Motivation and Challenge

- DRAM bandwidth increases every generation
- Prefetchers need to adapt in speculation and coverage to utilize this valuable resource
Motivation and Challenge

- DRAM bandwidth increases every generation
- Prefetchers need to adapt in speculation and coverage to utilize this valuable resource
- Traditionally, prefetchers have juggled between coverage and accuracy
Motivation and Challenge

- DRAM bandwidth increases every generation
- Prefetchers need to adapt in speculation and coverage to utilize this valuable resource
- Traditionally, prefetchers have juggled between coverage and accuracy

Need to *boost* Coverage while *simultaneously* optimizing for Accuracy
Dual Spatial Pattern Prefetcher

- Simultaneously learn \textit{two} spatial bit-pattern representations of program accesses per page
 - Coverage-Biased
 - Accuracy-Biased
Dual Spatial Pattern Prefetcher

- Simultaneously learn **two** spatial bit-pattern representations of program accesses per page
 - Coverage-Biased
 - Accuracy-Biased
- Predict **one** of the patterns based on current DRAM bandwidth headroom
Dual Spatial Pattern Prefetcher

- Simultaneously learn **two** spatial bit-pattern representations of program accesses per page
 - Coverage-Biased
 - Accuracy-Biased
- Predict **one** of the patterns based on current DRAM bandwidth headroom

DSPatch can boost Coverage while *simultaneously* optimizing for Accuracy
Key Results Summary

- **6% average speedup** over baseline with PC-stride @ L1 and SPP @ L2
- **10% average speedup** if DRAM bandwidth is doubled
- **3.6 KB** of hardware storage
DSPATCH: **DUAL SPATIAL PATTERN PREFETCHER**

Rahul Bera¹, Anant V. Nori¹, Onur Mutlu², Sreenivas Subramoney¹

¹Processor Architecture Research Lab, Intel Labs
²ETH Zürich