
Pythia: A Customizable Hardware Prefetching Framework
Using Online Reinforcement Learning

Rahul Bera
1

Konstantinos Kanellopoulos
1

Anant V. Nori
2

Taha Shahroodi
3,1

Sreenivas Subramoney
2

Onur Mutlu
1

1
ETH Zürich

2
Processor Architecture Research Labs, Intel Labs

3
TU Delft

ABSTRACT
Past research has proposed numerous hardware prefetching tech-

niques, most of which rely on exploiting one specific type of pro-

gram context information (e.g., program counter, cacheline address,

or delta between cacheline addresses) to predict future memory

accesses. These techniques either completely neglect a prefetcher’s

undesirable effects (e.g., memory bandwidth usage) on the overall

system, or incorporate system-level feedback as an afterthought to a

system-unaware prefetch algorithm.We show that prior prefetchers

often lose their performance benefit over a wide range of workloads

and system configurations due to their inherent inability to take

multiple different types of program context and system-level feed-

back information into account while prefetching. In this paper, we

make a case for designing a holistic prefetch algorithm that learns

to prefetch using multiple different types of program context and

system-level feedback information inherent to its design.

To this end, we propose Pythia, which formulates the prefetcher

as a reinforcement learning agent. For every demand request, Pythia

observes multiple different types of program context information

to make a prefetch decision. For every prefetch decision, Pythia

receives a numerical reward that evaluates prefetch quality under

the current memory bandwidth usage. Pythia uses this reward to

reinforce the correlation between program context information and

prefetch decision to generate highly accurate, timely, and system-

aware prefetch requests in the future. Our extensive evaluations

using simulation and hardware synthesis show that Pythia outper-

forms two state-of-the-art prefetchers (MLOP and Bingo) by 3.4%

and 3.8% in single-core, 7.7% and 9.6% in twelve-core, and 16.9% and

20.2% in bandwidth-constrained core configurations, while incur-

ring only 1.03% area overhead over a desktop-class processor and

no software changes in workloads. The source code of Pythia can be

freely downloaded from https://github.com/CMU-SAFARI/Pythia.

ACM Reference Format:
Rahul Bera, Konstantinos Kanellopoulos, Anant V. Nori, Taha Shahroodi,

Sreenivas Subramoney, and Onur Mutlu. 2021. Pythia: A Customizable

Hardware Prefetching Framework Using Online Reinforcement Learning.

In MICRO-54: 54th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO ’21), October 18–22, 2021, Virtual Event, Greece.ACM, New

York, NY, USA, 19 pages. https://doi.org/10.1145/3466752.3480114

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MICRO ’21, October 18–22, 2021, Virtual Event, Greece
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8557-2/21/10. . . $15.00

https://doi.org/10.1145/3466752.3480114

1 INTRODUCTION
Prefetching is a well-studied speculation technique that predicts

the addresses of long-latency memory requests and fetches the

corresponding data from main memory to on-chip caches before

the program executing on the processor demands it. A program’s

repeated accesses over its data structures create patterns in its mem-

ory request addresses. A prefetcher tries to identify such memory

access patterns from past memory requests to predict the addresses

of future memory requests. To quickly identify a memory access

pattern, a prefetcher typically uses some program context infor-

mation to examine only a subset of memory requests. We call this

program context a feature. The prefetcher associates a memory ac-

cess pattern with a feature and generates prefetches following the

same pattern when the feature reoccurs during program execution.

Past research has proposed numerous prefetchers that consis-

tently pushed the limits of prefetch coverage (i.e., the fraction of

memory requests predicted by the prefetcher) and accuracy (i.e.,

the fraction of prefetch requests that are actually demanded by

the program) by exploiting various program features, e.g., program

counter (PC), cacheline address (Address), page offset of a cacheline
(Offset), or a simple combination of such features using simple

operations like concatenation (+) [25, 27, 30, 32, 35, 53, 55, 56, 65,
73, 78–80, 90, 103, 106, 111, 112, 122, 123]. For example, a PC-based

stride prefetcher [55, 56, 73] uses PC as the feature to learn the con-

stant stride between two consecutive memory accesses caused by

the same PC. VLDP [112] and SPP [78] use a sequence of cacheline

address deltas as the feature to predict the next cacheline address

delta. Kumar andWilkerson [80] use PC+Address of the first access
in a memory region as the feature to predict the spatial memory

access footprint in the entire memory region. SMS [122] empiri-

cally finds PC+Offset of the first access in a memory region to be

a better feature to predict the memory access footprint. Bingo [27]

combines the features from [80] and SMS and uses PC+Address
and PC+Offset as its features.

Accurate and timely prefetch requests reduce the long memory

access latency experienced by the processor, thereby improving

overall system performance. However, speculative prefetch requests

can cause undesirable effects on the system (e.g., increased memory

bandwidth consumption, cache pollution, memory access interfer-

ence, etc.), which can reduce or negate the performance improve-

ment gained by hiding memory access latency [48, 123]. Thus, a

good prefetcher aims to maximize its benefits while minimizing its

undesirable effects on the system.

Even though there is a large number of prefetchers proposed in

the literature, we observe three key shortcomings in almost every

prior prefetcher design that significantly limits its performance

benefits over a wide range of workloads and system configurations:

1

https://github.com/CMU-SAFARI/Pythia
https://doi.org/10.1145/3466752.3480114
https://doi.org/10.1145/3466752.3480114

MICRO ’21, October 18–22, 2021, Virtual Event, Greece R. Bera and K. Kanellopoulos, et al.

(1) the use ofmainly a single program feature for prefetch prediction,

(2) lack of inherent system awareness, and (3) lack of ability to

customize the prefetcher design to seamlessly adapt to a wide range

of workload and system configurations.

Single-feature prefetch prediction. Almost every prior

prefetch-er relies on only one program feature to correlate with the

programmemory access pattern and generate prefetch requests [25,

30, 32, 35, 53, 55, 56, 65, 73, 78–80, 90, 103, 106, 111, 112, 122, 123].

As a result, a prefetcher typically provides good (or poor) perfor-

mance benefits in mainly those workloads where the correlation

between the feature used by the prefetcher and program’s memory

access pattern is dominantly present (or absent). To demonstrate

this, we show the coverage and overpredictions (i.e., prefetched

memory requests that do not get demanded by the processor) of two

recently proposed prefetchers, SPP [78] and Bingo [27], and our

new proposal Pythia (§4) for six example workloads (§5 discusses

our experimental methodology) in Fig. 1(a). Fig. 1(b) shows the

performance of SPP, Bingo and Pythia on the same workloads. As

we see in Fig. 1(a), Bingo provides higher prefetch coverage than

SPP in sphinx3, PARSEC-Canneal, and PARSEC-Facesim, where
the correlation exists between the first access in a memory region

and the other accesses in the same region. As a result, Bingo per-

forms better than SPP in these workloads (Fig. 1(b)). In contrast, for

workloads like GemsFDTD that have regular access patterns within
a physical page, SPP’s sequence of deltas feature provides better

coverage and performance than Bingo.

0%

50%

100%

150%

200%

250%

SPP Bingo Pythia SPP Bingo Pythia SPP Bingo Pythia SPP Bingo Pythia SPP Bingo Pythia SPP Bingo Pythia

482.sphinx3-417B PARSEC-Canneal PARSEC-Facesim 459.GemsFDTD-
765B

Ligra-CC Ligra-
PageRankDelta

Fr
ac

tio
n

of

ba
se

lin
e

LL
C

m
iss

es

Covered Uncovered Overpredicted

574% 302% 368% 529%

-20%

0%

20%

40%

60%

482.sphinx3-417B PARSEC-Canneal PARSEC-Facesim 459.GemsFDTD-765B Ligra-CC Ligra-PageRankDelta

IP
C

im
pr

ov
em

en
t

ov
er

 b
as

el
in

e
(%

) SPP Bingo Pythia
(b)

(a)

Figure 1: Comparison of (a) coverage, overprediction, and (b)
performance of two recently-proposed prefetchers, SPP [78]
and Bingo [27], and our new proposal, Pythia.

Lack of inherent system awareness. All prior prefetchers
either completely neglect their undesirable effects on the sys-

tem (e.g., memory bandwidth usage, cache pollution, memory ac-

cess interference, system energy consumption, etc.) [25, 27, 32,

35, 53, 55, 56, 65, 73, 78–80, 90, 103, 106, 111, 112, 122] or incor-

porate system awareness as an afterthought (i.e., a separate con-

trol component) to the underlying system-unaware prefetch algo-

rithm [30, 34, 47–49, 81, 82, 85, 86, 95, 123, 144]. Due to the lack of

inherent system awareness, a prefetcher often loses its performance

gain in resource-constrained scenarios. For example, as shown in

Fig. 1(a), Bingo achieves similar prefetch coverage in Ligra-CC
as compared to PARSEC-Canneal, while generating significantly

lower overpredictions in Ligra-CC than PARSEC-Canneal. How-
ever, Bingo loses performance in Ligra-CC by 1.9% compared to a

no-prefetching baseline, whereas it improves performance by 6.4%

in PARSEC-Canneal (Fig. 1(b)). This contrasting outcome is due to

Bingo’s lack of awareness of the memory bandwidth usage. With-

out prefetching, Ligra-CC consumes higher memory bandwidth

than PARSEC-Canneal. As a result, each overprediction made by

Bingo in Ligra-CC wastes more precious memory bandwidth and

is more detrimental to performance than that in PARSEC-Canneal.
Lack of online prefetcher design customization. The high

design complexity of architecting a multi-feature, system-aware

prefetcher has traditionally compelled architects to statically se-

lect only one program feature at design time. With every new

prefetcher, architects design new rigid hardware structures to ex-

ploit the selected program feature. To exploit a new program feature

for higher performance benefits, one must design a new prefetcher

from scratch and extensively evaluate and verify it both in pre-

silicon and post-silicon realization. Due to the rigid design-time

decisions, the hardware structures proposed by prior prefetchers

cannot be customized online in silicon either to exploit any other

program feature or to change the prefetcher’s objective (e.g., to

increase/decrease coverage, accuracy, or timeliness) so that it can

seamlessly adapt to varying workloads and system configurations.

Our goal in this work is to design a single prefetching frame-

work that (1) can holistically learn to prefetch using both multi-
ple different types of program features and system-level feedback
information that is inherent to the design, and (2) can be easily
customized in silicon via simple configuration registers to exploit

different types of program features and/or to change the objective

of the prefetcher (e.g., increasing/decreasing coverage, accuracy, or

timeliness) without any changes to the underlying hardware.

Key ideas. To this end, we propose Pythia,
1
which formulates

hardware prefetching as a reinforcement learning problem. Rein-

forcement learning (RL) [64, 124] is a machine learning paradigm

that studies how an autonomous agent can learn to take optimal

actions that maximizes a reward function by interacting with a

stochastic environment. We formulate Pythia as an RL-agent that

autonomously learns to prefetch by interacting with the proces-

sor and the memory subsystem. For every new demand request,

Pythia extracts a set of program features. It uses the set of features

as state information to take a prefetch action based on its prior

experience. For every prefetch action (including not to prefetch),
Pythia receives a numerical reward which evaluates the accuracy

and timeliness of the prefetch action given various system-level

feedback information. While Pythia’s framework is general enough

to incorporate any type of system-level feedback information into

its decision making, in this paper we demonstrate Pythia using

one major system-level information for prefetching: memory band-

width usage. Pythia uses the reward received for a prefetch action

to reinforce the correlations between various program features and

the prefetch action and learn from experience how to generate

accurate, timely, and system-aware prefetches in the future. The

types of program feature used by Pythia and the reward level values

can be easily customized in silicon via configuration registers.

Novelty and Benefits. Pythia’s RL-based design approach re-

quires an architect to only specify which of the possible program

features might be useful to design a good prefetcher and what per-
formance goal the prefetcher should target, rather than spending

1
Pythia, according to Greek mythology, is the oracle of Delphi who is known for

accurate prophecies [18].

2

Pythia: A Customizable Hardware Prefetching Framework
Using Online Reinforcement Learning MICRO ’21, October 18–22, 2021, Virtual Event, Greece

time on designing and implementing a new (likely rigid) prefetch al-

gorithm and accompanying rigid hardware that describes precisely
how the prefetcher should exploit the selected features to achieve

that performance goal. This approach provides two unique advan-

tages over prior prefetching proposals. First, using the RL frame-

work, Pythia can holistically learn to prefetch using both multiple
program features and system-level feedback information inherent to

its design. Second, Pythia can be easily customized in silicon via

simple configuration registers to exploit different types of program

features and/or change the objective of the prefetcher. This gives

Pythia the unique benefit of providing even higher performance

improvements for a wide variety of workloads and changing system

configurations, without any changes to the underlying hardware.

Results Summary. We evaluate Pythia using a diverse set of

memory-intensive workloads spanning SPEC CPU2006 [21], SPEC
CPU2017 [22], PARSEC 2.1 [16], Ligra [117], and Cloudsuite [51]
benchmarks. We demonstrate four key results. First, Pythia outper-

forms two state-of-the-art prefetchers (MLOP [111] and Bingo [27])

by 3.4% and 3.8% in single-core and 7.7% and 9.6% in twelve-core

configurations. This is because Pythia generates lower overpredic-

tions, while simultaneously providing higher prefetch coverage

than the prior prefetchers. Second, Pythia’s performance benefits

increase in bandwidth-constrained system configurations. For ex-

ample, in a server-like configuration, where a core can have only

1

16
× of the bandwidth of a single-channel DDR4-2400 [15] DRAM

controller, Pythia outperforms MLOP and Bingo by 16.9% and 20.2%.

Third, Pythia can be customized further via simple configuration

registers to target workload suites to provide even higher perfor-

mance benefits. We demonstrate that by simply changing the nu-

merical rewards, Pythia provides up to 7.8% (1.9% on average) more

performance improvement across all Ligra graph processing work-

loads over the basic Pythia configuration. Fourth, Pythia’s perfor-

mance benefits come with only modest area and power overheads.

Our functionally-verified hardware synthesis for Pythia shows that

Pythia only incurs an area and power overhead of 1.03% and 0.37%

over a 4-core desktop-class processor.

We make the following contributions in this paper:

• We observe three key shortcomings in prior prefetchers that

significantly limits their performance benefits: (1) the use

of only a single program feature for prefetch prediction, (2)

lack of inherent system awareness, and (3) lack of ability

to customize the prefetcher design to seamlessly adapt to a

wide range of workloads and system configurations.

• We introduce a new prefetcher called Pythia. Pythia formu-

lates the prefetcher as a reinforcement learning (RL) agent,

which takes adaptive prefetch decisions by autonomously

learning using both multiple program features and system-

level feedback information inherent to its design (§3.1).

• We provide a low-overhead, practical implementation of

Pythia’s RL-based algorithm in hardware, which uses no

more complex structures than simple tables (§4.2.1). This

design can potentially be used for other hardware structures

that can benefit from RL principles.

• By extensive evaluation, we show that Pythia outperforms

prior state-of-the-art prefetchers over a wide variety of work-

loads in a wide range of system configurations.

• We open source Pythia and all the workload traces used

for performance modeling in our GitHub repository: https:

//github.com/CMU-SAFARI/Pythia.

2 BACKGROUND
We first briefly review the basics of reinforcement learning [64, 124].

We then describe why reinforcement learning is a good framework

for designing a hardware prefetcher that fits our goals.

2.1 Reinforcement Learning
Reinforcement learning (RL) [64, 124], in its simplest form, is the

algorithmic approach to learn how to take an action in a given situ-
ation to maximize a numerical reward signal. A typical RL system

comprises of two main components: the agent and the environment,
as shown in Fig. 2. The agent is the entity that takes actions. the

agent resides in the environment and interacts with it in discrete

timesteps. At each timestep 𝑡 , the agent observes the current state
of the environment 𝑆𝑡 and takes action 𝐴𝑡 . Upon receiving the

action, the environment transitions to a new state St+1, and emits

an immediate reward 𝑅𝑡+1, which is immediately or later delivered

to the agent. The reward scheme encapsulates the agent’s objective

and drives the agent towards taking optimal actions.

Agent

Environment

State (St)State (St) Action (At)Action (At)Reward (Rt+1)Reward (Rt+1)

Figure 2: Interaction between an agent and the environment
in a reinforcement learning system.

The policy of the agent dictates it to take a certain action in

a given state. The agent’s goal is to find the optimal policy that
maximizes the cumulative reward collected from the environment
over time. The expected cumulative reward by taking an action

𝐴 in a given state 𝑆 is defined as the Q-value of the state-action
pair (denoted as 𝑄 (𝑆,𝐴)). At every timestep 𝑡 , the agent iteratively

optimizes its policy in two steps: (1) the agent updates the Q-value

of a state-action pair using the reward collected in the current

timestep, and (2) the agent optimizes its current policy using the

newly updated Q-value.

Updating Q-values. If at a given timestep 𝑡 , the agent observes

a state 𝑆𝑡 , takes an action 𝐴𝑡 , while the environment transitions

to a new state 𝑆𝑡+1 and emits a reward 𝑅𝑡+1 and the agent takes

action 𝐴𝑡+1 in the new state, the Q-value of the old state-action

pair 𝑄 (𝑆𝑡 , 𝐴𝑡) is iteratively optimized using the SARSA [108, 124]

algorithm, as shown in Eqn. (1):

𝑄 (𝑆𝑡 , 𝐴𝑡) ← 𝑄 (𝑆𝑡 , 𝐴𝑡)
+ 𝛼 [𝑅𝑡+1 + 𝛾𝑄 (𝑆𝑡+1, 𝐴𝑡+1) −𝑄 (𝑆𝑡 , 𝐴𝑡)]

(1)

𝛼 is the learning rate parameter that controls the convergence

rate of Q-values. 𝛾 is the discount factor, which is used to assign

more weight to the immediate reward received by the agent at any

given timestep than to the delayed future rewards. A 𝛾 value closer

to 1 gives a “far-sighted" planning capability to the agent, i.e., the

agent can trade off a low immediate reward to gain higher rewards

3

https://github.com/CMU-SAFARI/Pythia
https://github.com/CMU-SAFARI/Pythia

MICRO ’21, October 18–22, 2021, Virtual Event, Greece R. Bera and K. Kanellopoulos, et al.

in the future. This is particularly useful in creating an autonomous

agent that can anticipate the long-term effects of taking an action

to optimize its policy that gets closer to optimal over time.

Optimizing policy. To find a policy that maximizes the cumu-

lative reward collected over time, a purely-greedy agent always

exploits the action 𝐴 in a given state 𝑆 that provides the highest

Q-value 𝑄 (𝑆,𝐴). However, greedy exploitation can leave the state-

action space under-explored. Thus, in order to strike a balance

between exploration and exploitation, an 𝜖-greedy agent stochas-
tically takes a random action with a low probability of 𝜖 (called

exploration rate); otherwise, it selects the action that provides the

highest Q-value [124].

In short, the Q-value serves as the foundational cornerstone of

reinforcement learning. By iteratively learning Q-values of state-

action pairs, an RL-agent continuously optimizes its policy to take

actions that get closer to optimal over time.

2.2 Why is RL a Good Fit for Prefetching?
The RL framework has been recently successfully demonstrated

to solve complex problems like mastering human-like control on

Atari [92] and Go [118, 119]. We argue that the RL framework is an

inherent fit to model a hardware prefetcher for three key reasons.

Adaptive learning in a complex state space. As we state in
§1, the benefits of a prefetcher not only depends on its coverage

and accuracy but also on its undesirable effects on the system, like

memory bandwidth usage. In other words, it is not sufficient for
a prefetcher only to make highly accurate predictions. Instead, a
prefetcher should be performance-driven. A prefetcher should have

the capability to adaptively trade-off coverage for higher accuracy

(and vice-versa) depending on its impact on the overall system to

provide a robust performance improvementwith varyingworkloads

and system configurations. This adaptive and performance-driven

nature of prefetching in a complex state space makes RL a good fit

for modeling a prefetcher as an autonomous agent that learns to

prefetch by interacting with the system.

Online learning. An RL agent does not require an expensive

offline training phase. Instead, it can continuously learn online by
iteratively optimizing its policy using the rewards received from

the environment. A hardware prefetcher, similar to an RL agent,

also needs to continuously learn from the changing workload be-

havior and system conditions to provide consistent performance

benefits. The online learning requirement of prefetching makes RL

an inherent fit to model a hardware prefetcher.

Ease of implementation. Prior works have evaluated many

sophisticated machine learning models like simple neural net-

works [105], LSTMs [61, 114], and Graph Neural Networks

(GNNs) [116] as models for hardware prefetching. Even though

these techniques show encouraging results in accurately predicting

memory accesses, they fall short especially in two major aspects.

First, these models’ sizes often exceed even the largest caches in

traditional processors [61, 105, 114, 116], making them impractical

(or at best very difficult) to implement. Second, due to the vast

amount of computation they require for inference, these models’

inference latency is much higher than an acceptable latency of a

prefetcher at any cache level. On the other hand, we can efficiently

implement an RL-based model, as we demonstrate in this paper (§

4), that can quickly make predictions and can be relatively easily

adopted in a real processor.

3 PYTHIA: KEY IDEA
In this work, we formulate prefetching as a reinforcement learning

problem, as shown in Fig. 3. Specifically, we formulate Pythia as an

RL-agent that learns to make accurate, timely, and system-aware

prefetch decisions by interacting with the environment, i.e., the

processor and the memory subsystem. Each timestep corresponds

to a new demand request seen by Pythia. With every new demand

request, Pythia observes the state of the processor and the memory

subsystem and takes a prefetch action. For every prefetch action

(including not to prefetch), Pythia receives a numerical reward that

evaluates the accuracy and timeliness of the prefetch action taking

into account various system-level feedback information. Pythia’s
goal is to find the optimal prefetching policy that would maximize the
number of accurate and timely prefetch requests, taking system-level
feedback information into account. While Pythia’s framework is

general enough to incorporate any type of system-level feedback

into its decision making, in this paper we demonstrate Pythia using

memory bandwidth usage as the system-level feedback information.

Prefetcher

Processor &

Memory Subsystem

Reward
Prefetch from address

A+offset (O)

Features of memory

request to address A

(e.g., PC)

Figure 3: Formulating the prefetcher as an RL-agent.

3.1 Formulation of the RL-based Prefetcher
We formally define the three pillars of our RL-based prefetcher: the

state space, the actions, and the reward scheme.

State. We define the state as a 𝑘-dimensional vector of program

features.

𝑆 ≡ {𝜙1𝑆 , 𝜙
2

𝑆 , . . . , 𝜙
𝑘
𝑆 } (2)

Each program feature is composed of at most two components:

(1) program control-flow component, and (2) program data-flow

component. The control-flow component is further made up of

simple information like load-PC (i.e., the PC of a load instruction)

or branch-PC (i.e., the PC of a branch instruction that immediately

precedes a load instruction), and a history that denotes whether this

information is extracted only from the current demand request or a

series of past demand requests. Similarly, the data-flow component

is made up of simple information like cacheline address, physical

page number, page offset, cacheline delta, and its corresponding

history. Table 1 shows some example program features. Although

Pythia can theoretically learn to prefetch using any number of

such program features, we fix the state-vector dimension (i.e., 𝑘) at

design time given a limited storage budget in hardware. However,

the exact selection of 𝑘 program features out of all possible program

features is configurable online using simple configuration registers.

In §4.3.1, we provide an automated feature selection method to find

a vector of program features to be used at design time.

Action. We define the action of the RL-agent as selecting a

prefetch offset (i.e., a delta, "O" in Fig. 3, between the predicted and

4

Pythia: A Customizable Hardware Prefetching Framework
Using Online Reinforcement Learning MICRO ’21, October 18–22, 2021, Virtual Event, Greece

Table 1: Example program features

Feature
Control-flow Data-flow

Info. History Info. History

Last 3-PCs PC last 3 ✖ ✖
Last 4-deltas ✖ ✖ Cacheline delta last 4

PC+Delta PC current Cacheline delta current

Last 4-PCs+Page no. PC last 4 Page no. current

the demanded cacheline address) from a set of candidate prefetch

offsets. As every post-L1-cache prefetcher generates prefetch re-

quests within a physical page [27, 30, 32, 53, 65, 78–80, 90, 103, 106,

111, 112, 122, 123], the list of prefetch offsets only contains values

in the range of [−63, 63] for a system with a traditionally-sized 4KB

page and 64B cacheline. Using prefetch offsets as actions (instead

of full cacheline addresses) drastically reduces the action space size.

We further reduce the action space size by fine tuning, as described

in §4.3.2. A prefetch offset of zero means no prefetch is generated.

Reward. The reward structure defines the prefetcher’s objective.
We define five different reward levels as follows.

• Accurate and timely (R𝐴𝑇). This reward is assigned to an

action whose corresponding prefetch address gets demanded

after the prefetch fill.

• Accurate but late (R𝐴𝐿). This reward is assigned to an

action whose corresponding prefetch address gets demanded

before the prefetch fill.

• Loss of coverage (R𝐶𝐿). This reward is assigned to an action

whose corresponding prefetch address is to a different phys-

ical page than the demand access that led to the prefetch.

• Inaccurate (R𝐼𝑁). This reward is assigned to an action

whose corresponding prefetch address does not get demanded

in a temporal window. The reward is classified into two sub-

levels: inaccurate given low bandwidth usage (R𝐿
𝐼𝑁

) and

inaccurate given high bandwidth usage (R𝐻
𝐼𝑁

).

• No-prefetch (R𝑁𝑃). This reward is assigned when Pythia

decides not to prefetch. This reward level is also classified

into two sub-levels: no-prefetch given low bandwidth usage

(R𝐿
𝑁𝑃

) and no-prefetch given high bandwidth usage (R𝐻
𝑁𝑃

).

By increasing (decreasing) a reward level value, we reinforce

(deter) Pythia to collect such rewards from the environment in the

future. R𝐴𝑇 and R𝐴𝐿 are used to guide Pythia to generate more

accurate and timely prefetch requests. R𝐶𝐿 is used to guide Pythia

to generate prefetches within the physical page of the triggering

demand request.R𝐼𝑁 andR𝑁𝑃 are used to define Pythia’s prefetch-

ing strategy with respect to memory bandwidth usage feedback. In

§4.3.3, we provide an automated method to configure the reward

values. The reward values can be easily customized further for

target workload suites to extract higher performance gains (§6.6).

4 PYTHIA: DESIGN
Fig. 4 shows a high-level overview of Pythia. Pythia is mainly com-

prised of two hardware structures: Q-Value Store (QVStore) and
Evaluation Queue (EQ). The purpose of QVStore is to record Q-

values for all state-action pairs that are observed by Pythia. The

purpose of EQ is to maintain a first-in-first-out list of Pythia’s

recently-taken actions.
2
Every EQ entry holds three pieces of in-

formation: (1) the taken action, (2) the prefetch address generated

for the corresponding action, and (3) a filled bit. A set filled bit

indicates that the prefetch request has been filled into the cache.

For every new demand request, Pythia first checks the EQ with

the demanded memory address (1). If the address is present in

the EQ (i.e., Pythia has issued a prefetch request for this address in

the past), it signifies that the prefetch action corresponding to the

EQ entry has generated a useful prefetch request. As such, Pythia

assigns a reward (either R𝐴𝑇 or R𝐴𝐿) to the EQ entry, based on

whether or not the EQ entry’s filled bit is set. Next, Pythia extracts

the state-vector from the attributes of the demand request (e.g.,

PC, address, cacheline delta, etc.) (2) and looks up QVStore to

find the action with the maximum Q-value for the given state-

vector (3). Pythia selects the action with the maximum Q-value

to generate prefetch request and issues the request to the memory

hierarchy (4). At the same time, Pythia inserts the selected prefetch

action, its corresponding prefetched memory address, and the state-

vector into EQ (5). Note that, a no-prefetch action or an action

that prefetches an address beyond the current physical page is also

inserted into EQ. The reward for such an action is instantaneously

assigned to the EQ entry. When an EQ entry gets evicted, the state-

action pair and the reward stored in the evicted EQ entry are used

to update the Q-value in the QVStore (6). For every prefetch fill

in cache, Pythia looks up EQ with the prefetch address and sets

the filled bit in the matching EQ entry indicating that the prefetch

request has been filled into the cache (7). Pythia uses this filled bit

in 1 to classify actions that generated timely or late prefetches.
3

!"#$%#&'()*+%,%, -!+.

!"#$%&

'"()"*+

!

!""#$%&'()*'+&,-&

.-''("/-%+#%$ 01&(%,'2

3--4 5/&

167,-'(,+$+"

-".+/0

+/0#$%,*1&(2,

-+01&(2,.

"

#

$

8%"(',&/'(9(,.:&*.,#-%&;&

7,*,(<!.,#-%&/*#'&#%&01

%

32,4,&56*7'$$*

!" !" !#

8,9(2:*

;',2#256:

=(%('*,(

/'(9(,.:

0>#.,&01&(%,'2&*%+&

5/+*,(&167,-'(

&

?#%+&,:(&!.,#-%&)#,:&@*A&1<6*B5(

'

!"#

!"

!#

!$

!%

7(,&9#BB(+&C#,

Figure 4: Overview of Pythia.

4.1 RL-based Prefetching Algorithm
Algorithm 1 shows Pythia’s RL-based prefetching algorithm. Ini-

tially, all entries in QVStore are reset to the highest possible Q-value

(
1

1−𝛾) and the EQ is cleared (lines 2-3). For every demand request to

a cacheline address𝐴𝑑𝑑𝑟 , Pythia searches for𝐴𝑑𝑑𝑟 in EQ (line 6). If

a matching entry is found, Pythia assigns a reward (either R𝐴𝑇 or

2
Pythia keeps track of recently-taken actions because it cannot always immediately
assign a reward to an action, as the usefulness of the generated prefetch request (i.e.,

if and when the prefetched address is demanded by the processor) is not immediately

known while the action is being taken. During EQ residency, if the address of a demand

request matches with the prefetch address stored in an EQ entry, the corresponding

action is considered to have generated a useful prefetch request.

3
In this paper, we define prefetch timeliness as a binary value due to its measurement

simplicity. One can easily make the definition non-binary by storing three timestamps

per EQ entry: (1) when the prefetch is issued (𝑡𝑖𝑠𝑠𝑢𝑒), (2) when the prefetch is filled

(𝑡𝑓 𝑖𝑙𝑙), and (3) when a demand is generated for the same prefetched address (𝑡𝑑𝑒𝑚𝑎𝑛𝑑).

5

MICRO ’21, October 18–22, 2021, Virtual Event, Greece R. Bera and K. Kanellopoulos, et al.

Algorithm 1 Pythia’s reinforcement learning based prefetching algorithm

1: procedure Initialize
2: initialize QVStore:𝑄 (𝑆,𝐴) ← 1

1−𝛾
3: clear EQ

4:

5: procedure Train_and_Predict(Addr) /* Called for every demand request */
6: 𝑒𝑛𝑡𝑟𝑦 ← 𝑠𝑒𝑎𝑟𝑐ℎ_𝐸𝑄 (𝐴𝑑𝑑𝑟) /* For a demand request to𝐴𝑑𝑑𝑟 , search EQ with the demand address */
7: if entry is valid then
8: if 𝑒𝑛𝑡𝑟𝑦.𝑓 𝑖𝑙𝑙𝑒𝑑 == 𝑡𝑟𝑢𝑒 then
9: 𝑒𝑛𝑡𝑟𝑦.𝑟𝑒𝑤𝑎𝑟𝑑 ← R𝐴𝑇 /* If the filled bit is set, i.e., the demand access came after the prefetch fill, assign rewardR𝐴𝑇 */
10: else
11: 𝑒𝑛𝑡𝑟𝑦.𝑟𝑒𝑤𝑎𝑟𝑑 ← R𝐴𝐿 /* Otherwise, assignR𝐴𝐿 */
12: 𝑆 ← 𝑔𝑒𝑡_𝑠𝑡𝑎𝑡𝑒 () /* Extract the state-vector from the attributes of current demand request */
13: if 𝑟𝑎𝑛𝑑 () ≤ 𝜖 then
14: 𝑎𝑐𝑡𝑖𝑜𝑛 ← 𝑔𝑒𝑡_𝑟𝑎𝑛𝑑𝑜𝑚_𝑎𝑐𝑡𝑖𝑜𝑛 () /* Select a random action with a low probability 𝜖 to explore the state-action space */
15: else
16: 𝑎𝑐𝑡𝑖𝑜𝑛 ← argmax𝑎 𝑄 (𝑆, 𝑎) /* Otherwise, select the action with the highest Q-value */
17: 𝑝𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ (𝐴𝑑𝑑𝑟 +𝑂𝑓 𝑓 𝑠𝑒𝑡 [𝑎𝑐𝑡𝑖𝑜𝑛]) /* Add the selected prefetch offset to the current demand address to generate prefetch address */
18: 𝑒𝑛𝑡𝑟𝑦 ← 𝑐𝑟𝑒𝑎𝑡𝑒_𝐸𝑄_𝑒𝑛𝑡𝑟𝑦 (𝑆, 𝑎𝑐𝑡𝑖𝑜𝑛,𝐴𝑑𝑑𝑟 +𝑂𝑓 𝑓 𝑠𝑒𝑡 [𝑎𝑐𝑡𝑖𝑜𝑛]) /* Create new EQ entry using the current state-vector, the selected action, and the prefetch address */
19: if no prefetch action then
20: 𝑒𝑛𝑡𝑟𝑦.𝑟𝑒𝑤𝑎𝑟𝑑 ← R𝐻

𝑁𝑃
orR𝐿

𝑁𝑃
/* In case of no-prefetch action, immediately assign reward 𝑅𝐻

𝑁𝑃
or 𝑅𝐿

𝑁𝑃
based on current memory bandwidth usage */

21: else if out-of-page prefetch then
22: 𝑒𝑛𝑡𝑟𝑦.𝑟𝑒𝑤𝑎𝑟𝑑 ← R𝐶𝐿 /* In case of out-of-page prefetch action, immediately assign reward 𝑅𝐶𝐿 */
23: 𝑒𝑣𝑖𝑐𝑡_𝑒𝑛𝑡𝑟𝑦 ← 𝑖𝑛𝑠𝑒𝑟𝑡_𝐸𝑄 (𝑒𝑛𝑡𝑟𝑦) /* Insert the entry. Get the evicted EQ entry. */
24: if ℎ𝑎𝑠_𝑟𝑒𝑤𝑎𝑟𝑑 (𝑑𝑞_𝑒𝑛𝑡𝑟𝑦) == 𝑓 𝑎𝑙𝑠𝑒 then
25: 𝑑𝑞_𝑒𝑛𝑡𝑟𝑦.𝑟𝑒𝑤𝑎𝑟𝑑 ← R𝐻

𝐼𝑁
orR𝐿

𝐼𝑁
/* If the evicted entry does not have a reward yet, assign the rewardR𝐻

𝐼𝑁
orR𝐿

𝐼𝑁
based on current memory bandwidth usage */

26: 𝑅 ← 𝑑𝑞_𝑒𝑛𝑡𝑟𝑦.𝑟𝑒𝑤𝑎𝑟𝑑 /* Get the reward stored in the evicted entry */
27: 𝑆1 ← 𝑑𝑞_𝑒𝑛𝑡𝑟𝑦.𝑠𝑡𝑎𝑡𝑒 ; 𝐴1 ← 𝑑𝑞_𝑒𝑛𝑡𝑟𝑦.𝑎𝑐𝑡𝑖𝑜𝑛 /* Get the state-vector and the action from the evicted EQ entry */
28: 𝑆2 ← 𝐸𝑄.ℎ𝑒𝑎𝑑.𝑠𝑡𝑎𝑡𝑒 ; 𝐴2 ← 𝐸𝑄.ℎ𝑒𝑎𝑑.𝑎𝑐𝑡𝑖𝑜𝑛 /* Get the state-vector and the action from the entry at the head of the EQ */
29: 𝑄 (𝑆1, 𝐴1) ← 𝑄 (𝑆1, 𝐴1) + 𝛼 [𝑅 + 𝛾𝑄 (𝑆2, 𝐴2) −𝑄 (𝑆1, 𝐴1)] /* Perform the SARSA update */
30:

31: procedure Prefetch_Fill(Addr)
32: 𝑠𝑒𝑎𝑟𝑐ℎ_𝑎𝑛𝑑_𝑚𝑎𝑟𝑘_𝐸𝑄 (𝐴𝑑𝑑𝑟, FILLED) /* For every prefetch fill, search the address in EQ and mark the corresponding EQ entry as filled */

R𝐴𝐿) based on the filled bit in the EQ entry (lines 8-11). Pythia then

extracts the state-vector to stochastically select a prefetching action

(Sec. 2) that provides the highest Q-value (lines 13-16). Pythia uses

the selected action to generate the prefetch request (line 17) and

creates a new EQ entry with the current state-vector, the selected

action, and its corresponding prefetched address (line 18). In case

of a no-prefetch action, or an action that prefetches beyond the

current physical page, Pythia immediately assigns the reward to

the newly-created EQ entry (lines 19-22). The EQ entry is then

inserted, which evicts an entry from EQ. If the evicted EQ entry

does not already have a reward assigned (indicating that the corre-

sponding prefetch address is not demanded by the processor so far),

Pythia assigns the reward R𝐻
𝐼𝑁

or R𝐿
𝐼𝑁

based on the current mem-

ory bandwidth usage (lines 25). Finally, the Q-value of the evicted

state-action pair is updated via the SARSA algorithm (Sec. 2), using

the reward stored in the evicted EQ entry and the Q-value of the

state-action pair in the head of the EQ-entry (lines 26-29).

4.2 Detailed Design of Pythia
We describe the organization of QVStore (§ 4.2.1), how Pythia

searches QVStore to get the action with the maximum Q-value

for a given state-vector (3) (§4.2.2), how Pythia assigns rewards

to each taken action and how it updates Q-values (6) (§4.2.3).

4.2.1 Organization of QVStore. The purpose of QVStore is to
record Q-values for all state-action pairs that Pythia observes. Un-

like prior real-world applications of RL [92, 118, 119], which use

deep neural networks to approximately store Q-values of every

state-action pair, we propose a new, table-based, hierarchical QVS-

tore organization that is custom-designed to our RL-agent.

Fig. 5(a) shows the high-level organization of QVStore and how

the Q-value is retrieved from QVStore for a given state 𝑆 (which is

a k-dimensional vector of program features, {𝜙1
𝑆
, 𝜙2

𝑆
, . . . , 𝜙𝑘

𝑆
}) and

an action 𝐴. As the state space grows rapidly with the state-vector

dimension (𝑘) and the bits used to represent each feature, we employ

a hierarchical organization for QVStore. We organize QVStore in 𝑘

partitions, each of which we call a vault. Each vault corresponds to

one constituent feature of the state-vector and records the Q-values

for the feature-action pair, 𝑄 (𝜙𝑖
𝑆
, 𝐴). During the Q-value retrieval

for a given state-action pair 𝑄 (𝑆,𝐴), Pythia queries each vault

in parallel to retrieve the Q-values of constituent feature-action

pairs 𝑄 (𝜙𝑖
𝑆
, 𝐴). The final Q-value of the state-action pair 𝑄 (𝑆,𝐴)

is computed as the maximum of all constituent feature-action Q-

values, as Eqn. 3 shows). The maximum operation ensures that

the state-action Q-value is driven by the constituent feature of the

state-vector that has the highest feature-action Q-value. The vault

organization enables QVStore to efficiently scale up to higher state-

vector dimensions: one can increase the state-vector dimension by

simply adding a new vault to the QVStore.

𝑄 (𝑆,𝐴) = max

𝑖∈(1,𝑘)
𝑄 (𝜙𝑖𝑆 , 𝐴) (3)

Fig. 5(a) shows the organization of QVStore as a collection of

multiple vaults. The purpose of a vault is to record Q-values of

all feature-action pairs that Pythia observes for a specific feature

type. A vault can be conceptually visualized as a monolithic two-

dimensional table (as shown in Fig. 5(a)), indexed by the feature

6

Pythia: A Customizable Hardware Prefetching Framework
Using Online Reinforcement Learning MICRO ’21, October 18–22, 2021, Virtual Event, Greece

… Vault
k

MAX

(a)

Vault
1

Vault
2

State-action Q-value

Plane
1

Shift

+ #

+

Feature Index

φ1
Sφ
1
S φ2

Sφ
2
S φk

Sφ
k
S

Program

feature

Q(φ1
S , A)Q(φ1
S , A) Q(φ2

S , A)Q(φ2
S , A) Q(φk

S , A)Q(φk
S , A)

Feature-action Q-value

Q(S,A)Q(S,A)
φk
Sφ
k
S

Q(φk
S , A)Q(φk
S , A)

Feature-action Q-value

φk
Sφ
k
S

Index

Generation

Index

Generation

Index

Generation

Action (A)Action (A) Action (A)Action (A)
(b)

(c)

Figure 5: (a) The QVStore is comprised ofmultiple vaults. (b)
Each vault is comprised of multiple planes. (c) Index gener-
ation from feature value.

and action values, that stores Q-value for every feature-action pair.

However, the key challenge in implementing vault as a monolithic

table is that the size of the table increases exponentially with a

linear increase in the number of bits used to represent the feature.

This not only makes the monolithic table organization impractical

for implementation but also increases the design complexity to

satisfy its latency and power requirements.

One way to address this challenge is to quantize the feature space

into a small number of tiles. Even though feature space quantiza-

tion can achieve a drastic reduction in the monolithic table size, it

requires a compromise between the resolution of a feature value

and the generalization of feature values. We draw inspiration from

tile coding [24, 64, 124] to strike a balance between resolution and

generalization. Tile coding uses multiple overlapping hash func-

tions to quantize a feature value into smaller tiles. The quantization
achieves generalization of similar feature values, whereas multiple

hash functions increase resolution to represent a feature value.

We leverage the idea of tile coding to organize a vault as a col-

lection of 𝑁 small two-dimensional tables, each of which we call

a plane. Each plane entry stores a partial Q-value of a feature-

action pair.
4
As Fig. 5(c) shows, to retrieve a feature-action Q-value

𝑄 (𝜙𝑖
𝑆
, 𝐴), the given feature is first shifted by a shifting constant

(which is randomly selected at design time), followed by a hashing

to get the feature index for the given plane. This feature index,

along with the action index, is used to retrieve the partial Q-value

from the plane. The final feature-action Q-value is computed as the

sum of all the partial Q-values from all planes, as shown in Fig. 5(b).

The use of tile coding provides two key advantages to Pythia. First,

the tile coding of a feature enables the sharing of partial Q-values

between similar feature values, which shortens prefetcher training

time. Second, multiple planes reduces the chance of sharing partial

Q-values between widely different feature values.

4.2.2 Pipelined Organization of QVStore Search. To gener-

ate a prefetch request, Pythia has to (1) look up the QVStore with

the state-vector extracted from the current demand request, and (2)

search for the action that has the maximum state-action Q-value

(3 in Fig. 4). As a result, the search operation lies on Pythia’s

critical path and directly impacts Pythia’s prediction latency. To

improve the prediction latency, we pipeline the search operation.

4
Our application of tile coding is similar to that used in the self-optimizing memory

controller (RLMC) [64]. The key difference is that RLMC uses a hybrid combination

of feature and action values to index single-dimensional planes, whereas Pythia uses
feature and action values separately to index two-dimensional planes.

In
d

e
x
 G

e
n

e
ra

ti
o

n

+

+

+

Q
-M

A
X

M
A

X

Stage 1 Stage 2 Stage 3 Stage 4Stage 0

Retrieve partial

feature-action Q-values

Sum up all partial

feature-action

Q-values

Get maximum of all

feature-action Q-values

to compute

state-action Q-value

Track maximum

state-action Q-value

φ1
Sφ
1
S

φ2
Sφ
2
S

φ3
Sφ
3
S

Q(S,A)Q(S,A)

Q(φ 1
S , A)

Q(φ 1
S , A)

Q(φ2
S , A)Q(φ2
S , A)

Q(
φ
3
S
, A

)

Q(
φ
3
S
, A

)

Figure 6: Pipelined organization of QVStore search opera-
tion. The illustration depicts three program features, each
having three planes.

The Q-value search operation is implemented in the following

way. For a given state-vector, Pythia iteratively retrieves the Q-

value of each action. Pythia also maintains a variable, 𝑄𝑚𝑎𝑥 , that

tracks the maximum Q-value found so far. 𝑄𝑚𝑎𝑥 gets compared

to every retrieved Q-value. The search operation concludes when

Q-values for all possible actions have been retrieved. We pipeline

the search operation into five stages as Fig. 6 shows. Pythia first

computes the index for each plane and each constituent feature of

the given state-vector (Stage 0). In Stage 1, Pythia uses the feature

indices and an action index to retrieve the partial Q-values from

each plane. In Stage 2, Pythia sums up the partial Q-values to get

the feature-action Q-value for each constituent feature. In Stage

3, Pythia computes the maximum of all feature-action Q-values to

get the state-action Q-value. In Stage 4, the maximum state-action

Q-value found so far is compared against the retrieved state-action

Q-value, and the maximum Q-value is updated. Stage 2 (i.e., the

partial Q-value summation) is the longest stage of the pipeline and

thus it dictates the pipeline’s throughput. We accurately measure

the area and power overhead of the pipelined implementation of

the search operation by modeling Pythia using Chisel [8] hardware

design language and synthesize the model using Synopsys design

compiler [23] and 14-nm library from GlobalFoundries [10] (§6.7).

4.2.3 Assigning Rewards and Updating Q-values. To track

usefulness of the prefetched requests, Pythia maintains a first-in-

first-out list of recently taken actions, along with their correspond-

ing prefetch addresses in EQ. Every prefetch action is inserted into

EQ. A reward gets assigned to every EQ entry before or when it gets

evicted from EQ. During eviction, the reward and the state-action

pair associated with the evicted EQ entry are used to update the

corresponding Q-value in QVStore (6 in Fig. 4).

We describe how Pythia appropriately assigns rewards to each

EQ entry. We divide the reward assignment into three classes based

on when the reward gets assigned to an entry: (1) immediate reward

assignment during EQ insertion, (2) reward assignment during EQ

residency, and (3) reward assignment during EQ eviction. If Pythia

selects the action not to prefetch or one that generates a prefetch re-

quest beyond the current physical page, Pythia immediately assigns

a reward to the EQ entry. For out-of-page prefetch action, Pythia

assigns R𝐶𝐿 . For the action not to prefetch, Pythia assigns R𝐻
𝑁𝑃

or

R𝐿
𝑁𝑃

, based on whether the current system memory bandwidth

usage is high or low. If the address of a demand request matches

with the prefetch address stored in an EQ entry during its residency,

Pythia assignsR𝐴𝑇 orR𝐴𝐿 based on the filled bit of the EQ entry. If

7

MICRO ’21, October 18–22, 2021, Virtual Event, Greece R. Bera and K. Kanellopoulos, et al.

the filled bit is set, it indicates that the demand request is generated

after the prefetch fill. Hence the prefetch is accurate and timely,

and Pythia assigns the reward R𝐴𝑇 . Otherwise, Pythia assigns the

reward R𝐴𝐿 . If a reward does not get assigned to an EQ entry until

it is going to be evicted, it signifies that the corresponding prefetch

address is not yet demanded by the processor. Thus, Pythia assigns

a rewardR𝐻
𝐼𝑁

orR𝐿
𝐼𝑁

to the entry during eviction based on whether

the current system memory bandwidth usage is high or low.

4.3 Automated Design-Space Exploration
We propose an automated, performance-driven approach to sys-

tematically explore Pythia’s vast design space and derive a basic

configuration
5
with appropriate program features, action set, re-

ward and hyperparameters. Table 2 shows the basic configuration.

Table 2: Basic Pythia configuration derived from our auto-
mated design-space exploration

Features PC+Delta, Sequence of last-4 deltas

Prefetch Action List {-6,-3,-1,0,1,3,4,5,10,11,12,16,22,23,30,32}

Reward Level Values
R𝐴𝑇 =20, R𝐴𝐿=12, R𝐶𝐿=−12, R𝐻

𝐼𝑁
=−14,

R𝐿
𝐼𝑁

=−8, R𝐻
𝑁𝑃

=−2, R𝐿
𝑁𝑃

=−4
Hyperparameters 𝛼 = 0.0065, 𝛾 = 0.556, 𝜖 = 0.002

4.3.1 Feature Selection. We derive a list of possible program

features for feature-space exploration in four steps. First, we derive

a list of 4 control-flow components, and 8 data-flow components,

which are mentioned in Table 3. Second, we combine each control-

flow component with each data-flow component with the concate-

nation operation, to obtain a total of 32 possible program features.

Third, we use the linear regression technique [58, 93, 109] to create

any-one, any-two, and any-three feature-combinations from the set

of 32 initial features, each providing a different state-vector. Fourth,

we run Pythia with every state-vectors across all single-core work-

loads (§5) and select the winning state-vector that provides the

highest performance gain over no-prefetching baseline. As Table 2

shows, the two constituent features of the winning state-vector are

PC+Delta and Sequence of last-4 deltas.

Table 3: List of program control-flow and data-flow compo-
nents used to derive the list of features for exploration

Control-flow Component Data-flow Component

(1) PC of load request

(2) PC-path (XOR-ed last-3 PCs)

(3) PC XOR-ed branch-PC

(4) None

(1) Load cacheline address

(2) Page number

(3) Page offset

(4) Load address delta

(5) Sequence of last-4 offsets

(6) Sequence of last-4 deltas

(7) Offset XOR-ed with delta

(8) None

Rationale behind the winning state-vector. The winning

state-vector is intuitive as its constituent features PC+Delta and

Sequence of last-4 deltas closely match with the program fea-

tures exploited by two prior state-of-the-art prefetchers, Bingo [27]

and SPP [78], respectively. However, concurrently running SPP and

Bingo as a hybrid prefetcher does not provide the same performance

5
Using a compute-grid with ten 28-core machines, the automated exploration across

150 workload traces (mentioned in detail in §5) takes 44 hours to complete.

benefit as Pythia, as we show in §6.3.1. This is because combining

SPP with Bingo not only improves their prefetch coverage, but also

combines their prefetch overpredictions, leading to performance

degradation, especially in resource-constrained systems. In con-

trast, Pythia’s RL-based learning strategy that inherently uses the

same two features successfully increases prefetch coverage, while

maintaining high prefetch accuracy. As a result, Pythia not only
outperforms SPP and Bingo individually, but also outperforms the
combination of the two prefetchers.

4.3.2 Action Selection. In a system with conventionally-sized

4KB pages and 64B cachelines, Pythia’s list of actions (i.e., the

list of possible prefetch offsets) contains all prefetch offsets in the

range of [−63, 63]. However, such a long action list poses two

drawbacks. First, a long action list requires more online exploration

to find the best prefetch offset given a state-vector, thereby reducing

Pythia’s performance benefits. Second, a longer action list increases

Pythia’s storage requirements. To avoid these problems, we prune

the action list. We drop each action individually from the full action

list [−63, 63] and measure the performance improvement relative

to the performance improvement with the full action list, across

all single-core workload traces. We prune any action that does not
have any significant impact on the performance. Table 2 shows the

final pruned action list.

4.3.3 Reward and Hyperparameter Tuning. We separately

tune seven reward level values (i.e., R𝐴𝑇 , R𝐴𝐿 , R𝐶𝐿 , R
𝐻
𝐼𝑁

, R𝐿
𝐼𝑁

,

R𝐻
𝑁𝑃

, and R𝐿
𝑁𝑃

) and three hyperparameters (i.e., learning rate 𝛼 ,

discount factor𝛾 , and exploration rate 𝜖) in three steps. First, we cre-

ate a test trace suite by randomly selecting 10 workload traces from

all of our 150workload traces (§5). Second, we create a list of tuning

configurations using the uniform grid search technique [31, 83].

To do so, we first define a value range for each parameter to be

tuned and divide the value range into uniform grids. For example,

each of the three hyperparameters (𝛼 , 𝛾 , and 𝜖) can take a value

in the range of [0, 1]. We divide each hyperparameter range into

ten exponentially-sized grids (i.e., 1𝑒0, 1𝑒−1, 1𝑒−2, etc.) to obtain

10× 10× 10 = 1000 possible tuning configurations. For each tuning

configuration, we run Pythia on the test trace suite and select the

top-25 highest-performing configurations for the third step. Third,

we run Pythia on all single-core workload traces using each of the

25 selected configurations. We select the winning configuration that

provides the highest average performance gain. Table 2 provides

reward level and hyperparameter values of the basic Pythia.

4.4 Storage Overhead
Table 4 shows the storage overhead of Pythia in its basic config-

uration. Pythia requires only 25.5 of metadata storage. QVStore

consumes 24KB to store all Q-values. The EQ consumes only 1.5KB.

4.5 Differences from Prior Work
The key idea of using RL in prefetching has been previously ex-

plored by the context prefetcher (CP) [104]. Pythia significantly

differs from it both in terms of (1) design principles (i.e., the reward,

state, and action definition) and (2) the implementation.

Reward. CP naively defines the agent’s reward as a continuous

function of prefetch timeliness. Pythia not only considers coverage,

8

Pythia: A Customizable Hardware Prefetching Framework
Using Online Reinforcement Learning MICRO ’21, October 18–22, 2021, Virtual Event, Greece

Table 4: Storage overhead of Pythia

Structure Description Size

QVStore

• # vaults = 2

• # planes in each vault = 3

• # entries in each plane = feature dimension (128) ×
action dimension (16)

• Entry size = Q-value width (16b)

24 KB

EQ
• # entries = 256

• Entry size = state (21b) + action index (5b) + reward

(5b) + filled-bit (1b) + address (16b)

1.5 KB

Total 25.5 KB

accuracy, and timeliness but also system-level feedback like mem-

ory bandwidth usage to define discrete reward levels. This reward

definition provides two key advantages to Pythia. First, unlike CP,

Pythia can adaptively trade off prefetch coverage for accuracy (and

vice versa) based on memory bandwidth usage. Second, one can

easily customize Pythia’s objective by changing the reward values

via configuration registers to extract even higher performance.

State. CP relies on compiler-generated hints in its state informa-

tion. In contrast, Pythia extracts program features purely from hard-

ware (e.g., PC, cacheline delta). Thus, Pythia requires no changes

to software and it is easier to adopt into existing microprocessors.

Action. Unlike Pythia, CP uses a full cacheline address as the

agent’s action. The use of full cacheline address as action dramati-

cally increases the action space, which results higher storage cost,

longer training time, and reduced performance benefits.

Implementation. Pythia’s implementation differs largely from

CP in two major ways. First, CP uses the contextual-bandit (CB) al-

gorithm [38], a simplified version of RL. The key difference between

CB and RL is that a CB-solver cannot take its actions’ long-term
consequences into account when selecting an action. In contrast,

RL-based Pythia weighs each probable prefetch action not only

based on the expected immediate reward but also its long-term

consequences (e.g., increased bandwidth usage or reduced prefetch

accuracy in future) [124]. As such, Pythia provides more robust

and far-sighted predictions than the myopic CB-based CP. Second,

Pythia organizes the Q-value storage into multiple vaults, each con-

sisting of multiple planes. This hierarchical QVStore structure (1)

enables pipelining the Q-value lookup to achieve high-throughput

and low-latency prediction, and (2) easily scales out to support

longer state-vectors by simply adding more vaults.

5 METHODOLOGY
We use the trace-driven ChampSim simulator [7] to evaluate Pythia

and compare it to five prior prefetching proposals. We simulate an

Intel Skylake [4]-like multi-core processor that supports up to 12

cores. Table 5 provides the key system parameters. For single-core

simulations (1𝐶), we warm up the core using 100 M instructions

from each workload and simulate the next 500 M instructions. For

multi-core multi-programmed simulations (𝑛𝐶), we use 50M and

150M instructions from each workload respectively to warmup and

simulate. If a core finishes early, the workload is replayed until every

core finishes simulating 150 M instructions. We also implement

Pythia using the Chisel [8] hardware design language (HDL) and

functionally verify the resultant register transfer logic (RTL) design

to accurately measure Pythia’s chip area and power overhead. The

source-code of Pythia is freely available at [19].

Table 5: Simulated system parameters

Core 1-12 cores, 4-wide OoO, 256-entry ROB, 72/56-entry LQ/SQ

Branch Pred. Perceptron-based [69], 20-cycle misprediction penalty

L1/L2
Caches

Private, 32KB/256KB, 64B line, 8 way, LRU, 16/32 MSHRs, 4-

cycle/14-cycle round-trip latency

LLC
2MB/core, 64B line, 16 way, SHiP [133], 64 MSHRs per LLC Bank,

34-cycle round-trip latency

Main Memory
1C: Single channel, 1 rank/channel; 4C: Dual channel, 2

ranks/channel; 8C: Quad channel, 2 ranks/channel;

8 banks/rank, 2400 MTPS, 64b data-bus/channel, 2KB row

buffer/bank, tRCD=15ns, tRP=15ns, tCAS=12.5ns

5.1 Workloads
We evaluate Pythia using a diverse set of memory-intensive work-

loads spanning SPEC CPU2006 [21], SPEC CPU2017 [22], PARSEC
2.1 [16], Ligra [117], and Cloudsuite [51] benchmark suites. For

SPEC CPU2006 and SPEC CPU20017 workloads, we reuse the in-

struction traces provided by the 2nd and the 3rd data prefetching

championships (DPC) [2, 3]. For PARSEC and Ligra workloads, we

collect the instruction traces using the Intel Pin dynamic binary

instrumentation tool [17]. We do not consider workload traces

that have lower than 3 last-level cache misses per kilo instruc-

tions (MPKI) in the baseline system with no prefetching. In all,

we present results for 150 workload traces spanning 50 workloads.

Table 6 shows a categorized view of all the workloads evaluated

in this paper. For multi-core multi-programmed simulations, we

create both homogeneous and heterogeneous trace mixes from our

single-core trace list. For an 𝑛-core homogeneous trace mix, we run

𝑛 copies of a trace from our single-core trace list, one in each core.

For a heterogeneous trace mix, we randomly select 𝑛 traces from

our single-core trace list and run one trace in every core. All the

single-core traces and multi-programmed trace mixes used in our

evaluation are freely available online [19].

Table 6: Workloads used for evaluation

Suite # Workloads # Traces Example Workloads

SPEC06 16 28 gcc, mcf, cactusADM, lbm, ...

SPEC17 12 18 gcc, mcf, pop2, fotonik3d, ...

PARSEC 5 11 canneal, facesim, raytrace, ...

Ligra 13 40 BFS, PageRank, Bellman-ford, ...

Cloudsuite 4 53 cassandra, cloud9, nutch, ...

5.2 Prefetchers
We compare Pythia to five state-of-the-art prior prefetchers:

SPP [78], SPP+PPF [32], SPP+DSPatch [30], Bingo [27], and

MLOP [111]. Wemodel each competing prefetcher using the source-

code provided by their respective authors and fine-tune them in

our environment to extract the highest performance gain across all

single-core traces. Table 7 shows the parameters of all evaluated

prefetchers. Each prefetcher is trained on L1-cache misses and fills

prefetched lines into L2 and LLC.

We also compare Pythia against multi-level prefetchers found

in commercial processors (e.g., stride prefetcher at L1-cache and

streamer at L2 [9]) and IPCP [103] in §6.2.4. For fair comparison, we

add a simple PC-based stride prefetcher [55, 56, 73] at the L1 level,

along with Pythia at the L2 level for such multi-level comparisons.

9

MICRO ’21, October 18–22, 2021, Virtual Event, Greece R. Bera and K. Kanellopoulos, et al.

Table 7: Configuration of evaluated prefetchers

SPP [78] 256-entry ST, 512-entry 4-way PT, 8-entry GHR 6.2 KB
Bingo [27] 2KB region, 64/128/4K-entry FT/AT/PHT 46 KB
MLOP [111] 128-entry AMT, 500-update, 16-degree 8 KB
DSPatch [30] Same configuration as in [30] 3.6 KB
PPF [32] Same configuration as in [32] 39.3 KB
Pythia 2 features, 2 vaults, 3 planes, 16 actions 25.5 KB

6 RESULTS
6.1 Coverage and Overprediction in Single-core
Fig. 7 shows the coverage and overprediction of each prefetcher

in the single-core system, as measured at the LLC-main memory

boundary. The key takeaway is that Pythia improves prefetch cov-

erage, while simultaneously reducing overprediction compared to

state-of-the-art prefetchers. On average, Pythia provides 6.9%, 8.8%,

and 14% higher coverage than MLOP, Bingo, and SPP respectively,

while generating 83.8%, 78.2%, and 3.6% fewer overpredictions.

0%
50%

100%
150%
200%
250%

SP
P

Bi
ng

o

M
LO

P

Py
th

ia

SP
P

Bi
ng

o

M
LO

P

Py
th

ia

SP
P

Bi
ng

o

M
LO

P

Py
th

ia

SP
P

Bi
ng

o

M
LO

P

Py
th

ia

SP
P

Bi
ng

o

M
LO

P

Py
th

ia

SP
P

Bi
ng

o

M
LO

P

Py
th

ia

SPEC06 SPEC17 PARSEC Ligra Cloudsuite AVG

Fr
ac

tio
n

of
 LL

C
m

is
se

s

Covered Uncovered Overpredicted

309% 315%

Figure 7: Coverage and overprediction with respect to the
baseline LLC misses in the single-core system.

6.2 Performance Overview
6.2.1 Varying Number of Cores. Figure 8(a) shows the perfor-
mance improvement of all prefetchers averaged across all traces in

single-core to 12-core systems. To realistically model modern com-

mercial multi-core processors, we simulate 1-2 core, 4-6 core, and

8-12 core systems with one, two, and four DDR4-2400 DRAM [15]

channels, respectively. We make two key observations from Fig-

ure 8(a). First, Pythia consistently outperforms MLOP, Bingo, and

SPP in all system configurations. Second, Pythia’s performance im-

provement over prior prefetchers increases as core count increases.

In the single-core system, Pythia outperforms MLOP, Bingo, SPP,

and an aggressive SPP with perceptron filtering (PPF [32]) by 3.4%,

3.8%, 4.3%, and 1.02% respectively. In four (and twelve) core systems,

Pythia outperforms MLOP, Bingo, SPP, and SPP+PPF by 5.8% (7.7%),

8.2% (9.6%), 6.5% (6.9%), and 3.1% (5.2%), respectively.

6.2.2 Varying DRAM Bandwidth. To evaluate Pythia in band-

width-constrained, highly-multi-threaded commercial server-class

processors, where each core can have only a fraction of a channel’s

bandwidth, we simulate the single-core single-channel configu-

ration by scaling the DRAM bandwidth (Figure 8(b)). Each band-

width configuration roughly corresponds to the available per-core

DRAM bandwidth in various commercial processors (e.g., Intel

Xeon Gold [13], AMD EPYC Rome [6], and AMD Threadripper [5]).

The key takeaway is that Pythia consistently outperforms all com-

peting prefetchers in every DRAM bandwidth configuration from

1

16
× to 4× bandwidth of the baseline system. Due to their large

overprediction rates, the performance gains of MLOP and Bingo

reduce sharply as DRAM bandwidth decreases. By actively trading

off prefetch coverage for higher accuracy based on memory band-

width usage, Pythia outperforms MLOP, Bingo, SPP, and SPP+PPF

by 16.9%, 20.2%, 3.7%, and 9.5% respectively in the most bandwidth-

constrained configuration with 150 million transfers per second

(MTPS). In the 9600-MTPS configuration, every prefetcher enjoys

ample DRAM bandwidth. Pythia still outperforms MLOP, Bingo,

SPP, and SPP+PPF by 3%, 2.7%, 4.4%, and 0.8%, respectively.

6.2.3 Varying LLC Size. Fig. 8(c) shows performance of all

prefetchers averaged across all traces in the single-core system

while varying the LLC size from
1

8
× to 2× of the baseline 2MB

LLC. The key takeaway is that Pythia consistently outperforms all

prefetchers in every LLC size configuration. For 256KB (and 4MB)

LLC, Pythia outperforms MLOP, Bingo, SPP, and SPP+PPF by 3.6%

(3.1%), 5.1% (3.4%), 2.7% (4.8%), and 1.2% (0.8%), respectively.

6.2.4 Comparison to Multi-level Prefetching Schemes. Fig-
ure 8(d) shows the performance comparison of Pythia in single-core

system with varying DRAM bandwidth against two state-of-the-art

multi-level prefetching schemes: (1) stride prefetcher [55, 56, 73]

at L1 and streamer [35] at L2 cache found in commercial Intel pro-

cessors [9], and (2) IPCP, the winner of the third data prefetching

championship [3]. For fair comparison, we add a stride prefetcher

in the L1 cache along with Pythia in the L2 cache for this experi-

ment and measure performance over the no prefetching baseline.

The key takeaway is that Stride+Pythia consistently outperforms

stride+streamer and IPCP in every DRAM bandwidth configuration.

Stride+Pythia outperforms Stride+Streamer and IPCP by 6.5% and

14.2% in the 150-MTPS configuration and by 2.3% and 1.0% in the

9600-MTPS configuration, respectively.

6.3 Performance Analysis
6.3.1 Single-core. Fig. 9(a) shows the performance improvement

of each individual prefetcher in each workload category in the

single-core system. We make two major observations. First, Pythia

improves performance by 22.4% on average over a no-prefetching

baseline. Pythia outperforms MLOP, Bingo, and SPP by 3.4%, 3.8%,

and 4.3% on average, respectively. Second, only Bingo outperforms

Pythia only in the PARSEC suite, by 2.3%. However, Bingo’s perfor-

mance comes at the cost of a high overprediction rate, which hurts

performance in multi-core systems (see §6.3.2).

To demonstrate the novelty of Pythia’s RL-based prefetching ap-

proach using multiple program features, Fig. 9(b) compares Pythia’s

performance improvement with the performance improvement of

various combinations of prior prefetchers. Pythia not only out-

performs all prefetchers (stride, SPP, Bingo, DSPatch, and MLOP)

individually, but also outperforms their combination by 1.4% on

average, with less than half of the combined storage size of the

five prefetchers. We conclude that Pythia’s RL-based prefetching

approach using multiple program features under one single frame-

work provides higher performance benefit than combining multiple

prefetchers, each exploiting only one program feature.

6.3.2 Four-core. Fig. 10(a) shows the performance improvement

of each individual prefetcher in each workload category in the

four-core system. We make two major observations. First, Pythia

provides significant performance improvement over all prefetchers

10

Pythia: A Customizable Hardware Prefetching Framework
Using Online Reinforcement Learning MICRO ’21, October 18–22, 2021, Virtual Event, Greece

!"#

!"#$

!"%

!"%$

&

&"!$

&"&

&"&$

&"'

&"'$

&!
!

'!
!

(!
!

#!
!

&)
!!

*'
!!

)(
!!

&'
#!
!

+
,
-
.
,
/
0
12
3
,
,
4
5
3
1

-
6,
71
0
-
13
7,
8,
9:
;
<0
=

>?@A1ABCD

!"" #$%&' ()*" !""+,!"-./0 !""+""1 "2.0$-

!"!

!"!#

!"$

!"$#

!"%

!"%#

& $ ' () !& !$

*
+
,
-
+
.
/
01
2
+
+
3
4
2
0

,
5
+
60
/
,
02
6+
7+
89
:
;/
<

=4->+60,709,6+1

!"#

!"#$

!"%

!"%$

&

&"!$

&"&

&"&$

&"'

&"'$

&!
!

'!
!

(!
!

#!
!

&)
!!

*'
!!

)(
!!

&'
#!
!

+
,
-
.
,
/
0
12
3
,
,
4
5
3
1

-
6
,
71
0
-
13
7,
8,
9:
;
<0
=

>?@A1ABCD1E<01F-=12:/F,G

!"!#

!"!$

!"%

!"%%

!"%&

'"%('"(! % &

)
*
+
,
*
-
.
/0
1
*
*
2
3
1
/

+
4
*
5/
.
+
/1
5*
6*
78
9
:.
;

<<=/>:?*/@:./ABC/D+;/08-D*E

!"#$

!"%

!"%$

&

&"!$

&"&

&"&$

&"'

&"'$

&!
!

'!
!

(!
!

#!
!

&)
!!

*'
!!

)(
!!

&'
#!
!

+
,
-
.
,
/
0
12
3
,
,
4
5
3

-
6
,
71
0
-
13
7,
8,
9:
;
<0
=

>?@A1ABCD1E<01F-=12:/F,G

!"#$%&'()*!"#&+,&#'(-

./0/

!"#$%&'()*/1"2$+'(-1 channel 2 channels 4 channels Similar to

AMD Threadripper 3990X

Similar to

AMD EPYC Rome 7702P

Similar to

Intel Xeon 6258R

(a) (b) (c) (d)

Figure 8: Average performance improvement of prefetchers in systems with varying (a) number of cores, (b) DRAM million
transfers per second (MTPS), (c) LLC size, and (d) prefetching level. Each DRAM bandwidth configuration roughly matches
MTPS/core of various commercial processors [5, 6, 13]. The baseline bandwidth/LLC configuration is marked in red.

1
1.1
1.2
1.3
1.4
1.5

SP
EC

06

SP
EC

17

PARSE
C

Lig
ra

Cloudsu
ite

GEO
MEA

NG
eo

m
ea

n
sp

ee
du

p
ov

er
 b

as
el

in
e SPP Bingo MLOP Pythia

1.06

1.12

1.18

1.24
St

St
+S

St
+S

+B
St

+S
+B

+D
St

+S
+B

+D
+M

Py
th

iaG
eo

m
ea

n
sp

ee
du

p
ov

er
 b

as
el

in
e (a) (b)

Figure 9: Performance improvement in single-core work-
loads. St=Stride, S=SPP, B=Bingo, D=DSPatch, andM=MLOP.

in every workload category in the four-core system. On average,

Pythia outperforms MLOP, Bingo, and SPP by 5.8%, 8.2%, and 6.5%

respectively. Second, unlike in the single-core system, Pythia out-

performs Bingo in PARSEC by 3.0% in the four-core system. This is

due to Pythia’s ability to dynamically increase prefetch accuracy

during high DRAM bandwidth usage.

Fig. 10(b) shows that Pythia outperforms the combination of

stride, SPP, Bingo, DSPatch, and MLOP prefetchers by 4.9% on av-

erage. Unlike in the single-core system, combining more prefetch-

ers on top of stride+SPP in four-core system lowers the overall

performance gain. This is due to the additive increase in the over-

predictions made by each individual prefetcher, which leads to

performance degradation in the bandwidth-constrained four-core

system. Pythia’s RL-based framework holistically learns to prefetch

using multiple program features and generates fewer overpredic-

tions, outperforming all combinations of all individual prefetchers.

1
1.1
1.2
1.3
1.4
1.5

SP
EC

06

SP
EC

17

PARSE
C

Lig
ra

Cloudsu
ite Mix

GEO
MEA

NG
eo

m
ea

n
sp

ee
du

p
ov

er
 b

as
el

in
e SPP Bingo MLOP Pythia

1
1.06
1.12
1.18
1.24

1.3

St
St

+S
St

+S
+B

St
+S

+B
+D

St
+S

+B
+D

+M
py

th
iaG
eo

m
ea

n
sp

ee
du

p
ov

er
 b

as
el

in
e(a) (b)

Figure 10: Performance in the four-core system.
6.3.3 Benefit of Memory Bandwidth Usage Awareness. To
demonstrate the benefit of Pythia’s awareness of system memory

bandwidth usage, we compare the performance of the full-blown

Pythia with a new version of Pythia that is oblivious to systemmem-

ory bandwidth usage. We create this bandwidth-oblivious version

of Pythia by setting the high and low bandwidth usage variants of

the rewardsR𝐼𝑁 andR𝑁𝑃 to the same value (i.e., essentially remov-

ing the bandwidth usage distinction from the reward values). More

specifically, we setR𝐻
𝐼𝑁

= R𝐿
𝐼𝑁

= −8 andR𝐻
𝑁𝑃

= R𝐿
𝑁𝑃

= −4. Fig. 11

shows the performance benefit of the memory bandwidth-oblivious

Pythia normalized to the basic Pythia as we vary the DRAM band-

width. The key takeaway is that the bandwidth-oblivious Pythia

loses performance by up to 4.6% on average across all single-core

traces when the available memory bandwidth is low (150-MTPS

to 600-MTPS configuration). However, when the available mem-

ory bandwidth is high (1200-MTPS to 9600-MTPS), the memory

bandwidth-oblivious Pythia provides similar performance improve-

ment to the basic Pythia. We conclude that, memory bandwidth

awareness gives Pythia the ability to provide robust performance

benefits across a wide range of system configurations.

-4.6%
-2.5%

-1.2%
-0.4% -0.3% -0.2% -0.2%

-5%
-4%
-3%
-2%
-1%
0%

150 300 600 1200 2400 4800 9600

Pe
rfo

rm
an

ce

no
rm

al
ize

d
to

ba

sic
 P

yt
hi

a

DRAM MTPS (in log scale)

Memory BW-oblivious Pythia

Figure 11: Performance of memory bandwidth-oblivious
Pythia versus the basic Pythia.

6.4 Performance on Unseen Traces
To demonstrate Pythia’s ability to provide performance gains across

workload traces that are not used at all to tune Pythia, we evaluate

Pythia using an additional 500 traces from the second value predic-

tion championship [20] on both single-core and four-core systems.

These traces are classified into floating-point, integer, crypto, and

server categories and each of them has at least 3 LLC MPKI in the

baseline without prefetching. No prefetcher, including Pythia, has

been tuned on these traces. In the single-core system, Pythia out-

performs MLOP, Bingo, and SPP on average by 8.3%, 3.5%, and 4.9%,

respectively, across these traces. In the four-core system, Pythia out-

performs MLOP, Bingo, and SPP on average by 9.7%, 5.4%, and 6.7%,

respectively. We conclude that, Pythia, tuned on a set of workload

traces, provides equally high (or even better) performance benefits

on unseen traces for which it has not been tuned.

1
1.1
1.2
1.3
1.4
1.5
1.6

Crypto INT FP Server GEOMEAN

Ge
om

ea
n

sp
ee

du
p

ov
er

 b
as

el
in

e

SPP Bingo MLOP Pythia

1
1.1
1.2
1.3
1.4
1.5

Crypto INT FP Server GEOMEAN

Ge
om

ea
n

sp
ee

du
p

ov
er

 b
as

el
in

e

SPP Bingo MLOP Pythia

(a) single-core (b) four-core

Figure 12: Performance on unseen traces.

11

MICRO ’21, October 18–22, 2021, Virtual Event, Greece R. Bera and K. Kanellopoulos, et al.

6.5 Understanding Pythia Using a Case Study
We delve deeper into an example workload trace,

459.GemsFDTD-1320B, from SPEC CPU2006 suite to provide

more insight into Pythia’s prefetching strategy and benefits. In

this trace, the top two most selected prefetch offsets by Pythia are

+23 and +11, which cumulatively account for nearly 72% of all

offset selections. For each of these offsets, we examine the program

feature value that selects that offset the most. For simplicity, we

only focus on the PC+Delta feature here. The PC+Delta feature

values 0x436a81+0 and 0x4377c5+0 select the offsets +23 and +11
the most, respectively. Fig. 13(a) and (b) show the Q-value curve of

different actions for these feature. The x-axis shows the number of

Q-value updates to the corresponding feature. Each color-coded

line represents the Q-value of the respective action.

As Fig. 13(a) shows, the Q-value of action +23 for feature value
0x436a81+0 consistently stays higher than all other actions (only

three other representative actions are shown in 13(a)). This means

Pythia actively favors to prefetch using +23 offset whenever the
PC 0x436a81 generates the first load to a physical page (hence

the delta 0). By dumping the program trace, we indeed find that

whenever PC 0x436a81 generates the first load to a physical page,

there is only one more address demanded in that page that is 23

cachelines ahead from the first loaded cacheline. In this case, the

positive reward for generating a correct prefetch with offset +23
drives the Q-value of +23 much higher than those of other offsets

and Pythia successfully uses the offset +23 for prefetch request

generation given the feature value 0x436a81+0. We see similar a

trend for the feature value 0x4377c5+0 with offset +11 (Fig. 13(b)).

!"

!#

!$

!%

!&'

!&"

!&#

!&$

'! &("()(#(*($(+(%(,(&'(

-
.
/
0
1
2
3

4563

78&9 78)9 78""9 78")9

!"

!#

$%

$#

$"

$&

$'

$(%

$(#

%$ () #) *) ") +) &) ,) ') -) (%)

.
!
/
0
1
2
3

4563

78(9 78*9 78(%9 78((9

of Q-value updates # of Q-value updates

Q
-v

a
lu

e

Q
-v

a
lu

e

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k
2

4

6

8

10

12

14

16
+1 +3 +22 +23

1k 2k 3k 4k 5k 6k 7k 8k 9k 10k

2

4

6

8

10

12

0

-2

-4

+1 +3 +10 +11

Figure 13: Q-value curves of PC+Delta feature values (a)
0x436a81+0 and (b) 0x4377c5+0 in 459.GemsFDTD-1320B.

6.6 Performance Benefits via Customization
In this section, we show two examples of Pythia’s online customiza-

tion ability to extract even higher performance gain than the base-

line Pythia configuration in target workload suites. First, we cus-

tomize Pythia’s reward level values for the Ligra graph processing

workloads. Second, we customize the program features used by

Pythia for the SPEC CPU2006 workloads.

6.6.1 Customizing Reward Levels. For workloads from the

Ligra graph processing suite, we observe a general trend that a

prefetcher with higher prefetch accuracy typically provides higher

performance benefits. This is because any incorrect prefetch re-

quest wastes precious main memory bandwidth, which is already

heavily used by the demand requests of the workload. Thus, to

improve Pythia’s performance benefit in the Ligra suite, we create

a new strict configuration of Pythia that favors not to prefetch over

generating inaccurate prefetches. We create this strict configuration

by simply reducing the reward level values for inaccurate prefetch

(i.e., R𝐻
𝐼𝑁

= −22 and R𝐿
𝐼𝑁

= −20) and increasing the reward level

values for no prefetch (i.e., R𝐻
𝑁𝑃

= R𝐿
𝑁𝑃

= 0).

Fig. 14 shows the percentage of the total runtime the workload

spends in different bandwidth usage buckets in primary y-axis

and the overall performance improvement in the secondary y-axis

for each competing prefetcher in one example workload from the

Ligra suite, Ligra-CC. We make two key observations. First, with

MLOP and Bingo prefetchers enabled, Ligra-CC spends a much

higher percentage of runtime consuming more than half of the peak

DRAM bandwidth than in the no prefetching baseline. As a result,

MLOP and Bingo underperforms the no prefetching baseline by

11.8% and 1.8%, respectively. In contrast, basic Pythia leads to only

a modest memory bandwidth usage overhead, and outperforms the

no prefetching baseline by 6.9%. Second, in the strict configuration,

Pythia has even less memory bandwidth usage overhead, and pro-

vides 3.5% higher performance than the basic Pythia configuration

(10.4% over the no prefetching baseline), without any hardware

changes. Fig. 15 shows the performance benefits of the basic and

strict Pythia configurations for all workloads from Ligra. The key
takeaway is that by simply changing the reward level values via

configuration registers on the silicon, strict Pythia provides up to

7.8% (2.0% on average) higher performance than basic Pythia. We

conclude that the objectives of Pythia can be easily customized

via simple configuration registers for target workload suites to ex-

tract even higher performance benefits, without any changes to the

underlying hardware.

-15%
-9%
-3%
3%
9%
15%

0%
20%
40%
60%
80%

100%

Baseline SPP Bingo MLOP Basic Pythia Strict Pythia

IP
C

im
pr

ov
em

en
t

ov
er

 b
as

el
in

e

%
 o

f t
ot

al
 ru

nt
im

e

<25% of peak 25%-50% of peak 50%-75% of peak >=75% of peak Performance

Figure 14: Performance andmainmemory bandwidth usage
of prefetchers in Ligra-CC.

1.0
1.2
1.4
1.6
1.8
2.0

Pa
ge
Ra
nk CF

Pa
ge
Ra
nk
De
lta CC

Be
llm
an
Fo
rd

Tri
an
gle Ra

dii MI
S

BF
S-B
itv
ect
or

BF
SC
C

BF
S BC

GE
OM

EA
N

IP
C

no
rm

al
iz

ed

to
 b

as
el

in
e

Basic Pythia Strict Pythia

Figure 15: Performance of the basic and strict Pythia config-
urations on the Ligra workload suite.

6.6.2 Customizing Feature Selection. To maximize the perfor-

mance benefits of Pythia on the SPEC CPU2006 workload suite, we

run all one-combination and two-combination of program features

from the initial set of 32 supported features. For each workload,

we fine-tune Pythia using the feature combination that provides

the highest performance benefit. We call this the feature-optimized
configuration of Pythia for SPEC CPU2006 suite. Fig. 16 shows the
performance benefits of the basic and optimized configurations of

Pythia for all SPEC CPU2006 workloads. The key takeaway is that

by simply fine-tuning the program feature selection, Pythia delivers

up to 5.1% (1.5% on average) performance improvement on top of

the basic Pythia configuration.

12

Pythia: A Customizable Hardware Prefetching Framework
Using Online Reinforcement Learning MICRO ’21, October 18–22, 2021, Virtual Event, Greece

1.0
1.2
1.4
1.6
1.8
2.0
2.2

44
5.g
ob
mk

43
6.c
ac
tus
AD
M

47
1.o
mn
etp
p

47
3.a
sta
r

48
3.x
ala
nc
bm
k

42
9.m

cf

47
0.l
bm

45
0.s
op
lex

45
9.G
em
sFD

TD

40
3.g
cc

43
3.m

ilc

48
2.s
ph
inx
3

48
1.w

rf

46
2.l
ibq
ua
ntu
m

43
7.l
esl
ie3
d

41
0.b
wa
ve
s

GE
OM

EA
N

IP
C

no
rm

al
iz

ed
to

 b
as

el
in

e Basic Pythia Feature-optimized Pythia

Figure 16: Performance of the basic and feature-optimized
Pythia on the SPEC CPU2006 suite.

6.7 Overhead Analysis
To accurately estimate Pythia’s chip area and power overheads, we

implement the full-blown Pythia, including all fixed-point adders,

multipliers, and the pipelined QVStore search operation (§4.2.2), us-

ing the Chisel [8] hardware design language (HDL). We extensively

verify the functional correctness of the resultant register transfer

logic (RTL) design and synthesize the RTL design using Synopsys

Design Compiler [23] and 14-nm library from GlobalFoundries [10]

to estimate Pythia’s area and power overhead. Pythia consumes

0.33mm2 of area and 55.11mWof power in each core. The QVStore

component consumes 90.4% and 95.6% of the total area and power

of Pythia, respectively. With respect to the overall die area and

power consumption of a 4-core desktop-class Skylake processor

with the lowest TDP budget [11], and a 28-core server-class Skylake

processor with the highest TDP budget, Pythia (implemented in all

cores) incurs area & power overheads of only 1.03% & 0.4%, and

1.33% & 0.75%, respectively. We conclude that Pythia’s performance

benefits come at a very modest cost in area and power overheads

across a variety of commercial processors.

Table 8: Area and power overhead of Pythia
Pythia’s area: 0.33 mm2/core; Pythia’s power: 55.11 mW/core

Overhead compared to real systems Area Power

4-core Skylake D-2123IT, 60W TDP [11] 1.03% 0.37%

18-core Skylake 6150, 165W TDP [12] 1.24% 0.60%

28-core Skylake 8180M, 205W TDP [14] 1.33% 0.75%

7 OTHER RELATEDWORKS
To our knowledge, Pythia is the first RL-based customizable prefetch-

ing framework that can learn to prefetch using multiple different

program features and system-level feedback information inher-

ent to its design, to provide performance benefits across a wide

range of workloads and changing system configurations. We al-

ready compare Pythia against five state-of-the-art prefetching pro-

posals [27, 30, 32, 78, 111] in §6. In this section, we qualitatively

compare Pythia against other prior prefetching techniques.

Traditional Prefetchers. We divide the traditional prefetch-

ing algorithms into three broad categories: precomputation-based,

temporal, and spatial. Precomputation-based prefetchers (e.g., runa-

head [46, 59, 60, 63, 96–102] and helper-thread execution [33, 40, 41,

45, 74, 75, 88, 107, 120, 129, 142, 145]) pre-execute program code to

generate future memory requests. These prefetchers can generate

highly-accurate prefetches even when no recognizable pattern ex-

ists in program memory requests. However, precomputation-based

prefetchers usually have high design complexity. Pythia is not a

precomputation-based proposal. It finds patterns in past memory

request addressed to generate prefetch requests.

Temporal prefetchers [26, 29, 36, 37, 42, 52, 62, 66, 72, 77, 121, 130–

132, 134, 135] memorize long sequences of cacheline addresses

demanded by the processor. When a previously-seen address is

encountered again, a temporal prefetcher issues prefetch requests

to addresses that previously followed the currently-seen cacheline

address. However, temporal prefetchers usually have high storage

requirements (often multi-megabytes of metadata storage, which

necessitates storing metadata in memory [66, 121, 130]). Pythia

requires only 25.5KB of storage, which can easily fit inside a core.

Spatial prefetchers [25, 27, 30, 32, 35, 56, 65, 73, 78–80, 90, 103,

106, 111, 112, 122, 123] predict a cacheline delta or spatial bit-

pattern by learning program access patterns over different spa-

tial memory regions. Spatial prefetchers provide high-accuracy

prefetches, usually with lower storage overhead than temporal

prefetchers. We already compare Pythia with other spatial prefetch-

ers [27, 30, 32, 78, 111] and show higher performance benefits.

Machine Learning (ML) in Computer Architecture. Prior
works apply ML techniques in computer architecture in two major

ways: (1) to design adaptive, data-driven algorithms, and (2) to

explore the large microarchitectural design-space. Researchers have

proposed ML-based algorithms for various microarchitectural tasks

like memory scheduling [64, 94], cache management [28, 87, 110,

113, 127], branch prediction [57, 67–70, 125, 126, 139, 140, 146],

address translation [89] and hardware prefetching [61, 104, 105, 114–

116, 141]. Pythia provides three key advantages over prior ML-

based prefetchers. First, Pythia can learn to prefetch from multiple

program features and system-level feedback information inherent

to its design. Second, Pythia can be customized online. Third, Pythia

incurs low hardware overhead. Researchers have also explored ML

techniques to explore the large microarchitectural design space,

e.g., NoC design [39, 43, 44, 50, 54, 84, 128, 136, 137, 143], chip

placement optimization [91], hardware resource assignment for

accelerators [76]. These works are orthogonal to Pythia.

8 CONCLUSION
We introduce Pythia, the first customizable prefetching framework

that formulates prefetching as a reinforcement learning (RL) prob-

lem. Pythia autonomously learns to prefetch using multiple pro-

gram features and system-level feedback information to predict

memory accesses. Our extensive evaluations show that Pythia not

only outperforms five state-of-the-art prefetchers but also provides

robust performance benefits across a wide-range of workloads and

system configurations. Pythia’s benefits come with very modest

area and power overheads. We believe and hope that Pythia would

encourage the next generation of data-driven autonomous prefetch-

ers that automatically learn far-sighted prefetching policies by

interacting with the system. Such prefetchers can not only improve

performance and efficiency under a wide variety of workloads and

system configurations, but also reduce the system architect’s bur-

den in designing sophisticated prefetching mechanisms.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their feedback. We thank all

SAFARI Research Group members, especially Skanda Koppula, for

insightful feedback. We acknowledge the generous gifts provided

by our industrial partners: Google, Huawei, Intel, Microsoft, and

VMware. This work is also in part supported by SRC research grant

as a part of AI Hardware program. The first author thanks his

departed father, whom he lost in COVID-19 pandemic.

13

MICRO ’21, October 18–22, 2021, Virtual Event, Greece R. Bera and K. Kanellopoulos, et al.

REFERENCES
[1] 2nd Cache Replacement Championship. https://crc2.ece.tamu.edu.

[2] 2nd Data Prefetching Championship. http://comparch-conf.gatech.edu/dpc2/.

[3] 3rd Data Prefetching Championship. https://dpc3.compas.cs.stonybrook.edu.

[4] 6th Generation Intel® Processor Family. https://www.intel.com/content/www/

us/en/processors/core/desktop-6th-gen-core-family-spec-update.html.

[5] AMD Ryzen Threadripper 3990X. https://en.wikichip.org/wiki/amd/ryzen_

threadripper/3990x.

[6] AMD Zen2 EPYC 7702P. https://en.wikichip.org/wiki/amd/epyc/7702p.

[7] ChampSim. https://github.com/ChampSim/ChampSim.

[8] Chisel/FIRRTL Hardware Compiler Framework. https://www.chisel-lang.org.

[9] Disclosure of Hardware Prefetcher Control on Some Intel® Proces-

sors. https://software.intel.com/content/www/us/en/develop/articles/

disclosure-of-hw-prefetcher-control-on-some-intel-processors.html.

[10] GlobalFoundries 14nm FinFET Technology. https://www.globalfoundries.com/

sites/default/files/product-briefs/pb-14lpp.pdf.

[11] Intel Xeon D-2123IT. https://en.wikichip.org/wiki/intel/xeon_d/d-2123it.

[12] Intel Xeon Gold 6150. https://en.wikichip.org/wiki/intel/xeon_gold/6150.

[13] Intel Xeon Gold 6258R. https://en.wikichip.org/wiki/intel/xeon_gold/6258r.

[14] Intel Xeon Platinum 8180M. https://en.wikichip.org/wiki/intel/xeon_platinum/

8180m.

[15] JEDEC-DDR4. https://www.jedec.org/sites/default/files/docs/JESD79-4.pdf.

[16] PARSEC. http://parsec.cs.princeton.edu/.

[17] Pin - A Dynamic Binary Instrumentation Tool. https://software.intel.com/en-

us/articles/pin-a-dynamic-binary-instrumentation-tool.

[18] Pythia. https://en.wikipedia.org/wiki/Pythia.

[19] Pythia GitHub Repository. https://github.com/CMU-SAFARI/Pythia.

[20] Second Championship Value Prediction (CVP-2). https://www.microarch.org/

cvp1/cvp2/rules.html.

[21] SPEC CPU 2006. https://www.spec.org/cpu2006/.

[22] SPEC CPU 2017. https://www.spec.org/cpu2017/.

[23] Synopsys DC Ultra. https://www.synopsys.com/implementation-and-signoff/

rtl-synthesis-test/dc-ultra.html.

[24] J. S. Albus. A New Approach to Manipulator Control: The Cerebellar Model

Articulation Controller (CMAC). Journal of Dynamic Systems, Measurement,
and Control. 1975.

[25] Jean-Loup Baer and Tien-Fu Chen. An Effective On-chip Preloading Scheme to

Reduce Data Access Penalty. In SC. 1991.
[26] Mohammad Bakhshalipour, Pejman Lotfi-Kamran, and Hamid Sarbazi-Azad.

Domino Temporal Data Prefetcher. In HPCA. 2018.
[27] Mohammad Bakhshalipour, Mehran Shakerinava, Pejman Lotfi-Kamran, and

Hamid Sarbazi-Azad. Bingo Spatial Data Prefetcher. In HPCA. 2019.
[28] Arjun Balasubramanian, Adarsh Kumar, Yuhan Liu, Han Cao, Shivaram

Venkataraman, and Aditya Akella. Accelerating Deep Learning Inference via

Learned Caches. 2021.

[29] Michael Bekerman, Stephan Jourdan, Ronny Ronen, Gilad Kirshenboim, Lihu

Rappoport, Adi Yoaz, et al. Correlated load-address predictors. ISCA. 1999.
[30] Rahul Bera, Anant V Nori, Onur Mutlu, and Sreenivas Subramoney. DSPatch:

Dual Spatial Pattern Prefetcher. In MICRO. 2019.
[31] James Bergstra and Yoshua Bengio. Random Search for Hyper-parameter Opti-

mization. The Journal of Machine Learning Research 13, 1. 2012.

[32] Eshan Bhatia, Gino Chacon, Seth Pugsley, Elvira Teran, Paul V. Gratz, and

Daniel A. Jiménez. Perceptron-Based Prefetch Filtering. In ISCA. 2019.
[33] Robert S. Chappell, Jared Stark, Sangwook P. Kim, Steven K. Reinhardt, and

Yale N. Patt. Simultaneous Subordinate Microthreading (SSMT). In ISCA. 1999.
[34] M. J. Charney and T. R. Puzak. Prefetching and Memory System Behavior of

the SPEC95 Benchmark Suite. IBM Journal of Research and Development. 1997.
[35] Tien-Fu Chen and Jean-Loup Baer. Effective hardware-based data prefetching

for high-performance processors. In IEEE TC. 1995.
[36] Trishul M Chilimbi and Martin Hirzel. Dynamic Hot Data Stream Prefetching

for General-Purpose Programs. In PLDI. 2002.
[37] Yuan Chou. Low-cost Epoch-based Correlation Prefetching for Commercial

Applications. In MICRO. 2007.
[38] Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandits with

linear payoff functions. In Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics. 208–214. 2011.

[39] Mark Clark, Avinash Kodi, Razvan Bunescu, and Ahmed Louri. LEAD: Learning-

enabled Energy-aware Dynamic Voltage/Frequency Scaling in NoCs. In DAC.
2018.

[40] Jamison D. Collins, Dean M. Tullsen, Hong Wang, and John P. Shen. Dynamic

Speculative Precomputation. In MICRO. 2001.
[41] Jamison D Collins, Hong Wang, Dean M Tullsen, Christopher Hughes, Yong-

Fong Lee, Dan Lavery, et al. Speculative precomputation: Long-range prefetch-

ing of delinquent loads. In ISCA. 2001.
[42] Robert Cooksey, Stephan Jourdan, and Dirk Grunwald. A stateless, content-

directed data prefetching mechanism. ASPLOS. 2002.

[43] Dominic DiTomaso, Travis Boraten, Avinash Kodi, and Ahmed Louri. Dynamic

Error Mitigation in NoCs Using Intelligent Prediction Techniques. In MICRO.
2016.

[44] Dominic DiTomaso, Ashif Sikder, Avinash Kodi, and Ahmed Louri. Machine

Learning Enabled Power-aware Network-on-chip Design. In DATE. 2017.
[45] Michel Dubois and Y Song. Assisted Execution. University of Southern California

CENG Technical Report. 1998.
[46] James Dundas and Trevor Mudge. Improving Data Cache Performance by

Pre-executing Instructions Under a Cache Miss. In ICS. 1997.
[47] Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt. Prefetch-aware

Shared Resource Management for Multi-core Systems. In ISCA. 2011.
[48] Eiman Ebrahimi, Onur Mutlu, Chang Joo Lee, and Yale N Patt. Coordinated

Control of Multiple Prefetchers in Multi-core Systems. In MICRO. 2009.
[49] Eiman Ebrahimi, Onur Mutlu, and Yale N Patt. Techniques for Bandwidth-

efficient Prefetching of Linked Data Structures in Hybrid Prefetching Systems.

In HPCA. 2009.
[50] Masoumeh Ebrahimi, Masoud Daneshtalab, Fahimeh Farahnakian, Juha Plosila,

Pasi Liljeberg, Maurizio Palesi, et al. HARAQ: Congestion-aware Learning

Model for Highly Adaptive Routing Algorithm in On-Chip Networks. In NOCS.
2012.

[51] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad

Alisafaee, Djordje Jevdjic, et al. Clearing the Clouds: A Study of Emerging

Scale-out Workloads on Modern Hardware. ASPLOS. 2012.
[52] Michael Ferdman and Babak Falsafi. Last-touch Correlated Data Streaming. In

ISPASS. 2007.
[53] Michael Ferdman, Stephen Somogyi, and Babak Falsafi. Spatial Memory Stream-

ing with Rotated Patterns. In In 1st JILP Data Prefetching Championship. 2009.
[54] Quintin Fettes, Mark Clark, Razvan Bunescu, Avinash Karanth, and Ahmed

Louri. Dynamic Voltage and Frequency Scaling in NoCs with Supervised and

Reinforcement Learning techniques. IEEE TC. 2018.
[55] John W. C. Fu and Janak H. Patel. Data Prefetching in Multiprocessor Vector

Cache Memories. In ISCA. 1991.
[56] John W. C. Fu, Janak H. Patel, and Bob L. Janssens. Stride Directed Prefetching

in Scalar Processors. In MICRO. 1992.
[57] Elba Garza, Samira Mirbagher-Ajorpaz, Tahsin Ahmad Khan, and Daniel A

Jiménez. Bit-level Perceptron Prediction for Indirect Branches. In ISCA. 2019.
[58] Isabelle Guyon and André Elisseeff. An Introduction to Variable and Feature

Selection. Journal of machine learning research 3, Mar. 2003.

[59] Milad Hashemi, Onur Mutlu, and Yale N Patt. Continuous Runahead: Trans-

parent Hardware Acceleration for Memory Intensive Workloads. In MICRO.
2016.

[60] Milad Hashemi and Yale N Patt. Filtered Runahead Execution with a Runahead

Buffer. In MICRO. 2015.
[61] Milad Hashemi, Kevin Swersky, Jamie Smith, Grant Ayers, Heiner Litz, Jichuan

Chang, et al. Learning Memory Access Patterns. In ICML. 2018.
[62] Zhigang Hu, Margaret Martonosi, and Stefanos Kaxiras. TCP: Tag Correlating

Prefetchers. In HPCA. 2003.
[63] Sorin Iacobovici, Lawrence Spracklen, Sudarshan Kadambi, Yuan Chou, and San-

tosh G Abraham. Effective stream-based and execution-based data prefetching.

In ICS. 2004.
[64] E. Ipek, O. Mutlu, J. F. Martínez, and R. Caruana. Self-Optimizing Memory

Controllers: A Reinforcement Learning Approach. In ISCA. 2008.
[65] Yasuo Ishii, Mary Inaba, and Kei Hiraki. Access Map Pattern Matching for Data

Cache Prefetch. In ISC. 2009.
[66] Akanksha Jain and Calvin Lin. Linearizing Irregular Memory Accesses for

Improved Correlated Prefetching. In MICRO. 2013.
[67] Daniel A Jiménez. Fast path-based neural branch prediction. In MICRO. 2003.
[68] Daniel A Jiménez. Multiperspective Perceptron Predictor. In 5th JILP Work-

shop on Computer Architecture Competitions (JWAC-5): Championship Branch
Prediction (CBP-5). 2016.

[69] D. A. Jimenez and C. Lin. Dynamic Branch Prediction with Perceptrons. In

HPCA. 2001.
[70] Daniel A Jiménez and Calvin Lin. Neural methods for dynamic branch prediction.

TOCS. 2002.
[71] Víctor Jiménez, Francisco J Cazorla, Roberto Gioiosa, Alper Buyuktosunoglu,

Pradip Bose, Francis P O’Connell, et al. Adaptive Prefetching on POWER7:

Improving Performance and Power Consumption. TOPC. 2014.
[72] Doug Joseph and Dirk Grunwald. Prefetching using Markov predictors. In ISCA.

1997.

[73] Norman P. Jouppi. Improving Direct-mapped Cache Performance by the Addi-

tion of a Small Fully-associative Cache and Prefetch Buffers. In ISCA. 1990.
[74] Changhee Jung, Daeseob Lim, Jaejin Lee, and Y. Solihin. Helper thread prefetch-

ing for loosely-coupled multiprocessor systems. In IPDPS. 2006.
[75] David Kadjo, Jinchun Kim, Prabal Sharma, Reena Panda, Paul Gratz, and

Daniel Jimenez. B-fetch: Branch Prediction Directed Prefetching for Chip-

multiprocessors. In MICRO. 2014.

14

https://crc2.ece.tamu.edu
http://comparch-conf.gatech.edu/dpc2/
https://dpc3.compas.cs.stonybrook.edu
https://www.intel.com/content/www/us/en/processors/core/desktop-6th-gen-core-family-spec-update.html
https://www.intel.com/content/www/us/en/processors/core/desktop-6th-gen-core-family-spec-update.html
https://en.wikichip.org/wiki/amd/ryzen_threadripper/3990x
https://en.wikichip.org/wiki/amd/ryzen_threadripper/3990x
https://en.wikichip.org/wiki/amd/epyc/7702p
https://github.com/ChampSim/ChampSim
https://www.chisel-lang.org
https://software.intel.com/content/www/us/en/develop/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors.html
https://software.intel.com/content/www/us/en/develop/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors.html
https://www.globalfoundries.com/sites/default/files/product-briefs/pb-14lpp.pdf
https://www.globalfoundries.com/sites/default/files/product-briefs/pb-14lpp.pdf
https://en.wikichip.org/wiki/intel/xeon_d/d-2123it
https://en.wikichip.org/wiki/intel/xeon_gold/6150
https://en.wikichip.org/wiki/intel/xeon_gold/6258r
https://en.wikichip.org/wiki/intel/xeon_platinum/8180m
https://en.wikichip.org/wiki/intel/xeon_platinum/8180m
https://www.jedec.org/sites/default/files/docs/JESD79-4.pdf
http://parsec.cs.princeton.edu/
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://en.wikipedia.org/wiki/Pythia
https://github.com/CMU-SAFARI/Pythia
https://www.microarch.org/cvp1/cvp2/rules.html
https://www.microarch.org/cvp1/cvp2/rules.html
https://www.spec.org/cpu2006/
https://www.spec.org/cpu2017/
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html

Pythia: A Customizable Hardware Prefetching Framework
Using Online Reinforcement Learning MICRO ’21, October 18–22, 2021, Virtual Event, Greece

[76] Sheng-Chun Kao, Geonhwa Jeong, and Tushar Krishna. ConfuciuX: Au-

tonomous Hardware Resource Assignment for DNN Accelerators using Re-

inforcement Learning. In MICRO. 2020.
[77] Magnus Karlsson, Fredrik Dahlgren, and Per Stenstrom. A prefetching technique

for irregular accesses to linked data structures. In HPCA). 2000.
[78] Jinchun Kim, Seth H Pugsley, Paul V Gratz, AL Reddy, Chris Wilkerson, and

Zeshan Chishti. Path Confidence based Lookahead Prefetching. InMICRO. 2016.
[79] Sushant Kondguli and Michael Huang. Division of labor: A more effective

approach to prefetching. In ISCA. 2018.
[80] Sanjeev Kumar and Christopher Wilkerson. Exploiting Spatial Locality in Data

Caches using Spatial Footprints. In ISCA. 1998.
[81] Chang Joo Lee, Onur Mutlu, Veynu Narasiman, and Yale N. Patt. Prefetch-Aware

DRAM Controllers. In MICRO. 2008.
[82] Chang Joo Lee, Veynu Narasiman, Onur Mutlu, and Yale N. Patt. Improving

Memory Bank-Level Parallelism in the Presence of Prefetching. InMICRO. 2009.
[83] PM Lerman. Fitting Segmented Regression Models by Grid Search. Journal of

the Royal Statistical Society: Series C (Applied Statistics) 29, 1. 1980.
[84] Ting-Ru Lin, Drew Penney, Massoud Pedram, and Lizhong Chen. A Deep

Reinforcement Learning Framework for Architectural Exploration: A Routerless

NoC Case Study. In HPCA. 2020.
[85] Wei-Fen Lin, S.K. Reinhardt, and D. Burger. Reducing DRAM Latencies with an

Integrated Memory Hierarchy Design. In HPCA. 2001.
[86] Wei-Fen Lin, S.K. Reinhardt, D. Burger, and T.R. Puzak. Filtering superfluous

prefetches using density vectors. In ICCD. 2001.
[87] Evan Liu, Milad Hashemi, Kevin Swersky, Parthasarathy Ranganathan, and

Junwhan Ahn. An imitation learning approach for cache replacement. In ICML.
2020.

[88] Chi-Keung Luk. Tolerating Memory Latency Through Software-controlled

Pre-execution in Simultaneous Multithreading Processors. In ISCA. 2001.
[89] ArtemiyMargaritov, Dmitrii Ustiugov, Edouard Bugnion, and Boris Grot. Virtual

address translation via learned page table indexes. In ML for Systems at NeurIPS.
2018.

[90] Pierre Michaud. Best-offset Hardware Prefetching. In HPCA. 2016.
[91] Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim

Songhori, Shen Wang, et al. A Graph Placement Methodology for Fast Chip

Design. Nature. 2021.
[92] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, et al. Human-level control through deep reinforcement

learning. Nature. 2015.
[93] Douglas C Montgomery, Elizabeth A Peck, and G Geoffrey Vining. Introduction

to linear regression analysis. Vol. 821. John Wiley & Sons. 2012.

[94] Janani Mukundan and Jose F Martinez. MORSE: Multi-objective Reconfigurable

Self-optimizing Memory Scheduler. In ISCA. 2012.
[95] Onur Mutlu, Hyesoon Kim, David N Armstrong, and Yale N Patt. Using the

First-Level Caches as Filters to Reduce the Pollution Caused by Speculative

Memory References. IJPP. 2005.
[96] Onur Mutlu, Hyesoon Kim, and Yale N Patt. Address-value Delta (AVD) predic-

tion: Increasing the Effectiveness of Runahead Execution by Exploiting Regular

Memory Allocation Patterns. In MICRO. 2005.
[97] Onur Mutlu, Hyesoon Kim, and Yale N Patt. Techniques for Efficient Processing

in Runahead Execution Engines. In ISCA. 2005.
[98] Onur Mutlu, Hyesoon Kim, and Yale N Patt. Efficient Runahead Execution:

Power-efficient Memory Latency Tolerance. In IEEE Micro. 2006.
[99] Onur Mutlu, Hyesoon Kim, Jared Stark, and Yale N Patt. On reusing the results

of pre-executed instructions in a runahead execution processor. IEEE CAL.
2005.

[100] Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N Patt. Runahead Execution:

An Alternative to Very Large Instruction Windows for Out-of-order Processors.

In HPCA. 2003.
[101] OnurMutlu, Jared Stark, ChrisWilkerson, and Yale N. Patt. Runahead Execution:

An Effective Alternative to Large Instruction Windows. In IEEE Micro. 2003.
[102] Ajeya Naithani, Sam Ainsworth, TimothyM. Jones, and Lieven Eeckhout. Vector

Runahead. In ISCA. 2021.
[103] S. Pakalapati and B. Panda. Bouquet of Instruction Pointers: Instruction Pointer

Classifier-based Spatial Hardware Prefetching. In ISCA. 2020.
[104] L. Peled, S. Mannor, U. Weiser, and Y. Etsion. Semantic Locality and Context-

based Prefetching using Reinforcement Learning. In ISCA. 2015.
[105] Leeor Peled, Uri Weiser, and Yoav Etsion. A neural network memory prefetcher

using semantic locality. arXiv preprint arXiv:1804.00478. 2018.
[106] Seth H Pugsley, Zeshan Chishti, Chris Wilkerson, Peng-fei Chuang, Robert L

Scott, Aamer Jaleel, et al. Sandbox Prefetching: Safe Run-time Evaluation of

Aggressive Prefetchers. In HPCA. 2014.
[107] T. Ramirez, A. Pajuelo, O.J. Santana, and M. Valero. Runahead Threads to

Improve SMT Performance. In HPCA. 2008.
[108] Gavin A Rummery andMahesanNiranjan. On-line Q-learning using connectionist

systems. University of Cambridge, Department of Engineering Cambridge, UK.

1994.

[109] George AF Seber and Alan J Lee. Linear regression analysis. Vol. 329. John Wiley

& Sons. 2012.

[110] Subhash Sethumurugan, Jieming Yin, and John Sartori. Designing a Cost-

Effective Cache Replacement Policy using Machine Learning. In HPCA. 2021.
[111] Mehran Shakerinava, Mohammad Bakhshalipour, Pejman Lotfi-Kamran, and

Hamid Sarbazi-Azad. Multi-lookahead offset prefetching. 2019.

[112] Manjunath Shevgoor, Sahil Koladiya, Rajeev Balasubramonian, Chris Wilkerson,

Seth H. Pugsley, and Zeshan Chishti. Efficiently Prefetching Complex Address

Patterns. In MICRO. 2015.
[113] Zhan Shi, Xiangru Huang, Akanksha Jain, and Calvin Lin. Applying Deep

learning to The Cache Replacement Problem. In MICRO. 413–425. 2019.
[114] Zhan Shi, Akanksha Jain, Kevin Swersky, Milad Hashemi, Parthasarathy Ran-

ganathan, and Calvin Lin. A Neural Hierarchical Sequence Model for Irregular

Data Prefetching. In ML For Systems Workshop, NeurIPS. 2019.
[115] Zhan Shi, Akanksha Jain, Kevin Swersky, Milad Hashemi, Parthasarathy Ran-

ganathan, and Calvin Lin. A Hierarchical Neural Model of Data Prefetching. In

ASPLOS. 2021.
[116] Zhan Shi, Kevin Swersky, Daniel Tarlow, Parthasarathy Ranganathan, and

Milad Hashemi. Learning execution through neural code fusion. arXiv preprint
arXiv:1906.07181. 2019.

[117] Julian Shun and Guy E Blelloch. Ligra: A Lightweight Graph Processing Frame-

work for Shared Memory. In Proceedings of the 18th ACM SIGPLAN symposium
on Principles and practice of parallel programming. 135–146. 2013.

[118] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George

Van Den Driessche, et al. Mastering the game of Go with deep neural networks

and tree search. Nature. 2016.
[119] David Silver, ThomasHubert, Julian Schrittwieser, Ioannis Antonoglou,Matthew

Lai, Arthur Guez, et al. A general reinforcement learning algorithm that masters

chess, shogi, and Go through self-play. Science. 2018.
[120] Yan Solihin, Jaejin Lee, and Josep Torrellas. Using a user-level memory thread

for correlation prefetching. In ISCA. 2002.
[121] Stephen Somogyi, Thomas F. Wenisch, Anastasia Ailamaki, and Babak Falsafi.

Spatio-Temporal Memory Streaming. In ISCA. 2009.
[122] Stephen Somogyi, Thomas F Wenisch, Anastassia Ailamaki, Babak Falsafi, and

Andreas Moshovos. Spatial Memory Streaming. In ISCA. 2006.
[123] Santhosh Srinath, OnurMutlu, Hyesoon Kim, and Yale N Patt. Feedback Directed

Prefetching: Improving the Performance and Bandwidth-efficiency of Hardware

Prefetchers. In HPCA. 2007.
[124] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduc-

tion. In MIT Press. 2017.
[125] David Tarjan and Kevin Skadron. Merging path and gshare indexing in percep-

tron branch prediction. TACO. 2005.
[126] Stephen J Tarsa, Chit-Kwan Lin, Gokce Keskin, Gautham Chinya, and Hong

Wang. Improving branch prediction by modeling global history with convolu-

tional neural networks. arXiv preprint arXiv:1906.09889. 2019.
[127] Elvira Teran, Zhe Wang, and Daniel A Jiménez. Perceptron Learning for Reuse

Prediction. In MICRO. 2016.
[128] Scott Van Winkle, Avinash Karanth Kodi, Razvan Bunescu, and Ahmed Louri.

Extending the Power-efficiency and Performance of Photonic Interconnects for

Heterogeneous Multicores with Machine Learning. In HPCA. 2018.
[129] Perry H.Wang, Jamison D. Collins, HongWang, Dongkeun Kim, Bill Greene, Kai-

Ming Chan, et al. Helper Threads via Virtual Multithreading on an Experimental

Itanium®2 Processor-based Platform. In ASPLOS. 2004.
[130] Thomas F Wenisch, Michael Ferdman, Anastasia Ailamaki, Babak Falsafi, and

Andreas Moshovos. Practical Off-chip Meta-data for Temporal Memory Stream-

ing. In HPCA. 2009.
[131] Thomas F Wenisch, Michael Ferdman, Anastasia Ailamaki, Babak Falsafi, and

Andreas Moshovos. Making Address-correlated Prefetching Practical. IEEE
Micro. 2010.

[132] Thomas F Wenisch, Stephen Somogyi, Nikolaos Hardavellas, Jangwoo Kim,

Anastassia Ailamaki, and Babak Falsafi. Temporal streaming of shared memory.

In ISCA. 2005.
[133] Carole-Jean Wu, Aamer Jaleel, Will Hasenplaugh, Margaret Martonosi, Simon C

Steely Jr, and Joel Emer. SHiP: Signature-based Hit Predictor for High Perfor-

mance Caching. In MICRO. 2011.
[134] Hao Wu, Krishnendra Nathella, Joseph Pusdesris, Dam Sunwoo, Akanksha

Jain, and Calvin Lin. Temporal Prefetching Without the Off-Chip Metadata. In

MICRO. 2019.
[135] H. Wu, K. Nathella, D. Sunwoo, A. Jain, and C. Lin. Efficient Metadata Manage-

ment for Irregular Data Prefetching. In ISCA. 2019.
[136] Jieming Yin, Yasuko Eckert, Shuai Che, Mark Oskin, and Gabriel H Loh. Toward

More Efficient NoC Arbitration: A Deep Reinforcement Learning Approach. In

AIDArc. 2018.
[137] Jieming Yin, Subhash Sethumurugan, Yasuko Eckert, Chintan Patel, Alan Smith,

Eric Morton, et al. Experiences with ML-Driven Design: A NoC Case Study. In

HPCA. 2020.
[138] Andy B Yoo, Morris A Jette, and Mark Grondona. Slurm: Simple Linux Utility

for Resource Management. In Workshop on job scheduling strategies for parallel

15

MICRO ’21, October 18–22, 2021, Virtual Event, Greece R. Bera and K. Kanellopoulos, et al.

processing. Springer, 44–60. 2003.
[139] Siavash Zangeneh, Stephen Pruett, Sangkug Lym, and Yale Patt. BranchNet :

Using Offline Deep Learning To Predict Hard-To-Predict Branches. In MICRO.
2020.

[140] Siavash Zangeneh, Stephen Pruett, and Yale Patt. Branch prediction with

multilayer neural networks: The value of specialization. Machine Learning for
Computer Architecture and Systems. 2020.

[141] Yuan Zeng and Xiaochen Guo. Long Short Term Memory based Hardware

Prefetcher: A Case Study. In MEMSYS. 2017.
[142] Weifeng Zhang, Dean M Tullsen, and Brad Calder. Accelerating and Adapting

Precomputation Threads for Effcient Prefetching. In HPCA. 2007.
[143] Hao Zheng and Ahmed Louri. An Energy-efficient Network-on-chip Design

using Reinforcement Learning. In DAC. 2019.
[144] X. Zhuang and H.-H.S. Lee. A Hardware-based Cache Pollution Filtering Mech-

anism for Aggressive Prefetches. In ICPP. 2003.
[145] Craig Zilles and Gurindar Sohi. Execution-based Prediction Using Speculative

Slices. In ISCA. 2001.
[146] Anastasios Zouzias, Kleovoulos Kalaitzidis, and Boris Grot. Branch Prediction

as a Reinforcement Learning Problem: Why, How and Case Studies. ArXiv
abs/2106.13429. 2021.

A ARTIFACT APPENDIX
A.1 Abstract
We implement Pythia using ChampSim simulator [7]. In this artifact,

we provide the source code of Pythia and necessary instructions to

reproduce its key performance results. We identify four key results

to demonstrate Pythia’s novelty:

• Workload category-wise performance speedup of all com-

peting prefetchers (Fig. 9(a)).

• Workload category-wise coverage and overpredictions of all

competing prefetchers (Fig. 7).

• Geomean performance comparison with varying DRAM

bandwidth from 150-MTPS to 9600-MTPS (Fig. 8(b)).

• Workload category-wise performance speedup of all com-

peting prefetchers (Fig. 10(a)).

The artifact can be executed in any machine with a general-

purpose CPU and 52 GB disk space. However, we strongly recom-

mend running the artifact on a compute cluster with slurm [138]
support for bulk experimentation.

A.2 Artifact Check-list (Meta-information)
• Compilation: G++ v6.3.0 or above.

• Data set: Download traces using the supplied script.

• Run-time environment: Perl v5.24.1

• Metrics: IPC, prefetcher’s coverage, and accuracy.

• Experiments: Generate experiments using supplied scripts.

• How much disk space required (approximately)?: 52GB

• Howmuch time is needed to prepareworkflow (approximately)?:
∼ 2 hours. Mostly depends on the time to download traces.

• Howmuch time is needed to complete experiments (approx-
imately)?: 3-4 hours using a compute cluster with 480 cores.

• Publicly available?: Yes.

• Code licenses (if publicly available)?: MIT

• Archived (provide DOI)?: https://doi.org/10.5281/zenodo.5520125

A.3 Description
A.3.1 How to Access. The source code can be downloaded either from

GitHub (https://github.com/CMU-SAFARI/Pythia) or from Zenodo (https:

//doi.org/10.5281/zenodo.5520125).

A.3.2 Hardware Dependencies. Pythia can be run on any system with a

general-purpose CPU and at least 52 GB of free disk space.

A.3.3 Software Dependencies. Pythia requires GCC v6.3.0 and Perl
v5.24.1. Optionally, Pythia requires megatools v1.9.98 to download

few traces, and Microsoft Excel (tested on v16.51) to reproduce results as

presented in the paper.

A.3.4 Data Sets. The ChampSim traces required to evaluate Pythia can be

downloaded using the supplied script. Our implementation of Pythia is fully

compatible with prior ChampSim traces that are used in previous cache

replacement (CRC-2 [1]), data prefetching (DPC-3 [3]) and value-prediction

(CVP-2 [20]) championships. We are also releasing a new set of ChampSim

traces extracted from Ligra [117] and PARSEC-2.1 [16] suites.

A.4 Installation
(1) Clone Pythia from GitHub repository:

$ git clone https://github.com/CMU-SAFARI/Pythia.git

(2) Clone Bloomfilter library inside Pythia home and build:

$ cd Pythia/

$ git clone https://github.com/mavam/libbf.git libbf/

$ cd libbf/

$ mkdir build && cd build/ && cmake ../

$ make clean && make

(3) Build Pythia for single-core and four-core configurations:

$ cd $PYTHIA_HOME

$./build_champsim.sh multi multi no 1

$./build_champsim.sh multi multi no 4

(4) Please make sure to set environment variables as:

$ source setvars.sh

A.5 Experiment Workflow
This section describes steps to generate, and execute necessary experiments.

We recommend the reader to follow the README file to know more about

each script used in this section.

A.5.1 Preparing Traces.

(1) Download necessary traces as follows:

$ mkdir $PYTHIA_HOME/traces

$ cd $PYTHIA_HOME/scripts

$ perl download_traces.pl –csv artifact_traces.csv

–dir $PYTHIA_HOME/traces/

(2) If the traces are downloaded in other path, please update the full

path in MICRO21_1C.tlist and MICRO21_4C.tlist inside
$PYTHIA_HOME/experiments directory appropriately.

A.5.2 Launching Experiments. The following instructions will launch all ex-
periments required to reproduce key results in a local machine.We strongly
recommend using a compute cluster with slurm support to efficiently launch

experiments in bulk. To launch experiments using slurm, please provide
–local 0 (tested using slurm v16.05.9).

(1) Launch single-core experiments as follows:

$ cd $PYTHIA_HOME/experiments

$ perl $PYTHIA_HOME/scripts/create_jobfile.pl –exe

$PYTHIA_HOME/bin/perceptron-multi-multi-no-ship-1core

–tlist MICRO21_1C.tlist –exp MICRO21_1C.exp –local 1 > jobfile.sh

$ cd experiments_1C

$ source ../jobfile.sh

(2) Launch four-core experiments as follows:

$ cd $PYTHIA_HOME/experiments

$ perl $PYTHIA_HOME/scripts/create_jobfile.pl –exe

$PYTHIA_HOME/bin/perceptron-multi-multi-no-ship-4core

16

https://doi.org/10.5281/zenodo.5520125
https://github.com/CMU-SAFARI/Pythia
https://doi.org/10.5281/zenodo.5520125
https://doi.org/10.5281/zenodo.5520125

Pythia: A Customizable Hardware Prefetching Framework
Using Online Reinforcement Learning MICRO ’21, October 18–22, 2021, Virtual Event, Greece

–tlist MICRO21_4C.tlist –exp MICRO21_4C.exp –local 1 > jobfile.sh

$ cd experiments_4C

$ source ../jobfile.sh

(3) Please make sure the paths used in tlist and exp files are appro-
priately changed before creating the experiment files.

A.5.3 Rolling-up Statistics. Wewill use rollup.pl script to rollup statistics
from outputs of all experiments. To automate the process, we will use

the following instructions. This will create three comma-separated-value

(CSV) files in experiments directory which will be used for evaluation in

appendix A.6.

$ cd $PYTHIA_HOME/experiments

$ bash automate_rollup.sh

A.6 Evaluation
For single-core baseline configuration experiments, we will evaluate three

metrics: performance, coverage, and overprediction of each prefetcher. For

single-core experiments varying DRAM-bandwidth and four-core experi-

ments, we will evaluate only performance. The performance, coverage and

overprediction of a prefetcher X is measured by following equations:

𝑃𝑒𝑟 𝑓𝑋 =
𝐼𝑃𝐶𝑋

𝐼𝑃𝐶𝑛𝑜𝑝𝑟𝑒𝑓

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑋 =
𝐿𝐿𝐶_𝑙𝑜𝑎𝑑_𝑚𝑖𝑠𝑠𝑛𝑜𝑝𝑟𝑒𝑓 − 𝐿𝐿𝐶_𝑙𝑜𝑎𝑑_𝑚𝑖𝑠𝑠𝑋

𝐿𝐿𝐶_𝑙𝑜𝑎𝑑_𝑚𝑖𝑠𝑠𝑛𝑜𝑝𝑟𝑒𝑓

𝑂𝑣𝑒𝑟𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑋 =
𝐿𝐿𝐶_𝑟𝑒𝑎𝑑_𝑚𝑖𝑠𝑠𝑋 − 𝐿𝐿𝐶_𝑟𝑒𝑎𝑑_𝑚𝑖𝑠𝑠𝑛𝑜𝑝𝑟𝑒𝑓

𝐿𝐿𝐶_𝑟𝑒𝑎𝑑_𝑚𝑖𝑠𝑠𝑛𝑜𝑝𝑟𝑒𝑓

To easily calculate the metrics, we are providing a Microsoft Excel tem-

plate to post-process the rolled-up CSV files. The template has four sheets,

three of which bear the same name of the rolled up CSV files. Each sheet

is already populated with our collected results, necessary formulas, pivot

tables, and charts to reproduce the results presented in the paper. Please fol-

low the instructions to reproduce the results from your own CSV statistics

files:

(1) Copy and paste each CSV file in the corresponding sheet’s top left

corner (i.e., cell A1).

(2) Immediately after pasting, convert the comma-separated rows into

columns by going to Data -> Text-to-Coloumns -> Selecting comma

as a delimiter. This will replace the already existing data in the sheet

with the newly collected data.

(3) Refresh each pivot table in each sheet by clicking on them and then

clicking Pivot-Table-Analyse -> Refresh.

The reader can also use any other data processor (e.g., Python pandas) to

reproduce the same result.

A.7 Expected Results
• In single-core experiments, Pythia should achieve 22% performance

improvement over the no prefetching baseline, with 71% prefetch

coverage and 27% overpredictions. The next best prefetcher MLOP

should achieve 19% performance improvement, with 64% coverage

and 110% overpredictions.

• In single-core experiments with DRAM bandwidth scaling, Pythia

should achieve the following:

– In 150-MTPS configuration, Pythia should achieve 0.89% perfor-

mance improvement over no prefetching baseline, whereas MLOP

should underperform baseline by 16%.

– In 9600-MTPS configuration, Pythia should achieve 22.7% per-

formance improvement over no prefetching baseline, whereas

MLOP should achieve 19.5%.

• In four-core experiments, Pythia should achieve 30% performance

improvement over no prefetching baseline, whereas MLOP should

achieve 24%.

A.8 Experiment Customization
• The configuration of every prefetcher can be customized by chang-

ing the ini files inside the config directory.

• The exp files can be customized to run new experiments with dif-

ferent prefetcher combinations. More experiment files can be found

inside experiments/extra directory. One can use the same instruc-

tions mentioned in appendix A.5.2 to launch experiments.

A.9 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-badging

• http://cTuning.org/ae/submission-20201122.html

• http://cTuning.org/ae/reviewing-20201122.html

B EXTENDED RESULTS
B.1 Detailed Performance Analysis
B.1.1 Single-core. Fig. 17 shows the performance line graph of all

prefetchers for the 150 single-core workload traces. The workload traces

are sorted in ascending order of performance improvement of Pythia over

the baseline without prefetching. We make three key observations. First,

Pythia outperforms the no-prefetching baseline in every single-core trace,

except 623.xalancbmk-592B (where it underperforms the baseline by 2.1%).

603.bwaves-2931B enjoys the highest performance improvement of 2.2×
over the baseline. Performance of the top 80% of traces improve by at least

4.2% over the baseline. Second, Pythia underperforms Bingo in workloads

like libquantum due to the heavy streaming nature of memory accesses. As

libquantum streams through all physical pages, Bingo simply prefetches all

cachelines of a page at once just by seeing the first access to the page. As a

result Bingo achieves higher timeliness and higher performance than Pythia.

Third, Pythia significantly outperforms every competing prefetcher in work-

loads with irregular access patterns (e.g., mcf, pagerank). We conclude that

Pythia provides consistent performance gains over the no-prefetching base-

line and multiple prior state-of-the-art prefetchers over a wide range of

workloads. We share a table depicting the single-core performance of ev-

ery competing prefetcher considered in this paper over the no-prefetching

baseline in our GitHub repository: https://github.com/CMU-SAFARI/Pythia.

!"#

!"$

%

%"&

%"'

%"#

%"$

&

&"&

&"'

% (

%
)

%
*

&
+

)
%

)
(

'
)

'
*

+
+

#
%

#
(

(
)

(
*

$
+

*
%

*
(

%
!
)

%
!
*

%
%
+

%
&
%

%
&
(

%
)
)

%
)
*

%
'
+

,
-
.
.
/
0
-
12
3
.
41
5
2
1-
4.
6.
78
9
:5
;

<24=>2?/150@A.4

,BB C:5;2 DEFB BG79:?

623.xalancbmk_s-592B

603.bwaves_s-2931B

462.libquantum

streamcluster

429.mcf

BFSCC-22B

pagerank-51B

fluidanimate-9500M

Figure 17: Performance line graph of 150 single-core traces.

B.1.2 Four-core. Fig. 18 shows the performance line graph of all prefetch-

ers for 272 four-core workload trace mixes (including both homogeneous

and heterogeneous mixes). The workload mixes are sorted in ascending

order of performance improvement of Pythia over the baseline without

prefetching. We make two key observations. First, Pythia outperforms the

17

https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
https://github.com/CMU-SAFARI/Pythia

MICRO ’21, October 18–22, 2021, Virtual Event, Greece R. Bera and K. Kanellopoulos, et al.

baseline without prefetching in all but one four-core trace mix. Pythia

provides the highest performance gain in 437.leslie3d-271B (2.1×) and
lowest performance gain in 429.mcf-184B (-3.5%) over the no-prefetching

baseline. Second, Pythia also outperforms (or matches performance) all

competing prefetchers in majority of trace mixes. Pythia underperforms

Bingo in the 462.libquantum homogeneous trace mix due to the very

regular streaming access pattern. On the other hand, Pythia significantly

outperforms Bingo in Ligra workloads (e.g., pagerank) due to its adaptive

prefetching strategy to trade-off coverage for accuracy in high memory

bandwidth usage. We conclude that Pythia provides a consistent perfor-

mance gain over multiple prior state-of-the-art prefetchers over a wide

range of workloads even in bandwidth-constrained multi-core systems.

!"!

!"#

$"!

$"#

%"!

%"#

&"!

$

$
$

%
$

&
$

'
$

#
$

(
$

)
$

*
$

+
$

$
!
$

$
$
$

$
%
$

$
&
$

$
'
$

$
#
$

$
(
$

$
)
$

$
*
$

$
+
$

%
!
$

%
$
$

%
%
$

%
&
$

%
'
$

%
#
$

%
(
$

,
-
.
.
/
0
-
12
3
.
41
5
2
1-
4.
6.
78
9
:5
;

<24=>2?/150@A.4

,BB C:5;2 DEFB BG79:?

429.mcf-184B

pagerank

462.libquantum-1343B

437.leslie3d-271B

Mix-59

raytrace-23.75B

Mix-240

Figure 18: Performance line graph of 272 four-core trace
mixes.

B.2 Performance with Different Features
Fig. 19 shows the performance, coverage, and overprediction of Pythia

averaged across all single-core traces with different feature combinations

during automated feature selection (§4.3.1). For brevity, we show results

for all experiments with any-one and any-two combinations of 20 features

taken from the full list of 32 features. Both graphs are sorted in ascending

order of performance improvement of Pythia over the baseline without

prefetching. We make three key observations. First, Pythia’s performance

gain over the no-prefetching baseline improves from 20.7% to 22.4% by

varying the feature combination. We select the feature combination that

provides the highest performance gain as the basic Pythia configuration

(Table 2). Second, Pythia’s coverage and overprediction also change signifi-

cantly with varying feature combination. Pythia’s coverage improves from

66.2% to 71.5%, whereas overprediction improves from 32.2% to 26.7% by

changing feature combination. Third, Pythia’s performance gain positively

correlates with Pythia’s coverage in single-core configuration. We conclude

that automatic design-space exploration can significantly optimize Pythia’s

performance, coverage, and overpredictions.

65%

66%

67%

68%

69%

70%

71%

72%

1.2

1.205

1.21

1.215

1.22

1.225

1.23

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5

Co
ve

ra
ge

 o
f P

yt
hi

a
(h

ig
he

r
is

be
tt

er
)

Sp
ee

du
p

ov
er

 b
as

el
in

e
(h

ig
he

r
is

be
tt

er
)

Experiment number

Speedup Coverage

25%

26%

27%

28%

29%

30%

31%

32%

33%

1.2

1.205

1.21

1.215

1.22

1.225

1.23

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

20
5 O

ve
rp

re
di

ct
io

n
of

 P
yt

hi
a

(lo
w

er
 is

 b
et

te
r)

Sp
ee

du
p

ov
er

 b
as

el
in

e
(h

ig
he

r
is

be
tt

er
)

Experiment number

Speedup Overprediction

Figure 19: Performance, coverage, and overprediction of
Pythia with different feature combinations. The x-axis
shows experiments with different feature combinations.

B.3 Performance Sensitivity to
Hyperparameters

Fig. 20(a) shows Pythia’s performance sensitivity to the exploration rate (𝜖)

averaged across all single-core traces. The key takeaway from Figure 20(a)

is that Pythia’s performance improvement drops sharply if the underlying

RL-agent heavily explores the state-action space as opposed to exploiting

the learned policy. Changing the 𝜖-value from 0.002 to 1.0 reduces Pythia’s

performance improvement by 16.0%. Fig. 20(b) shows Pythia’s performance

sensitivity to learning rate parameter (𝛼), averaged across all single-core

traces. The key takeaway from Fig. 20(b) is that Pythia’s performance im-

provement reduces for both increasing or decreasing the learning rate

parameter. Increasing the learning rate reduces the hysteresis in Q-values

(i.e., Q-values change significantly with the immediate reward received

by Pythia), which reduces Pythia’s performance improvement. Similarly,

decreasing the learning rate also reduces Pythia’s performance as it in-

creases the hysteresis in Q-values. Pythia achieves optimal performance

improvement for 𝛼 = 0.0065.

1.04

1.08

1.12

1.16

1.2

1.24

1.E-6 1.E-5 1.E-4 1.E-3 1.E-2 1.E-1 1.E+0

Sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

values

1.16

1.17

1.18

1.19

1.2

1.21

1.22

1.23

1.E-6 1.E-5 1.E-4 1.E-3 1.E-2 1.E-1 1.E+0

Sp
ee

du
p

ov
er

 n
o

pr
ef

et
ch

in
g

values

(a) Epsilon (𝜀) (b) Alpha (𝛼)

Figure 20: Performance sensitivity of Pythia towards (a) the
exploration rate (𝜖), and (b) the learning rate (𝛼) hyperpa-
rameter values. The values in basic Pythia configuration are
marked in red.

B.4 Comparison to the Context Prefetcher
As we discuss in Section 4.5, unlike Pythia, the context prefetcher (CP [104])

relies on both hardware and software contexts. A tailor-made compiler needs

to encode the software contexts using special NOP instructions, which are

decoded by the core front-end to pass the context to the CP. For a fair

comparison, we implement the context prefetcher using hardware contexts

(CP-HW) and show the performance comparison of Pythia and CP-HW

in Figure 21. The key takeaway is that Pythia outperforms the CP-HW

prefetcher by 5.3% and 7.6% in single-core and four-core configurations,

respectively. Pythia’s performance improvement over CP-HWmainly comes

from two key aspects: (1) Pythia’s ability to take memory bandwidth usage

into consideration while taking prefetch actions, and (2) the far-sighted

predictions made by Pythia as opposed to myopic predictions by CP-HW.

1

1.1

1.2

1.3

1.4

1.5

SPEC06 SPEC17 PARSEC Ligra Cloudsuite GEOMEAN

Ge
om

ea
n

sp
ee

du
p

ov
er

 b
as

el
in

e

CP-HW Pythia

1

1.1

1.2

1.3

1.4

1.5

SPEC06 SPEC17 PARSEC Ligra Cloudsuite Mix GEOMEAN

Ge
om

ea
n

sp
ee

du
p

ov
er

 b
as

el
in

e

CP-HW Pythia
(a) single-core (b) four-core

Figure 21: Performance of Pythia vs. the context
prefetcher [104] using hardware contexts.

B.5 Comparison to the IBM POWER7 Adaptive
Prefetcher

Fig. 22 compares Pythia against the IBM POWER7 adaptive prefetcher [71].

The POWER7 prefetcher dynamically tunes its prefetch aggressiveness (e.g.,

18

Pythia: A Customizable Hardware Prefetching Framework
Using Online Reinforcement Learning MICRO ’21, October 18–22, 2021, Virtual Event, Greece

selecting prefetch depth, enabling stride-based prefetching) by monitoring

program performance. We make two observations from Fig. 22. First, Pythia

outperforms the POWER7 prefetcher by 4.5% in single-core system. This is

mostly due to Pythia’s ability to capture different types of address patterns

than just streaming/stride patterns. Second, Pythia outperforms POWER7

prefetcher by 6.5% in four-core and 6.1% in eight-core systems (not plotted),

respectively. The increase in performance improvement from single to four

(or eight) core configuration suggests that Pythia is more adaptive than the

POWER7 prefetcher.

1

1.1

1.2

1.3

1.4

1.5

SPEC06 SPEC17 PARSEC Ligra Cloudsuite GEOMEAN

Ge
om

ea
n

sp
ee

du
p

ov
er

 b
as

el
in

e

POWER7 Pythia

1

1.1

1.2

1.3

1.4

1.5

SPEC06 SPEC17 PARSEC Ligra Cloudsuite Mix GEOMEAN

Ge
om

ea
n

sp
ee

du
p

ov
er

 b
as

el
in

e

POWER7 Pythia

(a) single-core (b) four-core

Figure 22: Performance comparison against IBM POWER7
prefetcher [71].

19

	Abstract
	1 Introduction
	2 Background
	2.1 Reinforcement Learning
	2.2 Why is RL a Good Fit for Prefetching?

	3 Pythia: Key Idea
	3.1 Formulation of the RL-based Prefetcher

	4 Pythia: Design
	4.1 RL-based Prefetching Algorithm
	4.2 Detailed Design of Pythia
	4.3 Automated Design-Space Exploration
	4.4 Storage Overhead
	4.5 Differences from Prior Work

	5 Methodology
	5.1 Workloads
	5.2 Prefetchers

	6 Results
	6.1 Coverage and Overprediction in Single-core
	6.2 Performance Overview
	6.3 Performance Analysis
	6.4 Performance on Unseen Traces
	6.5 Understanding Pythia Using a Case Study
	6.6 Performance Benefits via Customization
	6.7 Overhead Analysis

	7 Other Related Works
	8 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-list (Meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation
	A.7 Expected Results
	A.8 Experiment Customization
	A.9 Methodology

	B Extended Results
	B.1 Detailed Performance Analysis
	B.2 Performance with Different Features
	B.3 Performance Sensitivity to Hyperparameters
	B.4 Comparison to the Context Prefetcher
	B.5 Comparison to the IBM POWER7 Adaptive Prefetcher

