Analysis and Modeling of Collaborative Execution Strategies
for Heterogeneous CPU-FPGA Architectures

Sitao Huang Li-Wen Chang” Izzat E1 Hajj
ECE, UIUC Microsoft ECE, UIUC
shuang91@illinois.edu liwen.chang@microsoft.com elhajj2@illinois.edu

Simon Garcia De Gonzalo

Juan Gémez-Luna

Sai Rahul Chalamalasetti

CS, UIucC CS, ETH Zurich Hewlett Packard Labs
gredgnz2@illinois.edu juang@ethz.ch sairahul.chalamalasetti@hpe.com
Mohamed El-Hadedy Dejan Milojicic Onur Mutlu

ECE, Cal Poly Pomona Hewlett Packard Labs CS, ETH Zurich

mealy@cpp.edu dejan.milojicic@hpe.com omutlu@ethz.ch

Deming Chen Wen-mei Hwu
ECE, UIUC ECE, UIUC
dchen@illinois.edu w-hwu@illinois.edu
ABSTRACT the memory bandwidth saturates. Third, we provide new insights

Heterogeneous CPU-FPGA systems are evolving towards tighter
integration between CPUs and FPGAs for improved performance
and energy efficiency. At the same time, programmability is also im-
proving with High Level Synthesis tools (e.g., OpenCL Software De-
velopment Kits), which allow programmers to express their designs
with high-level programming languages, and avoid time-consuming
and error-prone register-transfer level (RTL) programming. In the
traditional loosely-coupled accelerator mode, FPGAs work as of-
fload accelerators, where an entire kernel runs on the FPGA while
the CPU thread waits for the result. However, tighter integration of
the CPUs and the FPGAs enables the possibility of fine-grained col-
laborative execution, i.e., having both devices working concurrently
on the same workload. Such collaborative execution makes better
use of the overall system resources by employing both CPU threads
and FPGA concurrency, thereby achieving higher performance.

In this paper, we explore the potential of collaborative execution
between CPUs and FPGAs using OpenCL High Level Synthesis.
First, we compare various collaborative techniques (namely, data
partitioning and task partitioning), and evaluate the tradeoffs be-
tween them. We observe that choosing the most suitable partition-
ing strategy can improve performance by up to 2X. Second, we
study the impact of a common optimization technique, kernel du-
plication, in a collaborative CPU-FPGA context. We show that the
general trend is that kernel duplication improves performance until

“Li-Wen did this work when he was a PhD student at UIUC.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPE ’19, April 7-11, 2019, Mumbai, India

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6239-9/19/04...$15.00
https://doi.org/10.1145/3297663.3310305

that application developers can use when designing CPU-FPGA
collaborative applications to choose between different partitioning
strategies. We find that different partitioning strategies pose differ-
ent tradeoffs (e.g., task partitioning enables more kernel duplication,
while data partitioning has lower communication overhead and
better load balance), but they generally outperform execution on
conventional CPU-FPGA systems where no collaborative execution
strategies are used. Therefore, we advocate even more integra-
tion in future heterogeneous CPU-FPGA systems (e.g., OpenCL 2.0
features, such as fine-grained shared virtual memory).

KEYWORDS

CPU-FPGA architectures, Heterogeneous systems, OpenCL, Perfor-
mance analysis

ACM Reference Format:

Sitao Huang, Li-Wen Chang, Izzat El Hajj, Simon Garcia De Gonzalo, Juan
Gomez-Luna, Sai Rahul Chalamalasetti, Mohamed El-Hadedy, Dejan Miloji-
cic, Onur Mutlu, Deming Chen, and Wen-mei Hwu. 2019. Analysis and Mod-
eling of Collaborative Execution Strategies for Heterogeneous CPU-FPGA
Architectures. In Tenth ACM/SPEC International Conference on Performance
Engineering (ICPE ’19), April 7-11, 2019, Mumbai, India. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3297663.3310305

1 INTRODUCTION

The demand for processing larger amounts of data with higher
performance under constrained power and energy budgets makes
heterogeneity a fundamental feature of computing systems. There-
fore, heterogeneous architectures (e.g., CPU-GPU, CPU-FPGA) are
now ubiquitous in modern data centers and supercomputers [1-3].
In addition to powerful CPUs, current computing systems typically
employ various types of specialized devices, such as Graphics Pro-
cessing Units (GPUs), Field-Programmable Gate Arrays (FPGAs),
Tensor Processing Units (TPUs), and other Application-Specific Inte-
grated Circuits (ASICs). FPGAs are particularly interesting because
they provide a tradeoff between performance and programmability,

https://doi.org/10.1145/3297663.3310305
https://doi.org/10.1145/3297663.3310305

when programmed with High Level Synthesis (HLS) frameworks,
like Intel FPGA SDK [4] for OpenCL and Xilinx SDAccel [5]. FPGAs
are not only suitable for accelerating applications under stringent
energy efficiency requirements [6-8], but they are also being in-
creasingly adopted in cloud servers and data centers [9-14]. For
example, Microsoft has built an Earth-scale FPGA-based network
(the Catapult V2 [10, 11]), which enables network flows to be pro-
grammably transformed at line rate in the cloud, thereby accelerat-
ing both network functions and applications. Other major efforts
using FPGAs in the cloud include IBM SuperVesselCloud [12], Ama-
zon EC2 [9], Microsoft Brainwave [15], and the Intel CPU-FPGA
deep learning inference accelerator card (DLIA) [13]. Intel estimates
that FPGAs will run in 30% of data center servers in 2020 [14].

Traditionally, accelerators (including FPGAs) have been used
as offload engines, where an entire kernel runs on the accelerator
while the CPU remains idle, waiting for the result [16-19]. More
recently, vendors provide interconnect technologies such as Intel
QuickPath Interconnect (QPI) [20], Hyper Transport [21], Front
Side Bus (FSB) [22], Accelerator Coherency Port (ACP) [23], AXI
Coherency Extension (ACE) [24], ARM CoreLink Interconnect [25],
IBM Coherent Accelerator Processor Interface (CAPI) [26], and
Cache Coherent Interconnect for Accelerators (CCIX) [27]. In terms
of functionality, these interconnects operate in a similar manner,
but their details vary across CPU architectures, processor imple-
mentations, and silicon fabrication. These interconnects enable
tighter integration between CPUs and FPGAs in SoC chips [28-30]
and server-grade systems [31, 32].

The trend towards tighter integration of CPUs and FPGAs en-
ables more collaborative execution between devices. Rather than
executing an entire kernel on the FPGA while the CPU is idle, collab-
orative execution makes better use of the overall system resources
by involving both CPU threads and FPGA in the execution. One
of the key challenges of collaborative execution between CPUs
and FPGA:s is the identification of the best strategy for partition-
ing work between the CPU and the FPGA. There are two major
approaches to partitioning of work. The first approach, called data
partitioning, is to have the CPU and the FPGA perform the same
task on different subsets of the data. The second approach, called
task partitioning, is to have each device perform a different sub-task
and communicate intermediate results between them. Each parti-
tioning strategy entails its own tradeoffs, and different applications
may benefit from different strategies. The factors that impact the
suitability of each partitioning strategy encompass 1) the latency
and bandwidth of inter-device communication, 2) the disparity in
the workload’s performance on the CPU versus the FPGA, 3) the
diversity of computation phases within a task, and 4) the hardware
resource constraints. Each strategy poses its own challenges, such
as how much data to assign to each device or which sub-tasks to
assign to which device. Our goals in this work are 1) to evaluate dif-
ferent collaborative execution strategies for CPU-FPGA systems by
analyzing their effectiveness and their tradeoffs, and 2) to provide
insights for designing future CPU-FPGA collaborative applications.
Though our work focuses on integrated CPU-FPGA systems, it
could be extended to collaborative execution using other types of
accelerators in heterogeneous systems.

We make the following contributions:

e We carry out the first quantitative evaluation of collabora-
tive execution strategies with OpenCL HLS on CPU-FPGA
systems using benchmarks from diverse fields (e.g., image
processing, graph processing, producer-consumer comput-
ing, computer graphics, etc.).

e We propose new analytical models for different collabora-
tive execution strategies that assist us in estimating their
performance of different strategies.

e We rigorously analyze the tradeoffs of different partitioning
strategies for collaborative execution, and provide insights
to help developers make informed decisions when designing
collaborative programs for CPU-FPGA systems.

2 COLLABORATIVE EXECUTION
STRATEGIES

We first define collaborative execution and two main strategies for
it, namely data partitioning and task partitioning. Then, we propose
analytical models to estimate the performance of data partitioning
and task partitioning.

Collaborative execution refers to an application execution struc-
ture where the CPU and the FPGA (or another accelerator) both
participate in performing the computations required by the ap-
plication, as opposed to the traditional offload accelerator model
where the entire kernel is executed on the FPGA while the CPU
thread waits for the result. The strategies for collaboratively exe-
cuting a program on different types of devices can be classified into
two main categories: data partitioning and task partitioning. We
discuss these in Sections 2.1 and 2.2 respectively. Many programs
are amenable to both data partitioning and task partitioning, and
thus programmers need to choose between them. In this paper,
we aim to provide insights to assist programmers in making the
right decisions when writing collaborative programs for integrated
CPU-FPGA systems.

Throughout this section, we illustrate the collaborative execution
strategies using the simple example shown in Figure 1(a). In this
example, a program consists of many data-parallel tasks @ that are
applied to different data elements. Each data-parallel task consists
of multiple types of sub-tasks (two in this case), and the result of the
first sub-task @ is required for the execution of the second sub-task
©. In some cases, a program may consist of multiple phases where
there is a global synchronization point @ across all data-parallel
tasks. In OpenCL, these phases are typically expressed as separate
kernels, since global synchronization across the entire device is not
supported in the programming model.

2.1 Data Partitioning

Data partitioning is a collaborative execution strategy wherein dif-
ferent devices perform the same task on a different subset of the data,
i.e., the data-parallel tasks are distributed across devices. Figure 1(b)
illustrates this strategy. The main challenge with data partition-
ing is determining the optimal partitioning, i.e., the distribution of
data-parallel tasks across devices that results in the highest perfor-
mance. One possibility is static partitioning where a fixed fraction
of the data-parallel tasks is statically assigned to each device prior
to execution. Another possibility is dynamic partitioning where the

data-parallel tasks @)

ol 2
; I 3

DeVlce l: Device 2

Device 1 Device 2
EI EI ! E!

il i,
iiiuuuu e

sequential sub-tasks
global synchromzatlon

(a) Program Structure

(b) Data Partitioning (c) Task Partitioning

Figure 1: Program with Many Data-parallel Tasks (a) and
Two Collaborative Execution Strategies: Data Partitioning
(b) and Task Partitioning (c)

data-parallel tasks are dynamically assigned to different devices
from a task pool during execution until all tasks are exhausted.

To better understand and analyze the collaborative execution
patterns, we establish analytical models. We use the abstraction
of workers to represent the processing units on a device. A thread
on a CPU is a CPU worker. A processing element on an FPGA
is considered an FPGA worker. We use the following notation to
describe the application and system properties:

N - Number of data parallel tasks in the application
t;,c — Execution time of sub-task i by a CPU worker
t;, r — Execution time of sub-task i by an FPGA worker
wce — Number of available CPU workers
wg — Number of available FPGA workers

To define an analytical model for data partitioning, let a be the
fraction of data-parallel tasks executed by the CPU, and let 4,5 be
the factor of increase in the total execution time (i.e., overhead) due
to distributing tasks and merging partial results. The total execution
time of the application is expressed as:

aN Yiti,c (1—a)N ;i tiF

tdata,total = Bdata - max > (1)
we WE

The overall execution time is the maximum of the execution times
on the CPU and the FPGA since the device that finishes first needs
to wait for the other device.

To minimize the total execution time when performing data
partitioning, « must be tuned such that the two terms in max(-, -)
are equal. This ensures load balance, and thus minimizes device
idleness and the overall execution time.

The optimal a* can be obtained as:

o o 2itiF / (Zi fic |

WF

2itiF

wc WF

@)

The optimal a* is therefore determined by t; ¢, t; F, wc, and wr,
which are specific to the application and the system. Statically
determining the optimal a* requires profiling the program and a
performance model of the system.

Alternatively, to maximize the performance of data partitioning
without the need for program profiling and a system performance
model, dynamic data partitioning can be used. As opposed to static
data partitioning where « is determined and fixed before execution,
dynamic data partitioning does not partition the data using a fixed

ratio. Instead, data is partitioned into fine-grained data blocks and
those fine-grained data blocks are dynamically assigned to devices
(and workers) from a task pool until all tasks are exhausted. The
fraction of total data blocks that each device ends up processing
is largely dependent on the relative performance difference of the
different devices involved. With dynamic data partitioning, load
balance between devices can be achieved. However, dynamic data
partitioning might have a higher f3,;, due to the additional over-
heads caused by contention on the task queue.

2.2 Task Partitioning

Task partitioning is a collaborative execution strategy wherein dif-
ferent devices execute different types of sub-tasks on the entire set
of the data, i.e, within each data-parallel task, different types of
devices perform different types of sub-tasks. Figure 1(c) illustrates
this strategy. The main challenge with task partitioning is to deter-
mine which type of sub-tasks within the data-parallel tasks is more
suitable for each device. Even if one device is better at all types
of sub-tasks, task partitioning may still be beneficial, if it makes
better utilization of the devices that might be otherwise idle, thus
improving parallelism. Since the sub-tasks within a data-parallel
task are sequential, task partitioning creates a dependency between
devices such that one device must wait for intermediate results
from another device before executing its sub-task. However, with
multiple tasks available, significant parallelism can still be achieved
across devices via pipeline-style (i.e., pipeline-parallel) execution,
as illustrated in Figure 1(c).

To define an analytical model for task partitioning, we use the
same notation defined in Section 2.1. In addition, let Sc and Sg
be the sets of indices of sub-tasks to be executed on the CPU and
the FPGA respectively. Note that Sc N Sp = 0 and S¢ U S is the
set of indices of all sub-tasks. Also let f,q be the percentage of
total execution time increase (i.e., overhead) due to communication
overhead in task partitioning. In task partitioning, the execution of
sub-tasks on the CPU and the FPGA may or may not be overlapped,
depending on the granularity of task partitioning and pipelining. If
the target platform supports fine-grained task partitioning, which
allows the CPU processing and the FPGA processing to perfectly
overlap with each other, the total execution time depends on the
execution time of the device that takes longer to finish. The total
execution time of the application in this case can be expressed as:

X tic X trF
ieSc ieSp
trask,total = ;BtaskN max| ——, ————— 3)
wc WF

If the target platform only supports coarse-grained task parti-
tioning, where no overlap between CPU processing and accelerator
processing is possible, the total execution time is the sum of the
execution time of the CPU and the FPGA:

Zs tic X tiF

ieSc ieSp

trask,total = ﬁtaskN' + (4)
wc WF

More generally, in cases where the CPU and the FPGA processing
have some level of overlap, the total execution time must fall into
the range given by Equations 3 and 4. Therefore, Equation 3 and

Equation 4 give the lower bound and upper bound, respectively, of
task partitioning execution time.

Optimizing the performance of task partitioning increases in
difficulty as the number of sub-tasks increases, since the number
of combinations of S¢ and Sp grows exponentially with respect to
the number of sub-tasks. Thus, minimizing Equations 3 and 4 is not
straightforward. It requires a performance model of the underlying
hardware or manual effort, which are out of the scope of this work.
This work mainly focuses on how collaborative execution patterns
can be better used, and any automatic or manual optimization of
Equations 3 and 4 is orthogonal to our work.

3 METHODOLOGY

We use OpenCL programs from the Chai benchmark suite [33],
which is developed to evaluate collaborative execution. Table 1
shows the benchmarks we evaluate, along with the collaborative
execution strategy used by each one. The benchmarks are compiled
with the Intel FPGA SDK for OpenCL 16.0 [4]. For the comparative
evaluation of the two collaborative execution strategies in Section 4,
we use Canny Edge Detection and Random Sample Consensus, since
these two benchmarks support both partitioning schemes.

Table 1: Evaluated Chai Benchmarks [33].

‘ Benchmark H Description ‘ Strategy ‘

CED-D Canny Edge Detection Data Partitioning
CED-T Canny Edge Detection Task Partitioning
RSC-D Random Sample Consensus Data Partitioning
RSC-T Random Sample Consensus Task Partitioning
BS Bézier Surface Data Partitioning
HSTO Image Histogram Data Partitioning
SSSp Single-Source Shortest Path Task Partitioning
TQ Task Queue System (Synthetic) | Task Partitioning
TQH Task Queue System (Histogram) | Task Partitioning

We perform our evaluation on the two systems shown in Table 2.

Note that the Nallatech 510T data center acceleration card hosts two
Arria 10 1150 GX FPGAs, but the current OpenCL Board Support
Package (BSP) from the vendor is a beta version that is limited to
one FPGA and two DDRA4 slots, so only one FPGA and 8GB device
memory are used for the evaluation. The Arria 10 FPGA has more
logic and DSP resources than the Stratix V FPGA does, and also
features hard floating-point DSP blocks, which the Stratix V FPGA
does not.

Table 2: System Specifications.

FPGA Board Terasic DE5-Net [34] | Nallatech 510T [35]
FPGA Stratix V GX [36] Arria 10 GX [37]
Device Memory 4GB (DDR3) 8GB (DDR4)
Host CPU Xeon E3-1240 v3 [38] | Xeon E5-2650 v3 [39]
Host Memory 8GB (DDR3) 96GB (DDR4)
Interface PCle gen3.0 X8 PCle gen3.0 X8

In the experiments, we repeat the execution and measurement
five times for each test. The reported execution time is the averaged
execution time of five runs.

In Figures 3 and 4, we show results for both FPGAs, which sum-
marize the comparison between data and task partitioning for CED
and RSC. For the remaining results, we only show results for the
Stratix V FPGA for brevity, but the trends are similar on both sys-
tems we evaluate. Unless otherwise specified, we report the results
for the best performing CPU thread count (from among 1, 2, and
4 threads) and the best performing duplication factor. Besides, we
use the built-in Intel FPGA dynamic profiler for OpenCL provided
by the Intel OpenCL SDK to profile the execution of FPGA kernels
and identify performance bottlenecks.

4 EVALUATION OF COLLABORATIVE
EXECUTION STRATEGIES

In this section, we evaluate the performance of CPU-FPGA col-
laborative execution and analyze the sources of the performance
improvements and bottlenecks.

4.1 Canny Edge Detection

Canny Edge Detection (CED) [40] is an edge detection algorithm
that is commonly used for image processing. It consists of four
stages: (1) a Gaussian filter, (2) a Sobel filter, (3) non-maximum
suppression, and (4) hysteresis. We apply these four stages of the
algorithm to a stream of video frames. In the data partitioning
version of the benchmark, each device processes a different set of
frames. In the task partitioning version, the first two stages are
executed on the FPGA while the remaining two stages are executed
on the CPU for all frames. We choose this style of task partitioning
because Gaussian and Sobel filters are more regular whereas non-
maximum suppression and hysteresis contain more control flow
for which CPUs are well-optimized.

Data Partitioning (CED-D). Figure 2 shows the execution time of
the CED-D benchmark for different data partitioning distributions.
The values on the horizontal axis indicate the fraction of frames
processed by the CPU in static partitioning swept in increments
of 0.1, with the last pair of bars showing the results for dynamic
partitioning. Here, static partitioning statically assigns a subset of
frames to process to each device, while dynamic partitioning uses
one CPU control (proxy) thread for each device (CPU or FPGA),
fetching frames and sending them to the corresponding device, as
soon as the device is available. In this benchmark, the overhead
due to the control threads is negligible, since the granularity of
partitioning is coarse (an entire frame). The execution time is broken
down into compute time, copy time (for the FPGA only), and idle
time (the time a device waits for the other device to finish).

From the results, we make three major observations. First, pro-
cessing all frames on the FPGA (shown by the & = 0.0 bars) achieves
shorter execution time than processing all frames on the CPU
(shown by the @ = 1.0 bars). Second, the data partitioning strat-
egy outperforms both the CPU and the FPGA. For this particular
workload, the sweet spot for static partitioning (among the tested
distributions) is « = 0.4 where the CPU processes 40% and the
FPGA processes 60% of the video frames. Third, dynamic partition-
ing eliminates the idle time completely, thus outperforming the
best static partitioning, and providing the lowest execution times.
Task Partitioning (CED-T). Figure 3 compares the execution time
of collaborative execution with task partitioning to data partitioning

1.2

= 1 Oldle .

2 m Copy \

IS 0.8 A - [Compute § s

5 0.6 § A0 s § §

£ 0.4 4 N N N

5 0. NN N N N

0.2 ~$ \ hs N R \

LI N N N N N

S N N N \
D|<| D] D‘(3‘< D\ D‘(Dl| Dl [2l«| [Pl D|<
(O] |a (O [O [aOf (|0 |0 [afO] |a O] |a|O] |a|O o (O]
Pl [Pl PR (PR Pl PE (P (O Py P Pl
0.0 (0.1| [0.2| |0.3| [0.4| |0.5| |0.6] [0.7| |0.8] |0.9 yn,

Data Partitioning Fraction (a)

Figure 2: Execution Time of Canny Edge Detection (CED)
with Different Data Partitioning Fractions (¢) and with Dy-
namic Data Partitioning. « is the Fraction of Data-parallel
Tasks Assigned to the CPU.

and to no collaboration. The execution time is broken down into
compute time, copy time (for the FPGA only), and idle time (the
time the device waits for the other device to finish).

1.2

=310] N[oidle

OE) 0.8 Ny § N W Copy

F 0.6 § § % [Compute

< \ wix NN

£03 N NN BN NI LN R

S 00 N NN NN N NN KN

& oSl«| [2]<| |2|<| [2(<]| |21« [=2|<| [2]<] [2]<
a |0 a (O a (O a |9 a |0 a|O a | O a |O
CPU FPGA Data Task CPU FPGA Data Task
Single device Collaborative Single device Collaborative

Stratix V Arria 10

Figure 3: Execution Time of Canny Edge Detection (CED)
across CPU-FPGA Systems and Collaborative Execution
Strategies.

We make three major observations. First, the overall best per-
formance of task partitioning is comparable to the overall best
performance of data partitioning. Second, task partitioning incurs
more communication overhead, with copy time accounting for
11.4% of overall execution time in task partitioning and only 4.4%
in data partitioning. One reason is that with task partitioning, data
from all data-parallel tasks must be copied to the FPGA, while with
data partitioning, only a subset of the data needs to be copied. It
is expected that the availability of coherent memory will make
this communication overhead less of an issue. This is particularly
important for workloads that are less compute-intensive, making
copy-time a larger fraction of the total execution time. Third, in task
partitioning, there is still some idle CPU time, whereas in data parti-
tioning, this idle time is negligible due to dynamic data partitioning.
Despite that, the performance of both strategies is comparable, as
pointed out in our first observation. This fact represents a potential
advantage of task partitioning over data partitioning, where differ-
ent devices are more suitable or specialized for different workloads.
If the sub-tasks assigned to the CPU in task partitioning were more
time-consuming, the CPU could still use that fraction of idle time.
However, the overall execution time of data partitioning would
increase, since in data partitioning all sub-tasks run on all devices.

From the comparison of CED-D and CED-T, we derive three
major conclusions. First, in data partitioning, finding the best load

balance across devices is possible with static or dynamic parti-
tioning. Second, task partitioning can greatly benefit from device
specialization. Third, communication overhead in task partitioning
is larger than that in data partitioning.

4.2 Random Sample Consensus

Random Sample Consensus (RSC) [41] is an algorithm for estimat-
ing the parameters of a model by taking random samples of an input
iteratively until a successful model is found. A single iteration of
RSC consists of two stages: (1) model fitting using random samples
and (2) evaluating the model accuracy by computing outliers and
error values. The iterations are independent and can be done in
parallel [42]. In data partitioning, each device processes a different
set of iterations. In task partitioning, the first stage is executed on
the CPU while the second stage is executed on the FPGA. We do
so because the first stage is inherently sequential while the second
stage is massively parallel, and thus better suited for the FPGA.
Data Partitioning (RSC-D). Figure 4 shows the execution time of
RSC for different static data partitioning fractions. We make two
observations. First, the static partitioning sweet spot for RSC-D is
at 50% for each device, which is different from CED, highlighting
the need to optimize data partitioning strategies individually for
different applications. Second, the performance of RSC-D is lower
on the Arria 10 than on the Stratix V, mainly because the clock
frequency of the FPGA implementation of this kernel is lower on
the Arria 10. The reason for the lower clock frequency could come
from either the beta BSP of Nallatech 510T (see Section 3) or better
optimization on the BSP of Terasic DE5-Net.

50
=&-Data Partitioning (Stratix V)
T 40 «=Task Partitioning (Stratix V)
£ ~e-Data Partitioning (Arria 10)
g 30 =>e=Task Partitioning (Arria 10)
=
f=4
220 4
p=
3
8 10 | s e e e e s,
3 ¢ ¢ ¢ ¢ ¢ ¢ » > » > »
0 T T T T T T T T T T

00 01 02 03 04 05 06 07 08 09 1.0
Data Partitioning Fraction (a)

Figure 4: Execution Time of Random Sample Consensus
(RSC) across CPU-FPGA Systems and Collaborative Execu-
tion Strategies. o is the Fraction of Data-parallel Tasks As-
signed to the CPU in Data Partitioning.

The RSC implementation cannot perform dynamic data parti-
tioning because the granularity of partitioning is smaller than that
in CED. In CED, each data-parallel task is the processing of an inde-
pendent frame with four OpenCL kernels launched by a CPU proxy
thread. Thus, the CPU proxy threads perform dynamic partition-
ing by accessing a pool of data-parallel tasks via a shared atomic
variable. However, in RSC, a single OpenCL kernel is launched to
compute all data-parallel tasks. Within this kernel, an FPGA worker
(an OpenCL work-group) computes each data-parallel task. Since
current CPU-FPGA systems do not support OpenCL 2.0 shared
virtual memory and system-wide atomic instructions, it is not pos-
sible for FPGA workers to access the same atomic variable as CPU

threads. Thus, dynamic data partitioning is not possible for RSC.
OpenCL 2.0 shared virtual memory and system-wide atomic in-
structions are desirable architectural features in future CPU-FPGA
systems for more effective collaborative execution.

Task Partitioning (RSC-T). Figure 4 shows that RSC with task
partitioning noticeably outperforms RSC with the best data par-
titioning. The reason is that data partitioning exhausts the DSP
blocks in the FPGA, since the first stage of RSC employs inten-
sive floating-point computations. As task partitioning assigns the
first stage to the CPU, the FPGA can utilize more resources for the
second stage. This enables a higher degree of kernel duplication,
a common optimization technique that duplicates the number of
processing elements, which potentially translates into a significant
performance improvement. We discuss kernel duplication in detail
in Section 5.

4.3 Other Data Partitioning Benchmarks

Bézier Surface (BS). Bézier surfaces are parametric structures
widely used in computer graphics and finite element modeling. This
benchmark uses non-rational formulation of Bézier surfaces on a
regular 2D surface. BS performs data partitioning on the output data
by dividing the output surface into square tiles, which are assigned
to different CPU threads and different OpenCL work-groups [43].
Figure 5 shows the execution time breakdown of BS running on
the Arria 10 FPGA, with the data partitioning fraction a ranging
from 0 to 1. We make two major observations. First, the kernel
time varies as data partitioning fraction a changes, with « = 0.7
minimizing the execution time. Second, for all the a’s, most of the
total execution time is spent on the kernel computation. The other
parts of execution (e.g., data copy, allocation, and deallocation)
account for a very small fraction of the total execution time.

60 -
m Deallocation

50 B Copy Back and Merge
ElKernel

40 Bl Copy To Device
W Allocation

Execution Time (ms)
w
o

0 0.1 0.2 03 04 05 06 07 08 09 1
Data Partitioning Fraction (o)

Figure 5: Execution Time of Bézier Surface (BS) with Differ-
ent Data Partitioning Fractions (a). « is the Fraction of Data-
parallel Tasks Assigned to the CPU.

Image Histogram (HSTO). A histogram describes the frequency
of data falling into each of some predefined bins. Histogram com-
putation is a frequently-used routine in many applications [44, 45],
for example, image processing and pattern recognition. This bench-
mark implements the histogram computation of pixels of an image
by binning pixels based on their value ranges. It uses data parti-
tioning on the output bins, i.e., part of the bins are assigned to the
CPU and the other part to the FPGA. Both the CPU and the FPGA
process the entire set of input data, but they increase a bin counter
only if an input data value falls into their assigned set of bins. This
way, the CPU and the FPGA do not update the same bin counters.

Figure 6 shows the execution time breakdown of HSTO on the
Arria 10 FPGA with various « values. A major observation is that
the overall execution time of HSTO is almost independent of the
data partitioning factor a. The reason is that in HSTO, both the
CPU and the FPGA workers need to traverse through the large
input data, the overhead of which overwhelms the benefit from
data partitioning, leading to no performance improvement from
any level of data partitioning.

300
& 250
£

200 4
.g M Deallocation H
= 150 M Copy Back and Merge
2 o Kernel
3 100 B Copy To Device
..% 50 W Allocation

0 i e W W

0 01 02 03 04 05 06 07 08 09 1
Data Partitioning Fraction (a)

Figure 6: Execution Time of Histogram (HSTO) with Differ-
ent Data Partitioning Fractions («). « is the Fraction of Data-
parallel Tasks Assigned to the CPU.

4.4 Other Task Partitioning Benchmarks

Single-source Shortest Path (SSSP). SSSP is a commonly-used
graph algorithm that identifies the path between two vertices in a
graph that has the minimal sum of weights of edges on the path.
This benchmark has irregular memory access patterns and requires
atomic instructions. SSSP performs coarse-grained task partitioning
across a series of tasks, each of which is an iteration of the algorithm
which constructs a frontier of vertices (i.e., the list of vertices to visit
in the next iteration) and updates the shortest distance. The frontier
of vertices is a queue data structure for communicating among tasks.
Since graph structures are irregular, the size of vertex frontiers
varies, which causes imbalance in processing times of different
tasks. In SSSP, iterations are assigned to the CPU or the FPGA to
process the frontier according to the frontier size. Small frontiers
are assigned to the CPU while the large ones are assigned to the
FPGA. This is based on the observation that the FPGA performs
better for larger frontiers, where more parallelism can be exploited
and the kernel launch overhead is less significant. On the CPU, CPU
threads dequeue vertices from a vertex queue and process them
sequentially. On the FPGA, different OpenCL work-items process
different vertices and aggregate results with atomic instructions.
Task Queue Systems (TQ and TQH). Task queue systems (TQ
and TQH) exemplify a type of the producer-consumer computing
pattern, where the host enqueues tasks into some task queues in the
device memory, while the device dequeues and processes the tasks.
TQ works with synthetic data, while TQH generates the histograms
of video frames (i.e., the input of each task is a video frame, and
the output is its histogram). In both benchmarks, the CPU threads
generate and enqueue tasks, while the FPGA processes the tasks.
As soon as the FPGA finishes with one task, it dequeues a new task.
This way, the workload across work-groups is balanced.

We evaluate the effect of kernel duplication for SSSP, TQ and
TQH in Section 5.

5 EVALUATION OF KERNEL DUPLICATION

In this section, we evaluate the effect of a common optimization
technique, kernel duplication [4], on the performance of the bench-
marks described in Section 4. With kernel duplication, multiple
identical hardware instances (processing elements) are instantiated
on the FPGA from the same OpenCL kernel. The Intel OpenCL
SDK for FPGAs provides a programming attribute to specify the
duplication factor of OpenCL kernels, i.e., the number of identical
processing elements on the FPGA. The OpenCL work-items are
executed on these hardware processing elements in a SIMD manner,
which can potentially improve performance. With kernel duplica-
tion, the utilization of the available configurable logic on the FPGA
increases, since there are more processing elements. However, the
higher resource utilization increases the complexity of place and
route on the FPGA circuit, and therefore could potentially lower
the operating frequency and increase the execution time. A higher
number of processing elements can also lead to memory access
contention in the memory system [46-52].

With kernel duplication, the number of FPGA workers wr in
the analytical model presented in Section 2 increases, while the
execution time of each individual sub-task ¢; r may increase due to
changes in frequency and resources. Therefore, the tuning of the
kernel duplication factor is dependent on the tradeoff between the
the ability to exploit more parallelism and the overhead of having
multiple processing elements on the FPGA.

5.1 Performance Effect of Kernel Duplication

Figure 7 shows the impact of possible kernel duplication factors
on the overall performance of four data-partitioning benchmarks
(CED-D, RSC-D, BS, and HSTO) with various data partitioning
factors a. As shown in the figure, in the FPGA-only case (« = 0),
RSC-D, BS and HSTO benefit from duplicating kernels. For CED-D,
kernel duplication does not change performance significantly. As
discussed in Section 4, HSTO has a different behavior from the
other benchmarks in terms of data partitioning — HSTO’s perfor-
mance is almost independent of the « value. The reason is that, in
HSTO, partitioning happens only on output bins, and both CPU
and FPGA need to traverse through a large amount of input data,
the overhead of which hides the benefit of partitioning. In HSTO,
kernel duplication is still beneficial, since the computation capacity
of the FPGA and, thus, the whole system increases with kernel
duplication.

We make three observations from Figure 7. First, a higher duplica-
tion factor does not necessarily lead to higher performance because
of the tradeoffs we discuss above. Second, when kernel duplication
is actually beneficial, the best « values tend to be smaller (i.e., more
workload assigned to the FPGA) for higher duplication factors, since
the computation capacity of the FPGA increases. Third, for larger
values of @, kernel duplication has almost no impact on overall
execution time, since most of the workload of the applications is
assigned to the CPU.

Figure 8 shows the speedups from kernel duplication on three
task-partitioning benchmarks (SSSP, TQH, and TQ). As shown in
the figure, SSSP does not benefit much from kernel duplication
because its irregular memory access pattern quickly saturates the

1400
2 1200
> 1000 4 =
£ 800 4
= 600 £
5 400 -
5 208 1 ‘-)(-Kernel Duplication Factor = 1 2 -I-3‘
1 T T T T T T T T T T
o 0 01 02 03 04 05 06 07 08 09 1
(a) CED-D Data Partitioning Fraction (a)
__60
g 50 - =¥=Kernel Duplication Factor=1 2 =li=3 =4=4 =4=5
TE’ 40
Z 30 A
c 20 -
o
5 10 1
@ 0 T T T T T T T T T T
x
w 0 0.1 0.2 03 04 05 06 07 08 09 1

Data Partitioning Fraction (a)

100
Tg 30 | [==Kernel Duplication Factor = 1 2
o |
£ 60
E 40 _
c PP
S 20 , g%
3 0 T T T T T T T T T T
& 0 01 02 03 04 05 06 07 08 09 1
(¢) BS Data Partitioning Fraction (a)
- 300 S S S S S 3
£ 250 A ~
g igg 1 ‘*Kernel Duplication Factor = 1 «=#=4 -4—8‘
E]
g 100 q — " " " " " " " L —
S 50 A ¢ A —————
@ 0 T T T T T T T T T T
X
w 0 01 02 03 04 05 06 07 08 09 1
(d) HSTO Data Partitioning Fraction (a)

Figure 7: Execution Time of Data Partitioning Benchmarks
(CED-D, RSC-D, BS, and HSTO) for Different Kernel Dupli-
cation Factors and Data Partitioning Fractions (). « is the
Fraction of Data-parallel Tasks Assigned to the CPU.

memory bandwidth. On the other hand, in TQH and TQ, perfor-
mance scales well with the duplication factor due to regularity
of their memory access patterns and load balancing across work-
groups.

7 e
6- e
5
Q
24 —
CU e
g3
mz_
1 —
P I N I [
1 | 2 | 4 1 | 4 | 8 1 | 4 | 8
sssp TQH TQ

Kernel Duplication Factor

Figure 8: Speedup (Normalized to Kernel Duplication Factor
1) of Task Partitioning Benchmarks (SSSP, TQ, and TQH) for
Different Kernel Duplication Factors.

Figures 9, 10 and 11 show the execution time breakdowns for
SSSP, TQ, and TQH, respectively, on the Arria 10 FPGA. As the fig-
ures show, across all three benchmarks, kernel duplication reduces

the kernel execution time without affecting other portions of the
total execution time.

14000
- 12000
£ 10000 - rivrerserery SR
g HHHEN EHHER
£ 8000 1 M Deallocation
& 6000 - B Copy Back and Merge
5 £ Kernel
§ 4000 4 = Copy To Device
@ 2000 A m Allocation
0 T T
1 2 4

Kernel Duplication Factor

Figure 9: SSSP: Execution Time Breakdown for Different Du-
plication Factors.

70 -
M Deallocation
g 60 4 m Copy Backand Merge
2 20 @ Kernel
€ 40 A [Copy To Device
= m Allocation
5 30 -
3 20 -
[}
x
w10 A
0 T T

Kernel Duplication Factor

Figure 10: TQ: Execution Time Breakdown for Different Du-
plication Factors.

10000 _
W Deallocation
Z 8000 - B Copy Back and Merge
- m Kernel
£ 6000 + K3 Copy To Device
= m Allocation
S 4000 -
£ 2000 1 T T
0 NNNNNNNNNNS S \NNNNNNNNNN S NNNNNNNNRNY
1 4 8

Kernel Duplication Factor

Figure 11: TQH: Execution Time Breakdown for Different
Duplication Factors.

5.2 Analysis of Resource Utilization

We further analyze how kernel duplication changes FPGA resource
utilization and how it impacts performance. For this analysis, we
focus on Canny Edge Detection and Random Sample Consensus.

Canny Edge Detection (CED-D/CED-T). Figure 12 shows the
effect of the kernel duplication factor on performance, as well as
other utilization metrics. Mapping to the axis on the left, the light
blue bar represents performance (higher is better) in terms of the
speedup over data partitioning with a duplication factor of 1, and
the black line represents the frequency of the FPGA processing
elements also normalized to data partitioning with a duplication

factor of 1. Mapping to the axis on the right, the different lines
represent the utilization in terms of percentage of the logic, DSP
blocks, and RAM blocks on the FPGA.

We make two major observations. First, the duplication factor has
little impact on the performance of CED, and too much duplication
may even slightly hurt its performance. Further profiling using the
Intel FPGA OpenCL Profiler reveals that the main reason behind the
performance effect of the duplication factor on CED is the saturation
of the memory bandwidth. More processing elements on the FPGA
exhaust the available bandwidth. Second, task partitioning tends
to lead to less resource pressure and higher FPGA frequency for
the same duplication factor. The reason is that, in task partitioning,
only the sub-tasks that run on the FPGA need to be synthesized
on the FPGA, while in data partitioning all sub-tasks need to be
synthesized. As a result, the maximum duplication factor for task
partitioning is higher than data partitioning.

1.2 100

g S
g 104 L8 <
2 08 =3
S 60 ¢ ¢
& 506 4 40 °© 2
2 E 04 - 2R
o 502 - r20 3=
300 0 &y
g 1 | 2 | 3 1 | 2 | 3 | 4 oS

wv =

o0

Data Partitioning Task Partitioning S

Kernel Duplication Factor

‘ [ISpeedup =@=Frequency Logic Utilization —e=g==DSP Blocks eege=RAM Blocks‘

Figure 12: Canny Edge Detection: Speedup and Frequency
(Normalized to Data Partitioning with Duplication Factor 1)
and Resource Utilization for Different Duplication Factors.

Random Sample Consensus (RSC-D/RSC-T). Figure 13 shows
the impact of the kernel duplication factor on the performance of
RSC-D and RSC-T and FPGA utilization metrics. The bars, lines,
and axes are set up in the same way as in Figure 12.

> 2.5 100 s
§ 20 P8 Eg
gg 1s) -,% E
%é 1.0 40 9%
§§ 0.5 - 20 f—.g g
§ = 0.0 -0 §§
& gm
Data Partitioning Task Partitioning S

Kernel Duplication Factor

‘ [JSpeedup =@=Frequency Logic Utilization ~=#==DSP Blocks e=ge=RAM Blocks‘

Figure 13: Random Sample Consensus: Speedup and Fre-
quency (Normalized to Data Partitioning with Duplication
Factor 1) and Resource Utilization for Different Duplication
Factors.

In data partitioning, we observe reasonable performance im-
provement with a duplication factor of 2, but there is little improve-
ment beyond that. Unlike all the other cases where the bounding
resources are the RAM blocks, the bounding resources for RSC-D
are the DSP blocks. This is due to the fact that the first stage of
RSC-D performs a large amount of floating-point computations.

In the task partitioning strategy for RSC, because the first stage is
offloaded to the CPU, the DSP block utilization drops significantly,
enabling the kernel duplication factor to continue to increase, result-
ing in much better performance for task partitioning than for data
partitioning. The performance improvement saturates around a ker-
nel duplication factor value of 8, which results in a 1.6X speedup
for task partitioning over data partitioning. Similar to CED, the
profiler shows that the saturation of the memory bandwidth is the
major reason why performance saturates at higher values of the
kernel duplication factor.

6 KEY INSIGHTS

Based on the performance evaluations we present in Sections 4
and 5, we extract five key insights for developers who wish to
write collaborative programs for CPU-FPGA architectures. These
insights cover generic collaborative computing techniques for het-
erogeneous systems, as well as CPU-FPGA specific collaboration
schemes.

The first insight is that collaborative execution is actually benefi-
cial. We observe that with both data and task partitioning strategies,
collaborative execution effectively reduces the execution time of
almost all benchmarks we examine.

Second, data partitioning requires careful choice of partitions
to provide the highest performance. We observe that the different
data partitioning benchmarks (i.e., BS, CED-D, HSTO, and RSC-D)
prefer different data partitioning fractions & that result in the best
performance (Section 4). This observation emphasizes the need for
application-specific heuristics or offline tuning for finding the best
static data partitioning, or the use of dynamic data partitioning.
We show that dynamic data partitioning is effective in minimiz-
ing idle time in CED-D (Section 4.1). Unfortunately, CED-D is the
only evaluated benchmark that supports dynamic data partition-
ing. Dynamic data partitioning requires the use of shared memory
variables to implement a task pool. CED-D uses two proxy CPU
threads to control the execution on the CPU and the FPGA (i.e.,
launch CPU threads and FPGA OpenCL kernels for every task). The
proxy threads can access the same task pool in the CPU memory
and assign tasks to the CPU and the FPGA. In other data parti-
tioning benchmarks, the CPU threads and the OpenCL kernel are
launched only once at the beginning of the execution. Thus, in order
to implement a shared task pool, CPU and FPGA workers would
need to access the same shared variables, as CPU-GPU systems
do [33]. However, shared virtual memory is not available in current
CPU-FPGA systems. Future integration of shared coherent memory
features and system-wide atomic instructions in FPGAs [53] will
make dynamic partitioning more feasible.

Third, task partitioning generally enables more kernel duplica-
tion on the FPGA than data partitioning does, because task parti-
tioning does not need to dedicate FPGA resources to all types of
sub-tasks in an application, as it runs some computation stages
entirely on the CPU. In RSC, there is a large difference between
different sub-tasks. The first sub-task is sequential and much more
floating-point intensive than the second sub-task. Thus, task parti-
tioning saves FPGA resources that can be used for a higher kernel
duplication factor than data partitioning. As a result, RSC-T out-
performs RSC-D (Section 4.2). However, more kernel duplication

does not always imply better performance. The potential benefit of
kernel duplication is benchmark-specific (Section 5). In CED, the
different sub-tasks are very similar to each other in terms of com-
putation and resource requirements. They compete for the memory
bandwidth. Hence, the higher kernel duplication factor of CED-T
than CED-D does not provide performance benefits (Figure 12).
Even if kernel duplication is effective, there can be diminishing
returns from increasing the kernel duplication factor too much, if
the memory bandwidth saturates, as we show for RSC in Figure 13.
In summary, developers must carefully use kernel duplication, in
order to make effective use of the FPGA resources and thus improve
application performance.

Fourth, data partitioning inflicts less burden on programmers
and has less communication overhead than task partitioning. In task
partitioning, tasks can only be partitioned into sub-tasks at specific
points in the code. Finding the partitioning points might be painful
for the programmer and makes it more difficult to evenly balance
the workload across devices. Moreover, task partitioning tends to
require more communication and synchronization points between
devices, because both devices participate in all tasks. Emerging
shared coherent memory features [53] (e.g., fine-grained memory
coherence and system-wide atomic instructions) are expected to
be beneficial in making such communication and synchronization
easier.

Fifth, the current OpenCL stack for FPGAs provides a convenient
programming model for application programmers, but there is still
room for better programmability and higher performance if new
features are provided inside the OpenCL stack. We believe that in-
corporating more OpenCL 2.0 features, such as fine-grained shared
virtual memory [53] and system-wide atomic instructions [54], to
the OpenCL stack for FPGAs will greatly benefit programmability
and performance.

7 RELATED WORK

To our knowledge, this is the first work to perform a thorough anal-
ysis of collaborative execution strategies on CPU-FPGA systems
programmed with High Level Synthesis tools, like OpenCL. In this
section, we first review recent works on collaborative execution
on CPU-FPGA systems programmed with register-transfer level
(RTL) code. Second, we review works on OpenCL programming for
FPGAs. Third, we discuss recent efforts on collaborative execution
for integrated CPU-GPU architectures.

7.1 CPU-FPGA Coherent Memory

CPU-FPGA platforms with shared coherent memory have recently
captured great attention from both academia and industry. Choi et
al. [55] conduct a quantitative study of modern CPU-FPGA plat-
forms, including QPI-based and PCle-based ones. This study focuses
mainly on micro-benchmarking for memory systems and evaluates
acceleration of entire kernels on FPGAs. Our work focuses on eval-
uating collaborative execution strategies on CPU-FPGA platforms.

Enabled by the tighter integration of the CPU and the FPGA in
CPU-FPGA systems, collaborative execution has been analyzed in
various studies that accelerate applications. Weisz et al. [56] present
a task-partitioning collaborative strategy to accelerate linked-list
traversals. Chang et al. [57] accelerate seeding in DNA sequence

alignment through a data-partitioning collaborative strategy. Istvan
et al. [58] adopt task-partitioning collaborative execution for reg-
ular expression operators for databases. Zhang et al. [59] present
a task-partitioning collaborative algorithm to accelerate merge
sort. Qiao et al. [60] accelerate the Deflate lossless compression
algorithm on an FPGA. They apply a task-partitioning-based col-
laborative execution strategy for an entire compression service
on a CPU-FPGA system which takes advantage of pipeline paral-
lelism. Sidler et al. [61] accelerate pattern matching queries using a
task-partitioning collaborative strategy. Schmit et al. [62] present
a use case of a CPU-FPGA system, where the FPGA serves as a
smart network transmitter/receiver and the CPU runs applications,
using a task-partitioning collaborative execution strategy. These
studies focus on accelerating specific applications by writing RTL
code, while our work focuses on evaluating multiple collaborative
patterns comparatively for each selected application using OpenCL
HLS.

Several studies [63-66] focus on integration of different types of
accelerators in heterogeneous systems with general purpose CPUs.
Our work mainly focuses on collaborative execution strategies
for CPU-FPGA platforms, but could be further extended to other
accelerators in heterogeneous systems.

7.2 High-level Synthesis with OpenCL

High-level synthesis (HLS) with OpenCL has been widely adopted
to accelerate FPGA design due to its programmability. Ndu et al. [67]
present and evaluate a benchmark suite, CHO, for OpenCL FPGA
accelerators. Verma et al. [68] evaluate OpenCL HLS using OpenD-
warfs benchmarks and identify optimization techniques for OpenCL
HLS. Ramanathan et al. [69] propose a work-stealing technique
using OpenCL atomics on FPGAs. Wang et al. [70] present a per-
formance analysis framework to identify bottlenecks of OpenCL
kernels synthesized on FPGAs. Multiple recent studies accelerate ap-
plications using OpenCL HLS, including particle identification [71],
relational queries [72], convolutional neural networks [6], etc. Most
of these studies focus on accelerating or evaluating entire kernels
on FPGAs. Our work evaluates collaborative execution patterns
with OpenCL HLS on CPU-FPGA platforms.

7.3 Integrated CPU-GPU Architectures

Collaborative execution on heterogeneous PCle-based CPU-GPU
systems with discrete GPUs has been studied from various aspects.
Shen et al. [73] propose a workload partitioning scheme for hetero-
geneous CPU-GPU systems. This work proposes modeling, profil-
ing, and prediction techniques to predict the best workload parti-
tioning. Luk et al. [74] propose adaptive mapping to automatically
map computation to CPU-GPU systems. The proposed techniques
adapt to changes in input problem size and system configuration.
These works mainly focus on discrete CPU-GPU systems without
much discussion on how tight integration of the CPU and the GPU
on a single chip further enables acceleration opportunities.
Collaborative execution strategies have been studied for inte-
grated CPU-GPU systems using benchmark suites such as Hetero-
mark [75-77], Chai [33, 78], and HeteroSync [79]. We leverage
benchmarks from Chai [33] to evaluate collaborative execution
strategies on CPU-FPGA systems. Sun et al. [80] evaluate the Radeon

Open Compute Platform using collaborative benchmarks. Gémez-
Luna et al. [81] present three use cases of collaborative execution on
a CPU-GPU system with the Heterogeneous System Architecture
(HSA) [82]. Che et al. [83] study data partitioning between CPUs
and GPUs specifically for betweenness centrality. Tang et al. [84]
propose EMREF, a policy for balancing between fairness and effi-
ciency in integrated CPU-GPU architectures. FinePar [85] and Cho
et al. [86] automatically partition workloads to use both CPUs and
GPUs in integrated CPU-GPU architectures. Airavat [87, 88] is a
power management framework that improves the energy efficiency
of collaborative CPU-GPU applications. HAShCache [89] adds a
stacked DRAM as a shared last-level cache for integrated CPU-GPU
processors to address the problem of disparity between the two
devices in their demands on the memory system. Garcia-Flores
et al. [90] evaluate integrated CPU-GPU systems with a shared
last-level cache using collaborative benchmarks. Staged Memory
Scheduling [91] is a multi-level QoS-aware memory scheduler for
integrated CPU-GPU systems. Kayiran et al. [92] propose a concur-
rency management mechanism for integrated CPU-GPU systems to
control the usage of memory and network by the CPU and the GPU.
Garcia-Flores et al. [93] analyze the inefficiencies of demand paging
in CPU-GPU systems when running collaborative workloads, and
explore data sharing between the CPU and the GPU at finer gran-
ularity than a page (e.g., a cache line). Spandex [94] is a memory
coherence interface specifically targeting integrated architectures.
Vesely et al. [95, 96] enable system calls from GPUs which benefits
for having shared virtual memory across CPUs and GPUs. These
works represent the numerous research efforts on software and
hardware approaches to collaborative execution on integrated CPU-
GPU systems. Our work is the first step towards similar research
lines for integrated CPU-FPGA systems with OpenCL.

8 CONCLUSION

In this paper, we present strategies for collaborative execution on
CPU-FPGA architectures and evaluate these strategies using exist-
ing collaborative OpenCL applications with high-level synthesis. To
our knowledge, this is the first paper to carry out a comprehensive
analysis of collaborative execution on CPU-FPGA systems using
the OpenCL programming framework. We show that collaborative
execution outperforms the execution on conventional CPU-FPGA
systems where no collaborative execution strategies are used. We
describe the challenges that each collaborative execution strategy
faces, providing insights for developers on how to use them. We
find that 1) task partitioning enables more kernel duplication, a
common optimization technique for FPGAs, than data partition-
ing, yet 2) data partitioning has lower communication overhead
and achieves better load balance than task partitioning. We pro-
vide suggestions for emerging CPU-FPGA systems, where support
for fine-grained shared coherent memory and system-wide atomic
instructions would be beneficial. We believe and hope that our
study will inspire FPGA developers to further explore collaborative
execution on CPU-FPGA architectures to achieve the highest per-
formance and efficiency. Our study could also be extended to other
types of accelerators in heterogeneous systems.

ACKNOWLEDGMENTS

This work was supported by Hewlett Packard Labs and the Applica-
tions Driving Architectures (ADA) Research Center, a JUMP Center
co-sponsored by SRC and DARPA. We also thank Intel, VMware,
Huawei, AliBaba, and Google for their gift funding support.

REFERENCES

(1]

(2]
(3]
(4]
(5]

8

=

[9
[10]

[11]

[12]

[13

[14]

[15

[16]

(17

(18]

[19]

[20

[21

[22]

[23

[24]

[26

Erich Strohmaier, Jack Dongarra, Simon Horst, and Martin Meuer. Top500 List
June 2018.

Feng Wu and Tom Scogland. Green500 List June 2018.

RightScale. Rightscale 2018 state of the cloud report.

Intel. Intel FPGA SDK for OpenCL. Programming Guide, October 2016.

Xilinx. SDAccel Development Environment. https://www.xilinx.com/products/
design-tools/software-zone/sdaccel html.

Naveen Suda, Vikas Chandra, Ganesh Dasika, Abinash Mohanty, Yufei Ma, Sarma
Vrudhula, Jae-sun Seo, and Yu Cao. Throughput-optimized OpenCL-based FPGA
accelerator for large-scale convolutional neural networks. In FPGA, 2016.

Sai Rahul Chalamalasetti, Martin Margala, Wim Vanderbauwhede, Mitch Wright,
and Parthasarathy Ranganathan. Evaluating FPGA-acceleration for real-time
unstructured search. In ISPASS, 2012.

D. Chen, J. Cong, Y. Fan, and L. Wan. LOPASS: A Low-Power Architectural
Synthesis System for FPGAs With Interconnect Estimation and Optimization.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2010.

Amazon EC2 F1 instances. https://aws.amazon.com/ec2/instance-types/f1/, 2018.
Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat, Jeremy
Fowers, Michael Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-
Young Kim, Daniel Lo, Todd Massengill, Kalin Ovtcharov, Michael Papamichael,
Lisa Woods, Sitaram Lanka, Derek Chiou, and Doug Burger. A cloud-scale
acceleration architecture. In MICRO, 2016.

Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou, Kypros Con-
stantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth
Gopal, Jan Gray, Michael Haselman, Scott Hauck, Stephen Heil, Amir Hormati,
Joo-Young Kim, Sitaram Lanka, James Larus, Eric Peterson, Simon Pope, Aaron
Smith, Jason Thong, Phillip Yi Xiao, and Doug Burger. A reconfigurable fabric
for accelerating large-scale datacenter services. In ISCA, 2014.

New OpenPOWER cloud boosts ecosystem for innovation and development.
http://www-03.ibm.com/press/us/en/pressrelease/47082.wss, 2015.

Intel. Intel Deep Learning Inference Accelerator Product Specification and
User’s Guide. https://www.intel.com/content/dam/support/us/en/documents/
server-products/server-accessories/Intel_DLIA_UserGuide_1.0.pdf, July 2017.
The first chip from Intel’s Altera buy will be out in 2016. http://fortune.com/
2015/11/18/intel-xeon-fpga-chips/, 2015.

Doug Burger. Microsoft unveils Project Brainwave for real-time AL Microsoft
Research, 2017.

K. Rupnow, Y. Liang, Y. Li, D. Min, M. Do, and D. Chen. High level synthesis of
stereo matching: Productivity, performance, and software constraints. In FPT,
2011.

S. Liu, A. Papakonstantinou, H. Wang, and D. Chen. Real-time object tracking
system on fpgas. In SAAHPC, 2011.

Sitao Huang, Gowthami Jayashri Manikandan, Anand Ramachandran, Kyle Rup-
now, Wen-mei W. Hwu, and Deming Chen. Hardware Acceleration of the Pair-
HMM Algorithm for DNA Variant Calling. In Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, FPGA °17, pages
275-284, New York, NY, USA, 2017. ACM.

X. Zhang, X. Liu, A. Ramachandran, C. Zhuge, S. Tang, P. Ouyang, Z. Cheng,
K. Rupnow, and D. Chen. High-performance video content recognition with
long-term recurrent convolutional network for FPGA. In FPL, 2017.

Dimitrios Ziakas, Allen Baum, Robert A Maddox, and Robert J Safranek. In-
tel® quickpath interconnect architectural features supporting scalable system
architectures. In HOTI, 2010.

HyperTransport Technology Consortium et al. Hypertransport i/o link specifica-
tion. Revision, 1:111-118, 2008.

Altera. Accelerating High-Performance Computing With FPGAs.
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/
literature/wp/wp-01029.pdf.

Accelerator Coherency Port. http://infocenter.arm.com/help/index.jsp?topic=
/com.arm.doc.ddi0434a/BABGHDHD.html.

AXI Coherency Extensions. http://infocenter.arm.com/help/index.jsp?topic=
/com.arm.doc.ddi0438i/BABIAFA].html.

Arm CoreLink Interconnect. https://developer.arm.com/products/system-ip/
corelink-interconnect.

Jeffrey Stuecheli, Bart Blaner, CR Johns, and MS Siegel. Capi: A coherent accel-
erator processor interface. IBM Journal of Research and Development, 59(1):7-1,
2015.

[43

[44]

=
&

o
2

o o
)

=
=

Cache Coherent Interconnect for Accelerators (CCIX).
ccixconsortium.com, 2016.

Xilinx. Zynq UltraScale+ MPSoCs. White Paper, June 2016.
Altera. Altera’s User-Customizable ARM-Based SoC, 2015.
Mark Hummel, Mike Krause, and Douglas O’Flaherty. AMD and HP: Protocol
enhancements for tightly coupled accelerators. 2007.

Werner Augustin, Vincent Heuveline, and Jan-Philipp Weiss. Convey HC-1 - the
potential of FPGAs in numerical simulation. Preprint Series of the Engineering
Mathematics and Computing Lab, (07), 2010.

Convey Computer. The Convey HC-2 computer. Architectural overview, 2012.
Juan Gémez-Luna, Izzat El Hajj, Li-Wen Chang, Victor Garcia-Flores, Simon
Garcia de Gonzalo, Thomas Jablin, Antonio J Pena, and Wen-mei Hwu. Chai:
Collaborative heterogeneous applications for integrated-architectures. In ISPASS,
2017.

Terasic. DE5-Net User Manual, 2018.

Nallatech. Nallatech 510T Product Brief; 2018.

Intel. Intel Stratix V FPGAs. https://www.intel.com/content/www/us/en/
products/programmable/fpga/stratix-v.html.

Intel. Intel Arria 10 FPGAs. https://www.intel.com/content/www/us/en/products/
programmable/fpga/arria-10.html.

Intel. Intel Xeon Processor E3-1240 v3. https://ark.intel.com/products/75055/
Intel-Xeon-Processor-E3-1240-v3-8M-Cache-3-40-GHz-.

Intel. Intel Xeon Processor E5-2650 v3. https://ark.intel.com/products/81705/
Intel-Xeon-Processor-E5-2650-v3-25M-Cache-2-30- GHz-.

John Canny. A computational approach to edge detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 1986.

Martin A. Fischler and Robert C. Bolles. Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated cartography.
Communications of the ACM, 1981.

Juan Gémez-Luna, Holger Endt, Walter Stechele, José Maria Gonzélez-Linares,
José Ignacio Benavides, and Nicolas Guil. Egomotion compensation and moving
objects detection algorithm on GPU. In PARCO, 2011.

Rafael Palomar, Juan Gémez-Luna, Faouzi A. Cheikh, Joaquin Olivares-Bueno,
and Ole J. Elle. High-performance computation of bézier surfaces on parallel and
heterogeneous platforms. International Journal of Parallel Programming, 2018.
J. Gémez-Luna, J.M. Gonzélez-Linares,].I. Benavides, and N. Guil. An optimized
approach to histogram computation on GPU. Machine Vision and Applications,
2013.

J. Gomez-Luna, J.M. Génzalez-Linares, J.I. Benavides, and N. Guil. Performance
modeling of atomic additions on GPU scratchpad memory. IEEE Transactions on
Parallel and Distributed Systems, 2013.

T. Moscibroda and O. Mutlu. Memory performance attacks: Denial of memory
service in multi-core systems. In USENIX SECURITY, 2007.

O. Mutlu and T. Moscibroda. Stall-Time Fair Memory access scheduling for chip
multiprocessors. In MICRO, 2007.

L. Subramanian, V. Seshadri, Y. Kim, B. Jaiyen, and O. Mutlu. MISE: Providing per-
formance predictability and improving fairness in shared main memory systems.
In HPCA, 2013.

L. Subramanian, V. Seshadri, A. Ghosh, S. Khan, and O. Mutlu. The Application
Slowdown Model: Quantifying and controlling the impact of inter-application
interference at shared caches and main memory. In MICRO, 2015.

Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter. Thread Cluster Memory
scheduling: Exploiting differences in memory access behavior. In MICRO, 2010.
Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter. ATLAS: A scalable and high-
performance scheduling algorithm for multiple memory controllers. In HPCA,
2010.

O. Mutlu and T. Moscibroda. Parallelism-Aware Batch Scheduling: Enhancing
both performance and fairness of shared DRAM systems. In ISCA, 2008.
Khronos group. The OpenCL specification. Version 2.0, 2015.

M. Gupta, D. Das, P. Raghavendra, T. Tye, L. Lobachev, A. Agarwal, and R. Hegde.
Implementing cross-device atomics in heterogeneous processors. In IPDPS Work-
shops, 2015.

Young-kyu Choi, Jason Cong, Zhenman Fang, Yuchen Hao, Glenn Reinman, and
Peng Wei. A quantitative analysis on microarchitectures of modern CPU-FPGA
platforms. In DAC, 2016.

Gabriel Weisz, Joseph Melber, Yu Wang, Kermin Fleming, Eriko Nurvitadhi, and
James C. Hoe. A study of pointer-chasing performance on shared-memory
processor-FPGA systems. In FPGA, 2016.

M.-C.F. Chang, Y.-T. Chen, J. Cong, P.-T. Huang, C.-L. Kuo, and C. H. Yu. The
SMEM seeding acceleration for DNA sequence alignment. In FCCM, 2016.
Z.Istvan, D. Sidler, and G. Alonso. Runtime parameterizable regular expression
operators for databases. In FCCM, 2016.

Chi Zhang, Ren Chen, and Viktor Prasanna. High throughput large scale sorting
on a CPU-FPGA heterogeneous platform. In IPDPS, 2016.

Weikang Qiao, Jieqiong Du, Zhenman Fang, Michael Lo, Mau-Chung Frank
Chang, and Jason Cong. High-throughput lossless compression on tightly coupled
CPU-FPGA platforms. In FPGA, 2018.

http://www.

https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://aws.amazon.com/ec2/instance-types/f1/
http://www-03.ibm.com/press/us/en/pressrelease/47082.wss
https://www.intel.com/content/dam/support/us/en/documents/server-products/server-accessories/Intel_DLIA_UserGuide_1.0.pdf
https://www.intel.com/content/dam/support/us/en/documents/server-products/server-accessories/Intel_DLIA_UserGuide_1.0.pdf
http://fortune.com/2015/11/18/intel-xeon-fpga-chips/
http://fortune.com/2015/11/18/intel-xeon-fpga-chips/
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01029.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01029.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0434a/BABGHDHD.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0434a/BABGHDHD.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0438i/BABIAFAJ.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0438i/BABIAFAJ.html
https://developer.arm.com/products/system-ip/corelink-interconnect
https://developer.arm.com/products/system-ip/corelink-interconnect
http://www.ccixconsortium.com
http://www.ccixconsortium.com
https://www.intel.com/content/www/us/en/products/programmable/fpga/stratix-v.html
https://www.intel.com/content/www/us/en/products/programmable/fpga/stratix-v.html
https://www.intel.com/content/www/us/en/products/programmable/fpga/arria-10.html
https://www.intel.com/content/www/us/en/products/programmable/fpga/arria-10.html
https://ark.intel.com/products/75055/Intel-Xeon-Processor-E3-1240-v3-8M-Cache-3-40-GHz-
https://ark.intel.com/products/75055/Intel-Xeon-Processor-E3-1240-v3-8M-Cache-3-40-GHz-
https://ark.intel.com/products/81705/Intel-Xeon-Processor-E5-2650-v3-25M-Cache-2-30-GHz-
https://ark.intel.com/products/81705/Intel-Xeon-Processor-E5-2650-v3-25M-Cache-2-30-GHz-

(61

[62]

[63]

[64

[65]

[66]

[67]

[68

[69]

[70

(71

[72]

[73]

[74]

[75

[76]

[77]

[78]

David Sidler, Zsolt Istvan, Muhsen Owaida, and Gustavo Alonso. Accelerating
pattern matching queries in hybrid CPU-FPGA architectures. In SIGMOD, 2017.
Herman Schmit and Randy Huang. Dissecting Xeon+FPGA: Why the integration
of CPUs and FPGAs makes a power difference for the datacenter. In ISLPED,
2016.

N. Chandramoorthy, G. Tagliavini, K. Irick, A. Pullini, S. Advani, S. A. Habsi,
M. Cotter, J. Sampson, V. Narayanan, and L. Benini. Exploring architectural
heterogeneity in intelligent vision systems. In HPCA, 2015.

J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, H. Huang, and G. Reinman. Com-
posable accelerator-rich microprocessor enhanced for adaptivity and longevity.
In ISLPED, 2013.

E. G. Cota, P. Mantovani, G. Di Guglielmo, and L. P. Carloni. An analysis of
accelerator coupling in heterogeneous architectures. In DAC, 2015.

H. Usui, L. Subramanian, K. Chang, and O. Mutlu. DASH: Deadline-aware
high-performance memory scheduler for heterogeneous systems with hardware
accelerators. ACM TACO, 2016.

Geoffrey Ndu, Javier Navaridas, and Mikel Lujan. CHO: Towards a benchmark
suite for OpenCL FPGA accelerators. In IWOCL, 2015.

Verma Anshuman, Ahmed E Helal, Konstantinos Krommydas, and Wu-chun Feng.
Accelerating workloads on FPGAs via OpenCL: A case study with OpenDwarfs.
Virginia Tech CS Tech. Rep., 2016.

Nadesh Ramanathan, John Wickerson, Felix Winterstein, and George A Con-
stantinides. A case for work-stealing on FPGAs with OpenCL atomics. In FPGA,
2016.

Zeke Wang, Bingsheng He, Wei Zhang, and Shunning Jiang. A performance
analysis framework for optimizing OpenCL applications on FPGAs. In HPCA,
2016.

S. Sridharan, P. Durante, C. Faerber, and N. Neufeld. Accelerating particle identi-
fication for high-speed data-filtering using OpenCL on FPGAs and other archi-
tectures. In FPL, 2016.

Z.Wang, J. Paul, H. Y. Cheah, B. He, and W. Zhang. Relational query processing
on OpenCL-based FPGAs. In FPL, 2016.

J. Shen, A. L. Varbanescu, Y. Lu, P. Zou, and H. Sips. Workload partitioning
for accelerating applications on heterogeneous platforms. IEEE Transactions on
Parallel and Distributed Systems, 2016.

C. Luk, S. Hong, and H. Kim. Qilin: Exploiting parallelism on heterogeneous
multiprocessors with adaptive mapping. In MICRO, 2009.

Yifan Sun, Xiang Gong, Amir Kavyan Ziabari, Leiming Yu, Xiangyu Li, Saoni
Mukherjee, Carter McCardwell, Alejandro Villegas, and David Kaeli. Hetero-
mark, a benchmark suite for CPU-GPU collaborative computing. In IISWC, 2016.
Saoni Mukherjee, Yifan Sun, Paul Blinzer, Amir Kavyan Ziabari, and David Kaeli.
A comprehensive performance analysis of HSA and OpenCL 2.0. In ISPASS, 2016.
Saoni Mukherjee, Xiang Gong, Leiming Yu, Carter McCardwell, Yash Ukidave,
Tuan Dao, Fanny Nina Paravecino, and David Kaeli. Exploring the features of
OpenCL 2.0. In IWOCL, 2015.

Li-Wen Chang, Juan Gémez-Luna, Izzat El Hajj, Sitao Huang, Deming Chen, and
Wen-mei Hwu. Collaborative computing for heterogeneous integrated systems.

[79

%
=

)
=

[92]

[93

[94

[95

[96

In ICPE, 2017.

Matthew D Sinclair, Johnathan Alsop, and Sarita V Adve. HeteroSync: A bench-
mark suite for fine-grained synchronization on tightly coupled GPUs. In IISWC,
2017.

Yifan Sun, Saoni Mukherjee, Trinayan Baruah, Shi Dong, Julian Gutierrez, Pran-
noy Mohan, and David Kaeli. Evaluating performance tradeoffs on the radeon
open compute platform. In ISPASS, 2018.

J. Gomez-Luna, L-J. Sung, AJ. Lazaro-Muiioz, W.-H. Chung, J.M. Gonzalez-
Linares, and N. Guil. Chapter 8 - Application use cases: Platform atomics. In
Heterogeneous System Architecture. 2016.

Wen-mei W. Hwu. Heterogeneous System Architecture: A New Compute Platform
Infrastructure. 2015.

Shuai Che, Marc Orr, and Jonathan Gallmeier. Work stealing in a shared virtual-
memory heterogeneous environment: A case study with betweenness centrality.
In CF, 2017.

Shanjiang Tang, BingSheng He, Shuhao Zhang, and Zhaojie Niu. Elastic multi-
resource fairness: balancing fairness and efficiency in coupled CPU-GPU archi-
tectures. In SC, 2016.

Feng Zhang, Bo Wu, Jidong Zhai, Bingsheng He, and Wenguang Chen. Finepar:
Irregularity-aware fine-grained workload partitioning on integrated architectures.
In CGO, 2017.

Younghyun Cho, Florian Negele, Seohong Park, Bernhard Egger, and Thomas R
Gross. On-the-fly workload partitioning for integrated CPU/GPU architectures.
In PACT, 2018.

Trinayan Baruah, Yifan Sun, Shi Dong, David Kaeli, and Norm Rubin. Airavat:
Improving energy efficiency of heterogeneous applications. In DATE, 2018.
Trinayan Baruah. Energy efficient execution of heterogeneous applications.
Master thesis. Northeastern University, 2017.

Adarsh Patil and Ramaswamy Govindarajan. HAShCache: Heterogeneity-aware

shared DRAMCache for integrated heterogeneous systems. ACM TACO, 2017.
V. Garcia-Flores, J. Gomez-Luna, T. Grass, A. Rico, E. Ayguade, and A. J. Pefa.

Evaluating the effect of last-level cache sharing on integrated GPU-CPU systems
with heterogeneous applications. In IISWC, 2016.

R. Ausavarungnirun, K. Chang, L. Subramanian, G. Loh, and O. Mutlu. Staged
Memory Scheduling: Achieving high performance and scalability in heteroge-
neous systems. In ISCA, 2012.

O. Kayiran, N. Chidambaram Nachiappan, A. Jog, R. Ausavarungnirun, M. T.
Kandemir, G. H. Loh, O. Mutly, and C. R. Das. Managing GPU concurrency in
heterogeneous architectures. In MICRO, 2014.

V. Garcia-Flores, E. Ayguade, and A. J. Pefa. Efficient data sharing on heteroge-
neous systems. In ICPP, 2017.

Johnathan Alsop, Matthew D Sinclair, and Sarita V Adve. Spandex: a flexible
interface for efficient heterogeneous coherence. In ISCA, 2018.

Jan Vesely, Arkaprava Basu, Abhishek Bhattacharjee, Gabriel H Loh, Mark Oskin,
and Steven K Reinhardt. Generic system calls for GPUs. In ISCA, 2018.
Arkaprava Basu, Joseph L Greathouse, Guru Venkataramani, and Jan Vesely.
Interference from GPU system service requests. In IISWC, 2018.

	Abstract
	1 Introduction
	2 Collaborative Execution Strategies
	2.1 Data Partitioning
	2.2 Task Partitioning

	3 Methodology
	4 Evaluation of Collaborative Execution Strategies
	4.1 Canny Edge Detection
	4.2 Random Sample Consensus
	4.3 Other Data Partitioning Benchmarks
	4.4 Other Task Partitioning Benchmarks

	5 Evaluation of Kernel Duplication
	5.1 Performance Effect of Kernel Duplication
	5.2 Analysis of Resource Utilization

	6 Key Insights
	7 Related Work
	7.1 CPU-FPGA Coherent Memory
	7.2 High-level Synthesis with OpenCL
	7.3 Integrated CPU-GPU Architectures

	8 Conclusion
	Acknowledgments
	References

