SMASH
Co-designing Software Compression and Hardware-Accelerated Indexing for Efficient Sparse Matrix Operations

Konstantinos Kanellopoulos, Nandita Vijaykumar, Christina Giannoula, Roknoddin Azizi, Skanda Koppula, Nika Mansouri Ghiasi, Taha Shahroodi, Juan Gomez Luna, Onur Mutlu
Sparse Matrix Operations are Widespread Today

Recommender Systems
- Collaborative Filtering

Graph Analytics
- PageRank
- Breadth-First Search
- Betweenness Centrality

Neural Networks
- Graph Neural Networks
- Sparse Deep Neural Networks
Sparse Matrix Operations are Widespread Today

Recommender Systems

- Collaborative Filtering

Graph Analytics

- PageRank
- Breadth-First Search
- Betweenness Centrality

Neural Networks

- Graph Neural Networks
- Sparse Deep Neural Networks

Sparse matrix compression is essential to enable efficient storage and computation
Limitations of Existing Compression Formats
Limitations of Existing Compression Formats

1. General formats optimize for storage → Expensive discovery of the positions of non-zero elements
Limitations of Existing Compression Formats

1. General formats optimize for storage → Expensive discovery of the positions of non-zero elements

2. Specialized formats assume specific matrix structures and patterns (e.g., diagonals) → Narrow applicability
SMASH

SAFARI
SMASH

Hardware/Software cooperative mechanism:
• Enables **highly-efficient** sparse matrix compression and computation
• **General** across a diverse set of sparse matrices and sparse matrix operations
SMASH

Hardware/Software cooperative mechanism:
• Enables **highly-efficient** sparse matrix compression and computation
• **General** across a diverse set of sparse matrices and sparse matrix operations

Software

Efficient compression using a Hierarchy of Bitmaps
SMASH

Hardware/Software cooperative mechanism:
- Enables **highly-efficient** sparse matrix compression and computation
- **General** across a diverse set of sparse matrices and sparse matrix operations

Software
- Efficient compression using a Hierarchy of Bitmaps

Hardware
- Unit that scans bitmaps to accelerate indexing
SMASH

Hardware/Software cooperative mechanism:
- Enables **highly-efficient** sparse matrix compression and computation
- General across a diverse set of sparse matrices and sparse matrix operations

Software

Efficient compression using a Hierarchy of Bitmaps

Hardware

Unit that scans bitmaps to accelerate indexing

SMASH ISA
Key Results

SMASH

• 38% and 44% speedup for SpMV and SpMM

Hardware Overhead

• 0.076% area overhead over an Intel Xeon CPU
SMASH
Co-designing Software Compression and Hardware-Accelerated Indexing for Efficient Sparse Matrix Operations

Konstantinos Kanellopoulos, Nandita Vijaykumar, Christina Giannoula, Roknoddin Azizi, Skanda Koppula, Nika Mansouri Ghiasi, Taha Shahroodi, Juan Gomez Luna, Onur Mutlu