the block, such that we minimize the per-page RBER.
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Figure 11: RBER distribution across pages within a flash
block.

We make three observations from the figure. First, the gamma
distribution fits well with the measured probability density function
of RBER variation across layers: the Kullback-Leibler divergence
error value [53] between the measured and fitted distributions is

only 0.09. Second, the average RBER reduces from 1.6 × 10−4 to
1.4 × 10−4 when we use the variation-aware Vopt . Third, some
flash pages have a much higher RBER than the average RBER (e.g.,
> 4 × 10−4) even when we use the variation-aware Vopt . This
large gap between the worst-case RBER and the average RBER
is caused by both layer-to-layer process variation and MSB–LSB
RBER variation (see Figure 5 in Section 4.2). The pages that have
the highest RBER are MSB pages that reside in the middle layers.
This observation indicates that there is potential to significantly
improve reliability by minimizing the RBER variation across flash
pages (for which we describe a mechanism in Section 6.2).

5.2 Retention Loss Model
We construct a model to describe the early retention loss phenom-
enon and its impact on RBER (log(RBER)) and threshold voltage
(V ) in 3D NAND flash memory, as a function of retention time
(t ) and the P/E cycle count (PEC): log(RBER) = A · log(t) + B;
V = A · log(t) + B. For both equations, A = α · PEC + β and
B = γ · PEC + δ , where α , β , γ , and δ are constants that change
depending on which variable we are solving for. We use ordinary
least squares method implemented in Statsmodel [88] to fit the
model to our real characterization data described in Section 4.3.
Recall that this data is collected from 72 flash pages belonging to 11
randomly-selected flash blocks. Following the experimental obser-
vations in Section 4.3 and in prior work [65, 69], we break down our
model into two parts. The first part (A) models the retention loss
at a certain P/E cycle count as a logarithmic function of retention
time. The second part (B) models how the P/E cycle count changes
the parameters of retention loss.

Table 2 shows all of the parameters we use to model the RBER
and the threshold voltage as a function of the retention time (t ) and
the P/E cycle count (PEC). In this table, the first column shows the
modeled variable for each row. The second to fifth columns show
the parameters (i.e., α , β , γ , and δ ) fitted to our model. Note that
the model for the optimal Va does not have α and β parameters
because Va is insensitive to retention time. The last column shows
the adjusted coefficient of determination (adjusted R2) of our model.
We find that our model achieves high adjusted R2 values for all
variables except for σER and Va , meaning that our model explains
>89% of the variation in the characterized data. The adjusted R2

values are relatively small for σER and Va because these two varia-
bles do not change much with the retention time or the P/E cycle
count. We conclude that our model is accurate and easy to compute
(as it can be computed using simple linear regression). Thus, our
model is suitable to use online in the SSD controller (for which we
will describe a mechanism in Section 6.3).

6 3D NAND ERROR MITIGATION
TECHNIQUES

Motivated by our new findings in Section 4, we aim to design
new techniques that mitigate the three unique error effects (i.e.,
layer-to-layer process variation, early retention loss, and retention
interference) in 3D NAND flash memory. We propose four error mi-
tigation mechanisms. To mitigate layer-to-layer process variation,
we propose LaVAR and LI-RAID. LaVAR learns our new RBER vari-
ation model (see Section 5.1) online in the SSD controller, and uses
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Variable
Model Parameters for:

Adjusted R2Variable = (α · PEC + β) · log(t) + γ · PEC + δ
α β γ δ

MSB RBER log(RBERMSB ) 5.49 × 10−6 0.16 1.33 × 10−4 -13.11 97.17%
LSB RBER log(RBERLSB ) 7.92 × 10−6 0.25 3.28 × 10−5 -12.72 90.05%
ER Mean µER 1.01 × 10−4 0.74 1.52 × 10−3 -27.27 96.86%
P1 Mean µP1 -1.94 × 10−5 -0.40 3.51 × 10−4 114.47 95.88%
P2 Mean µP2 -4.71 × 10−5 -0.70 3.23 × 10−4 189.58 98.50%
P3 Mean µP3 -7.37 × 10−5 -1.20 5.75 × 10−4 264.85 98.29%
ER Stdev σER 1.20 × 10−5 -0.10 1.63 × 10−6 17.01 56.33%
P1 Stdev σP1 -1.34 × 10−6 9.83 × 10−3 7.55 × 10−5 10.20 93.20%
P2 Stdev σP2 -2.12 × 10−6 9.85 × 10−3 6.69 × 10−5 10.65 89.02%
P3 Stdev σP3 2.87 × 10−6 1.40 × 10−2 3.30 × 10−5 10.83 93.00%

Optimal Va Va — — 1.20 × 10−3 60.52 71.20%
Optimal Vb Vb -3.72 × 10−5 -0.57 4.20 × 10−4 150.56 94.27%
Optimal Vc Vc -6.51 × 10−5 -1.06 4.81 × 10−4 227.24 97.72%

Table 2: Retention loss model for 3D NAND flash memory and its model parameters. PEC is P/E cycle lifetime, t is retention
time.

this model to predict and apply an optimal read reference voltage
that is fine-tuned to each layer (Section 6.1). LI-RAID is a new RAID
scheme that reduces the RBER variation induced by layer-to-layer
process variation in 3D NAND flash memory (Section 6.2). To miti-
gate retention loss in 3D NAND flash memory, we propose ReMAR,
a new technique that tracks the retention time information within
the SSD controller and uses our new retention loss model (see
Section 5.2) to predict and apply the optimal read reference voltage
that is fine-tuned to the retention time of the data (Section 6.3). To
mitigate retention interference, we propose ReNAC, which is adap-
ted from neighbor-cell assisted correction (NAC) [16], an existing
technique originally designed to reduce program interference in pla-
nar NAND flash memory, to also account for retention interference
in 3D NAND flash memory (Section 6.4).

6.1 LaVAR: Layer Variation Aware Reading
In planar NAND flash memory, existing techniques assume that the
RBER is the same across all pages within a flash memory block, and,
thus, a singleVopt value can be used for all pages in the block [6, 76].
This approach is called variation-agnostic Vopt . However, as our
results in Section 4.2 show, this assumption no longer holds in 3D
NAND flash memory due to layer-to-layer process variation, as
each page in a block resides in a different layer. We aim to im-
prove flash memory lifetime by mitigating layer-to-layer process
variation and reducing the RBER. The key idea is to identify how
much the read reference voltage must be offset by for each layer
in a flash chip, to account for the layer-to-layer process variation,
instead of using a single read reference voltage for the entire block
irrespective of layers. When the SSD controller performs a read re-
quest, it accounts for (1) per-block variation in RBER, by predicting
a variation-agnostic Vopt based on the P/E cycle count of the flash
block; and (2) layer-to-layer variation, by adding the layer-specific

offset to the variation-agnostic Vopt for the target block. This ge-
nerates a variation-aware Vopt that the controller uses as the read
reference voltage.

Mechanism.We devise a newmechanism called Layer Variation
Aware Reading (LaVAR), which (1) learns the voltage offsets for
each layer and records them in per-chip tables in the SSD controller,
and (2) uses the variation-aware Vopt during a read operation by
reading the appropriate voltage offset for the request from the
per-chip table that corresponds to the layer of the request. LaVAR
constructs a model of the optimal read reference voltage (Vopt )
variation across different layers. Since there are only a limited
number of layers, this model can be represented as a table (i.e., it
is a non-parametric model) of the offset between the Vopt for each
layer (variation-awareVopt ) and the overallVopt for the entire flash
block (variation-agnostic Vopt ). Any previously-proposed model
for Vopt [6, 64, 76] can be used to calculate the variation-agnostic
Vopt . Since the layer-to-layer process variation is similar across
blocks and is consistent across P/E cycle counts, the Vopt variation
model can be learned offline for each chip through an extensive
characterization of a single flash block. To do this, the SSD controller
randomly picks a flash block and records the difference between
the variation-aware Vopt and the variation-agnostic Vopt . LaVAR
uses the existing read-retry functionality in modern NAND flash
memory chips (see Section 4.1) to find the variation-aware Vopt
online. The controller then computes and stores the average Vopt
offset for each layer in a lookup table stored for each chip. Note that
Vc variation does not need to be modeled, since Vc is unaffected by
layer-to-layer process variation (see Figure 6 in Section 4.2).

When performing a read operation, the SSD controller simply
looks up the Vopt offset that corresponds to the layer and the chip
that contains the data being read, and adds the offset to the per-
block Vopt predicted by existing techniques [6, 64, 76]. By using
variation-aware Vopt , LaVAR enables the use of a more accurate
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Vopt for 3D NAND flash memory than existing techniques, and
thus reduces the RBER (see Figure 11 in Section 5.1).

Overhead. LaVAR can be implemented fully in the SSD control-
ler firmware, and, thus, does not require any modification to the
hardware. Assuming that the 3D NAND flash memory chip has
N layers and that it takes 1 Byte to store each Vopt offset for each
layer, the memory overhead of storing the lookup table for Va and
Vb in the SSD controller is 2N Bytes. The latency overhead of each
read operation is negligible as LaVAR requires only a table lookup
and an addition to obtain variation-aware Vopt , which take less
than 100 ns. Since the lookup table is shared across all blocks in a
chip, it needs to be learned only once, and it can be constructed
gradually in the background. Thus, the performance overhead of
LaVAR is negligible.

Evaluation. Figure 12 compares the RBER obtained by using
LaVAR (variation-awareVopt ) [6, 64, 76] to that obtained by using an
existing read reference voltage tuning technique (variation-agnostic
Vopt ) designed for planar NAND flash memory. We evaluate the
average RBER obtained by each mechanism by simulating read
operations using our characterization data in Section 4.2. Averaged
across all P/E cycle counts, LaVAR reduces the RBER by 43.3%.
The benefit comes from tuning the read reference voltage towards
the variation-aware Vopt by an offset learned by our model. The
RBER reduction becomes smaller as the P/E cycle count increases,
because the overall RBER increases exponentially as the NAND
flashmemorywears out, decreasing the fraction of process variation
errors. While the flash lifetime improvements produced by LaVAR
might seem small (as we show in Section 6.5), (1) they are achieved
with negligible overhead, and (2) the RBER reduction enabled by
LaVAR throughout the flash memory lifetime reduces the average
flash read latency [6]. As the number of layers within a 3D NAND
flash memory chip grows (e.g., vendors are already bringing chips
with 96 layers to the market [1]), we expect that layer-to-layer
process variation will increase, which in turn will increase the
magnitude of the lifetime benefits provided by LaVAR.
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Figure 12: RBER reduction using LaVAR.

6.2 LI-RAID: Layer-Interleaved RAID
As we observe in Section 5.1, even after applying the variation-
aware Vopt , the per-page RBER is distributed over a wide range ac-
cording to a fitted gamma distribution due to layer-to-layer process
variation and MSB–LSB RBER variation (see Figure 5 in Section 4.2).

In enterprise SSDs, in addition to ECC, the Redundant Array of
Independent Disks (RAID) [2, 83] error recovery technique is used
across multiple flash chips to tolerate chip-to-chip process varia-
tion in error rates. RAID in modern SSDs typically combines one
flash page from each flash chip into a logical unit called a RAID
group, and uses one of the pages to store the parity information
for the entire group. However, state-of-the-art RAID schemes do
not consider layer-to-layer process variation and MSB–LSB RBER
variation. These schemes group MSB or LSB pages in the same layer
together in a RAID group. As a result, the reliability of the SSD is
limited by the RBER of the weakest (i.e., the least reliable) RAID
group that contains the MSB or LSB pages from the least reliable
layer across all chips. We devise a new RAID scheme called Layer-
Interleaved RAID (LI-RAID), which eliminates these low-reliability
RAID groups by equalizing the RBER among different RAID groups.
LI-RAID makes use of two key ideas: (1) group flash pages in less
reliable layers with pages in more reliable layers, and (2) group
MSB pages with LSB pages.

Mechanism. Instead of grouping pages in the same layer to-
gether in the same RAID group, we select pages from different
chips and different layers and group them together, such that the
low-reliability pages (either due to layer-to-layer process varia-
tion or MSB–LSB RBER variation) are distributed to different RAID
groups. Thus, the new groups formed by LI-RAID have a more
evenly-distributed RBER than the groups formed using traditional
layer-unaware RAID schemes. We assume, without loss of gene-
rality, that there are m chips in the SSD, and each RAID group
containsm pages, one from each chip. We also assume that each
block contains n wordlines, and that the layer numbers of each
wordline are in ascending order (e.g., the wordline in layer i has a
lower wordline number than its neighboring wordline in layer i+1).
Thus, LI-RAID groups together the MSB page of wordline 0, the
LSB page of wordline n

m , the MSB page of wordline 2 · n
m , the LSB

page . . . , the MSB page of wordline (m − 2) · n
m , the LSB page of

wordline (m − 1) · n
m . Figure 13 shows an example LI-RAID layout

on an SSD with 4 chips and with 4 wordlines within each flash
block. Flash pages in the same RAID group are highlighted in the
same color. In this way, LI-RAID distributes the less reliable pages
within each chip across different RAID groups, thereby avoiding the
formation of significantly less reliable RAID groups that bottleneck
SSD reliability.

Note that, since the order of RAID group number is different in
each flash chip, the LI-RAID layout may potentially violate the pro-
gram sequence recommended by flash vendors, where wordlines
within each flash block must be programmed in order to minimize
harmful program interference [9, 15, 16, 77]. For example, in Chip 2
in Figure 13, Wordline 3 (Groups 2 and 3) is programmed after
Wordline 2 (Groups 0 and 1). In Chip 2, we leave Wordline 1 blank
(marked as“Blank” in Figure 13). Otherwise,Wordline 1 would cause
program interference to the data in Wordline 2, which already ex-
periences program interference when Wordline 3 is programmed,
significantly increasing the error rate of Wordline 1 [15, 16] (see
Appendix A.1.3). By laying out the data in the proposed manner,
LI-RAID provides the same reliability guarantee as the recommen-
ded program sequence, by guaranteeing that any data stored in
a flash page experiences program interference from at most one
neighboring wordline.
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Wordline # Layer # Page Chip 0 Chip 1 Chip 2 Chip 3

0 0 MSB Group 0 Blank Group 4 Group 3
0 0 LSB Group 1 Blank Group 5 Group 2
1 1 MSB Group 2 Group 1 Blank Group 5
1 1 LSB Group 3 Group 0 Blank Group 4
2 2 MSB Group 4 Group 3 Group 0 Blank
2 2 LSB Group 5 Group 2 Group 1 Blank
3 3 MSB Blank Group 5 Group 2 Group 1
3 3 LSB Blank Group 4 Group 3 Group 0

Figure 13: LI-RAID layout example for an SSD with 4 chips and with 4 wordlines in each flash block.

Overhead. The grouping of flash pages by LI-RAID is imple-
mented entirely in the SSD controller firmware. This requires the
firmware to be aware of the physical-page-to-layer mapping. The
flash pages left blank in LI-RAID incur a small additional storage
overhead compared to a conventional RAID scheme. Only oneword-
line (i.e., two pages in MLC NAND flash memory) within a flash
block is left blank, to mitigate the impact of program interference
on Groups 0 and 1. Without this blank wordline, the data in Groups
0 and 1 would be the only data to experience program interference
twice: once when Groups 2 and 3 are programmed, and once when
the last two groups are programmed. In modern NAND flash me-
mory, each flash block typically contains at least 256 flash pages.
Thus, the additional storage overhead for the blank pages is less
than 0.8%. LI-RAID does not incur additional computational over-
head because it computes parity in the same way as a conventional
RAID scheme, and only reorganizes the RAID groups differently. Be-
cause we do not change the data layout across flash blocks, the flash
translation layer (FTL) and the garbage collection (GC) algorithms
remain the same as in a conventional RAID scheme.

Evaluation. Figure 14 plots theworst-case RBER (i.e., the highest
per-page RBER within a flash block) when we use different error
mitigation techniques at 10,000 P/E cycles. Recall that the per-
page RBER within a flash block follows a gamma distribution (see
Figure 11 in Section 5.1). Thus, several least-reliable flash pages
within a block may become unusable (i.e., their RBER exceeds the
ECC correction capability) before the overall RBER of the flash chip
exceeds the ECC correction capability. We use the worst-case RBER
to represent the reliability of these least-reliable flash pages. In this
figure, the baseline uses the per-block variation-agnostic optimal
read reference voltage (i.e., variation-agnostic Vopt ), achieving a
worst-case RBER of 4.8 · 10−4. When we use the variation-aware
Vopt proposed in Section 6.1, the worst-case RBER is reduced by
9.6% over the baseline, to 4.3 · 10−4. LI-RAID reduces the worst-
case RBER by 66.9% over the baseline, to only 1.6 · 10−4. Thus, by
grouping flash pages on less reliable layers with pages on more
reliable layers, and by grouping MSB pages with LSB pages, LI-
RAID reduces the probability of unusable pages within a block,
thereby reducing the number of retired flash blocks due to ECC
failures.

Note that LaVAR and LI-RAID do not rely on whether the RBER
variation is consistent across all chips. LaVAR learns a different
lookup table for each chip. So, even if there is some chip-to-chip
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Figure 14: Effect of LaVAR and LI-RAID onworst-case RBER
at 10,000 P/E cycles.

process variation that is present, our models are effective at dyna-
mically capturing the behavior of any NAND flash memory chips.
Conventional RAID tolerates only chip-to-chip process variation.
LI-RAID improves flash reliability over conventional RAID by eli-
minating the strong correlation between RBER and layer number,
which we show in Figure 5. We conclude that both LaVAR and LI-
RAID are effective at reducing the impact of layer-to-layer variation
on the RBER.

6.3 ReMAR: Retention Model Aware Reading
As we show in Section 4.3, due to early retention loss, retention
errors increase much faster after programming a page in 3D NAND
flashmemory than they do in planar NAND flashmemory. Thus, mi-
tigating retention errors has become more important in 3D NAND
than in planar NAND flash memory, as the errors have a greater
impact on SSD reliability. However, as we show in our model in
Section 5.2, the RBER impact of early retention loss is proporti-
onal to the logarithm of retention time. This means that a large
majority of the retention errors and threshold voltage shifts hap-
pen shortly after programming. As a result, traditional retention
error mitigation techniques developed for planar NAND flash me-
mory, which are optimized for much larger retention times, may
become less effective on 3D NAND flash memory. For example,
Flash Correct-and-Refresh (FCR) [7, 8], a mechanism that remaps
all data periodically, allows planar NAND to tolerate 50× more P/E
cycles with a 3-day refresh period. However, according to our eva-
luations, the P/E cycle lifetime improvement of FCR reduces to only
2.7× for 3D NAND flash memory due to the early retention loss
phenomenon. This motivates us to explore new ways to mitigate
retention errors in 3D NAND flash memory.

Mechanism. We propose a new mechanism called Retention
Model Aware Reading (ReMAR), whose key idea is to accurately
track the retention time of the data and apply the optimal read
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reference voltage predicted by our model in Section 5.2. First, Re-
MAR constructs the same linear models proposed in Section 5.2
online to accurately predict the optimal Va , Vb , and Vc . Similar to
the distribution parameter model used in Section 5.2, we model the
optimal Vb and Vc as: V = (α · PEC + β) · log(t) + γ · PEC + δ . We
model the optimalVa as:Va = γ ·PEC+δ , sinceVa is not affected by
retention time (as we show empirically in Section 4.3). To construct
this model online, the controller randomly selects a flash block and
records the optimal read reference voltage of the block (which the
controller learns by sweeping the read reference voltages, as done
in prior work [6]), along with the block’s P/E cycle count (PEC)
and retention time (t ). Over time, these data samples would cover
a range of P/E cycle counts and retention times.8 Note that as the
P/E cycle count of the SSD increases, the accuracy of the model
increases, because more data samples are collected. Once this online
model is constructed, it is used in the controller to predict the opti-
mal read reference voltage to be used for each read operation. To do
this, the SSD controller stores the P/E cycle count and the program
time of each block as metadata. During each read operation, the
controller computes the retention time for each read by subtracting
the program time from the read time. Using the recorded P/E cycle
count and the computed retention time of the data, ReMAR applies
the online model to predictVa ,Vb , andVc . By accurately predicting
and applying the optimal read reference voltages, ReMAR increases
the accuracy of read operations and thereby decreases the raw bit
error rate.

Overhead. Like LaVAR, ReMAR is implemented fully in the SSD
controller firmware, and does not require any modifications to the
hardware. Assuming that the flash block size is 5MB, and that Re-
MAR stores the program time in the UNIX Epoch time format [67],
which takes up 4 B, the memory and storage overhead of ReMAR
is 800KB for a 1TB SSD. The performance overhead of each read
operation is small, as ReMAR needs only a few dozen CPU cycles
(on the order of 100 ns in total) in the SSD controller to compute
Vopt , which is negligible compared to flash read latency (on the
order of 10 µs). The performance overhead of learning the model
can be hidden by (1) performing learning in the background and
(2) deprioritizing the requests issued for characterization purposes.

The controller uses the UNIX Epoch time format [67] for program
and read times, such that the recorded time is valid after reboot. To
do this, the controller needs a real-time clock to keep track of the
current time. Without a power source on the SSD, the controller
needs a special command to synchronize the current time with the
host when it boots up. The program time of each block is stored
in the memory of the controller, along with other metadata that
already exists such as the logical address map and the P/E cycle
count of each block.

Evaluation. Figure 15 compares the RBER achieved by ReMAR
to that of the state-of-the-art read reference voltage tuning techni-
que [64] designed for planar NAND flash memory (Baseline). The
results are based on the characterization data in Section 4.3. We
assume that the average retention time of the data is 24 days. The
Baseline technique is unaware of the retention time. Thus, Baseline
uses a retention-agnostic Vopt based on only the P/E cycle count of

8The SSD controller can also perform additional characterization if a certain data
range is missing.

the flash page. ReMAR uses a retention-aware Vopt based on both
the P/E cycle count and the retention time of the flash page. On
average across all P/E cycle counts, ReMAR reduces the RBER by
51.9%. As the P/E cycle count increases, the benefit of ReMAR (i.e.,
the RBER improvement of ReMAR over Baseline) also increases.
We conclude that, by accurately tracking retention time, and by
using our retention loss model, ReMAR accurately adapts the read
reference voltage to the threshold voltage shifts that occur due to
retention loss, and hence it effectively reduces the RBER.
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Figure 15: RBER reduction using ReMAR.

6.4 ReNAC: Retention Interference Aware
Neighbor-Cell Assisted Correction

As we observe in Section 4.4, due to retention interference, the
amount of threshold voltage shift of a victim cell during a cer-
tain amount of retention time is affected by the value stored in
a vertically-adjacent neighbor cell. This phenomenon presents a
similar data dependency as that induced by program interference,
where the amount of the threshold voltage shift of a victim cell
during programming operation also depends on the value stored in
the directly-neighboring cells [15, 16]. To mitigate program interfe-
rence errors, prior work proposes neighbor-cell assisted correction
(NAC) [16]. The goal of NAC is to reduce the raw bit error rate by
reading each cell at the read reference voltage optimized for the
amount of program interference induced by its directly-neighboring
cells. To achieve this goal, after error correction fails on a flash page,
NAC reads the data stored in the neighboring wordline and re-reads
the failed page using a set of read reference voltage values that are
adjusted based on the data values stored in the directly-neighboring
cells [16]. However, this mechanism does not account for retention
interference induced by the neighboring cells, which is new in 3D
NAND flash memory. We adapt NAC for 3D NAND flash memory
to account for the new retention interference phenomenon, and call
this adapted mechanism Retention Interference Aware Neighbor-Cell
Assisted Correction (ReNAC).

Mechanism. The key idea of ReNAC is to use the data stored
in a vertically-adjacent neighbor cell to predict the amount of re-
tention interference on a victim cell. Using similar techniques from
Section 5.2, ReNAC first develops an online model of retention in-
terference as a function of the retention time and the neighbor cell’s
state. The SSD controller obtains the retention time of each block
using a mechanism similar to ReMAR, and computes and applies
the neighbor-cell-dependent read offset at that retention time from
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the model. For ReNAC, we are currently unable to show any mea-
ningful improvements in flash lifetime for the current generation of
3D NAND flash memory, because retention interference shifts the
threshold voltage by only less than two voltage steps (Figure 10),
which is much smaller than the voltage changes due to process
variation (Figure 6) and early retention loss (Figure 8). However, we
expect that retention interference will increase in future 3D NAND
flash memory devices due to decreasing cell sizes and decreasing
distances between neighboring cells (Table 1), which, in turn, will
likely increase the benefit of using ReNAC. We also expect ReNAC
to have a relatively larger benefit in 3D NAND flash memory chips
that use triple-level cell (TLC) or quadruple-level cell (QLC) techno-
logies. A TLC or QLC NAND flash memory chip stores more bits
in a cell than an MLC NAND flash memory chip, by splitting up
the same voltage range into a greater number of states (eight for
TLC and sixteen for QLC). Doing so reduces the voltage margin
between neighboring threshold voltage distributions. Therefore,
shifting the read reference voltage by two voltage steps may affect
more cells in TLC and QLC 3D NAND flash memory than in MLC
3D NAND flash memory, and, thus, ReNAC can reduce a greater
number of raw bit errors in future TLC or QLC NAND flash me-
mory. We leave a quantitative evaluation of ReNAC on future 3D
NAND flash memory chips to future work.

6.5 Putting It All Together: Effect on System
Reliability and Performance

The mechanisms we propose in this section can be combined to-
gether to achieve significant reductions in average and worst-case
RBER. For a consumer-class 3D NAND flash memory device, these
reductions improve flash memory lifetime, i.e., the device can tole-
rate more P/E cycles before failing. For an enterprise-class device
which is expected to be replaced after a fixed amount of time, these
reductions improve the sustainable workload write intensity or re-
duce the ECC storage overhead. We evaluate these potential effects
of our mechanisms on storage system reliability and performance.

Flash Lifetime (or Performance) Improvement. In Fi-
gure 16, we compare and contrast the reliability (i.e., the RBER)
of five example SSDs: (1) Baseline, an SSD that uses a fixed, de-
fault read reference voltage and employs a conventional RAID
scheme; (2) State-of-the-art, an SSD that uses the optimal read refe-
rence voltage predicted by existing mechanisms designed for planar
NAND flash memory [6, 64, 76, 81] and employs a conventional
RAID scheme; (3) LaVAR, an SSD that uses the optimal read re-
ference voltage for each layer predicted by LaVAR in addition to
State-of-the-art; (4) LaVAR+LI-RAID, an SSD that uses the LI-RAID
scheme in addition to LaVAR; and (5) This Work (LaVAR + LI-RAID
+ ReMAR), an SSD that uses the optimal read reference voltage
predicted by LaVAR and ReMAR, and also employs the LI-RAID
scheme. In this figure, we plot the worst-case RBER (i.e., the highest
per-page RBER within a flash block) instead of the average RBER,
because the worst-case RBER limits the flash memory lifetime. Be-
cause RBER increases with P/E cycle count, if the worst-case RAID
group has a high enough worst-case RBER, NAND flash memory
can no longer guarantee reliable operation.

Assuming that the ECC deployed on the SSD can correct errors
up to an RBER of 3 · 10−3 [6, 9] (i.e., the ECC limit, shown as
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Figure 16: Effect of LaVAR, LI-RAID, and ReMAR on worst-
case RBER experienced by any flash block.

a purple dashed line in Figure 16), we can calculate the lifetime
of each SSD we evaluate.9 In our evaluations, the flash memory
lifetime ends when the worst-case RBER exceeds the ECC limit. We
find that State-of-the-art, LaVAR, LaVAR+LI-RAID, and This Work
improve flash memory lifetime by 23.8%, 25.3%, 57.2%, and 85.0%,
respectively, over the Baseline. When the SSD is used in a server,
which has a fixed device lifetime, the server has to throttle the
write frequency to a certain drive writes per day (DWPD) to ensure
that the SSD can operate reliably during the fixed lifetime. In this
case, our combined mechanisms (This Work) increase the maximum
write frequency (i.e., the maximum DWPD) of the SSDs in a server
by 85.0%. Thus, our mechanisms either improve lifetime or improve
performance under a fixed lifetime.

ECC Storage Overhead Reduction. In modern SSDs, the
storage overhead for error correction increases in each generation
to better tolerate the degraded flash reliability due to aggressive
scaling. For example, to tolerate an RBER of up to 3 · 10−3 for the
Baseline SSD at the end of its lifetime, a modern BCH code [36]
requires 12.8% storage overhead for the redundant ECC bits [25]
(i.e., ECC redundancy). By deploying all of our proposed error miti-
gation techniques in an enterprise-class SSD, the RBER at the end
of the fixed flash memory lifetime is significantly lower compared
to Baseline. Thus, we can redesign the ECC deployed in the SSD to
tolerate only up to the reduced RBER, which requires fewer ECC
bits and, thus, lower ECC redundancy than the ECC required for
the Baseline. Assuming all five of the evaluated SSDs achieve the
same lifetime, and the same reliability (i.e., uncorrectable error rate)
at the end of their lifetime, State-of-the-art, LaVAR, LaVAR+LI-RAID,
and This Work reduce ECC redundancy by 42.2%, 45.3%, 68.8%, and
78.9%, respectively, over Baseline. We leave the evaluation of the per-
formance improvements due to a weaker ECC requirement [22, 59]
for future work.

We conclude that by combining LaVAR, LI-RAID, and ReMAR,
we can (1) achieve significant improvements in the lifetime of 3D
NAND flash memory, (2) enable higher write intensity in workloads

9Note that we are unable to directly measure the flash lifetime improvements on real
devices, because manufacturers do not provide us with the ability to modify the SSD
firmware directly, which prevents us from evaluating our techniques on the real devices
themselves. Unfortunately, we also do not have the resources to measure the lifetime
of a large number of real flash chips by emulating the behavior of our mechanisms,
as this would require many additional months to years of effort. Instead, we follow
the precedent of prior work to evaluate the flash memory lifetime based on real RBER
characterization data we obtain from the testing of real flash memory devices.
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within a given lifetime requirement, or (3) keep the lifetime constant
but greatly reduce the storage cost of reliability in 3D NAND flash
memory.

7 RELATEDWORK
To our knowledge, this paper is the first in open literature to
(1) show the differences between the error characteristics of 3D
NAND flash memory and that of planar NAND flash memory
through extensive characterization using real 3D NAND flash me-
mory chips, (2) develop models of layer-to-layer process variation
and early retention loss for 3D NAND flash memory, and (3) pro-
pose and show the benefits of four new mechanisms based on the
new error characteristics of 3D NAND flash memory. Due to the
importance of NAND flash memory reliability in storage systems,
there is a large body of related work. We treat this related work in
five different categories.

3D NAND Flash Memory Error Characterization. Two re-
cent works compare the retention loss phenomenon between 3D
NAND and planar NAND flash memory [65, 70] through real device
characterization, and report findings similar to our work regarding
the early retention loss phenomenon. Two other recent works use
a methodology similar to ours to characterize 3D NAND devices
based on different 3DNAND flashmemory cell technologies (i.e., 3D
floating-gate cell and 3D vertical gate cell) [38, 94, 95], which are less
common than the 3D charge trap NAND flash memory cell techno-
logy that we test in this paper. Other recent works [23, 31, 78, 80, 92]
report several differences of 3D NAND flash memory from planar
NAND flash memory. These differences include (1) smaller pro-
gram variation at high P/E cycle counts [80], (2) smaller program
interference [80], (3) layer-to-layer process variation [92], (4) early
retention loss [23, 31, 78], and (5) retention interference [23]. While
prior works have reported on the existence of these errors, none of
them provide a comprehensive characterization of all of the diffe-
rent errors using the same chips. Only one of these prior works [23]
provides a detailed analysis based on circuit-level measurements
and characterizations, and does so only for early retention loss and
retention interference. Other works provide only a high-level sum-
mary of real device characterization [80] or do not provide any real
device characterization results at all [31, 78, 92]. Our work performs
an extensive detailed analysis of all known sources of error in 3D
NAND flash memory chips, which allows us to understand the
relative impact of each error source on the same chip. We report the
first set of extensive results on three error characteristics that are
new in 3D NAND flash memory: layer-to-layer process variation,
early retention loss, and retention interference.

Planar NAND Flash Memory Error Characterization. A
large body of prior work studies all types of error sources on planar
NAND flash memory, including P/E cycling errors [9, 14, 64, 81],
programming errors [4, 64, 81], cell-to-cell program interference
errors [15, 16], retention errors [6, 7, 9, 28], and read disturb er-
rors [5, 9]. These works characterize how the raw bit error rate and
threshold voltage change due to various types of error sources. A
detailed survey of such prior works on planar NAND flash memory
can be found in our recent survey articles [9, 11]. Our paper ex-
perimentally studies all of these error mechanisms in the new 3D

NAND flash memory context, and compares 3D NAND flash me-
mory error characteristics with results in these prior works to show
the differences between 3D NAND and planar NAND flash memory.
Prior work demonstrates the early retention loss phenomenon in
planar NAND flash memory based on charge trap transistors [21],
which is similar to, but not as severe as, the early retention loss
phenomenon in 3D NAND flash memory. We investigate retention
interference and process variation related errors, in addition to
these other error types discovered before in planar NAND flash
memory.

PlanarNANDErrorModeling andMitigation.Based on cha-
racterization results, prior work proposes models for planar NAND
flash memory threshold voltage distribution, and models for es-
timating the effect of P/E cycling on the threshold voltage dis-
tribution [14, 64, 81]. Our work uses a simpler threshold voltage
distribution model, since more complex models are designed to
handle programming errors in planar NAND flash memory that
do not exist in the 3D NAND flash memory chips that we test.
We develop a unified model of retention loss and wearout for
the RBER, threshold voltage distribution, and Vopt in 3D NAND
flash memory. There is a large body of prior work that proposes
mechanisms to mitigate planar NAND flash memory errors [4–
9, 11, 15, 16, 32, 33, 37, 40, 41, 60, 63, 64, 74, 75, 93, 98]. In Section 6,
we have already compared our mechanisms to several of these
techniques that are state-of-the-art, and have shown that prior
techniques developed for planar NAND flash memory are less ef-
fective in 3D NAND flash memory than our techniques due to the
new error characteristics of 3D NAND flash memory.

3D NAND Flash Memory Error Mitigation. Prior work pro-
poses circuit-level and system-level techniques to tolerate layer-
to-layer process variation in 3D NAND flash memory. Two recent
works propose to use different read reference voltages for diffe-
rent layers [38, 96], which is similar to the LaVAR technique that
we propose in Section 6.1. Unlike our work, these prior works do
not (1) design a detailed mechanism like LaVAR to learn and use
the Vopt in a lookup table, or (2) evaluate their techniques using
real characterization data. Wang et al. propose to apply different
read reference voltages for less-reliable pages storing critical me-
tadata [92]. As we have shown in Section 6.1, while these prior
techniques improve average RBER, they do not significantly reduce
worst-case RBER, which limits the flash memory lifetime. In this
work, we propose a series of mitigation techniques that not only
significantly reduce the average and worst-case RBER but also to-
lerate other new error characteristics we find in 3D NAND flash
memory, such as early retention loss and retention interference.

Large-Scale SSD Error Characterization. Prior work per-
forms large-scale studies of errors found in flashmemories deployed
in data centers [68, 72, 87]. Since the operating system is unaware
of the raw bit errors in the NAND flash memory devices, these
studies can only use drive-level statistics provided by the SSD con-
troller, such as overall RBER and uncorrectable error rate, average
P/E cycle count, and a coarse estimation of retention time and read
disturb counts. In contrast, in our studies, we have complete access
to the physical location, P/E cycle count, retention time, and read
disturb count of each read/write operation, and thus can provide
deeper insights and controlled experimental results compared to
large-scale studies, which have to be correlational in nature.

17



SIGMETRICS, June 2018, Irvine, CA Y. Luo et al.

DRAM Error Characterization. Like a flash memory cell, a
DRAM cell stores charge to represent a piece of data. Hence, DRAM
has many error characteristics that are similar to NAND flash me-
mory. For example, charge leaks from a DRAM cell over time, at a
speed much faster than that for NAND flash memory (i.e., on the
order of milliseconds to seconds in DRAM [61, 62]), leading to data
retention errors. This phenomenon in DRAM is analogous to the
retention loss phenomenon in NAND flash memory (see Section 4.3
and Appendix A.2), and its effect has been studied through exten-
sive experimental characterization of DRAM chips [34, 35, 44, 46–
49, 51, 56, 61, 82, 85]. Similar to the retention interference phenome-
non found in 3D NAND flash memory (see Section 4.4), DRAM exhi-
bits data-dependent retention behavior, or data pattern dependence
(DPD) [61], where the retention time of a DRAM cell is dependent
on the values written to nearby DRAM cells [46–49, 61, 82]. Con-
ceptually similar to the read disturb errors found in NAND flash
memory (see Appendix A.3.2), commodity DRAM chips that are
sold and used in the field today exhibit read disturb errors [52], also
called RowHammer-induced errors [71]. These errors are affected by
process variation, which we comprehensively examine in 3D NAND
flash memory (see Section 4.2 and Appendix A.4). Process variation
in DRAM is shown to also affect access latency, retention time,
and power consumption [17–20, 30, 34, 35, 43, 44, 46–49, 51, 54–
56, 61, 62, 66, 82, 85].

8 CONCLUSION
We develop a new understanding of three new error characteris-
tics in 3D NAND flash memory through rigorous experimental
characterization of real, state-of-the-art 3D NAND flash memory
chips: layer-to-layer process variation, early retention loss, and
retention interference. We analyze and show that these new error
characteristics are fundamentally caused by changes introduced
in the 3D NAND flash memory architecture compared to the pla-
nar NAND flash memory architecture. To handle these three new
error characteristics in 3D NAND flash memory, we develop new
analytical models for layer-to-layer process variation and early re-
tention loss in 3D NAND flash memory. Our models can accurately
predict/estimate the optimal read reference voltage and the raw
bit error rate based on the retention time and the layer number of
each flash memory page. We propose four new error mitigation
techniques that utilize our new models to improve the reliability
of 3D NAND flash memory. Our evaluations show that our newly-
proposed techniques successfully mitigate the new error patterns
that we discover in 3D NAND flash memory. We hope that the
rigorous and comprehensive error characterization and analyses
performed in this work motivate future rigorous studies on 3D
NAND flash memory reliability, and that they inspire new error
mitigation mechanisms that cater to the new error characteristics
found in 3D NAND flash memory.
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A APPENDIX
A.1 Write-Induced Errors
We analyze how each type of write-induced error affects the RBER
and the threshold voltage distribution of 3D NAND flash memory.

A.1.1 Program Errors. Program errors occur when the data is
incorrectly written to the NAND flash memory [4, 9, 11, 79]. Such
errors are introduced when multiple programming operations are
required to write data to a single cell. For example, in many MLC
NAND flash memory devices, two-step programming [4, 79] is em-
ployed. Two-step programming uses two separate partial program-
ming steps to write data to an MLC NAND flash cell. In the first
step, the flash controller writes only the LSB to the cell, setting the
cell to a temporary voltage state. In the second step, the controller
writes the MSB to the cell, but in order to perform this write, the
controller must first determine the current voltage state of the cell.
This requires reading the partially-programmed data from the cell,
during which an error may occur. This error causes the controller
to incorrectly set the final voltage state of the cell during the se-
cond programming step, and, thus, is called a program error. Prior
work [4] shows that program errors occur in state-of-the-art planar
MLC NAND flash memory.

Current generations of 3D NAND flash memory use one-shot
programming [4, 9, 11, 79], which programs both the LSB andMSB of
a cell at the same time. As a result, current 3D NAND flash memory
devices do not experience program errors. Our measurements in
Figure 4 confirm the lack of program errors in 3D NAND flash
memory. In an MLC NAND flash memory that has program errors,
the threshold voltage distributions of the ER and P1 states have
secondary peaks near the P2 and P3 states, respectively [4]. This is
because program errors affect only the LSB, since only the LSB is
being read during the second programming step. Since there is no
second peak in Figure 4, there are no program errors.

Program errors may appear in future 3D NAND flash memory
devices. In planar NAND flash memory, two-step programming was
introduced when planar MLC NAND flash memory transitioned
to the 40 nm manufacturing process technology node, in order to
reduce the number of program interference errors [79]. A similar
transition may occur in the future to continue scaling the density
of 3D NAND flash memory, especially as it becomes increasingly
difficult to add more layers into a 3D NAND flash memory chip.
Thus, we conclude that today’s 3D NAND flash memories do not
have program errors, but program errors may appear in future
generations.

A.1.2 Program/Erase Cycling Errors. A P/E cycling error occurs
because of the natural variation of the threshold voltage of cells
in each state [14, 69] due to the inaccuracy of each program and
erase operation (see Section 2.2). Such inaccuracy during program
and erase operations increases as the P/E cycle count increases.
To study the impact of P/E cycling errors, we randomly select a
flash block within each 3D NAND chip, and wear out the block
by programming random data to each page in the block until the
block reaches 16K P/E cycles. Using the methodology described in

Section 4.1, we obtain the overall RBER and the threshold voltage
of each cell at various P/E cycle counts.10

Observations. Figure 17 shows how the mean and standard de-
viation of the threshold voltage distribution of each state change as
a function of the P/E cycle count, when we fit our voltage measure-
ments for each state to a Gaussian model. Each subfigure in the top
row represents the mean for a different state; each subfigure in the
bottom row represents the standard deviation for a different state.
The blue dots shows the measured data; each orange line shows
a linear trend fitted to the measured data. The x-axis shows the
P/E cycle count; the y-axis shows the mean (Figures 17a–17d) or
the standard deviation (Figures 17e–17h) of the threshold voltage
distribution of each state, in voltage steps. We make four observati-
ons from Figure 17. First, the mean and standard deviation of all
states increase linearly as the P/E cycle count increases. We fit a
line using linear regression, shown as an orange dotted line in each
subfigure.11 Second, the threshold voltage distributions of the ER
and P1 states shift to higher voltages, while the distributions of the
P2 and P3 states shift to lower voltages, causing the distributions to
move closer to the middle of the threshold voltage range. Third, the
threshold voltage distributions of all four states become wider (i.e.,
the standard deviation increases) as the P/E cycle count increases.
Since the distributions shift towards the middle of the threshold
voltage range and become wider as the P/E cycle count increases,
the distributions become closer to each other, which increases the
raw bit error rate. Fourth, the magnitude of the threshold voltage
shift and the widening of the distributions is much larger for the
ER state than it is for the other three states (i.e., P1, P2, P3). There-
fore, ER↔P1 errors (i.e., an error that shifts a cell that is originally
programmed in the ER state to the P1 state, or vice versa) increase
faster than other errors with the P/E cycle count.

Figure 18 shows how the RBER increases as the P/E cycle count
increases. The top graph breaks down the errors into which bit
(i.e., LSB or MSB) they occur in. The bottom graph breaks down
the errors based on how the error changed the cell state due to
a shift in the cell threshold voltage. If the error caused either the
LSB or MSB (but not both) to be read incorrectly, we refer to that
error as a single-bit error (ER↔ P1, P1 ↔ P2, and P2 ↔ P3 in the
graph). If both the LSB and MSB are read incorrectly as a result
of the error, we refer to that error as a multi-bit error. We make
four observations from Figure 18. First, both LSB and MSB errors
increase as the P/E cycle count increases, following an exponential
trend. Second, ER ↔ P1 errors increase at a much faster rate as
the P/E cycle count increases, compared to the other types of cell
state changes, and ER ↔ P1 errors become the dominant MSB
error type when the P/E cycle count reaches 8K P/E cycles (6K is
the cross-over point). This is because the electrons trapped in the
cell during wearout prevent the cell from being set to very low
threshold voltages. As a result, the threshold voltage distribution
of the ER state shifts and widens more than the distributions of
the other states, as we see in Figure 17. Third, multi-bit errors are
less common, but they occur as early as at 1K P/E cycles. Only a
large difference between the target and actual threshold voltage

10Due to limitations with our experimental testing platform, each data point at a
particular P/E cycle count has a retention time of 50 minutes.
11For the ER state, a linear fit has a 5.9% higher root mean square error than a power-law
fit. However, we choose the linear fit due to its simplicity.
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Figure 17: Mean and standard deviation of our Gaussian threshold voltage distribution model of each state, versus P/E cycle
count.

can lead to a multi-bit error, which is unlikely to happen. Fourth,
MSBs have a 2.1× higher error rate than LSBs, on average across
all P/E cycle counts. This is because the flash controller must use
two read reference voltages to read a cell’s MSB, but needs only one
read reference voltage to read a cell’s LSB.
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Figure 18: RBERdue to P/E cycling errors vs. P/E cycle count.

Figure 19 shows how the optimal read reference voltages change
as the P/E cycle count increases. This figure contains three subfi-
gures, each of which shows the optimal voltage for Va , Vb , and Vc
(see Figure 1a). We make two observations from this figure. First,
the optimal voltage for Va increases rapidly as the P/E cycle count
increases: after 16K P/E cycles, the voltage goes up by more than
20 voltage steps. Second, the optimal voltages forVb andVc remain
almost constant as the P/E cycle count increases: neither voltage
changes by more than 4 voltage steps after 16K P/E cycles, as ex-
pected from the lack of change in P1, P2, and P3 distribution means
shown in Figure 17.

0 5 10 15
P/E Cycle Count (×103)

65

70

75

80

85

No
rm

al
ize

d 
V t

h

(a) Optimal Va

0 5 10 15
P/E Cycle Count (×103)

140

145

150

155

160
(b) Optimal Vb

0 5 10 15
P/E Cycle Count (×103)

210

215

220

225

230 (c) Optimal Vc

Measured
Linear Fit

Figure 19: Optimal read reference voltages vs. P/E cycle
count.

Insights. To compare the error characteristics of 3D NAND
flash memory to that of planar NAND flash memory, we take the
equivalent observations on planar NAND flash memory reported
by prior works [14, 64, 81], and compare them to our findings for
3D NAND flash memory, which we just described. We find two
key differences. First, for 3D NAND flash memory, the threshold
voltage distributions for the P2 state and the P3 state shift to lower
voltages as the P/E cycle count increases. In contrast, for planar
NAND flash memory, the distributions of both states shift to higher
voltages [14, 64, 81]. One possible source of this change is the
increased impact of early retention loss with P/E cycle count, which
lowers the threshold voltage of cells in higher-voltage states (i.e.,
P2 and P3) [23]. Second, for 3D NAND flash memory, the change
in the mean threshold voltage of each state distribution exhibits a
linear increase. However, in sub-20 nm planar NAND flash memory,
the change in the mean threshold voltage exhibits a power-law-
based increase with P/E cycle count [64, 81]. In sub-20 nm planar
NAND flash memory, the mean threshold voltage of each state
distribution increases more rapidly at lower P/E cycle counts than in
higher P/E cycle counts, resulting in the power-law-based behavior.
However, we note that planar NAND flash memory using an older

22



Tolerating Early Retention Loss and Process Variation in 3D NAND Flash Memory SIGMETRICS, June 2018, Irvine, CA

manufacturing process technology (e.g., 20–24 nm) exhibits a linear
increase with P/E cycle count for the distribution mean [14], just as
we observe for 3DNAND flashmemory. Thus, there is evidence that
when the manufacturing process technology scales below a certain
size, the change in the distribution mean transitions from linear
behavior to power-law-based behavior with respect to P/E cycle
count. As a result, when future 3DNANDflashmemory scales down
to a sub-20 nm manufacturing process technology node, we might
expect that it too will exhibit power-law behavior for the change in
the distribution mean. We conclude that the differences we observe
between the P/E cycling effect in 3D NAND flash memory and
planar NAND flash memory are mainly caused by the use of a
significantly different manufacturing process technology node.

A.1.3 Program Interference. When a cell (which we call the ag-
gressor cell) is being programmed, cell-to-cell program interference
can cause the threshold voltage of nearby flash cells (which we call
victim cells) to increase unintentionally [15, 16] (see Section 2.2).
In 3D NAND flash memory, there are two types of program in-
terference that can occur. The first, wordline-to-wordline program
interference, affects victim cells along the z-axis of the cell that is
programmed (see Figure 3). These victim cells are physically next
to the cell that is programmed, and belong to the same bitline (and
thus the same flash block). The second, bitline-to-bitline program
interference, affects victim cells along the x-axis or y-axis of the cell
that is programmed. Bitline-to-bitline program interference can
affect victim cells in the same wordline (i.e., cells on the y-axis), or
it can affect victim cells that belong to other flash blocks (i.e., cells
on the x-axis).

To quantitatively analyze the effect of program interference
on cell threshold voltage and raw bit error rate, we use the
same experimental data that we have for P/E cycling errors (see
Section A.1.2). A correlation exists between the amount by which
program interference changes the threshold voltage of a victim
cell (∆Vvict im ) and the threshold voltage change of the aggressor
cell (∆Vaддr essor ) [15]. As a result of this interference correlation,
the threshold voltage of a victim cell is dependent on the threshold
voltage of the aggressor cell. The strength of this correlation can be
quantified as ∆Vv ict im

∆Vaддr essor , which is a property of the NAND device
and is largely dependent on the distance between the cells [57].
After programming randomly-generated data to the victim cells
and the aggressor cells, we estimate ∆Vaддr essor by calculating
the threshold voltage difference between the aggressor cell’s thres-
hold voltage in its final state and that in the ER state. We estimate
∆Vvict im by calculating the difference between the victim cell’s
threshold voltage with and without program interference.12

Observations. Figure 20 shows the interference correlation for
wordline-to-wordline interference and bitline-to-bitline interfe-
rence on a victim cell, for aggressor cells of varying distance from
the victim cell. For example, the victim cell in BL M, WL N has an
interference correlation of 2.7% with the next wordline aggressor
cell in BL M, WL N+1, which means that, if the threshold voltage
of the aggressor cell increases by ∆V , the threshold voltage of the
victim cell increases by 0.027∆V due to wordline-to-wordline pro-
gram interference. Wemake two observations from this figure. First,
12The cell threshold voltage without program interference is obtained by reading the
cell before the next wordline is programmed.

the interference correlation of the next wordline aggressor cell (i.e.,
2.7%) is over an order of magnitude higher than that of any other
aggressor cell, of which the maximum interference correlation is
only 0.080% (the previous wordline aggressor cell in BL M, WL N-1).
Thus, the program interference to the victim cell, is dominated by
wordline-to-wordline interference from the next wordline. Second,
all of the other types of interference have much smaller interference
correlation values.
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Figure 20: Interference correlation for a victim cell, as a re-
sult of programming aggressor cells of varying distances
from the victim cell.

Figure 21 shows how much the threshold voltage of a victim cell
shifts (∆Vvict im ) when a neighboring aggressor cell is program-
med to the P3 state, which generates the largest possible program
interference. Each curve represents a certain program interference
type (i.e., Next WL or PrevWL) and a certain state of the victim cell
(V). The curves that have a significant amount of threshold voltage
shift (e.g., >6 voltage steps) due to program interference are shown
in Figure 21(a); the curves that have a small amount of threshold
voltage shift are shown in Figure 21(b). We make three observations
from Figure 21. First, the effect of program interference decreases
as the P/E cycle count increases (along the x-axis, from left to right).
As we discuss in Section A.1.2, electrons trapped in a flash cell due
to wearout prevent the cell from returning to the lowest threshold
voltage values during an erase operation. As a result, as the P/E
cycle count increases, the mean threshold voltage of the ER state
increases. This causes ∆Vaддr essor to decrease as the P/E cycle
count increases, because the starting voltage of the aggressor cell
increases but its target voltage after programming remains the
same. As we discuss above, the interference correlation (i.e., the
ratio between ∆Vaддr essor and ∆Vvict im ) is largely a function of
the distance between flash cells. Thus, since ∆Vaддr essor decrea-
ses, ∆Vvict im also decreases with the P/E cycle count. Second, the
amount of program interference induced by an aggressor cell in the
next wordline decreases when the victim cell is in a higher-voltage
state (Next WL curves in Figure 21a, from top to bottom). This is
likely because the voltage difference between the aggressor cell and
the victim cell is lower when the victim cell is in a higher-voltage
state, reducing the the threshold voltage shift due to program inter-
ference. Third, the program interference induced by an aggressor
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cell in the previous wordline (Prev WL curves in Figure 21) affects
the threshold voltage distribution of only the ER state for a victim
cell, but it has little effect on the distributions of the other three
states (i.e., P1, P2, P3). This is a result of how programming takes
place in NAND flash memory. A program operation can only incre-
ase the voltage of a cell due to circuit-level limitations. When the
aggressor cell in the previous wordline is programmed, the victim
cell is already in the ER state, and the victim cell’s voltage increases
due to program interference. Some time later, the victim cell is
programmed. If the target state of the victim cell is P1, P2, or P3, the
programming operation needs to further increase the voltage of the
cell, and any effects of program interference from the aggressor cell
in the previous wordline are eliminated. If, however, the target state
of the victim cell is ER, the programming operation does not change
the victim cell’s voltage, and the effects of program interference
from the aggressor cell in the previous wordline remain.
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Figure 21: Amount of threshold voltage shift due to program
interference vs. P/E cycle count.

Insights. We compare the program interference in 3D NAND
flashmemory to the program interference observed in planar NAND
flash memory, as reported in prior work [15, 16]. We find one major
difference. The maximum interference correlation of program inter-
ference from a directly-adjacent cell is 40% lower in 3D NAND flash
memory (2.7%) than in state-of-the-art (20–24 nm) planar NAND
flash memory (4.5% [15]). This is corroborated by findings in prior
work [80], which shows that 3D NAND flash memory has 84%
lower program interference than 15–19 nm planar NAND flash
memory. The lower interference correlation in 3D NAND flash me-
mory is due to the larger manufacturing process technology node
(30–50 nm for the chips we test) that it uses compared to state-of-
the-art planar NAND flash memory. The amount of interference
correlation between neighboring cells is a function of the distance
between the cells [57]. In a larger manufacturing process techno-
logy node, the flash cells are farther away from each other, causing
the interference correlation to decrease. We note that when future
3D NAND flash memory chips use smaller manufacturing process
technology nodes, the impact of programming interference will
increase, similar to what happened in planar NAND flash memory.

Note that we are the first to compare how the threshold voltage
shift caused by program interference changes with the P/E cycle
count. As we discuss in our first observation for Figure 21, the
program interference effect decreases as the P/E cycle count incre-
ases because the increasing effects of wearout reduce the value of

∆Vaддr essor during programming. We conclude that the 40% re-
duction in the program interference effect we observe in 3D NAND
flash memory compared to planar NAND flash memory is mainly
caused by the difference in manufacturing process technology.

A.2 Early Retention Loss
In this section, we present the results and analysis of retention
loss in 3D NAND flash memory in addition to the key findings
in Section 4.3. We use the same methodology as described in
Section 4.3.

Observations. Figure 22 shows how the mean and the standard
deviation of the threshold voltage distribution change with reten-
tion time. Each subfigure in the top row shows the mean for a
different state; each subfigure in the bottom row show the standard
deviation for a different state. The blue dots show the measured
data; each orange line shows a linear trend line fitted to the mea-
sured data. The x-axis shows the retention time in log scale; the
y-axis shows the mean or standard deviation value in voltage steps.
We make five observations from this figure. First, the threshold
voltage distribution shifts more when the retention time is low.
This is the early retention loss phenomenon, which occurs because
charge that is trapped near the surface of the charge trap layer is
detrapped soon after programming. Second, as the retention time
increases, the voltage values of cells in the P1, P2, and P3 states
decrease, while the voltage values of cells in the ER state increase.
This is because the cells in the ER state have negative threshold
voltages, and hence they gain charge over retention time. Third, the
threshold voltage distributions of the ER and P3 states shift faster
than the distributions of the P1 and P2 states as the retention time
increases. This is because the ER and P3 states have larger voltage
differences from the ground than the other states. Fourth, retention
loss has little effect on the width of the threshold voltage distribu-
tion (i.e., standard deviation values change by less than 1 voltage
step after 24 days). This is because the effects of retention loss (i.e.,
charge leakage) impact cells at a similar rate, causing all of the cells
within the threshold voltage distribution to lose a similar amount of
voltage. Fifth, the correlation between any distribution parameter
(V ) and the retention time (t ) can be modeled as a linear function
(shown by the dotted lines in Figure 22):V = A · log(t)+B.A and B
are constants that change based on which parameterV is modeling
(i.e., the threshold voltage distribution mean or standard deviation).
Prior work shows that planar NAND flash memory has a similar
trend for retention loss, even though it uses a different flash cell
design. We have already compared and evaluated the differences
between 3D NAND and planar NAND flash memory in retention
loss speed in Section 4.3, and provided more detail about the linear
function that models the threshold voltage distribution parameters
in Section 5.2.

Figure 23 shows how the RBER increases with retention time
for a block that has endured 10K P/E cycles. The top graph breaks
down the errors according to the change in cell state as a result
of the errors; the bottom graph breaks down the errors into MSB
and LSB page errors. We make two observations from Figure 23, in
addition to our observations in Section 4.3. First, retention errors
are dominated by P2 ↔ P3 errors, because the threshold voltage
distribution of the P3 state not only shifts more but also widens
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Figure 22: Mean and standard deviation of our Gaussian threshold voltage distribution model of each state, versus retention
time.

more with retention time than the distributions of the other states
(see Figure 22). Although the distribution of the ER state also shifts
significantly, there are fewer ER↔ P1 errors to begin with. Second,
the MSB error rate increases faster than the LSB error rate as the
retention time increases. This is because as the distributions of both
the ER and P3 states shift more than those of the P1 and P2 states,
cells in the ER and P3 states are more likely to have errors. These
errors (ER ↔ P1 and P2↔ P3) affect the MSB of the cell.

10−6

10−5

10−4

10−3

RB
ER

(a)
ER↔P1
P1↔P2

P2↔P3

102 103 104 105 106 107
Retention Time (s)

10−5

10−4

10−3

RB
ER

(b)

MSB
LSB

MSB Fit
LSB Fit

Figure 23: RBER vs. retention time, broken down by (a) the
state transition of each flash cell, and (b) MSB or LSB page.

Insights. We compare the errors due to retention loss in 3D
NAND flash memory to those in planar NAND flash memory, as
reported in prior work [6, 7, 69]. We find another major difference
in 3D NAND flash memory in terms of threshold voltage distribu-
tion, in addition to those discussed in Section 4.3. We find that the
retention loss phenomenon we observe in 3D NAND flash memory

(1) shifts the threshold voltage distributions of the P1, P2 and P3
states lower, and (2) has little effect on the width of the distribution
of each state. In contrast, the retention loss phenomenon observed
in planar NAND flash memory (1) does not shift the P1 and P2 state
distributions by much, and (2) increases the width of each state’s
distribution significantly [6]. This indicates that a mechanism that
adjusts the optimal read reference voltage to the threshold voltage
shift caused by retention loss can be more effective on 3D NAND
flash memory than on planar NAND flash memory, because the
distributions shift by a greater amount (indicating a greater need
for voltage adjustment) with a smaller amount of overlap between
two threshold voltage distributions (reducing the number of read
errors when the optimal read reference voltage is used). We con-
clude that, due to the early retention loss phenomenon we observe
in 3D NAND flash memory, the threshold voltage of a flash cell
changes quickly within several hours after programming, leading
to significant changes in RBER and optimal read reference voltage
values.

A.3 Read-Induced Errors
In this section, we analyze how each type of read-induced error
affects the RBER and the threshold voltage distribution of 3DNAND
flash memory.

A.3.1 Read Errors. A read error is a type of read-induced error
where two reads to a flash cell may return different data values if
the read reference voltage used to read the cell is close to the cell’s
threshold voltage [24, 29, 42] (see Section 2.2). A read error adds
uncertainty to the outcome of every read operation performed by
the SSD controller. However, despite the potential for widespread
impact, read errors are not well-studied by prior work.

To quantify read errors, we use the data we collected in
Section 4.3. For each cell, we see if the actual read outcome (i.e.,
the bit value output by the flash controller after a read operation)
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matches the expected read outcome (i.e., the value that the read
should have returned based on the current voltage of the flash cell).
We determine the expected read outcome by comparing Vr ef with
Vth (i.e., we expect to read 1 if Vth < Vr ef , because Vr ef is high
enough that it should turn on the cell). We obtainVth by combining
the outcomes of multiple reads when sweeping the read reference
voltage, thus we expect that the combined output eliminates the
impact of read errors and is thus accurate. We say that a read error
occurs if the actual read outcome and the expected read outcome
do not match.

Observations. Figure 24 shows how the read error rate changes
as a function of the read offset (i.e., Vr ef −Vth ). We observe that,
as the absolute value of the read offset increases, the read error
rate decreases exponentially. This is likely because when Vr ef is
closer to Vth (i.e., when Vr ef −Vth has a smaller absolute value),
the amount of noise (i.e., voltage fluctuations) in the sense ampli-
fier increases exponentially [24, 29]. The larger amount of noise
increases the likelihood that the sense amplifier incorrectly detects
whether the cell turns on, which leads to a larger probability that a
read error occurs.
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Figure 24: Read error rate vs. read offset (Vr ef −Vth ).

Figure 25 shows the correlation between the read error rate and
the total RBER in a flash page. We observe that the read error rate is
linearly correlated with the overall RBER. This is because, when the
RBER is high, the threshold voltage distributions of neighboring
states overlap with each other by a greater amount. This causes a
larger number of cells to be close to the read reference voltage value,
increasing the probability that a read error occurs (see Figure 24).
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Figure 25: Relationship between the read error rate and the
RBER.

Insights. We are the first to discover and quantify the extent of
read errors, and to show the correlation of these errors with the
RBER and with the read reference voltage. We conclude that read
errors are correlated with the read offset (i.e., Vr ef −Vth ) and the
overall RBER of the flash page.

A.3.2 Read Disturb Errors. Read disturb errors occur when a
read operation to one page in a flash block may introduce errors in
other, unread pages in the same block [5, 76] (see Section 2.2). Read
disturb errors are caused by the high pass-through voltage applied
to cells in the unread pages.

To characterize read disturb errors, we first randomly select 11
flash blocks and wear out each block to 10K P/E cycles by repea-
tedly erasing and programming pseudorandomly generated data
into each page of each block. Then, we program pseudorandomly-
generated data to each page of each flash block. To minimize the
impact of other errors, especially retention errors due to early reten-
tion loss, we wait until the data has a 2-day retention time before
inducing read disturb. This ensures that, according to our results
in Section 4.3, after 2 days, retention loss has slowed down and can
only shift the threshold voltage by at most 1 voltage step during the
relatively short characterization process (∼9 h). To induce read dis-
turb in the flash block, we repeatedly read from a wordline within
the block for up to 900K times (i.e., up to 900K read disturbs). Du-
ring this process, to characterize the read disturb effect, we obtain
the RBER and threshold voltage distribution at ten different read
disturb counts from 0 to 900K.

Observations. Figure 26 shows how the mean and standard
deviation of the threshold voltage distribution change with read
disturb count. Each subfigure in the top row shows the mean for a
different state; each subfigure in the bottom row shows the standard
deviation for a different state. The blue dots shows the measured
data; each orange line shows a linear trend line fitted to the measu-
red data. The x-axis shows the P/E cycle count; the y-axis shows
the distribution parameters in voltage steps. We make three obser-
vations from this figure. First, the read disturb effect increases the
mean threshold voltage of the ER state significantly, by ∼8 voltage
steps after 900K read disturbs. In contrast, the mean threshold volta-
ges of the programmed states change by only a small amount (<3
voltage steps). The increase in the mean threshold voltage is lower
for a higher Vth state. This is because the impact of read disturb is
correlated with the difference between the pass-through voltage
(see Section 2.1) and the threshold voltage of a cell. When the diffe-
rence is larger (i.e., when the threshold voltage of a cell is lower),
the impact of read disturb increases. In fact, we observe that the
threshold voltage distribution of the P3 state even shifts to slightly
lower voltage values during the experiment, because read disturb
has little effect on cells in the P3 state, and the impact of retention
loss dominates. Second, the distribution width of each state (i.e.,
standard deviation) decreases slightly as the read disturb count in-
creases, by <0.2 voltage steps after 900K read disturbs. Third, the
change in each distribution parameter can be modeled as a linear
function of the read disturb count (as shown by the orange dotted
lines). This shows that read disturb in 3D NAND flash memory
follows a similar linear trend as that observed in planar NAND
flash memory by prior work [5].
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Figure 26: Mean and standard deviation of threshold voltage distribution of each state, vs. read disturb count.

Figure 27 plots how RBER increases with read disturb count for
a flash block that has endured 10K P/E cycles. The top graph breaks
down the errors according to the change in cell state as a result
of the errors; the bottom graph breaks down the errors into MSB
and LSB errors. We make three observations from Figure 27. First,
ER↔P1 errors increase significantly with read disturb count, whe-
reas P1↔P2 and P2↔P3 errors do not. This is because the ER state
threshold voltage distribution shifts significantly with read disturb
count (see Figure 26), reducing the threshold voltage difference bet-
ween the ER and P1 states. Second, MSB errors increase much faster
than LSB errors with read disturb count because ER↔P1 errors
are a type of MSB error, and they increase significantly with read
disturb count. Third, the increase in RBER with read disturb count
follows a linear trend (as shown by the dotted line in Figure 27b),
which is similar to the observation made for planar NAND flash
memory by prior work [5].

Figure 28 shows how the optimal read reference voltages change
with read disturb count. The three subfigures show the optimal
voltages for Va , Vb , and Vc . We make two observations from this
figure. First, the optimal voltages forVb andVc change by relatively
little as the read disturb count increases (<3 voltage steps after 900K
read disturbs), whereas the optimal Va changes more with the read
disturb count. This is because read disturb causes the threshold
voltage distributions of lower-voltage states to change by a greater
amount, which requires the read reference voltages separating the
lower-voltage states (e.g., Va ) to change more. Second, the increase
in the optimal Va follows a linear trend with read disturb count,
because the ER state threshold voltage distribution shifts linearly
(as we see from Figure 26).

Insights. We compare the read disturb effect that we observe
in 3D NAND flash memory to that observed in planar NAND flash
memory by prior work [5]. We make the observation that, although
RBER increases linearly with read disturb count in both 3D NAND
and planar NAND flash memory, the slope of the increase (i.e., the
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Figure 27: RBER vs. read disturb count, broken down by
(a) the state transition of each flash cell, and (b) MSB or LSB
page.
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Figure 28: Optimal read reference voltages vs. read disturb
count.

sensitivity of the RBER to read disturb) at 10K P/E cycles is 96.7%
lower in 3D NAND flash memory than that in planar NAND flash
memory [5]. We believe that this difference in the sensitivity to read
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disturb effect is due to the use of a larger process technology node
(30–40 nm) in current 3D NAND flash memory. The comparable
planar NAND flash memory results from prior work are collected
on 20–24 nm planar NAND flash memory devices [5]. We expect
the read disturb effect in 3D NAND flash memory to increase in
the future as the process technology node size shrinks. We con-
clude that the 96.7% reduction in the read disturb effect we observe
in 3D NAND flash memory compared to planar NAND flash me-
mory is mainly caused by the difference in manufacturing process
technology nodes of the two types of NAND flash memories.

A.4 Layer-to-Layer Process Variation
In this section, we present new results and analyses of the layer-to-
layer process variation phenomenon in 3D NAND flash memory,
in addition to the key findings we already presented in Section 4.2.
We use the same methodology as we describe in Section 4.2.

Figure 29 shows how the threshold voltage distribution mean
and standard deviation of each state changes with layer number,
for a flash block that has endured 10K P/E cycles. Each subfigure in
the top row shows the mean for a different state; each subfigure in
the bottom row shows the standard deviation for a different state.
We make two observations from this figure. First, the ER state thres-
hold voltage increases by as much as 25 voltage steps as the layer
number changes, while the mean threshold voltages of the other
three states do not vary by much. This is because the threshold
voltage of a cell in ER state is set after an erase operation, and the
value it is set to is a function of manufacturing process variation
and of wearout. In contrast, the threshold voltage of a cell in one of
the other states (P1, P2, or P3) is set to a fixed target voltage value
regardless of process variation [3, 69, 89, 91] (see Section 2.1). Since
only the voltage of the ER state is affected by layer-to-layer process
variation, only one of the read reference voltages,Va , changes with
the layer number, as we already observed in Figure 6. Second, the

distribution widths of ER and P1 states (i.e., their standard deviati-
ons) increase in the top layers, and decrease in the bottom layers.
This pattern is similar to the pattern of how the RBER changes with
layer number, which we show in Figure 5 (Section 4.2). A wider
threshold voltage distribution increases the overlap of neighboring
distributions, leading to more errors in the top layer. However, the
distribution widths of the P2 and P3 states mainly decrease as layer
number increases. Unfortunately, we are unable to completely ex-
plain why mean threshold voltage and distribution width change
differently with layer number for different states because we do not
have exact circuit-level information about layer-to-layer process
variation.

We conclude that layer-to-layer process variation significantly
impacts the threshold voltage distribution and leads to large varia-
tions in RBER and optimal read reference voltages across layers.

A.5 Bitline-to-Bitline Process Variation
We perform an analysis of the variation of RBER and threshold
voltage distribution along the y-axis (i.e., across groups of bitlines)
for a flash block that has endured 10K P/E cycles. We use a similar
methodology to our layer-to-layer process variation experiments
(see Section 4.2).

Figure 30 shows how the threshold voltage distribution mean
and standard deviation of each state changes with layer number,
for a flash block that has endured 10K P/E cycles. Each subfigure in
the top row shows the mean for a different state; each subfigure in
the bottom row shows the standard deviation for a different state.
Note that we normalize the number of bitlines from 0 to 100, by
multiplying the actual bitline number with a constant, to maintain
the anonymity of the chip vendors. We make two observations
from this figure. First, the variations in mean threshold voltage and
the distribution width (i.e., standard deviation) are much smaller
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Figure 29: Mean and standard deviation of our Gaussian threshold voltage distribution model of each state, versus layer num-
ber.
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Figure 30: Mean and standard deviation of our Gaussian threshold voltage distribution model of each state, versus bitline
number.

in this figure compared to that observed in Figure 29 for layer-
to-layer variation (Appendix A.4). This indicates that bitline-to-
bitline process variation is much smaller compared to layer-to-layer
process variation in 3D NAND flash memory. Second, we observe
that the pattern of the mean threshold voltage repeats periodically,
for every 25 bitlines. We believe that this indicates a repetitive
architecture in the way that the 3D NAND flash memory chip is
organized (for example, each blockmay bemade up of four arrays of
flash cells that are connected together). Unfortunately, we cannot
completely explain this behavior without access to circuit-level

design information that is proprietary to NAND flash memory
vendors.

Figures 31 and 32 show how the RBER and optimal read reference
voltages change with bitline number, for a flash block that has
endured 10K P/E cycles. We observe that neither RBER nor the
optimal read reference voltages change by much across bitlines.
This indicates that the changes that we observe in Figure 30 may
not be significant enough to lead to variation in the reliability
of different bitlines. We conclude that bitline-to-bitline process
variation is much smaller than layer-to-layer process variation in
3D NAND flash memory.
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Figure 31: RBER vs. bitline number, broken down
by (a) the state transition of each flash cell, and
(b) MSB or LSB page.
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Figure 32: Optimal read reference voltages vs. bitline number.
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