Revisiting RowHammer

Onur Mutlu omutlu@gmail.com https://people.inf.ethz.ch/omutlu

9 October 2020

VLSI-SoC

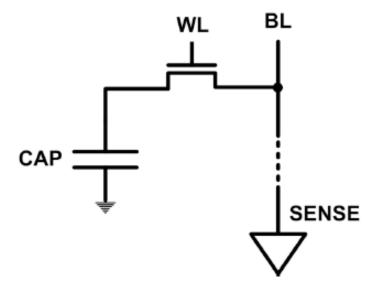
EH zürich

The Story of RowHammer

- One can predictably induce bit flips in commodity DRAM chips
 >80% of the tested DRAM chips are vulnerable
- First example of how a simple hardware failure mechanism can create a widespread system security vulnerability

An "Early" Position Paper [IMW'13]

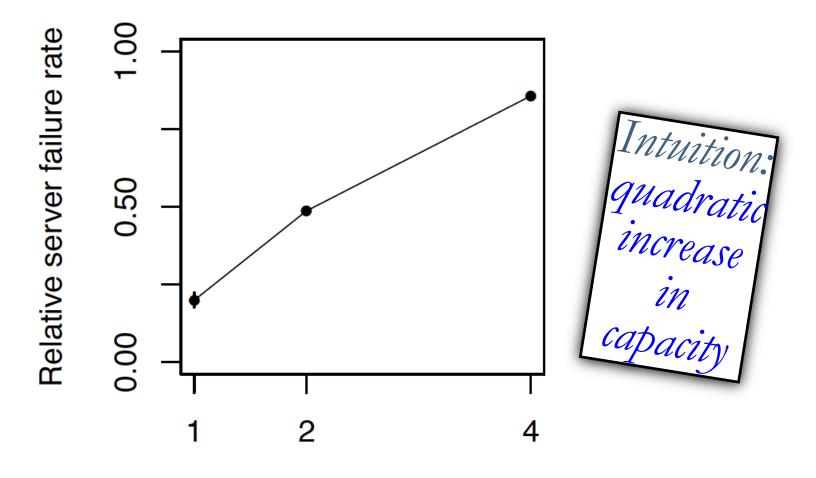
Onur Mutlu, <u>"Memory Scaling: A Systems Architecture Perspective"</u> *Proceedings of the <u>5th International Memory</u> <u>Workshop</u> (<i>IMW*), Monterey, CA, May 2013. <u>Slides</u> (pptx) (pdf) <u>EETimes Reprint</u>


Memory Scaling: A Systems Architecture Perspective

Onur Mutlu Carnegie Mellon University onur@cmu.edu http://users.ece.cmu.edu/~omutlu/

https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf

The DRAM Scaling Problem


- DRAM stores charge in a capacitor (charge-based memory)
 - Capacitor must be large enough for reliable sensing
 - Access transistor should be large enough for low leakage and high retention time
 - Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

DRAM capacity, cost, and energy/power hard to scale

As Memory Scales, It Becomes Unreliable

- Data from all of Facebook's servers worldwide
- Meza+, "Revisiting Memory Errors in Large-Scale Production Data Centers," DSN'15.

Chip density (Gb)

Large-Scale Failure Analysis of DRAM Chips

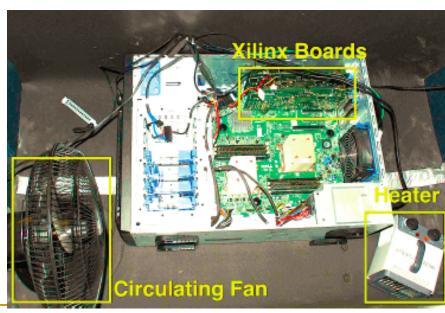
- Analysis and modeling of memory errors found in all of Facebook's server fleet
- Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu, "Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field" Proceedings of the <u>45th Annual IEEE/IFIP International Conference on</u> Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June 2015. [Slides (pptx) (pdf)] [DRAM Error Model]

Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field

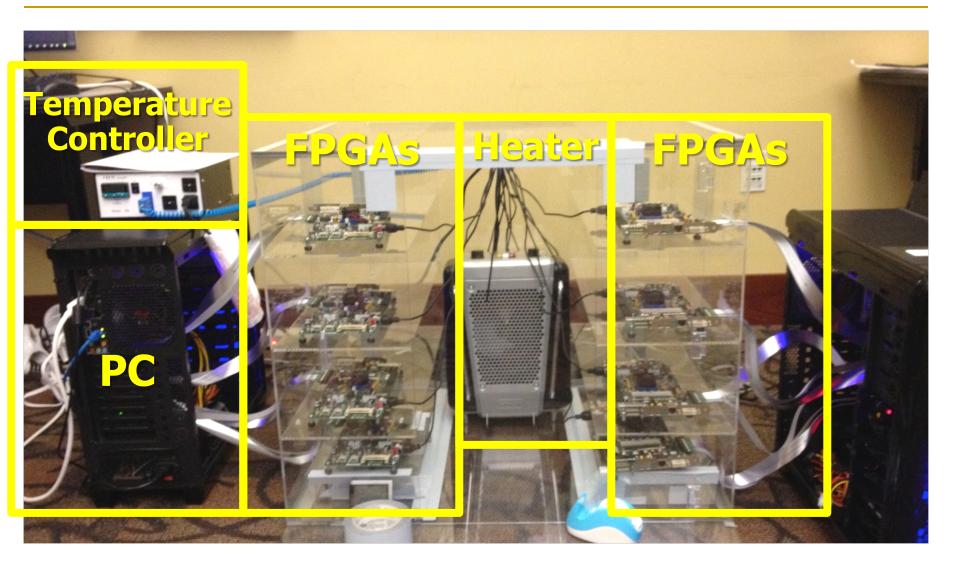
Justin Meza Qiang Wu* Sanjeev Kumar* Onur Mutlu

Carnegie Mellon University * Facebook, Inc.

Infrastructures to Understand Such Issues



Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors (Kim et al., ISCA 2014)

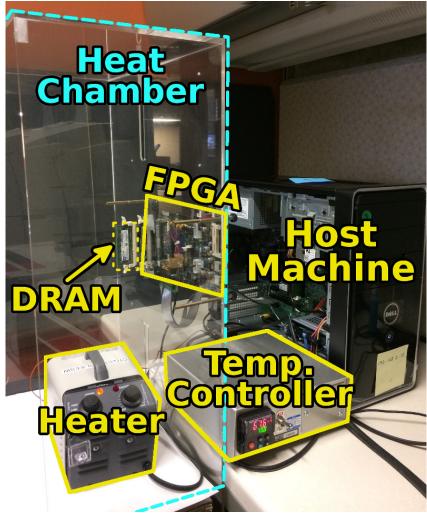

Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case (Lee et al., HPCA 2015)

AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems (Qureshi et al., DSN 2015) An Experimental Study of Data Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms (Liu et al., ISCA 2013)

The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study (Khan et al., SIGMETRICS 2014)

Infrastructures to Understand Such Issues

SAFARI


Kim+, "Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors," ISCA 2014.

SoftMC: Open Source DRAM Infrastructure

 Hasan Hassan et al., "<u>SoftMC: A</u> <u>Flexible and Practical Open-</u> <u>Source Infrastructure for</u> <u>Enabling Experimental DRAM</u> <u>Studies</u>," HPCA 2017.

- Flexible
- Easy to Use (C++ API)
- Open-source

github.com/CMU-SAFARI/SoftMC

SoftMC: Open Source DRAM Infrastructure

<u>https://github.com/CMU-SAFARI/SoftMC</u>

SoftMC: A Flexible and Practical Open-Source Infrastructure for Enabling Experimental DRAM Studies

Hasan Hassan^{1,2,3} Nandita Vijaykumar³ Samira Khan^{4,3} Saugata Ghose³ Kevin Chang³ Gennady Pekhimenko^{5,3} Donghyuk Lee^{6,3} Oguz Ergin² Onur Mutlu^{1,3}

¹ETH Zürich ²TOBB University of Economics & Technology ³Carnegie Mellon University ⁴University of Virginia ⁵Microsoft Research ⁶NVIDIA Research

Data Retention in Memory [Liu et al., ISCA 2013]

Retention Time Profile of DRAM looks like this:

64-128ms >256ms **Location** dependent 128-256ms Stored value pattern dependent Time dependent

SAFARI Liu+, "RAIDR: Retention-Aware Intelligent DRAM Refresh," ISCA 2012.

RAIDR: Heterogeneous Refresh [ISCA'12]

 Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu, "RAIDR: Retention-Aware Intelligent DRAM Refresh" Proceedings of the <u>39th International Symposium on</u> <u>Computer Architecture</u> (ISCA), Portland, OR, June 2012. <u>Slides (pdf)</u>

RAIDR: Retention-Aware Intelligent DRAM Refresh

Jamie Liu Ben Jaiyen Richard Veras Onur Mutlu Carnegie Mellon University

Analysis of Data Retention Failures [ISCA'13]

 Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu,
 "An Experimental Study of Data Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms" Proceedings of the <u>40th International Symposium on Computer Architecture</u> (ISCA), Tel-Aviv, Israel, June 2013. <u>Slides (ppt)</u> <u>Slides (pdf)</u>

An Experimental Study of Data Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms

Jamie Liu* Ben Jaiyen^{*} Yoongu Kim Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University 5000 Forbes Ave. 5000 Forbes Ave. 5000 Forbes Ave. Pittsburgh, PA 15213 Pittsburgh, PA 15213 Pittsburgh, PA 15213 bjaiyen@alumni.cmu.edu jamiel@alumni.cmu.edu yoonguk@ece.cmu.edu Chris Wilkerson Onur Mutlu Intel Corporation Carnegie Mellon University 2200 Mission College Blvd. 5000 Forbes Ave. Santa Clara, CA 95054 Pittsburgh, PA 15213

onur@cmu.edu

chris.wilkerson@intel.com

Mitigation of Retention Issues [SIGMETRICS'14]

Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa Alameldeen, Chris Wilkerson, and Onur Mutlu, "The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study" Proceedings of the <u>ACM International Conference on Measurement and</u> Modeling of Computer Systems (SIGMETRICS), Austin, TX, June 2014. [Slides] (pptx) (pdf)] [Poster (pptx) (pdf)] [Full data sets]

The Efficacy of Error Mitigation Techniques for DRAM **Retention Failures: A Comparative Experimental Study**

Samira Khan[†]* samirakhan@cmu.edu

Donghyuk Lee[†] donghyuk1@cmu.edu

Chris Wilkerson∗

Yoongu Kim[†] yoongukim@cmu.edu

Alaa R. Alameldeen* alaa.r.alameldeen@intel.com chris.wilkerson@intel.com

Onur Mutlu[†] onur@cmu.edu

*Intel Labs [†]Carnegie Mellon University

Mitigation of Retention Issues [DSN'15]

 Moinuddin Qureshi, Dae Hyun Kim, Samira Khan, Prashant Nair, and Onur Mutlu,
 <u>"AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for</u> <u>DRAM Systems"</u>
 *Proceedings of the <u>45th Annual IEEE/IFIP International Conference on</u> <u>Dependable Systems and Networks</u> (DSN), Rio de Janeiro, Brazil, June 2015.
 [Slides (pptx) (pdf)]*

AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems

Moinuddin K. Qureshi[†] Dae-Hyun Kim[†] [†]Georgia Institute of Technology {*moin, dhkim, pnair6*}@*ece.gatech.edu* Samira Khan[‡]

Prashant J. Nair[†] Onur Mutlu[‡] [‡]Carnegie Mellon University {*samirakhan, onur*}@*cmu.edu*

Mitigation of Retention Issues [DSN'16]

 Samira Khan, Donghyuk Lee, and Onur Mutlu, "PARBOR: An Efficient System-Level Technique to Detect Data-Dependent Failures in DRAM" Proceedings of the <u>45th Annual IEEE/IFIP International Conference on</u> Dependable Systems and Networks (DSN), Toulouse, France, June 2016. [Slides (pptx) (pdf)]

PARBOR: An Efficient System-Level Technique to Detect Data-Dependent Failures in DRAM

Samira Khan*Donghyuk Lee^{†‡}Onur Mutlu^{*†}*University of Virginia[†]Carnegie Mellon University[‡]Nvidia*ETH Zürich

Mitigation of Retention Issues [MICRO'17]

 Samira Khan, Chris Wilkerson, Zhe Wang, Alaa R. Alameldeen, Donghyuk Lee, and Onur Mutlu,
 "Detecting and Mitigating Data-Dependent DRAM Failures by Exploiting <u>Current Memory Content"</u> *Proceedings of the <u>50th International Symposium on Microarchitecture</u> (MICRO), Boston, MA, USA, October 2017.
 [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]*

Detecting and Mitigating Data-Dependent DRAM Failures by Exploiting Current Memory Content

Samira Khan^{*} Chris Wilkerson[†] Zhe Wang[†] Alaa R. Alameldeen[†] Donghyuk Lee[‡] Onur Mutlu^{*} ^{*}University of Virginia [†]Intel Labs [‡]Nvidia Research ^{*}ETH Zürich

Mitigation of Retention Issues [ISCA'17]

- Minesh Patel, Jeremie S. Kim, and Onur Mutlu,
 <u>"The Reach Profiler (REAPER): Enabling the Mitigation of DRAM</u> <u>Retention Failures via Profiling at Aggressive Conditions"</u> *Proceedings of the <u>44th International Symposium on Computer</u> <u>Architecture (ISCA)</u>, Toronto, Canada, June 2017.
 [Slides (pptx) (pdf)]
 [Lightning Session Slides (pptx) (pdf)]*
- First experimental analysis of (mobile) LPDDR4 chips
- Analyzes the complex tradeoff space of retention time profiling
- Idea: enable fast and robust profiling at higher refresh intervals & temperatures

The Reach Profiler (REAPER): Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions

Minesh Patel^{§‡} Jeremie S. Kim^{‡§} Onur Mutlu^{§‡} [§]ETH Zürich [‡]Carnegie Mellon University

Mitigation of Retention Issues [DSN'19]

 Minesh Patel, Jeremie S. Kim, Hasan Hassan, and Onur Mutlu, "Understanding and Modeling On-Die Error Correction in Modern DRAM: An Experimental Study Using Real Devices" Proceedings of the <u>49th Annual IEEE/IFIP International Conference on</u> Dependable Systems and Networks (DSN), Portland, OR, USA, June 2019. [Source Code for EINSim, the Error Inference Simulator] Best paper award.

Understanding and Modeling On-Die Error Correction in Modern DRAM: An Experimental Study Using Real Devices

Minesh Patel[†] Jeremie S. Kim^{‡†} Hasan Hassan[†] Onur Mutlu^{†‡} $^{\dagger}ETH Z \ddot{u}rich$ [‡]Carnegie Mellon University

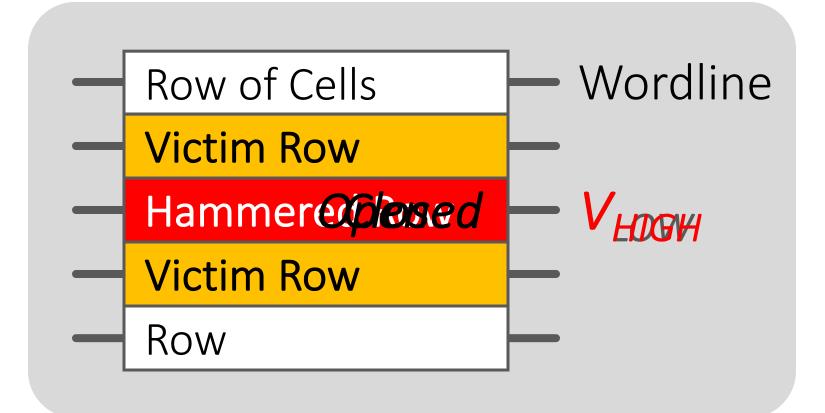
Mitigation of Retention Issues [MICRO'20]

 Minesh Patel, Jeremie S. Kim, Taha Shahroodi, Hasan Hassan, and Onur Mutlu, "Bit-Exact ECC Recovery (BEER): Determining DRAM On-Die ECC Functions by Exploiting DRAM Data Retention Characteristics" Proceedings of the <u>53rd International Symposium on</u> <u>Microarchitecture (MICRO)</u>, Virtual, October 2020. [Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)] [Talk Video (15 minutes)]
 [Lightning Talk Video (1.5 minutes)]

Bit-Exact ECC Recovery (BEER): Determining DRAM On-Die ECC Functions by Exploiting DRAM Data Retention Characteristics

Minesh Patel[†] Jeremie S. Kim^{‡†} Taha Shahroodi[†] Hasan Hassan[†] Onur Mutlu^{†‡} [†]ETH Zürich [‡]Carnegie Mellon University

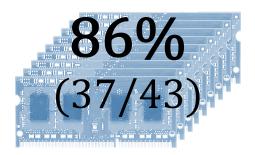
A Curious Phenomenon

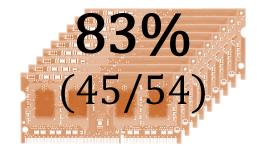

A Curious Discovery [Kim et al., ISCA 2014]

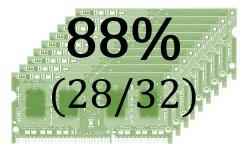
One can predictably induce errors in most DRAM memory chips

A simple hardware failure mechanism can create a widespread system security vulnerability

Modern DRAM is Prone to Disturbance Errors

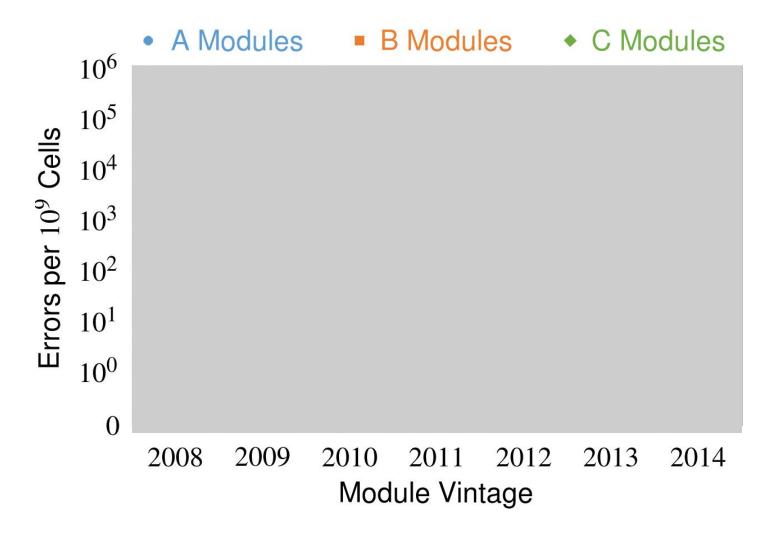



Repeatedly reading a row enough times (before memory gets refreshed) induces disturbance errors in adjacent rows in most real DRAM chips you can buy today


Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors, (Kim et al., ISCA 2014)

Most DRAM Modules Are Vulnerable

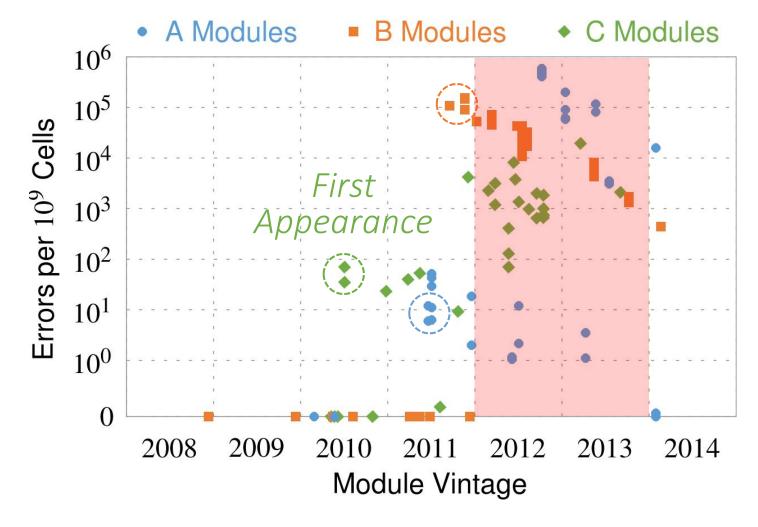
A company B company

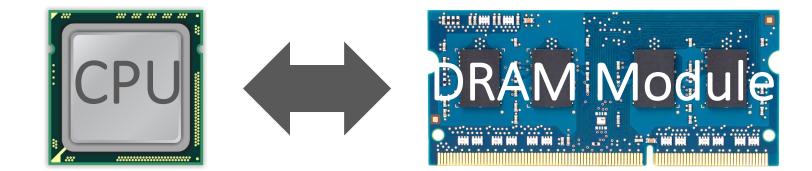


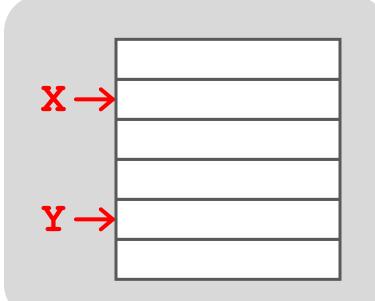
C company

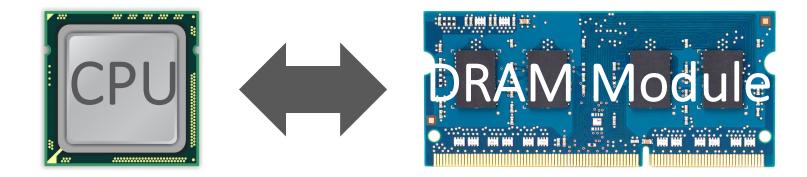
Up to	Up to	Up to
1.0×10 ⁷	2.7×10 ⁶	3.3×10 ⁵
errors	errors	errors

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors, (Kim et al., ISCA 2014)

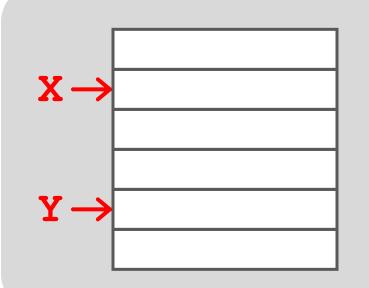

Recent DRAM Is More Vulnerable

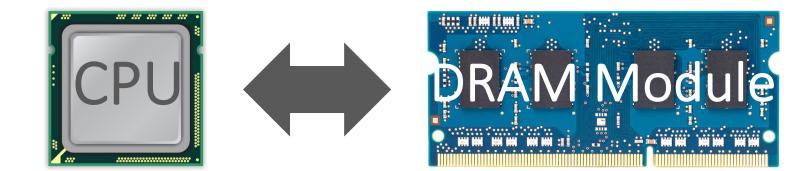

Recent DRAM Is More Vulnerable

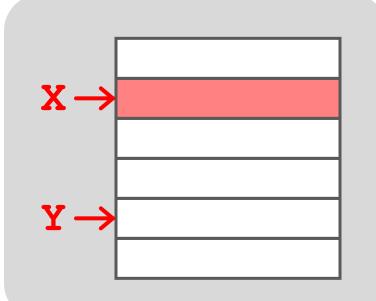

Recent DRAM Is More Vulnerable

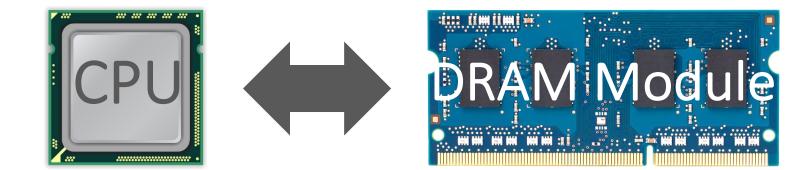


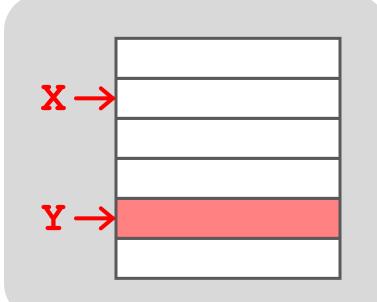
All modules from 2012–2013 are vulnerable

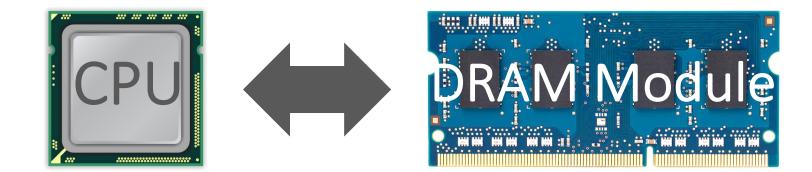


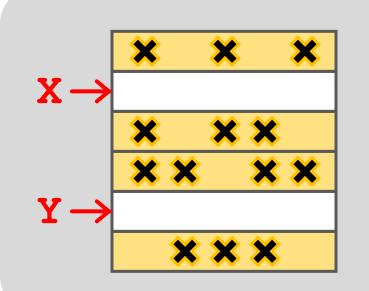

loop: mov (X), %eax mov (Y), %ebx clflush (X) clflush (Y) mfence jmp loop




- Avoid *cache hits* Flush X from cache
- Avoid *row hits* to X
 Read Y in another row




loop: mov (X), %eax mov (Y), %ebx clflush (X) clflush (Y) mfence jmp loop



loop: mov (X), %eax mov (Y), %ebx clflush (X) clflush (Y) mfence jmp loop

loop: mov (X), %eax mov (Y), %ebx clflush (X) clflush (Y) mfence jmp loop

Observed Errors in Real Systems

CPU Architecture	Errors	Access-Rate
Intel Haswell (2013)	22.9K	12.3M/sec
Intel Ivy Bridge (2012)	20.7K	11.7M/sec
Intel Sandy Bridge (2011)	16.1K	11.6M/sec
AMD Piledriver (2012)	59	6.1M/sec

A real reliability & security issue

Kim+, "Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors," ISCA 2014.

One Can Take Over an Otherwise-Secure System

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors

Abstract. Memory isolation is a key property of a reliable and secure computing system — an access to one memory address should not have unintended side effects on data stored in other addresses. However, as DRAM process technology

Project Zero

<u>Flipping Bits in Memory Without Accessing Them:</u> <u>An Experimental Study of DRAM Disturbance Errors</u> (Kim et al., ISCA 2014)

News and updates from the Project Zero team at Google

Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn, 2015)

Monday, March 9, 2015

Exploiting the DRAM rowhammer bug to gain kernel privileges

RowHammer Security Attack Example

- "Rowhammer" is a problem with some recent DRAM devices in which repeatedly accessing a row of memory can cause bit flips in adjacent rows (Kim et al., ISCA 2014).
 - Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors (Kim et al., ISCA 2014)
- We tested a selection of laptops and found that a subset of them exhibited the problem.
- We built two working privilege escalation exploits that use this effect.
 - Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn+, 2015)
- One exploit uses rowhammer-induced bit flips to gain kernel privileges on x86-64 Linux when run as an unprivileged userland process.
- When run on a machine vulnerable to the rowhammer problem, the process was able to induce bit flips in page table entries (PTEs).
- It was able to use this to gain write access to its own page table, and hence gain read-write access to all of physical memory.

Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn & Dullien, 2015)

Security Implications

Security Implications

It's like breaking into an apartment by repeatedly slamming a neighbor's door until the vibrations open the door you were after

Selected Readings on RowHammer (I)

- Our first detailed study: Rowhammer analysis and solutions (June 2014)
 - Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
 "Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors"
 Proceedings of the <u>41st International Symposium on Computer Architecture</u> (ISCA), Minneapolis, MN, June 2014. [Slides (pptx) (pdf)] [Lightning Session

Slides (pptx) (pdf)] [Source Code and Data]

- Our Source Code to Induce Errors in Modern DRAM Chips (June 2014)
 - <u>https://github.com/CMU-SAFARI/rowhammer</u>
- Google Project Zero's Attack to Take Over a System (March 2015)
 - Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn+, 2015)
 - <u>https://github.com/google/rowhammer-test</u>
 - Double-sided Rowhammer

Selected Readings on RowHammer (II)

- Remote RowHammer Attacks via JavaScript (July 2015)
 - <u>http://arxiv.org/abs/1507.06955</u>
 - <u>https://github.com/IAIK/rowhammerjs</u>
 - Gruss et al., DIMVA 2016.
 - CLFLUSH-free Rowhammer
 - "A fully automated attack that requires nothing but a website with JavaScript to trigger faults on remote hardware."
 - "We can gain unrestricted access to systems of website visitors."
- ANVIL: Software-Based Protection Against Next-Generation Rowhammer Attacks (March 2016)
 - http://dl.acm.org/citation.cfm?doid=2872362.2872390
 - Aweke et al., ASPLOS 2016
 - CLFLUSH-free Rowhammer
 - Software based monitoring for rowhammer detection

Selected Readings on RowHammer (III)

- Dedup Est Machina: Memory Deduplication as an Advanced Exploitation Vector (May 2016)
 - https://www.ieee-security.org/TC/SP2016/papers/0824a987.pdf
 - Bosman et al., IEEE S&P 2016.
 - Exploits Rowhammer and Memory Deduplication to overtake a browser
 - "We report on the first reliable remote exploit for the Rowhammer vulnerability running entirely in Microsoft Edge."
 - "[an attacker] ... can reliably "own" a system with all defenses up, even if the software is entirely free of bugs."
- CAn't Touch This: Software-only Mitigation against Rowhammer Attacks targeting Kernel Memory (August 2017)
 - https://www.usenix.org/system/files/conference/usenixsecurity17/sec17brasser.pdf
 - Brasser et al., USENIX Security 2017.
 - Partitions physical memory into security domains, user vs. kernel; limits rowhammer-induced bit flips to the user domain.

Selected Readings on RowHammer (IV)

- A New Approach for Rowhammer Attacks (May 2016)
 - https://ieeexplore.ieee.org/document/7495576
 - Qiao et al., HOST 2016
 - CLFLUSH-free RowHammer
 - "Libc functions memset and memcpy are found capable of rowhammer."
 - Triggers RowHammer with malicious inputs but benign code
- One Bit Flips, One Cloud Flops: Cross-VM Row Hammer Attacks and Privilege Escalation (August 2016)
 - https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_pa per_xiao.pdf
 - Xiao et al., USENIX Security 2016.
 - "Technique that allows a malicious guest VM to have read and write accesses to arbitrary physical pages on a shared machine."
 - Graph-based algorithm to reverse engineer mapping of physical addresses in DRAM

Selected Readings on RowHammer (V)

- Curious Case of RowHammer: Flipping Secret Exponent Bits using Timing Analysis (August 2016)
 - https://link.springer.com/content/pdf/10.1007%2F978-3-662-53140-2_29.pdf
 - Bhattacharya et al., CHES 2016
 - Combines timing analysis to perform rowhammer on cryptographic keys stored in memory
- DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks (August 2016)
 - https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_pa per_pessl.pdf
 - Pessl et al., USENIX Security 2016
 - Shows RowHammer failures on DDR4 devices despite TRR solution
 - Reverse engineers address mapping functions to improve existing RowHammer attacks

Selected Readings on RowHammer (VI)

- Flip Feng Shui: Hammering a Needle in the Software Stack (August 2016)
 - https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper razavi.pdf
 - Razavi et al., USENIX Security 2016.
 - Combines memory deduplication and RowHammer
 - "A malicious VM can gain unauthorized access to a co-hosted VM running OpenSSH."
 - Breaks OpenSSH public key authentication
- Drammer: Deterministic Rowhammer Attacks on Mobile Platforms (October 2016)
 - <u>http://dl.acm.org/citation.cfm?id=2976749.2978406</u>
 - Van Der Veen et al., ACM CCS 2016
 - **Can take over an ARM-based Android system deterministically**
 - Exploits predictable physical memory allocator behavior
 - Can deterministically place security-sensitive data (e.g., page table) in an attackerchosen, vulnerable location in memory

Selected Readings on RowHammer (VII)

- When Good Protections go Bad: Exploiting anti-DoS Measures to Accelerate Rowhammer Attacks (May 2017)
 - https://web.eecs.umich.edu/~misiker/resources/HOST-2017-Misiker.pdf
 - Aga et al., HOST 2017
 - "A virtual-memory based cache-flush free attack that is sufficiently fast to rowhammer with double rate refresh."
 - Enabled by Cache Allocation Technology
- SGX-Bomb: Locking Down the Processor via Rowhammer Attack (October 2017)
 - https://dl.acm.org/citation.cfm?id=3152709
 - □ Jang et al., SysTEX 2017
 - Launches the Rowhammer attack against enclave memory to trigger the processor lockdown."
 - Running unknown enclave programs on the cloud can shut down servers shared with other clients.

Selected Readings on RowHammer (VIII)

- Another Flip in the Wall of Rowhammer Defenses (May 2018)
 - https://arxiv.org/pdf/1710.00551.pdf
 - Gruss et al., IEEE S&P 2018
 - A new type of Rowhammer attack which only hammers one single address, which can be done without knowledge of physical addresses and DRAM mappings
 - Defeats static analysis and performance counter analysis defenses by running inside an SGX enclave
- GuardION: Practical Mitigation of DMA-Based Rowhammer Attacks on ARM (June 2018)
 - https://link.springer.com/chapter/10.1007/978-3-319-93411-2_5
 - □ Van Der Veen et al., DIMVA 2018
 - Presents RAMPAGE, a DMA-based RowHammer attack against the latest Android OS

Selected Readings on RowHammer (IX)

- Grand Pwning Unit: Accelerating Microarchitectural Attacks with the GPU (May 2018)
 - https://www.vusec.net/wp-content/uploads/2018/05/glitch.pdf
 - Frigo et al., IEEE S&P 2018.
 - The first end-to-end remote Rowhammer exploit on mobile platforms that use our GPU-based primitives in orchestration to compromise browsers on mobile devices in under two minutes.
- Throwhammer: Rowhammer Attacks over the Network and Defenses (July 2018)
 - <u>https://www.cs.vu.nl/~herbertb/download/papers/throwhammer_atc18.pdf</u>
 - Tatar et al., USENIX ATC 2018.
 - "[We] show that an attacker can trigger and exploit Rowhammer bit flips directly from a remote machine by only sending network packets."

Selected Readings on RowHammer (X)

- Nethammer: Inducing Rowhammer Faults through Network Requests (July 2018)
 - https://arxiv.org/pdf/1805.04956.pdf
 - Lipp et al., arxiv.org 2018.
 - "Nethammer is the first truly remote Rowhammer attack, without a single attacker-controlled line of code on the targeted system."

- ZebRAM: Comprehensive and Compatible Software Protection Against Rowhammer Attacks (October 2018)
 - <u>https://www.usenix.org/system/files/osdi18-konoth.pdf</u>
 - Konoth et al., OSDI 2018
 - A new pure-software protection mechanism against RowHammer.

Selected Readings on RowHammer (XI.A)

PassMark Software, memtest86, since 2014

<u>https://www.memtest86.com/troubleshooting.htm#hammer</u>

Why am I only getting errors during Test 13 Hammer Test?

The Hammer Test is designed to detect RAM modules that are susceptible to disturbance errors caused by charge leakage. This phenomenon is characterized in the research paper Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors by Yoongu Kim et al. According to the research, a significant number of RAM modules manufactured 2010 or newer are affected by this defect. In simple terms, susceptible RAM modules can be subjected to disturbance errors when repeatedly accessing addresses in the same memory bank but different rows in a short period of time. Errors occur when the repeated access causes charge loss in a memory cell, before the cell contents can be refreshed at the next DRAM refresh interval.

Starting from MemTest86 v6.2, the user may see a warning indicating that the RAM may be vulnerable to high frequency row hammer bit flips. This warning appears when errors are detected during the first pass (maximum hammer rate) but no errors are detected during the second pass (lower hammer rate). See MemTest86 Test Algorithms for a description of the two passes that are performed during the Hammer Test (Test 13). When performing the second pass, address pairs are hammered only at the rate deemed as the maximum allowable by memory vendors (200K accesses per 64ms). Once this rate is exceeded, the integrity of memory contents may no longer be guaranteed. If errors are detected in both passes, errors are reported as normal.

The errors detected during Test 13, albeit exposed only in extreme memory access cases, are most certainly real errors. During typical nome PC usage (eg. web browsing, word processing, etc.), it is less likely that the memory usage pattern will fail into the extreme case that make it vulnerable to disturbance errors. It may be of greater concern if you were running highly sensitive equipment such as medical equipment, aircraft control systems, or bank database servers. It is impossible to predict with any accuracy if these errors will occur in real life applications. One would need to do a major scientific study of 1000 of computers and their usage patterns, then do a forensic analysis of each application to study how it makes use of the RAM while it executes. To date, we have only seen 1-bit errors as a result of running the Hammer Test.

Selected Readings on RowHammer (XI.B)

PassMark Software, memtest86, since 2014

<u>https://www.memtest86.com/troubleshooting.htm#hammer</u>

Detection and mitigation of row hammer errors

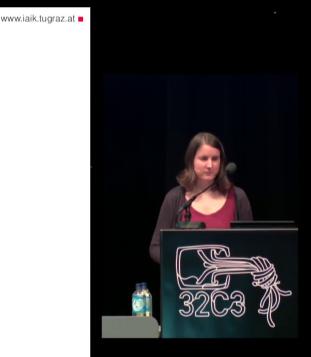
The ability of MemTest86 to detect and report on row hammer errors depends on several factors and what mitigations are in place. To generate errors adjacent memory rows must be repeatedly accessed. But hardware features such as multiple channels, interleaving, scrambling, Channel Hashing, NUMA & XOR schemes make it nearly impossible (for an arbitrary CPU & RAM stick) to know which memory addresses correspond to which rows in the RAM. Various mitigations might also be in place. Different BIOS firmware might set the refresh interval to different values (tREFI). The shorter the interval the more resistant the RAM will be to errors. But shorter intervals result in higher power consumption and increased processing overhead. Some CPUs also support pseudo target row refresh (pTRR) that can be used in combination with pTRR-compliant RAM. This field allows the RAM stick to indicate the MAC (Maximum Active Count) level which is the RAM can support. A typical value might be 200,000 row activations. Some CPUs also support the Joint Electron Design Engineering Council (JEDEC) Targeted Row Refresh (TRR) algorithm. The TRR is an improved version of the previously implemented pTRR algorithm and does not inflict any performance drop or additional power usage. As a result the row hammer test implemented in MemTest86 maybe not be the worst case possible and vulnerabilities in the underlying RAM might be undetectable due to the mitigations in place in the BIOS and CPU.

Security Implications (ISCA 2014)

- Breach of memory protection
 - OS page (4KB) fits inside DRAM row (8KB)
 - Adjacent DRAM row \rightarrow Different OS page
- Vulnerability: disturbance attack
 - By accessing its own page, a program could corrupt pages belonging to another program
- We constructed a proof-of-concept

 Using only user-level instructions

More Security Implications (I)


"We can gain unrestricted access to systems of website visitors."

Not there yet, but ...

ROOT privileges for web apps!

Daniel Gruss (@lavados), Clémentine Maurice (@BloodyTangerine), December 28, 2015 - 32c3, Hamburg, Germany

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript (DIMVA'16)

Source: https://lab.dsst.io/32c3-slides/7197.html

29

More Security Implications (II)

"Can gain control of a smart phone deterministically"

Hammer And Root

androids Millions of Androids

Drammer: Deterministic Rowhammer

Attacks on Mobile Platforms, CCS'16 53

Source: https://fossbytes.com/drammer-rowhammer-attack-android-root-devices/

More Security Implications (III)

 Using an integrated GPU in a mobile system to remotely escalate privilege via the WebGL interface

ars TECHNICA

BIZ & IT TECH SCIENCE POLICY CARS GAMING & CULTURE

Drive-by Rowhammer attack uses GPU to compromise an Android phone

JavaScript based GLitch pwns browsers by flipping bits inside memory chips.

DAN GOODIN - 5/3/2018, 12:00 PM

Grand Pwning Unit: Accelerating Microarchitectural Attacks with the GPU

Pietro Frigo Vrije Universiteit Amsterdam p.frigo@vu.nl Cristiano Giuffrida Vrije Universiteit Amsterdam giuffrida@cs.vu.nl Herbert Bos Vrije Universiteit Amsterdam herbertb@cs.vu.nl Kaveh Razavi Vrije Universiteit Amsterdam kaveh@cs.vu.nl

More Security Implications (IV)

Rowhammer over RDMA (I)

ars TECHNICA

BIZ & IT TECH SCIENCE POLICY CARS GAMING & CULTURE

THROWHAMMER —

Packets over a LAN are all it takes to trigger serious Rowhammer bit flips

The bar for exploiting potentially serious DDR weakness keeps getting lower.

DAN GOODIN - 5/10/2018, 5:26 PM

Throwhammer: Rowhammer Attacks over the Network and Defenses

Andrei Tatar VU Amsterdam Radhesh Krishnan VU Amsterdam Elias Athanasopoulos University of Cyprus

Herbert Bos VU Amsterdam Kaveh Razavi VU Amsterdam Cristiano Giuffrida VU Amsterdam

More Security Implications (V)

Rowhammer over RDMA (II)

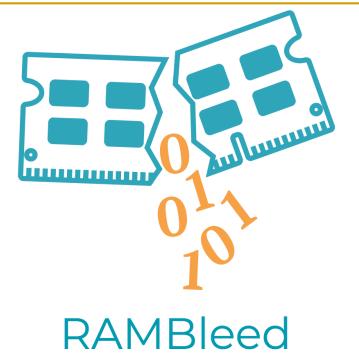
Security in a serious way

Nethammer—Exploiting DRAM Rowhammer Bug Through Network Requests

Nethammer: Inducing Rowhammer Faults through Network Requests

Moritz Lipp Graz University of Technology

Daniel Gruss Graz University of Technology Misiker Tadesse Aga University of Michigan


Clémentine Maurice Univ Rennes, CNRS, IRISA

Lukas Lamster Graz University of Technology Michael Schwarz Graz University of Technology

Lukas Raab Graz University of Technology

More Security Implications (VI)

IEEE S&P 2020

RAMBleed: Reading Bits in Memory Without Accessing Them

Andrew Kwong University of Michigan ankwong@umich.edu Daniel Genkin University of Michigan genkin@umich.edu Daniel Gruss Graz University of Technology daniel.gruss@iaik.tugraz.at Yuval Yarom University of Adelaide and Data61 yval@cs.adelaide.edu.au

More Security Implications (VII)

Rowhammer on MLC NAND Flash (based on [Cai+, HPCA 2017])

Security

Rowhammer RAM attack adapted to hit flash storage

Project Zero's two-year-old dog learns a new trick

By Richard Chirgwin 17 Aug 2017 at 04:27

17 🖵 SHARE 🔻

From random block corruption to privilege escalation: A filesystem attack vector for rowhammer-like attacks

Anil Kurmus Nikolas Ioannou Matthias Neugschwandtner Nikolaos Papandreou Thomas Parnell IBM Research – Zurich

More Security Implications?

RowHammer Solutions

Two Types of RowHammer Solutions

Immediate

- To protect the vulnerable DRAM chips in the field
- Limited possibilities

- Longer-term
 - To protect future DRAM chips
 - Wider range of protection mechanisms

- Our ISCA 2014 paper proposes both types of solutions
 - Seven solutions in total
 - PARA proposed as best solution \rightarrow already employed in the field

• Make better DRAM chips

Refresh frequently

Power, Performance

• Sophisticated ECC

Cost, Power

Cost

• Access counters Cost, Power, Complexity

Apple's Patch for RowHammer

https://support.apple.com/en-gb/HT204934

Available for: OS X Mountain Lion v10.8.5, OS X Mavericks v10.9.5

Impact: A malicious application may induce memory corruption to escalate privileges

Description: A disturbance error, also known as Rowhammer, exists with some DDR3 RAM that could have led to memory corruption. This issue was mitigated by increasing memory refresh rates.

CVE-ID

CVE-2015-3693 : Mark Seaborn and Thomas Dullien of Google, working from original research by Yoongu Kim et al (2014)

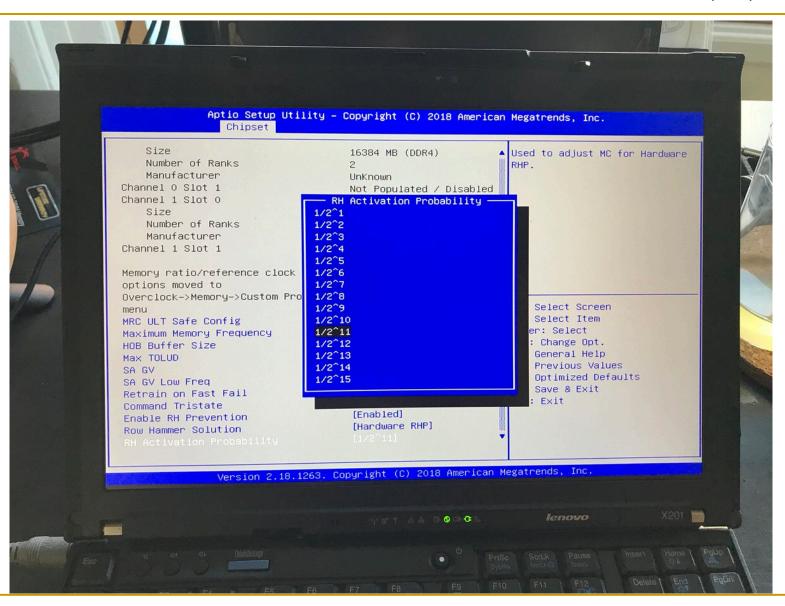
HP, Lenovo, and other vendors released similar patches

Our Best Solution to RowHammer

- PARA: <u>Probabilistic Adjacent Row Activation</u>
- Key Idea
 - After closing a row, we activate (i.e., refresh) one of its neighbors with a low probability: p = 0.005
- Reliability Guarantee
 - When p=0.005, errors in one year: 9.4×10^{-14}
 - By adjusting the value of p, we can vary the strength of protection against errors

Advantages of PARA

- PARA refreshes rows infrequently
 - Low power
 - Low performance-overhead
 - Average slowdown: 0.20% (for 29 benchmarks)
 - Maximum slowdown: 0.75%
- PARA is stateless
 - Low cost
 - Low complexity
- PARA is an effective and low-overhead solution to prevent disturbance errors


Probabilistic Activation in Real Life (I)

Aptio Setup Utili Chipset	ty – Copyright (C) 2018 Ameri	can Megatrends, Inc.
Channel O Slot O Size Number of Ranks Manufacturer Channel O Slot 1 Channel 1 Slot O Size Number of Ranks Manufacturer Channel 1 Slot 1 Memory ratio/reference clock options moved to Overclock->Memory->Custom Profi menu MRC ULT Safe Config Maximum Memory Frequency HOB Buffer Size Max TOLUD SA GV SA GV SA GV Low Freq Retrain on Fast Fail Command Tristate Enable RH Prevention Row Hammer Solution	[Disabled] [Auto] [Auto] [Dynamic] [Enabled] [MRC default] [Enabled] [Enabled] [Enabled] [Hardware RHP]	ed ++: Select Screen 1: Select Item Enter: Select +/-: Change Opt. F1: General Help F2: Previous Values F3: Optimized Defaults F4: Save & Exit ESC: Exit
Version 2.18.126	53. Copyright (C) 2018 America	an Megatrends, Inc.
		lenovo X201 🔛

SAFARI

https://twitter.com/isislovecruft/status/1021939922754723841

Probabilistic Activation in Real Life (II)

SAFARI

https://twitter.com/isislovecruft/status/1021939922754723841

Seven RowHammer Solutions Proposed

Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
 "Flipping Bits in Memory Without Accessing Them: An

 Experimental Study of DRAM Disturbance Errors"
 Proceedings of the 41st International Symposium on Computer
 Architecture (ISCA), Minneapolis, MN, June 2014.

 [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code and Data]

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors

Yoongu Kim¹ Ross Daly^{*} Jeremie Kim¹ Chris Fallin^{*} Ji Hye Lee¹ Donghyuk Lee¹ Chris Wilkerson² Konrad Lai Onur Mutlu¹ ¹Carnegie Mellon University ²Intel Labs

Main Memory Needs Intelligent Controllers for Security

First RowHammer Analysis

Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
 "Flipping Bits in Memory Without Accessing Them: An

 Experimental Study of DRAM Disturbance Errors"
 Proceedings of the <u>41st International Symposium on Computer</u>
 <u>Architecture</u> (ISCA), Minneapolis, MN, June 2014.

 [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code and Data]

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors

Yoongu Kim¹ Ross Daly^{*} Jeremie Kim¹ Chris Fallin^{*} Ji Hye Lee¹ Donghyuk Lee¹ Chris Wilkerson² Konrad Lai Onur Mutlu¹ ¹Carnegie Mellon University ²Intel Labs

Retrospective on RowHammer & Future

Onur Mutlu, "The RowHammer Problem and Other Issues We May Face as Memory Becomes Denser" Invited Paper in Proceedings of the Design, Automation, and Test in Europe Conference (DATE), Lausanne, Switzerland, March 2017. [Slides (pptx) (pdf)]

The RowHammer Problem and Other Issues We May Face as Memory Becomes Denser

Onur Mutlu ETH Zürich onur.mutlu@inf.ethz.ch https://people.inf.ethz.ch/omutlu

SAFARI https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf 71

A More Recent RowHammer Retrospective

Onur Mutlu and Jeremie Kim,
 "RowHammer: A Retrospective"
 <u>IEEE Transactions on Computer-Aided Design of Integrated</u>
 <u>Circuits and Systems</u> (TCAD) Special Issue on Top Picks in
 Hardware and Embedded Security, 2019.
 [Preliminary arXiv version]

RowHammer: A Retrospective

Onur Mutlu^{§‡} Jeremie S. Kim^{‡§} [§]ETH Zürich [‡]Carnegie Mellon University

RowHammer in 2020

RowHammer in 2020 (I)

 Jeremie S. Kim, Minesh Patel, A. Giray Yaglikci, Hasan Hassan, Roknoddin Azizi, Lois Orosa, and Onur Mutlu,
 "Revisiting RowHammer: An Experimental Analysis of Modern Devices and Mitigation Techniques"
 Proceedings of the <u>47th International Symposium on Computer</u> <u>Architecture</u> (ISCA), Valencia, Spain, June 2020.
 [Slides (pptx) (pdf)]
 [Lightning Talk Slides (pptx) (pdf)]
 [Talk Video (20 minutes)]
 [Lightning Talk Video (3 minutes)]

Revisiting RowHammer: An Experimental Analysis of Modern DRAM Devices and Mitigation Techniques

Jeremie S. Kim^{§†} Minesh Patel[§] A. Giray Yağlıkçı[§] Hasan Hassan[§] Roknoddin Azizi[§] Lois Orosa[§] Onur Mutlu^{§†} [§]ETH Zürich [†]Carnegie Mellon University

RowHammer in 2020 (II)

 Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der Veen, Onur Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi, "TRRespass: Exploiting the Many Sides of Target Row Refresh" Proceedings of the <u>41st IEEE Symposium on Security and</u> <u>Privacy</u> (S&P), San Francisco, CA, USA, May 2020.
 [Slides (pptx) (pdf)]
 [Talk Video (17 minutes)]
 [Source Code]
 [Web Article]
 Best paper award.

TRRespass: Exploiting the Many Sides of Target Row Refresh

Pietro Frigo^{*†} Emanuele Vannacci^{*†} Hasan Hassan[§] Victor van der Veen[¶] Onur Mutlu[§] Cristiano Giuffrida^{*} Herbert Bos^{*} Kaveh Razavi^{*}

*Vrije Universiteit Amsterdam

[§]ETH Zürich

[¶]Qualcomm Technologies Inc.

RowHammer in 2020 (III)

 Lucian Cojocar, Jeremie Kim, Minesh Patel, Lillian Tsai, Stefan Saroiu, Alec Wolman, and Onur Mutlu,
 "Are We Susceptible to Rowhammer? An End-to-End Methodology for Cloud Providers"
 Proceedings of the <u>41st IEEE Symposium on Security and</u> Privacy (S&P), San Francisco, CA, USA, May 2020.
 [Slides (pptx) (pdf)]
 [Talk Video (17 minutes)]

Are We Susceptible to Rowhammer? An End-to-End Methodology for Cloud Providers

Lucian Cojocar, Jeremie Kim^{§†}, Minesh Patel[§], Lillian Tsai[‡], Stefan Saroiu, Alec Wolman, and Onur Mutlu^{§†} Microsoft Research, [§]ETH Zürich, [†]CMU, [‡]MIT

RowHammer in 2020 (II)

 Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der Veen, Onur Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi, "TRRespass: Exploiting the Many Sides of Target Row Refresh" Proceedings of the <u>41st IEEE Symposium on Security and</u> <u>Privacy</u> (S&P), San Francisco, CA, USA, May 2020.
 [Slides (pptx) (pdf)]
 [Talk Video (17 minutes)]
 [Source Code]
 [Web Article]
 Best paper award.

TRRespass: Exploiting the Many Sides of Target Row Refresh

Pietro Frigo^{*†} Emanuele Vannacci^{*†} Hasan Hassan[§] Victor van der Veen[¶] Onur Mutlu[§] Cristiano Giuffrida^{*} Herbert Bos^{*} Kaveh Razavi^{*}

*Vrije Universiteit Amsterdam

[§]ETH Zürich

[¶]Qualcomm Technologies Inc.

TRRespass

- First work that shows that TRR-protected DRAM chips are vulnerable to RowHammer in the field
 - Mitigations advertised as secure are not secure
- Introduces the Many-sided RowHammer attack
 - Idea: Hammer many rows to bypass TRR mitigations (e.g., by overflowing proprietary TRR tables that detect aggressor rows)
- (Partially) reverse-engineers the TRR and pTRR mitigation mechanisms implemented in DRAM chips and memory controllers
- Provides an automatic tool that can effectively create manysided RowHammer attacks in DDR4 and LPDDR4(X) chips

BitFlips vs. Number of Aggressor Rows

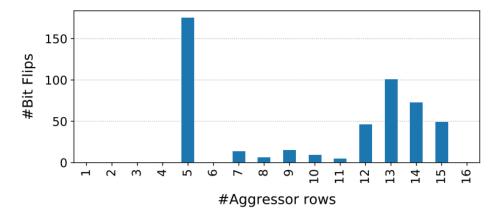


Fig. 10: Bit flips vs. number of aggressor rows. Module C_{12} : Number of bit flips in bank 0 as we vary the number of aggressor rows. Using SoftMC, we refresh DRAM with standard tREFI and run the tests until each aggressor rows is hammered 500K times.

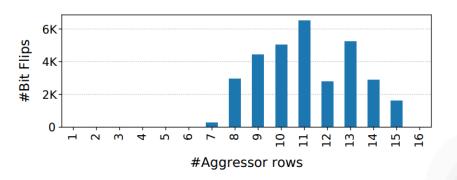


Fig. 11: Bit flips vs. number of aggressor rows. Module A_{15} : Number of bit flips in bank 0 as we vary the number of aggressor rows. Using SoftMC, we refresh DRAM with standard tREFI and run the tests until each aggressor rows is hammered 500K times.

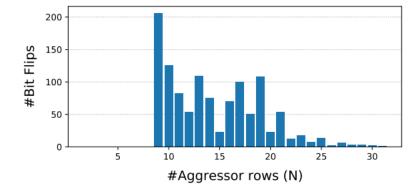


Fig. 13: Bit flips vs. number of aggressor rows. Module A_{10} : Number of bit flips triggered with *N*-sided RowHammer for varying number of *N* on Intel Core i7-7700K. Each aggressor row is one row away from the closest aggressor row (i.e., VAVAVA... configuration) and aggressor rows are hammered in a round-robin fashion.

TRRespass Key Results

- 13 out of 42 tested DDR4 DRAM modules are vulnerable
 - From all 3 major manufacturers
 - □ 3-, 9-, 10-, 14-, 19-sided hammer attacks needed
- 5 out of 13 mobile phones tested vulnerable
 - From 4 major manufacturers
 - With LPDDR4(X) DRAM chips
- These results are scratching the surface
 - TRRespass tool is not exhaustive
 - There is a lot of room for uncovering more vulnerable chips and phones

TRRespass Key Takeaways

RowHammer is still an open problem

Security by obscurity is likely not a good solution

More on TRRespass

 Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der Veen, Onur Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi,
 "TRRespass: Exploiting the Many Sides of Target Row Refresh" Proceedings of the <u>41st IEEE Symposium on Security and</u> Privacy (S&P), San Francisco, CA, USA, May 2020.
 [Slides (pptx) (pdf)]
 [Talk Video (17 minutes)]
 [Source Code]
 [Web Article]
 Best paper award.

TRRespass: Exploiting the Many Sides of Target Row Refresh

Pietro Frigo^{*†} Emanuele Vannacci^{*†} Hasan Hassan[§] Victor van der Veen[¶] Onur Mutlu[§] Cristiano Giuffrida^{*} Herbert Bos^{*} Kaveh Razavi^{*}

*Vrije Universiteit Amsterdam

[§]ETH Zürich

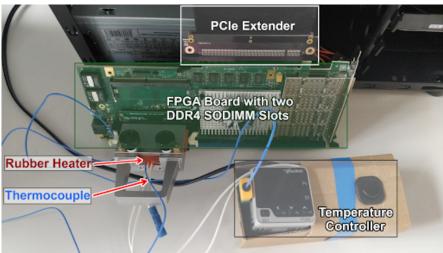
[¶]Qualcomm Technologies Inc.

Revisiting RowHammer

Revisiting RowHammer An Experimental Analysis of Modern Devices and Mitigation Techniques

Jeremie S. KimMinesh PatelA. Giray YağlıkçıHasan HassanRoknoddin AziziLois OrosaOnur Mutlu

Key Conclusions


- We characterized **1580 DRAM** chips of different DRAM types, technology nodes, and manufacturers.
- We studied **five** state-of-the-art RowHammer mitigation mechanisms and an ideal refresh-based mechanism
- We made two key observations
 - **1. RowHammer is getting much worse**. It takes much fewer hammers to induce RowHammer bit flips in newer chips
 - e.g., **DDR3:** 69.2k to 22.4k, **DDR4:** 17.5k to 10k, **LPDDR4:** 16.8k to 4.8k
 - **2. Existing mitigation mechanisms do not scale** to DRAM chips that are more vulnerable to RowHammer
 - e.g., 80% performance loss when the hammer count to induce the first bit flip is 128
- We **conclude** that it is **critical** to do more research on RowHammer and develop scalable mitigation mechanisms to prevent RowHammer in future systems

DRAM Testing Infrastructures

Three separate testing infrastructures

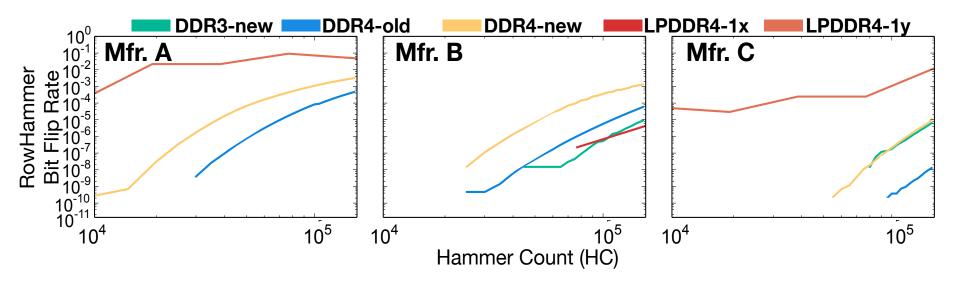
- 1. DDR3: FPGA-based SoftMC [Hassan+, HPCA'17] (Xilinx ML605)
- 2. DDR4: FPGA-based SoftMC [Hassan+, HPCA'17] (Xilinx Virtex UltraScale 95)
- **3.** LPDDR4: In-house testing hardware for LPDDR4 chips

All provide fine-grained control over DRAM commands, timing parameters and temperature

SAFARI

DDR4 DRAM testing infrastructure

DRAM Chips Tested

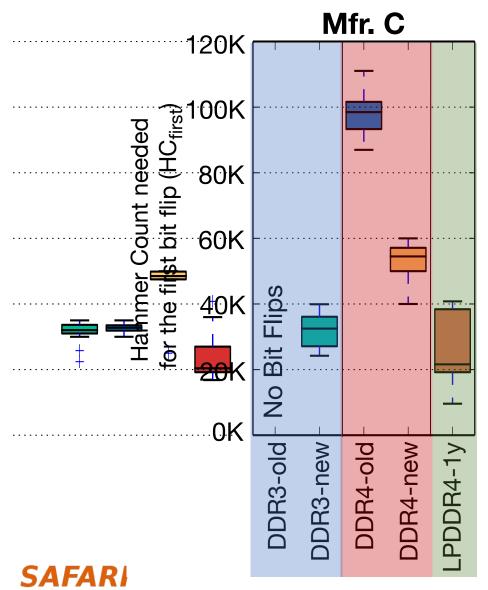

DRAM	Number of Chips (Modules) Tested			
type-node	Mfr. A	Mfr. B	Mfr. C	Total
DDR3-old	56 (10)	88 (11)	28 (7)	172 (28)
DDR3-new	80 (10)	52 (9)	104 (13)	236 (32)
DDR4-old	112 (16)	24 (3)	128 (18)	264 (37)
DDR4-new	264 (43)	16 (2)	108 (28)	388 (73)
LPDDR4-1x	12 (3)	180 (45)	N/A	192 (48)
LPDDR4-1y	184 (46)	N/A	144 (36)	328 (82)

1580 total DRAM chips tested from **300** DRAM modules

- **Three** major DRAM manufacturers {A, B, C}
- Three DRAM types or standards {DDR3, DDR4, LPDDR4}
 - LPDDR4 chips we test implement on-die ECC
- **Two** technology nodes per DRAM type {old/new, 1x/1y}
 - Categorized based on manufacturing date, datasheet publication date, purchase date, and characterization results

Type-node: configuration describing a chip's type and technology node generation: **DDR3-old/new, DDR4-old/new, LPDDR4-1x/1y**

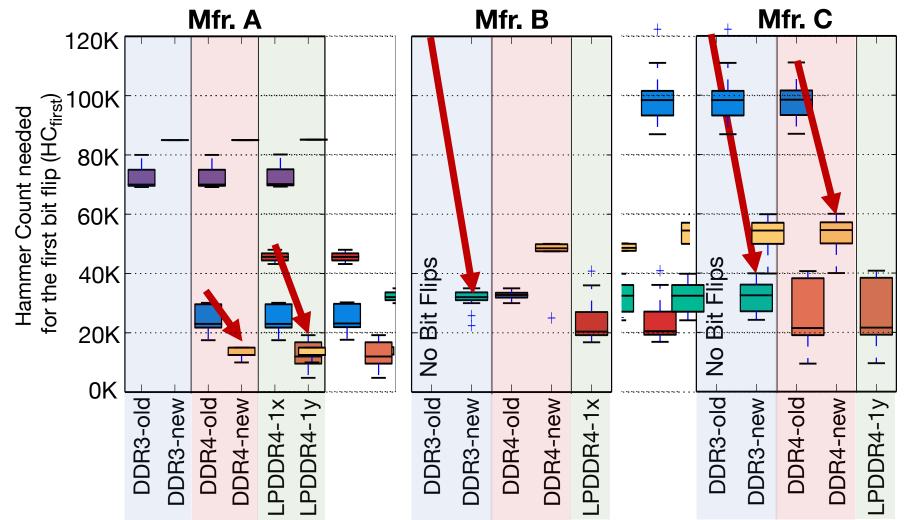
3. Hammer Count (HC) Effects



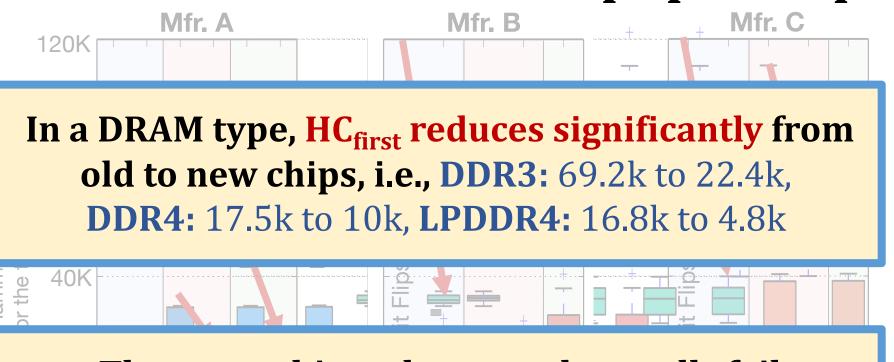
RowHammer bit flip rates **increase** when going **from old to new** DDR4 technology node generations

RowHammer bit flip rates (i.e., RowHammer vulnerability) increase with technology node generation

5. First RowHammer Bit Flips per Chip


What is the minimum Hammer Count required to cause bit flips (HC_{first})?

We note the different DRAM types on the x-axis: **DDR3**, **DDR4**, **LPDDR4**.


We focus on trends across chips of the same DRAM type to draw conclusions

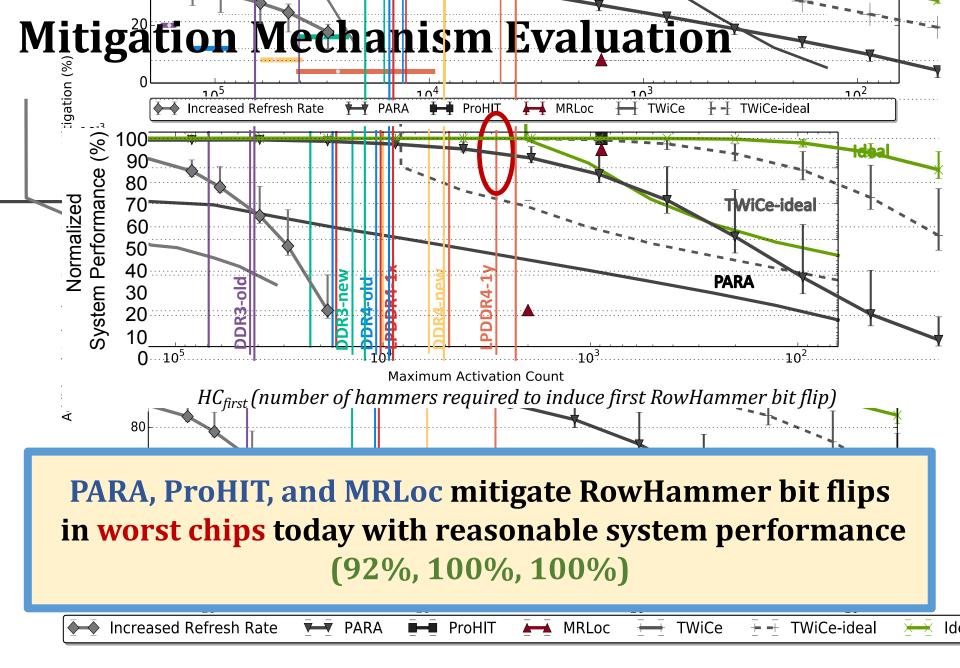
5. First RowHammer Bit Flips per Chip

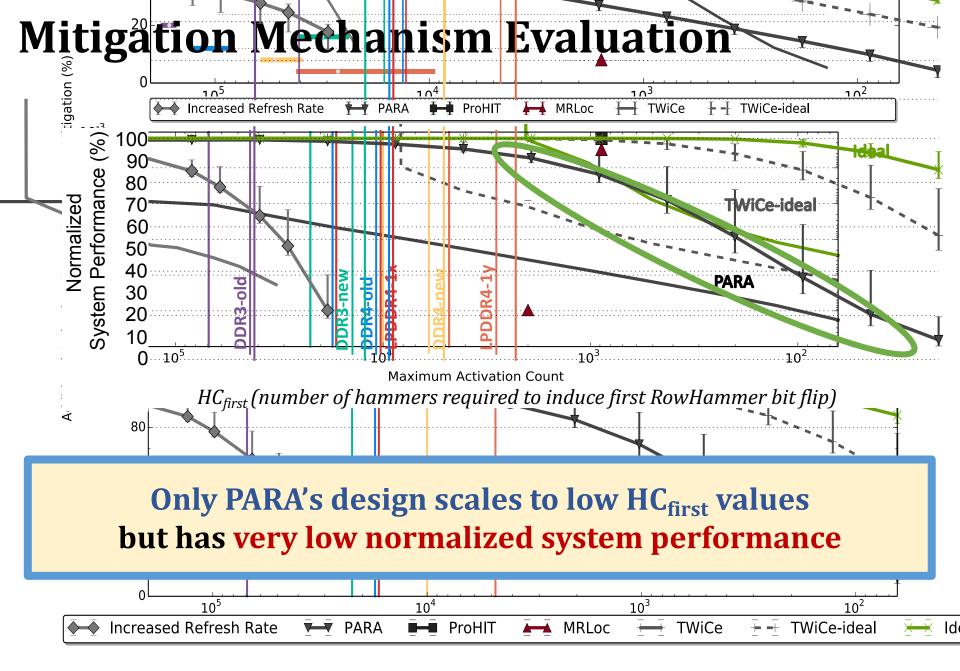
Newer chips from a given DRAM manufacturer **more** vulnerable to RowHammer

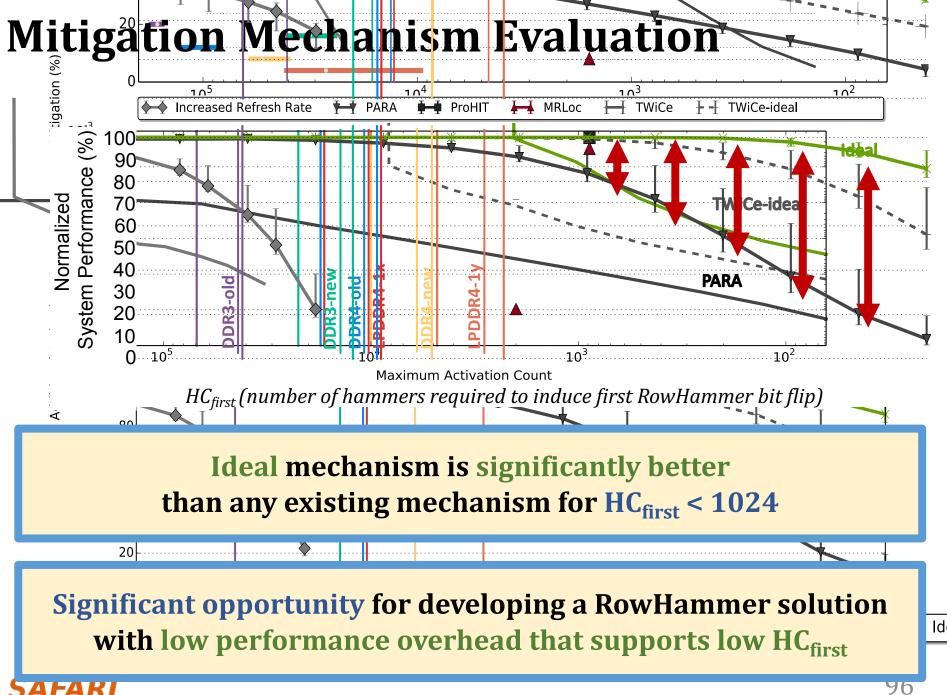
5. First RowHammer Bit Flips per Chip

There are chips whose weakest cells fail after only 4800 hammers

DDF


Newer chips from a given DRAM manufacturer **more** vulnerable to RowHammer


DP


DF

Key Takeaways from 1580 Chips

- Chips of newer DRAM technology nodes are more vulnerable to RowHammer
- There are chips today whose weakest cells fail after only 4800 hammers
- Chips of newer DRAM technology nodes can exhibit RowHammer bit flips 1) in more rows and 2) farther away from the victim row.

Key Takeaways from Mitigation Mechanisms

- Existing RowHammer mitigation mechanisms can prevent RowHammer attacks with **reasonable system performance overhead** in DRAM chips today
- Existing RowHammer mitigation mechanisms **do not scale well** to DRAM chips more vulnerable to RowHammer
- There is still **significant opportunity** for developing a mechanism that is **scalable with low overhead**

RowHammer Solutions Going Forward

Two promising directions for new RowHammer solutions:

1. DRAM-system cooperation

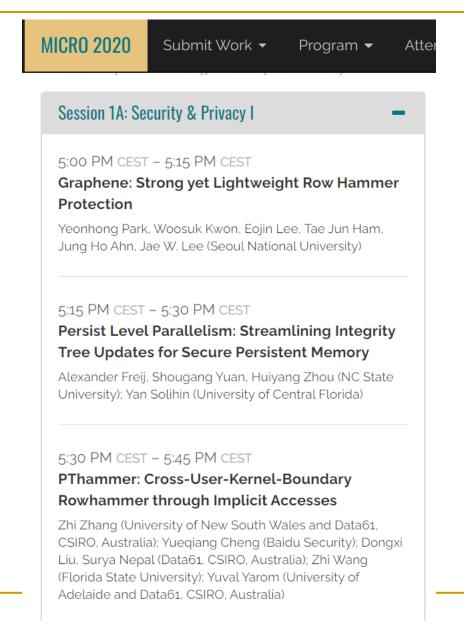
We believe the DRAM and system should cooperate more to provide a holistic solution can prevent RowHammer at low cost

2. Profile-guided

- Accurate **profile of RowHammer-susceptible cells** in DRAM provides a powerful substrate for building **targeted** RowHammer solutions, e.g.:
 - Only increase the refresh rate for rows containing RowHammer-susceptible cells
- A **fast and accurate** profiling mechanism is a key research challenge for developing low-overhead and scalable RowHammer solutions

Revisiting RowHammer An Experimental Analysis of Modern Devices and Mitigation Techniques

Jeremie S. KimMinesh PatelA. Giray YağlıkçıHasan HassanRoknoddin AziziLois OrosaOnur Mutlu


Revisiting RowHammer in 2020 (I)

 Jeremie S. Kim, Minesh Patel, A. Giray Yaglikci, Hasan Hassan, Roknoddin Azizi, Lois Orosa, and Onur Mutlu,
 "Revisiting RowHammer: An Experimental Analysis of Modern Devices and Mitigation Techniques"
 Proceedings of the <u>47th International Symposium on Computer</u> <u>Architecture</u> (ISCA), Valencia, Spain, June 2020.
 [Slides (pptx) (pdf)]
 [Lightning Talk Slides (pptx) (pdf)]
 [Talk Video (20 minutes)]
 [Lightning Talk Video (3 minutes)]

Revisiting RowHammer: An Experimental Analysis of Modern DRAM Devices and Mitigation Techniques

Jeremie S. Kim^{§†} Minesh Patel[§] A. Giray Yağlıkçı[§] Hasan Hassan[§] Roknoddin Azizi[§] Lois Orosa[§] Onur Mutlu^{§†} [§]ETH Zürich [†]Carnegie Mellon University

RowHammer in 2020 (IV)

RowHammer in 2020 (V)

S & P	A Home Program - Call For Attend - Workshops -				
	Session #5: Rowhammer Room 2				
	Session chair: Michael Franz (UC Irvine)				
	RAMBleed: Reading Bits in Memory Without Accessing Them Andrew Kwong (University of Michigan), Daniel Genkin (University of Michigan), Daniel Gruss Data61)				
	Are We Susceptible to Rowhammer? An End-to-End Methodology for Cloud Providers Lucian Cojocar (Microsoft Research), Jeremie Kim (ETH Zurich, CMU), Minesh Patel (ETH Zu (Microsoft Research), Onur Mutlu (ETH Zurich, CMU)				
	Leveraging EM Side-Channel Information to Detect Rowhammer Attacks Zhenkai Zhang (Texas Tech University), Zihao Zhan (Vanderbilt University), Daniel Balasubrar Peter Volgyesi (Vanderbilt University), Xenofon Koutsoukos (Vanderbilt University)				
	TRRespass: Exploiting the Many Sides of Target Row Refresh Pietro Frigo (Vrije Universiteit Amsterdam, The Netherlands), Emanuele Vannacci (Vrije Universiteit Veen (Qualcomm Technologies, Inc.), Onur Mutlu (ETH Zürich), Cristiano Giuffrida (Vrije Universiteit Amsterdam, The Netherlands), Kaveh Razavi (Vrije Universiteit Amsterdam, The Netherlands)				

RowHammer in 2020 (VI)

DeepHammer: Depleting the Intelligence of Deep Neural Networks through Targeted Chain of Bit Flips Fan Yao, *University of Central Florida*; Adnan Siraj Rakin and Deliang Fan, *Arizona State University* AVAILABLE MEDIA 🗋 🗃 🕥 Show details 🕨

More to Come...

Future Memory Reliability/Security Challenges

Future of Main Memory Security

- DRAM is becoming less reliable \rightarrow more vulnerable
- Due to difficulties in DRAM scaling, other problems may also appear (or they may be going unnoticed)
- Some errors may already be slipping into the field
 - Read disturb errors (Rowhammer)
 - Retention errors
 - Read errors, write errors
 - ...

These errors can also pose security vulnerabilities

Main Memory Needs Intelligent Controllers for Security

Keeping Future Memory Secure

How Do We Keep Memory Secure?

DRAM

- Flash memory
- Emerging Technologies
 - Phase Change Memory
 - STT-MRAM
 - RRAM, memristors
 - ...

Solution Direction: Principled Designs

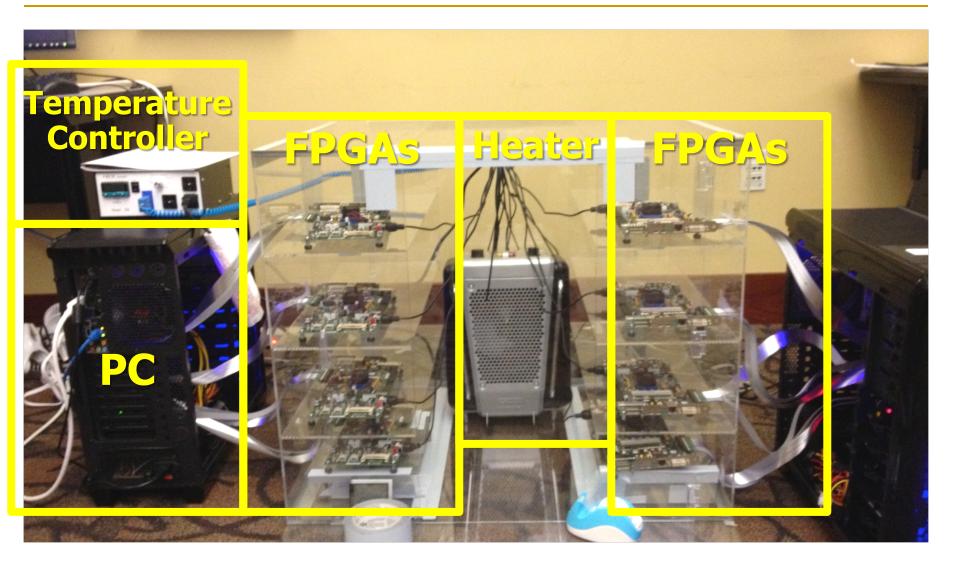
Design fundamentally secure computing architectures

Predict and prevent such safety issues

Architecting Future Memory for Security

Understand: Methods for vulnerability modeling & discovery

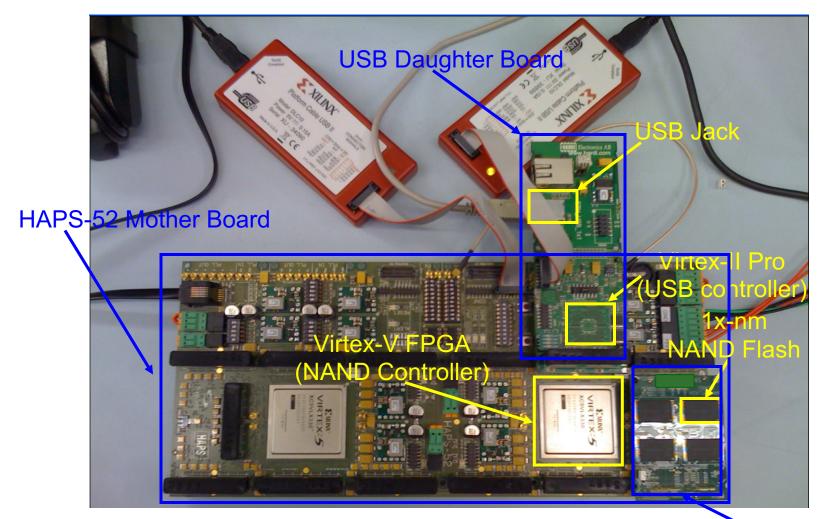
- Modeling and prediction based on real (device) data and analysis
- Understanding vulnerabilities
- Developing reliable metrics


Architect: Principled architectures with security as key concern

- Good partitioning of duties across the stack
- Cannot give up performance and efficiency
- Patch-ability in the field

Design & Test: Principled design, automation, (online) testing

- Design for security
- High coverage and good interaction with system reliability methods


Understand and Model with Experiments (DRAM)

SAFARI

Kim+, "Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors," ISCA 2014.

Understand and Model with Experiments (Flash)

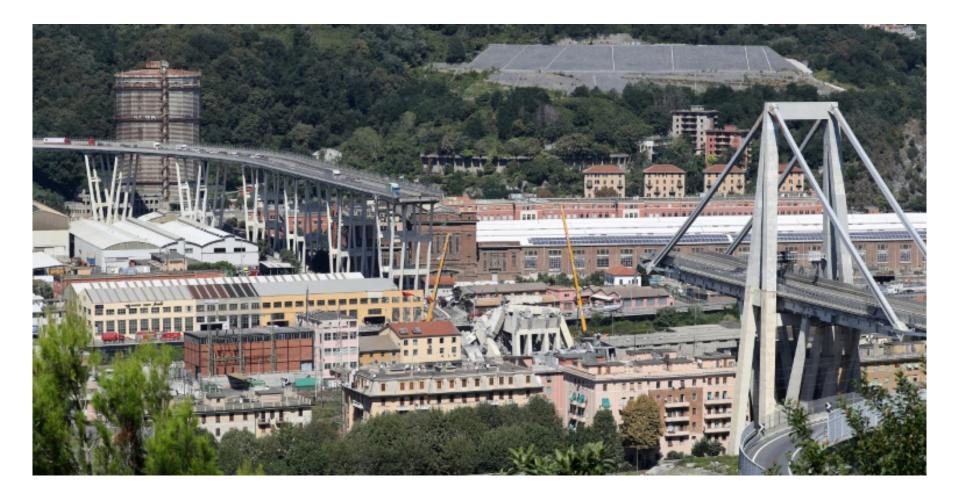
[DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014, HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017, PIEEE 2017, HPCA 2018, SIGMETRICS 2018]

NAND Daughter Board

Cai+, "Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives," Proc. IEEE 2017.

Collapse of the "Galloping Gertie" (1940)

Another Example (1994)


SAFARI

Yet Another Example (2007)

Source: Morry Gash/AP, https://www.npr.org/2017/08/01/540669701/10-years-after-bridge-collapse-america-is-still-crumbling?t=1535427165809

A More Recent Example (2018)

In-Field Patch-ability (Intelligent Memory) Can Avoid Such Failures

Conclusion

Summary: RowHammer

- Memory reliability is reducing
- Reliability issues open up security vulnerabilities
 - Very hard to defend against

Rowhammer is a prime example

- First example of how a simple hardware failure mechanism can create a widespread system security vulnerability
- Its implications on system security research are tremendous & exciting
- Bad news: RowHammer is getting worse.

Good news: We have a lot more to do.

- □ We are now fully aware hardware is easily fallible.
- We are developing both attacks and solutions.
- We are developing principled models, methodologies, solutions.

For More on RowHammer...

Onur Mutlu and Jeremie Kim,
 "RowHammer: A Retrospective"
 IEEE Transactions on Computer-Aided Design of Integrated
 Circuits and Systems (TCAD) Special Issue on Top Picks in
 Hardware and Embedded Security, 2019.
 [Preliminary arXiv version]

RowHammer: A Retrospective

Onur Mutlu^{§‡} Jeremie S. Kim^{‡§} [§]ETH Zürich [‡]Carnegie Mellon University

RowHammer in 2020 (I)

 Jeremie S. Kim, Minesh Patel, A. Giray Yaglikci, Hasan Hassan, Roknoddin Azizi, Lois Orosa, and Onur Mutlu,
 "Revisiting RowHammer: An Experimental Analysis of Modern Devices and Mitigation Techniques"
 Proceedings of the <u>47th International Symposium on Computer</u> <u>Architecture</u> (ISCA), Valencia, Spain, June 2020.
 [Slides (pptx) (pdf)]
 [Lightning Talk Slides (pptx) (pdf)]
 [Talk Video (20 minutes)]
 [Lightning Talk Video (3 minutes)]

Revisiting RowHammer: An Experimental Analysis of Modern DRAM Devices and Mitigation Techniques

Jeremie S. Kim^{§†} Minesh Patel[§] A. Giray Yağlıkçı[§] Hasan Hassan[§] Roknoddin Azizi[§] Lois Orosa[§] Onur Mutlu^{§†} [§]ETH Zürich [†]Carnegie Mellon University

RowHammer in 2020 (II)

 Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der Veen, Onur Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi, "TRRespass: Exploiting the Many Sides of Target Row Refresh" Proceedings of the <u>41st IEEE Symposium on Security and</u> <u>Privacy</u> (S&P), San Francisco, CA, USA, May 2020.
 [Slides (pptx) (pdf)]
 [Talk Video (17 minutes)]
 [Source Code]
 [Web Article]
 Best paper award.

TRRespass: Exploiting the Many Sides of Target Row Refresh

Pietro Frigo^{*†} Emanuele Vannacci^{*†} Hasan Hassan[§] Victor van der Veen[¶] Onur Mutlu[§] Cristiano Giuffrida^{*} Herbert Bos^{*} Kaveh Razavi^{*}

*Vrije Universiteit Amsterdam

[§]ETH Zürich

[¶]Qualcomm Technologies Inc.

RowHammer in 2020 (III)

 Lucian Cojocar, Jeremie Kim, Minesh Patel, Lillian Tsai, Stefan Saroiu, Alec Wolman, and <u>Onur Mutlu</u>,
 "Are We Susceptible to Rowhammer? An End-to-End Methodology for Cloud Providers"
 Proceedings of the <u>41st IEEE Symposium on Security and</u> Privacy (S&P), San Francisco, CA, USA, May 2020.
 [Slides (pptx) (pdf)]
 [Talk Video (17 minutes)]

Are We Susceptible to Rowhammer? An End-to-End Methodology for Cloud Providers

Lucian Cojocar, Jeremie Kim^{§†}, Minesh Patel[§], Lillian Tsai[‡], Stefan Saroiu, Alec Wolman, and Onur Mutlu^{§†} Microsoft Research, [§]ETH Zürich, [†]CMU, [‡]MIT

SAFARI

Funding Acknowledgments

- Alibaba, AMD, ASML, Google, Facebook, Hi-Silicon, HP Labs, Huawei, IBM, Intel, Microsoft, Nvidia, Oracle, Qualcomm, Rambus, Samsung, Seagate, VMware
- NSF
- NIH
- GSRC
- SRC
- CyLab

Acknowledgments

My current and past students and postdocs

Rachata Ausavarungnirun, Abhishek Bhowmick, Amirali Boroumand, Rui Cai, Yu Cai, Kevin Chang, Saugata Ghose, Kevin Hsieh, Tyler Huberty, Ben Jaiyen, Samira Khan, Jeremie Kim, Yoongu Kim, Yang Li, Jamie Liu, Lavanya Subramanian, Donghyuk Lee, Yixin Luo, Justin Meza, Gennady Pekhimenko, Vivek Seshadri, Lavanya Subramanian, Nandita Vijaykumar, HanBin Yoon, Jishen Zhao, ...

My collaborators

 Can Alkan, Chita Das, Phil Gibbons, Sriram Govindan, Norm Jouppi, Mahmut Kandemir, Mike Kozuch, Konrad Lai, Ken Mai, Todd Mowry, Yale Patt, Moinuddin Qureshi, Partha Ranganathan, Bikash Sharma, Kushagra Vaid, Chris Wilkerson, ...

Acknowledgments

SAFARI Research Group safari.ethz.ch

Onur Mutlu's SAFARI Research Group

Computer architecture, HW/SW, systems, bioinformatics, security, memory

https://safari.ethz.ch/safari-newsletter-april-2020/

SAFARI Newsletter April 2020 Edition

https://safari.ethz.ch/safari-newsletter-april-2020/

View in your browser

Think Big, Aim High

Dear SAFARI friends,

Revisiting RowHammer

Onur Mutlu omutlu@gmail.com https://people.inf.ethz.ch/omutlu

9 October 2020

VLSI-SoC

EH zürich

Backup Slides for Further Info

Research & Teaching: Some Overview Talks

https://www.youtube.com/onurmutlulectures

Future Computing Architectures

https://www.youtube.com/watch?v=kgiZISOcGFM&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJI&index=1

Enabling In-Memory Computation

https://www.youtube.com/watch?v=njX 14584Jw&list=PL5Q2soXY2Zi8D 5MGV6EnXEJHnV2YFBJl&index=16

Accelerating Genome Analysis

https://www.youtube.com/watch?v=hPnSmfwu2-A&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=9

Rethinking Memory System Design

https://www.youtube.com/watch?v=F7xZLNMIY1E&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=3

Intelligent Architectures for Intelligent Machines

https://www.youtube.com/watch?v=n8Aj_A0WSg8&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJI&index=22

SAFARI

An Interview on Research and Education

- Computing Research and Education (@ ISCA 2019)
 - https://www.youtube.com/watch?v=8ffSEKZhmvo&list=PL5Q2 soXY2Zi_4oP9LdL3cc8G6NIjD2Ydz

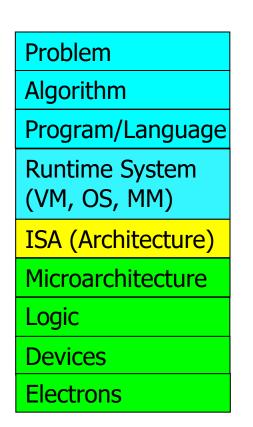
- Maurice Wilkes Award Speech (10 minutes)
 - https://www.youtube.com/watch?v=tcQ3zZ3JpuA&list=PL5Q2 soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=15

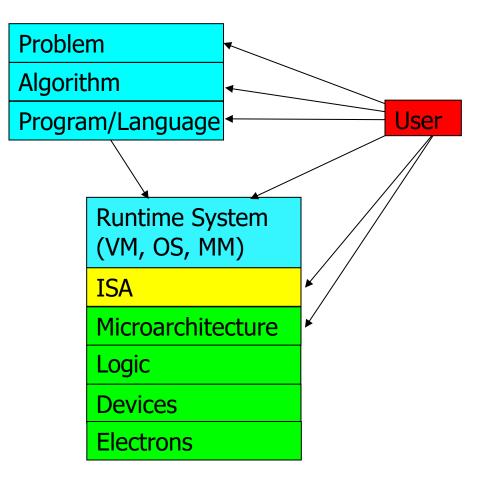
More Thoughts and Suggestions

Onur Mutlu, <u>"Some Reflections (on DRAM)"</u> Award Speech for <u>ACM SIGARCH Maurice Wilkes Award</u>, at the **ISCA** Awards Ceremony, Phoenix, AZ, USA, 25 June 2019. [Slides (pptx) (pdf)] [Video of Award Acceptance Speech (Youtube; 10 minutes) (Youku; 13 minutes)] [Video of Interview after Award Acceptance (Youtube; 1 hour 6 minutes) (Youku; 1 hour 6 minutes)] [News Article on "ACM SIGARCH Maurice Wilkes Award goes to Prof. Onur Mutlu"]

Onur Mutlu,
 <u>"How to Build an Impactful Research Group"</u>
 <u>57th Design Automation Conference Early Career Workshop (DAC</u>), Virtual,
 19 July 2020.
 [Slides (pptx) (pdf)]

SAFARI


Understanding RowHammer


Why Is This Happening?

- DRAM cells are too close to each other!
 - They are not electrically isolated from each other
- Access to one cell affects the value in nearby cells
 - due to electrical interference between
 - the cells
 - wires used for accessing the cells
 - Also called cell-to-cell coupling/interference
- Example: When we activate (apply high voltage) to a row, an adjacent row gets slightly activated as well
 - Vulnerable cells in that slightly-activated row lose a little bit of charge
 - □ If row hammer happens enough times, charge in such cells gets drained

Higher-Level Implications

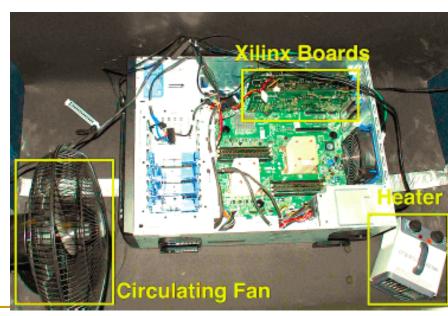
This simple circuit level failure mechanism has enormous implications on upper layers of the transformation hierarchy

Root Causes of Disturbance Errors

- Cause 1: Electromagnetic coupling
 - Toggling the wordline voltage briefly increases the voltage of adjacent wordlines
 - − Slightly opens adjacent rows → Charge leakage
- Cause 2: Conductive bridges
- Cause 3: Hot-carrier injection

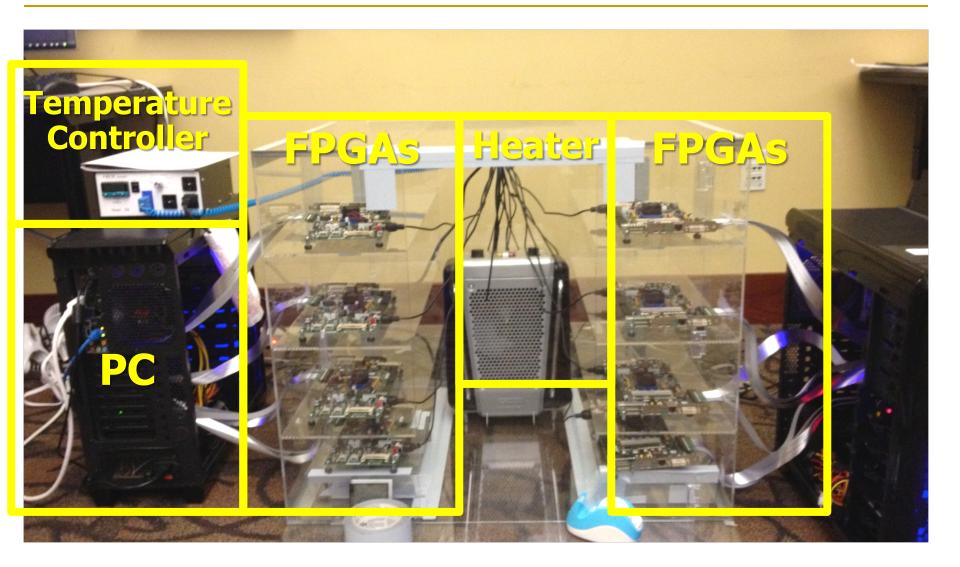
Confirmed by at least one manufacturer

Experimental DRAM Testing Infrastructure



<u>Flipping Bits in Memory Without Accessing</u> <u>Them: An Experimental Study of DRAM</u> <u>Disturbance Errors</u> (Kim et al., ISCA 2014)

Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case (Lee et al., HPCA 2015)


AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems (Qureshi et al., DSN 2015) An Experimental Study of Data Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms (Liu et al., ISCA 2013)

The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study (Khan et al., SIGMETRICS 2014)

SAFARI

Where RowHammer Was Discovered

SAFARI

Kim+, "Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors," ISCA 2014.

Tested DRAM Modules

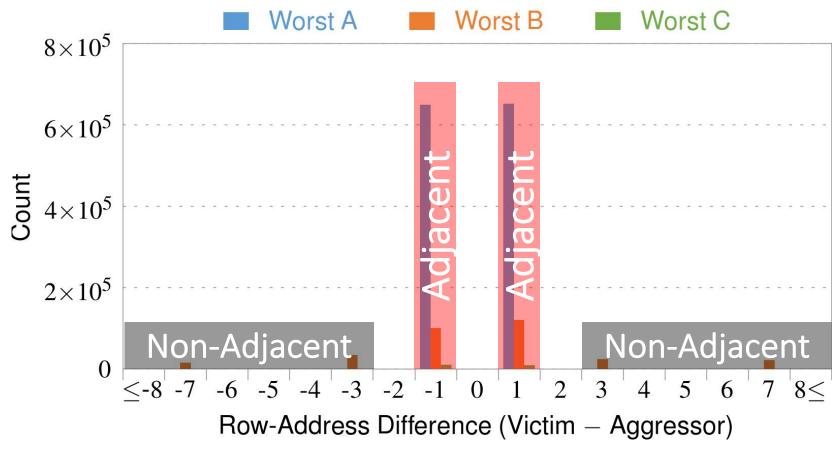
(129 total)

SAFARI

Manufacturer	Module	Date*	$Timing^{\dagger}$		Organization		Chip			Victims-per-Module			RI _{th} (ms)
		(yy-ww)	Freq (MT/s)	t _{RC} (ns)	Size (GB)	Chips	Size (Gb) [‡]	Pins	Die Version [§]	Average	Minimum	Maximum	Min
A Total of 43 Modules	A ₁	10-08	1066	50.625	0.5	4	1	×16	В	0	0	0	-
	A_2	10-20	1066	50.625	1	8	1	×8	\mathcal{F}	0	0	0	-
	A ₃₋₅	10-20	1066	50.625	0.5	4	1	×16	B	0	0	0	-
	A ₆₋₇	11-24	1066	49.125	1	4	2	×16	\mathcal{D}	7.8×10^{1}	5.2×10^{1}	1.0×10^{2}	21.3
	A ₈₋₁₂	11-26	1066	49.125	1	4	2	×16	\mathcal{D}	2.4×10^{2}	5.4×10^{1}	4.4×10^{2}	16.4
	A ₁₃₋₁₄	11-50	1066	49.125	1	4	2	×16	\mathcal{D}		1.7×10^{1}	1.6×10^{2}	26.2
	A ₁₅₋₁₆	12-22	1600	50.625	1	4	2	×16	\mathcal{D}	9.5	9	1.0×10^{1}	34.4
	A ₁₇₋₁₈	12-26	1600	49.125	2	8	2	×8	\mathcal{M}	1.2×10^{2}	3.7×10^{1}	2.0×10^{2}	21.3
	A ₁₉₋₃₀	12-40	1600	48.125	2	8	2	×8	ĸ		7.0×10^{6}	1.0×10^{7}	8.2
	A ₃₁₋₃₄	13-02	1600	48.125	2	8	2	×8	-	1.8×10^{6}	1.0×10^{6}	3.5×10^{6}	11.5
	A ₃₅₋₃₆	13-14	1600	48.125	2	8	2	×8	-	4.0×10^{1}	1.9×10^{1}	6.1×10^{1}	21.3
	A ₃₇₋₃₈	13-20	1600	48.125	2	8	2	×8	ĸ	1.7×10^{6}	1.4×10^{6}	2.0×10^{6}	9.8
	A ₃₉₋₄₀	13-28	1600	48.125	2	8	2	×8	κ	5.7×10^{4}	5.4×10^{4}	6.0×10^{4}	16.4
	A ₄₁	14-04	1600	49.125	2	8	2	×8	-	2.7×10^{5}	2.7×10^{5}	2.7×10^{5}	18.0
	A ₄₂₋₄₃	14-04	1600	48.125	2	8	2	×8	ĸ	0.5	0	1	62.3
B Total of 54 Modules	B	08-49	1066	50.625	1	8	1	×8	\mathcal{D} \mathcal{E}	0	0	0	-
	B ₂	09-49	1066	50.625	1	8	1	×8	с F	0	0	0	-
	B ₃	10-19 10-31	1066 1333	50.625 49.125	1 2	8	1 2	×8 ×8	C	0	0	0	-
	B ₄ B ₅	11-13	1333	49.125	2	8	2	×8	C	0	0	0	-
	B ₆	11-15	1066	50.625	1	8	1	×8	F	0	0	0	-
	B ₇	11-10	1066	50.625	1	8	1	×8	F	0	0	0	_
	B ₈	11-25	1333	49.125	2	8	2	×8	c	0	0	0	_
	B ₉	11-37	1333	49.125	2	8	2	×8	\mathcal{D}	1.9 × 10 ⁶	1.9 × 10 ⁶	1.9 × 10 ⁶	11.5
	B ₁₀₋₁₂	11-46	1333	49.125	2	8	2	×8	D	2.2×10^{6}	1.5×10^{6}	2.7×10^{6}	11.5
	B ₁₃	11-49	1333	49.125	2	8	2	×8	c	0	0	0	-
	B ₁₄	12-01	1866	47.125	2	8	2	×8	\mathcal{D}	9.1 × 10 ⁵	9.1×10^{5}	9.1 × 10 ⁵	9.8
	B ₁₅₋₃₁	12-10	1866	47.125	2	8	2	×8	\mathcal{D}	9.8×10^{5}	7.8×10^{5}	1.2×10^{6}	11.5
	B ₃₂	12-25	1600	48.125	2	8	2	×8	Ē		7.4×10^{5}	7.4×10^{5}	11.5
	B ₃₃₋₄₂	12-28	1600	48.125	2	8	2	×8	ε		1.9×10^{5}	7.3×10^{5}	11.5
	B ₄₃₋₄₇	12-31	1600	48.125	2	8	2	×8	ε	4.0×10^5	2.9×10^{5}	5.5×10^{5}	13.1
	B ₄₈₋₅₁	13-19	1600	48.125	2	8	2	×8	ε		7.4×10^{4}	1.4×10^{5}	14.7
	B ₅₂₋₅₃	13-40	1333	49.125	2	8	2	×8	\mathcal{D}		2.3×10^4	2.9×10^{4}	21.3
	B ₅₄	14-07	1333	49.125	2	8	2	×8	\mathcal{D}		$7.5 imes 10^3$	7.5×10^3	26.2
	C ₁	10-18	1333	49.125	2	8	2	×8	\mathcal{A}	0	0	0	-
	C ₂	10-20	1066	50.625	2	8	2	$\times 8$	\mathcal{A}	0	0	0	-
	G2	10-22	1066	50.625	2	8	2	$\times 8$	\mathcal{A}	0	0	0	-
	G	10-26	1333	49.125	2	8	2	×8	B	$8.9 imes 10^2$	6.0×10^{2}	1.2×10^{3}	29.5
	G ₆	10-43	1333	49.125	1	8	1	$\times 8$	τ	0	0	0	-
	C ₇	10-51	1333	49.125	2	8	2	×8	B	$4.0 imes 10^2$	$4.0 imes 10^2$	$4.0 imes 10^2$	29.5
	C.	11-12	1333	46.25	2	8	2	×8	B	6.9×10^{2}	6.9×10^{2}	6.9×10^{2}	21.3
	C ₉	11-19	1333	46.25	2	8	2	$\times 8$	B	9.2×10^{2}	9.2×10^{2}	9.2×10^{2}	27.9
	C10	11-31	1333	49.125	2	8	2	$\times 8$	В	3	3	3	39.3
	CII	11-42	1333	49.125	2	8	2	$\times 8$	B	1.6×10^{2}	1.6×10^{2}	1.6×10^{2}	39.3
	C ₁₂	11-48	1600	48.125	2	8	2	×8	С	7.1×10^4	7.1×10^{4}	7.1×10^{4}	19.7
	C ₁₃	12-08	1333	49.125	2	8	2	$\times 8$	С	3.9×10^{4}	3.9×10^{4}	3.9×10^{4}	21.3
	C14-15	12-12	1333	49.125	2	8	2	$\times 8$	С	3.7×10^{4}	2.1×10^{4}	5.4×10^{4}	21.3
	C ₁₆₋₁₈	12-20	1600	48.125	2	8	2	$\times 8$	С	3.5×10^{3}	1.2×10^{3}	7.0×10^{3}	27.9
	C19	12-23	1600	48.125	2	8	2	$\times 8$	ε	1.4×10^{5}	1.4×10^{5}	1.4×10^{5}	18.0
	C20	12-24	1600	48.125	2	8	2	$\times 8$	С	$6.5 imes 10^4$	6.5×10^{4}	6.5×10^{4}	21.3
	C ₂₁	12-26	1600	48.125	2	8	2	×8	С	$2.3 imes 10^4$	2.3×10^{4}	2.3×10^{4}	24.6
	C ₂₂	12-32	1600	48.125	2	8	2	$\times 8$	С	1.7×10^4	1.7×10^{4}	1.7×10^{4}	22.9
	C23-24	12-37	1600	48.125	2	8	2	$\times 8$	С	$2.3 imes 10^4$	1.1×10^{4}	3.4×10^{4}	18.0
	C25-30	12-41	1600	48.125	2	8	2	$\times 8$	С	$2.0 imes 10^4$	$1.1 imes 10^4$	3.2×10^{4}	19.7
	C ₃₁	13-11	1600	48.125	2	8	2	×8	С		3.3×10^{5}	3.3×10^{5}	14.7
	C ₃₂	13-35	1600	48.125	2	8	2	×8	С		3.7×10^{4}		21.3
	- 32				-	-	-		-				

* We report the manufacture date marked on the chip packages, which is more accurate than other dates that can be gleaned from a module. † We report timing constraints stored in the module's on-board ROM [33], which is read by the system BIOS to calibrate the memory controller. ‡ The maximum DRAM chip size supported by our testing platform is 2Gb.

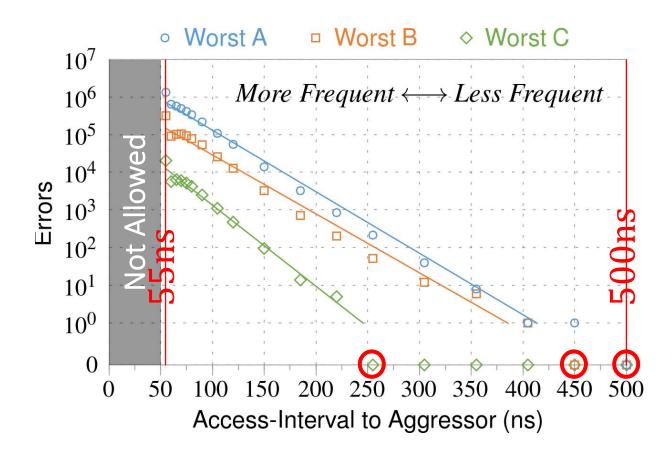
§ We report DRAM die versions marked on the chip packages, which typically progress in the following manner: $\mathcal{M} \to \mathcal{A} \to \mathcal{B} \to \mathcal{C} \to \cdots$.


Table 3. Sample population of 129 DDR3 DRAM modules, categorized by manufacturer and sorted by manufacture date

RowHammer Characterization Results

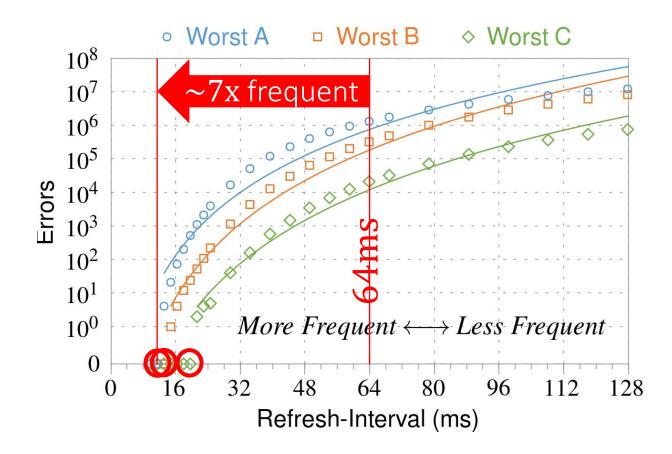
- 1. Most Modules Are at Risk
- 2. Errors vs. Vintage
- 3. Error = Charge Loss
- 4. Adjacency: Aggressor & Victim
- 5. Sensitivity Studies
- 6. Other Results in Paper
- 7. Solution Space

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM143Disturbance Errors, (Kim et al., ISCA 2014)


4. Adjacency: Aggressor & Victim

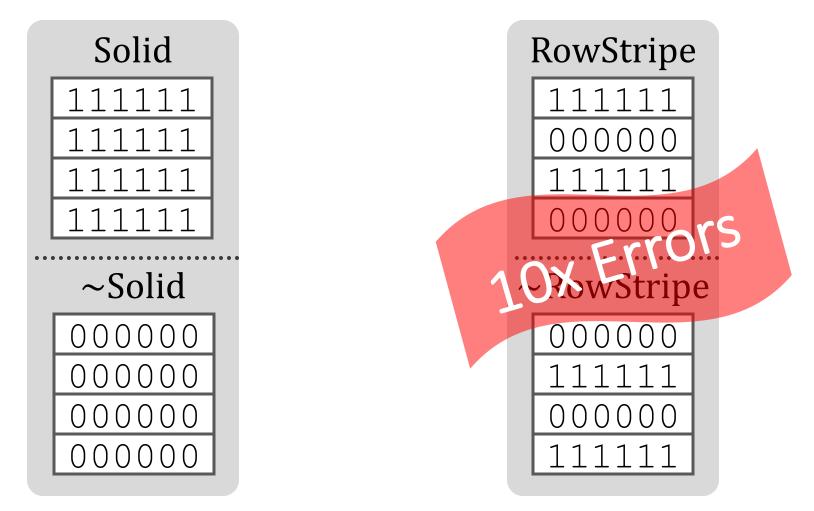
Note: For three modules with the most errors (only first bank)

Most aggressors & victims are adjacent


1 Access Interval (Aggressor)

Note: For three modules with the most errors (only first bank)

Less frequent accesses → Fewer errors


2 Refresh Interval

Note: Using three modules with the most errors (only first bank)

More frequent refreshes \rightarrow *Fewer errors*

Errors affected by data stored in other cells

6. Other Results (in Paper)

- Victim Cells ≠ Weak Cells (i.e., leaky cells)
 Almost no overlap between them
- Errors not strongly affected by temperature
 Default temperature: 50°C
 - At 30°C and 70°C, number of errors changes <15%
- Errors are repeatable
 - Across ten iterations of testing, >70% of victim cells had errors in every iteration

6. Other Results (in Paper) cont'd

- As many as 4 errors per cache-line

 Simple ECC (e.g., SECDED) cannot prevent all errors
- Number of cells & rows affected by aggressor

 Victims cells per aggressor: ≤110
 Victims rows per aggressor: ≤9
- Cells affected by two aggressors on either side
 - Very small fraction of victim cells (<100) have an error when either one of the aggressors is toggled

First RowHammer Analysis

Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
 "Flipping Bits in Memory Without Accessing Them: An

 Experimental Study of DRAM Disturbance Errors"
 Proceedings of the <u>41st International Symposium on Computer</u>
 <u>Architecture</u> (ISCA), Minneapolis, MN, June 2014.

 [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code and Data]

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors

Yoongu Kim¹ Ross Daly^{*} Jeremie Kim¹ Chris Fallin^{*} Ji Hye Lee¹ Donghyuk Lee¹ Chris Wilkerson² Konrad Lai Onur Mutlu¹ ¹Carnegie Mellon University ²Intel Labs

RowHammer Solutions

Naive Solutions

1 Throttle accesses to same row

- − Limit access-interval: ≥500ns
- Limit number of accesses: $\leq 128K$ (=64ms/500ns)

2 Refresh more frequently

– Shorten refresh-interval by $\sim 7x$

Both naive solutions introduce significant overhead in performance and power

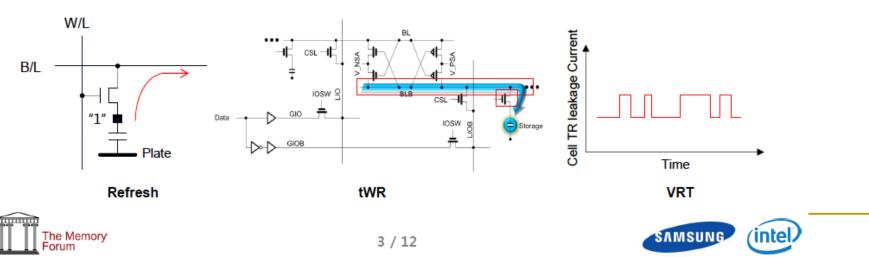
Requirements for PARA

- If implemented in DRAM chip (done today)
 - Enough slack in timing and refresh parameters
 - Plenty of slack today:
 - Lee et al., "Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common Case," HPCA 2015.
 - Chang et al., "Understanding Latency Variation in Modern DRAM Chips," SIGMETRICS 2016.
 - Lee et al., "Design-Induced Latency Variation in Modern DRAM Chips," SIGMETRICS 2017.
 - Chang et al., "Understanding Reduced-Voltage Operation in Modern DRAM Devices," SIGMETRICS 2017.
 - Ghose et al., "What Your DRAM Power Models Are Not Telling You: Lessons from a Detailed Experimental Study," SIGMETRICS 2018.
 - Kim et al., "Solar-DRAM: Reducing DRAM Access Latency by Exploiting the Variation in Local Bitlines," ICCD 2018.
- If implemented in memory controller
 - Better coordination between memory controller and DRAM
 - Memory controller should know which rows are physically adjacent

Industry Is Writing Papers About It, Too

DRAM Process Scaling Challenges

Refresh


- · Difficult to build high-aspect ratio cell capacitors decreasing cell capacitance
- · Leakage current of cell access transistors increasing

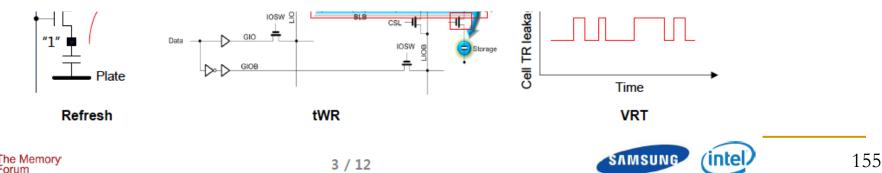
✤ tWR

- · Contact resistance between the cell capacitor and access transistor increasing
- · On-current of the cell access transistor decreasing
- · Bit-line resistance increasing

VRT

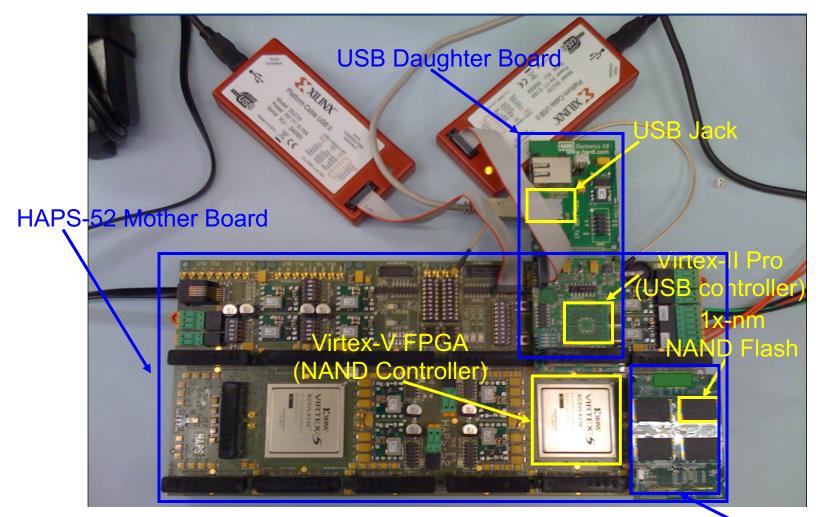
Occurring more frequently with cell capacitance decreasing

Industry Is Writing Papers About It, Too


DRAM Process Scaling Challenges

* Refresh

Difficult to build high-aspect ratio cell capacitors decreasing cell capacitance
THE MEMORY FORUM 2014


Co-Architecting Controllers and DRAM to Enhance DRAM Process Scaling

Uksong Kang, Hak-soo Yu, Churoo Park, *Hongzhong Zheng, **John Halbert, **Kuljit Bains, SeongJin Jang, and Joo Sun Choi

Samsung Electronics, Hwasung, Korea / *Samsung Electronics, San Jose / **Intel

Aside: Intelligent Controller for NAND Flash

[DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014, HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017, PIEEE 2017, HPCA 2018, SIGMETRICS 2018]

NAND Daughter Board

Cai+, "Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives," Proc. IEEE 2017.

Revisiting RowHammer in 2020

Executive Summary

- <u>Motivation</u>: Denser DRAM chips are more vulnerable to RowHammer but no characterization-based study demonstrates how vulnerability scales
- **<u>Problem</u>**: Unclear if existing mitigation mechanisms will remain viable for future DRAM chips that are likely to be more vulnerable to RowHammer
- <u>Goal</u>:
 - 1. Experimentally demonstrate how vulnerable modern DRAM chips are to RowHammer and study how this vulnerability will scale going forward
 - 2. Study viability of existing mitigation mechanisms on more vulnerable chips
- **Experimental Study**: First rigorous RowHammer characterization study across a broad range of DRAM chips
 - 1580 chips of different DRAM {types, technology node generations, manufacturers}
 - We find that RowHammer vulnerability worsens in newer chips
- **<u>RowHammer Mitigation Mechanism Study</u>**: How five state-of-the-art mechanisms are affected by worsening RowHammer vulnerability
 - Reasonable performance loss (8% on average) on modern DRAM chips
 - Scale poorly to more vulnerable DRAM chips (e.g., 80% performance loss)
- <u>**Conclusion:**</u> it is critical to research more effective solutions to RowHammer for future DRAM chips that will likely be even more vulnerable to RowHammer

Motivation

- Denser DRAM chips are **more vulnerable** to RowHammer
- Three prior works [Kim+, ISCA'14], [Park+, MR'16], [Park+, MR'16], over the last six years provide RowHammer characterization data on real DRAM
- However, there is no comprehensive experimental study that demonstrates how vulnerability scales across DRAM types and technology node generations
- It is **unclear whether current mitigation mechanisms will remain viable** for future DRAM chips that are likely to be more vulnerable to RowHammer

Goal

 Experimentally demonstrate how vulnerable modern DRAM chips are to RowHammer and predict how this vulnerability will scale going forward

2. Examine the viability of current mitigation mechanisms on more vulnerable chips

Effective RowHammer Characterization

To characterize our DRAM chips at **worst-case** conditions, we:

1. Prevent sources of interference during core test loop

- We disable:

SAFARI

- **DRAM refresh**: to avoid refreshing victim row
- DRAM calibration events: to minimize variation in test timing
- RowHammer mitigation mechanisms: to observe circuit-level effects
- Test for less than refresh window (32ms) to avoid retention failures

2. Worst-case access sequence

- We use **worst-case** access sequence based on prior works' observations
- For each row, repeatedly access the two directly physically-adjacent rows as fast as possible

[More details in the paper]

Testing Methodology

	Row 0	Aggressor Row
REFRESH	Row 1	Victim Row
	Row 2	Aggressor Row
	Row 3	Row
	Row 4	Row
	Row 5	Row

DRAM_RowHammer_Characterization():

foreach *row* in *DRAM*:

set victim_row to row

set aggressor_row1 to victim_row - 1

set aggressor_row2 to victim_row + 1

Disable DRAM refresh

Refresh victim_row

for $n = 1 \rightarrow HC$: // core test loop activate aggressor_row1 activate aggressor_row2 Enable DRAM refresh Record RowHammer bit flips to storage Restore bit flips to original values Disable refresh to **prevent interruptions** in the core loop of our test **from refresh operations**

Induce RowHammer bit flips on a **fully charged row**

Testing Methodology

closed	Row 0	Aggressor Row
	Row 1	Aggressor Row
-	Row 2	Row
	Row 3	Aggressor Row
-	Row 4	Victim Row
-	Row 5	Aggressor Row

DRAM RowHammer Characterization(): Disable refresh to prevent **foreach** row in DRAM: interruptions in the core loop of set victim row to row our test from refresh operations set aggressor_row1 to victim_row - 1 set aggressor_row2 to victim_row + 1 Induce RowHammer bit flips on a Disable DRAM refresh fully charged row Refresh victim row for $n = 1 \rightarrow HC$: // core test loop Core test loop where we alternate activate aggressor row1 accesses to adjacent rows activate aggressor_row2 1 Hammer (HC) = two accesses Enable DRAM refresh Record RowHammer bit flips to storage Prevent further retention failures Restore bit flips to original values Record bit flips for analysis 163SAFARI

1. RowHammer Vulnerability

Q. Can we induce RowHammer bit flips in all of our DRAM chips?

All chips are vulnerable, except many DDR3 chips

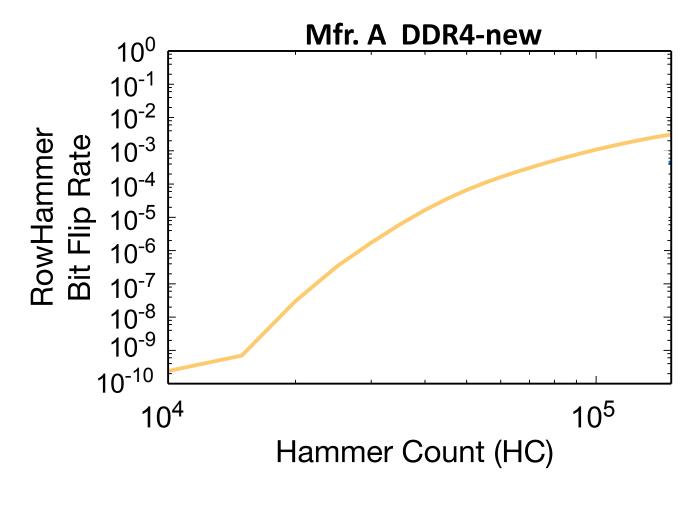
- A total of 1320 out of all 1580 chips (84%) are vulnerable
- Within DDR3-old chips, only 12% of chips (24/204) are vulnerable
- Within **DDR3-new** chips, **65%** of chips (148/228) are vulnerable

Newer DRAM chips are more vulnerable to RowHammer

2. Data Pattern Dependence

Q. Are some data patterns more effective in inducing RowHammer bit flips?

• We test **several data patterns** typically examined in prior work to identify the worst-case data pattern

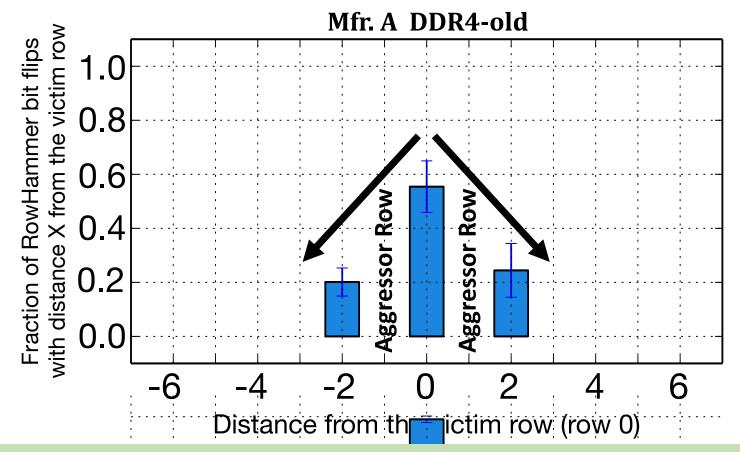

• The worst-case data pattern is **consistent across chips** of the same manufacturer and DRAM type-node configuration

• We use the **worst-case data pattern** per DRAM chip to characterize each chip at **worst-case conditions** and **minimize the extensive testing time**

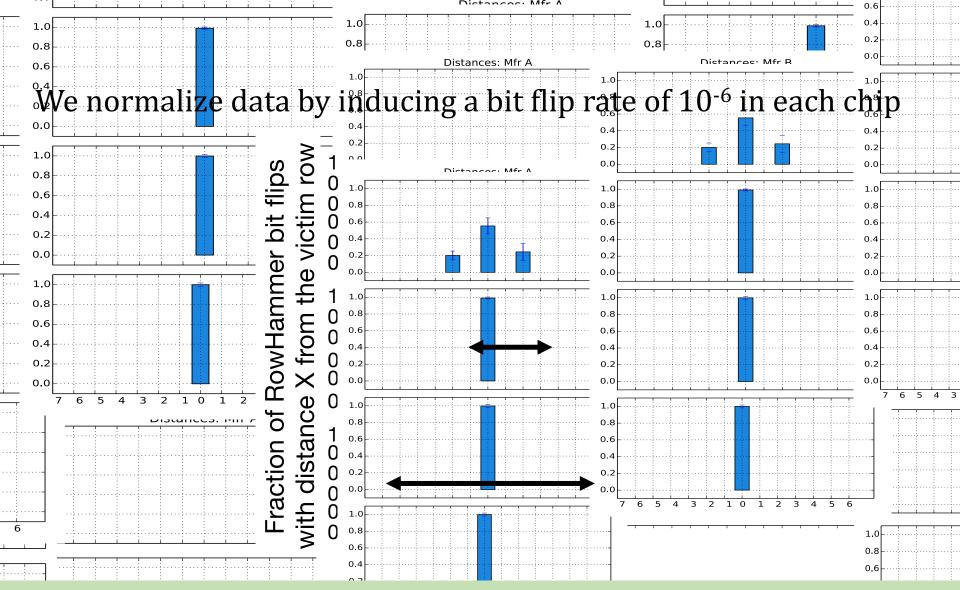
[More detail and figures in paper]

3. Hammer Count (HC) Effects

Q. How does the Hammer Count affect the number of bit flips induced?


Hammer Count = 2 Accesses, one to each adjacent row of victim

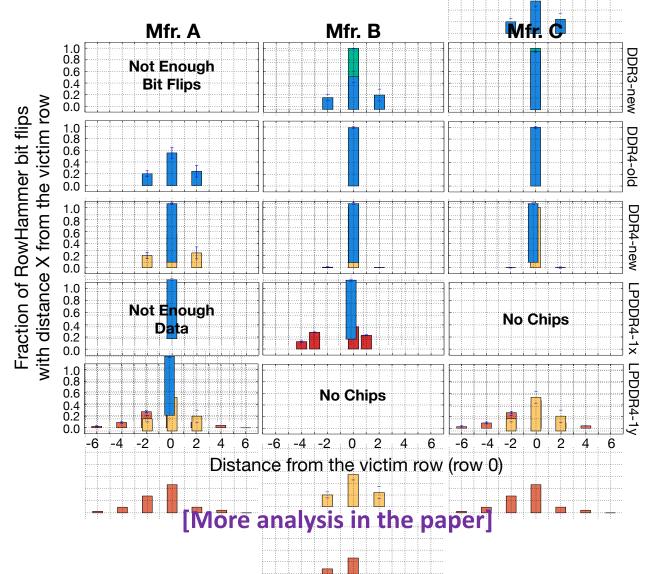
SAFARI


166

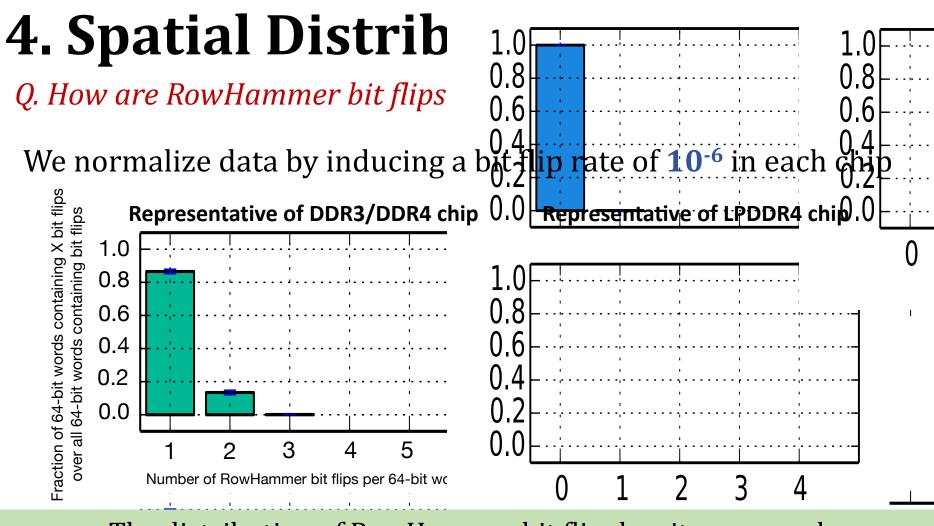
4. Spatial Effects: Row Distance

Q. Where do RowHammer bit flips occur relative to aggressor rows?

The number of RowHammer bit flips that occur in a given row decreases as the distance from the **victim row (row 0)** increases.

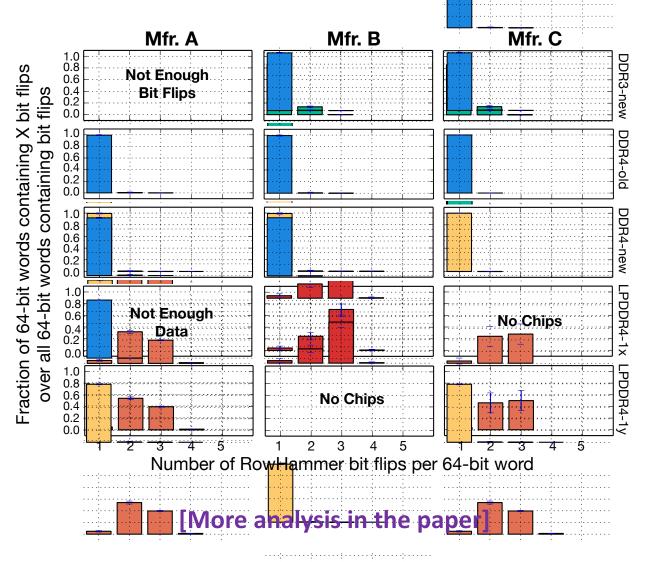


Chips of newer DRAM technology nodes can exhibit RowHammer bit flips 1) in **more rows** and 2) **farther away** from the victim row.

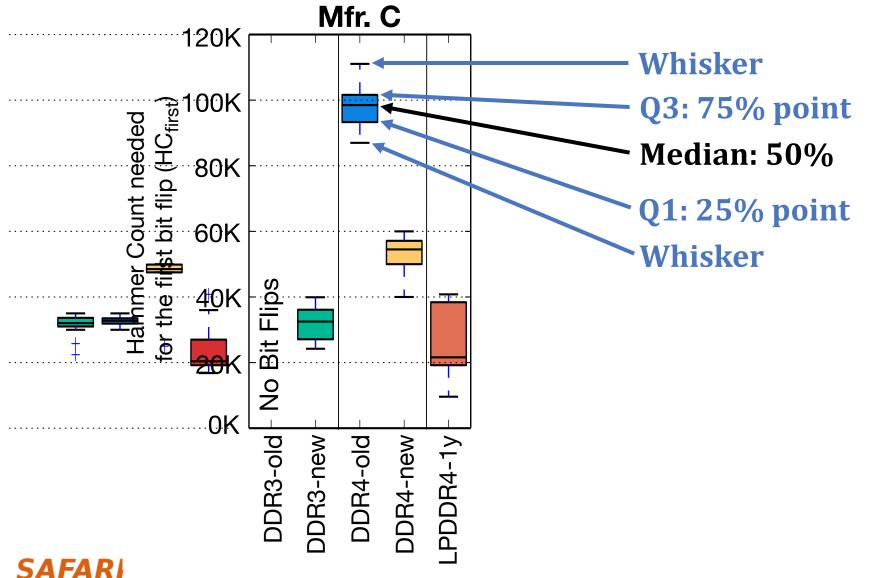

0.6----

4. Spatial Effects: Row Distance

We plot this data for each DRAM type-node configuration per manufacturer


.

The distribution of RowHammer bit flip density per word **changes significantly in LPDDR4 chips** from other DRAM types 0.61 At a bit flip rate of 10⁻⁶, a 64-bit word can contain up to **4 bit flips**. Even at this very low bit flip rate, a **very strong ECC** is required

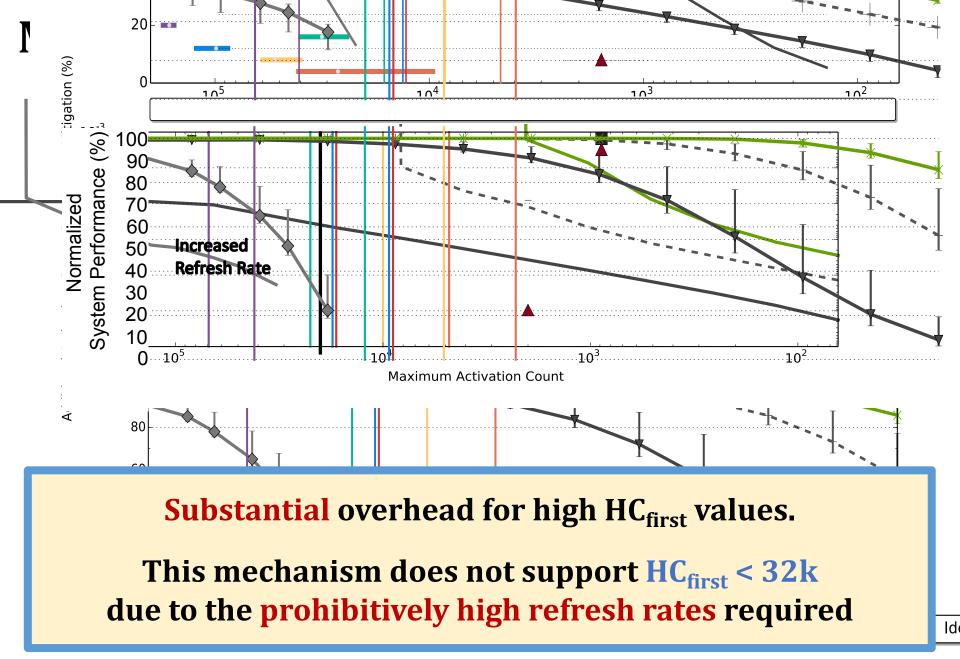

4. Spatial Distribution of Bit Flips

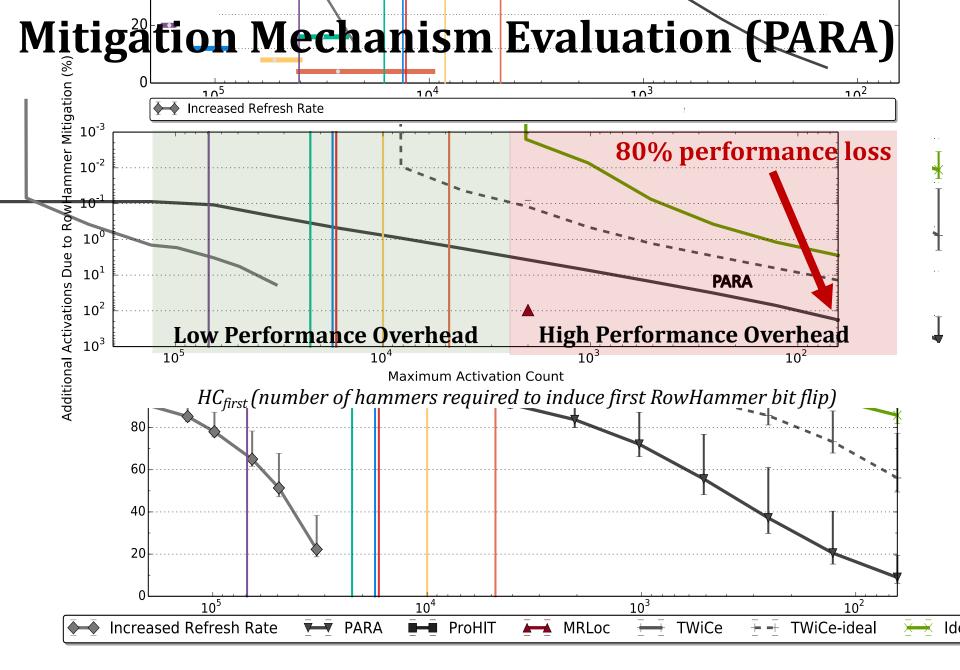
We plot this data for each DRAM type-node configuration per manufacturer

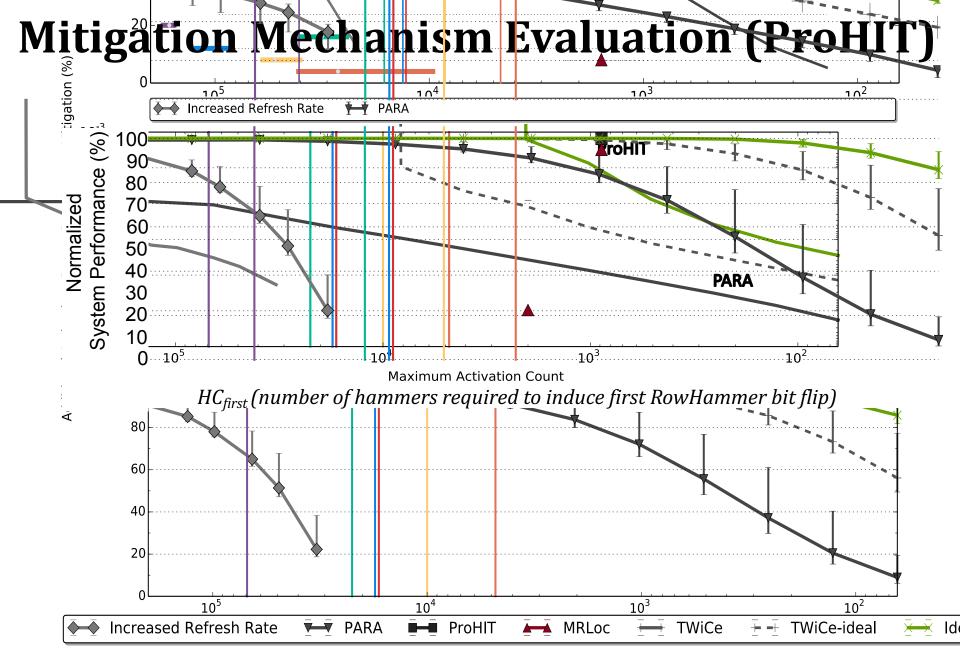
5. First RowHammer Bit Flips per Chip

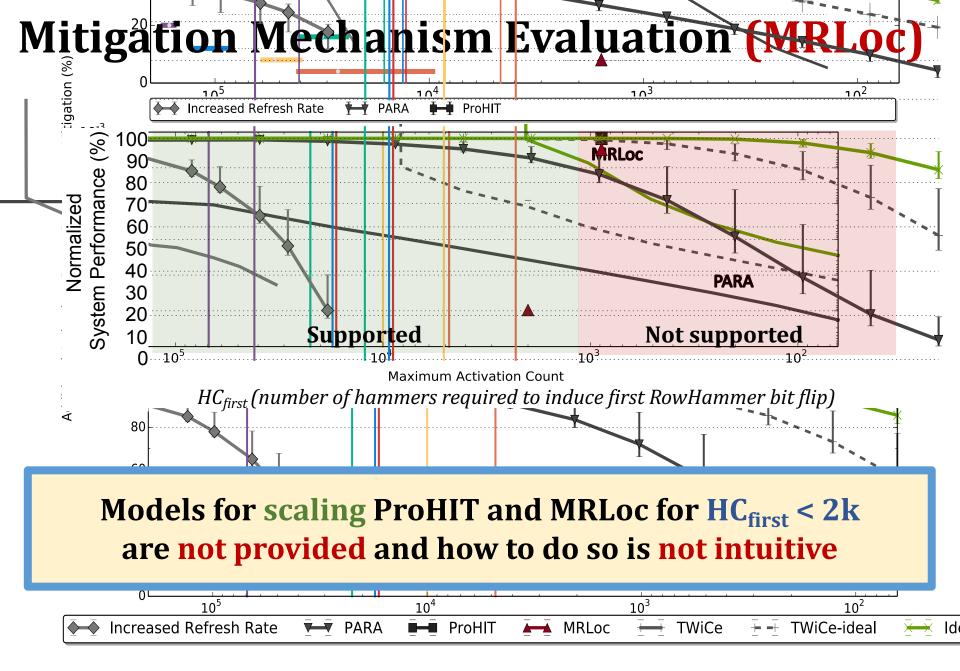
What is the minimum Hammer Count required to cause bit flips (HC_{first})?

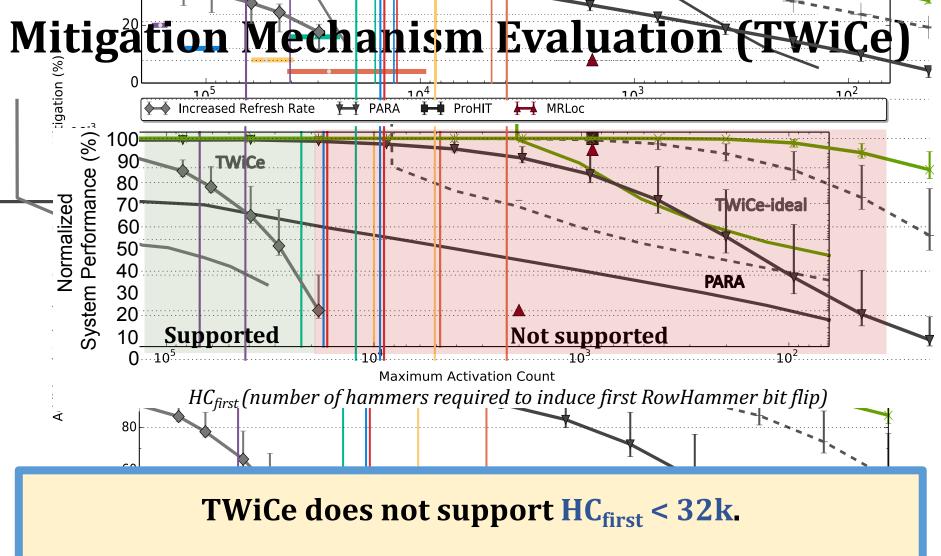
Evaluation Methodology

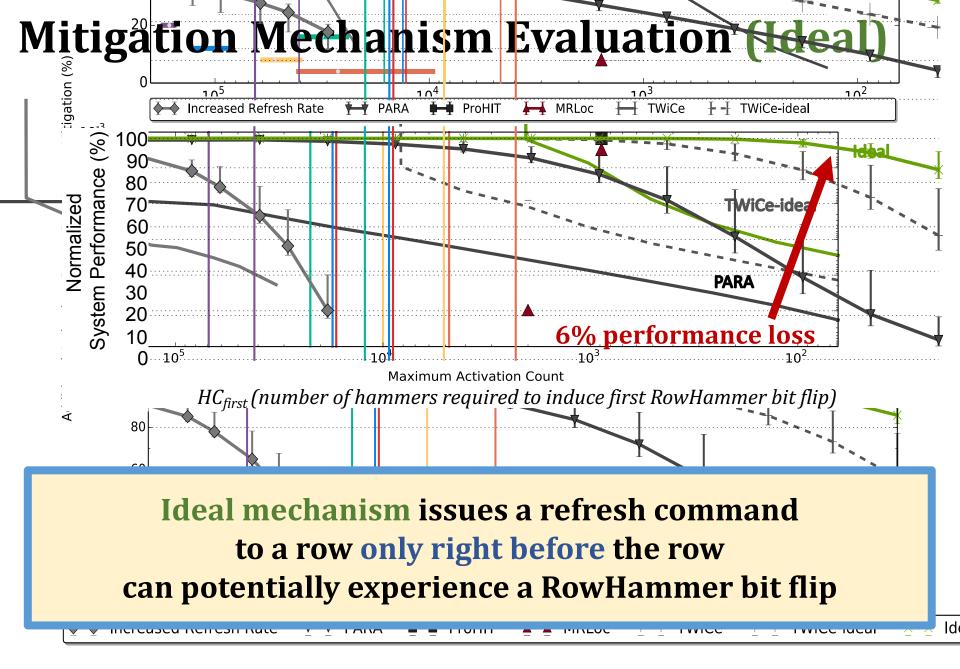

- Cycle-level simulator: Ramulator [Kim+, CAL'15] https://github.com/CMU-SAFARI/ramulator
 - 4GHz, 4-wide, 128 entry instruction window
 - 48 8-core workload mixes randomly drawn from SPEC CPU2006 (10 < MPKI < 740)
- Metrics to evaluate mitigation mechanisms
 - **1. DRAM Bandwidth Overhead:** fraction of total system DRAM bandwidth consumption from mitigation mechanism
 - *2. Normalized System Performance:* normalized weighted speedup to a 100% baseline


Evaluation Methodology


- We evaluate **five** state-of-the-art mitigation mechanisms:
 - Increased Refresh Rate [Kim+, ISCA'14]
 - PARA [Kim+, ISCA'14]
 - **ProHIT** [Son+, DAC'17]
 - MRLOC [You+, DAC'19]
 - TWiCe [Lee+, ISCA'19]
- and one ideal refresh-based mitigation mechanism:
 Ideal


• More detailed descriptions in the paper on:


- Descriptions of mechanisms in our paper and the original publications
- How we scale each mechanism to more vulnerable DRAM chips (lower HC_{first})



We evaluate an ideal scalable version (TWiCe-ideal) assuming it solves two critical design issues

ld

Additional Details in the Paper

- Single-cell RowHammer bit flip probability
- More details on our **data pattern dependence** study
- Analysis of **Error Correcting Codes (ECC)** in mitigating RowHammer bit flips
- Additional **observations** on our data
- Methodology details for characterizing DRAM
- Further discussion on comparing data across different infrastructures
- Discussion on scaling each mitigation mechanism
 SAFARI

RowHammer Reviews

Initial RowHammer Reviews

Disturbance Errors in DRAM: Demonstration, Characterization, and Prevention

Rejected (R2)

863kB Friday 31 May 2013 2:00:53pm PDT

b9bf06021da54cddf4cd0b3565558a181868b972

You are an **author** of this paper.

+ ABSTRACT

SAFARI

+ AUTHORS

	OveMer	Nov	WriQua	RevExp
<u>Review #66A</u>	1	4	4	4
<u>Review #66B</u>	5	4	5	3
<u>Review #66C</u>	2	3	5	4
Review #66D	1	2	3	4
Review #66E	4	4	4	3
Review #66F	2	4	4	3

Missing the Point Reviews from Micro 2013

PAPER WEAKNESSES

This is an excellent test methodology paper, but there is no micro-architectural or architectural content.

PAPER WEAKNESSES

- Whereas they show disturbance may happen in DRAM array, authors don't show it can be an issue in realistic DRAM usage scenario
- Lacks architectural/microarchitectural impact on the DRAM disturbance analysis

PAPER WEAKNESSES

The mechanism investigated by the authors is one of many well known disturb mechanisms. The paper does not discuss the root causes to sufficient depth and the importance of this mechanism compared to others. Overall the length of the sections restating known information is much too long in relation to new work.

More ...

Reviews from ISCA 2014

PAPER WEAKNESSES

1) The disturbance error (a.k.a coupling or cross-talk noise induced error) is a known problem to the DRAM circuit community.

2) What you demonstrated in this paper is so called DRAM row hammering issue - you can even find a Youtube video showing this! - <u>http://www.youtube.com</u> /watch?v=i3-gQSnBcdo

2) The architectural contribution of this study is too insignificant.

PAPER WEAKNESSES

 Row Hammering appears to be well-known, and solutions have already been proposed by industry to address the issue.

 The paper only provides a qualitative analysis of solutions to the problem. A more robust evaluation is really needed to know whether the proposed solution is

Final RowHammer Reviews

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors

639kB 21 Nov 2013 10:53:11pm CST |

f039be2735313b39304ae1c6296523867a485610

You are an **author** of this paper.

	OveMer	Nov	WriQua	RevConAnd
<u>Review #41A</u>	8	4	5	3
<u>Review #41B</u>	7	4	4	3
<u>Review #41C</u>	6	4	4	3
Review #41D	2	2	5	4
Review #41E	3	2	3	3
_ Review #41F	7	4	4	3
<u>Review #41C</u> <u>Review #41D</u> <u>Review #41E</u>	2	4 2 2	4 5	3 4 3

Using Memory Errors to Attack a Virtual Machine

Sudhakar Govindavajhala * Andrew W. Appel Princeton University {sudhakar,appel}@cs.princeton.edu

We present an experimental study showing that soft memory errors can lead to serious security vulnerabilities in Java and .NET virtual machines, or in any system that relies on type-checking of untrusted programs as a protection mechanism. Our attack works by sending to the JVM a Java program that is designed so that almost any memory error in its address space will allow it to take control of the JVM. All conventional Java and .NET virtual machines are vulnerable to this attack. The technique of the attack is broadly applicable against other language-based security schemes such as proof-carrying code.

We measured the attack on two commercial Java Virtual Machines: Sun's and IBM's. We show that a singlebit error in the Java program's data space can be exploited to execute arbitrary code with a probability of about 70%, and multiple-bit errors with a lower probability.

Our attack is particularly relevant against smart cards or tamper-resistant computers, where the user has physical access (to the outside of the computer) and can use various means to induce faults; we have successfully used heat. Fortunately, there are some straightforward defenses against this attack.

7 Physical fault injection

If the attacker has physical access to the outside of the machine, as in the case of a smart card or other tamperresistant computer, the attacker can induce memory errors. We considered attacks on boxes in form factors ranging from a credit card to a palmtop to a desktop PC.

We considered several ways in which the attacker could induce errors.⁴

Before RowHammer (II)

Using Memory Errors to Attack a Virtual Machine

Sudhakar Govindavajhala * Andrew W. Appel Princeton University {sudhakar,appel}@cs.princeton.edu

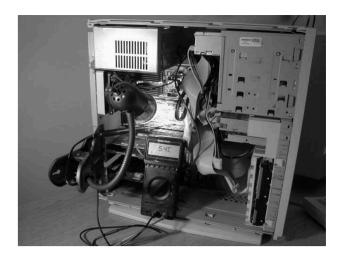


Figure 3. Experimental setup to induce memory errors, showing a PC built from surplus components, clip-on gooseneck lamp, 50-watt spotlight bulb, and digital thermometer. Not shown is the variable AC power supply for the lamp.

https://www.cs.princeton.edu/~appel/papers/memerr.pdf

Aside: Byzantine Failures

- This class of failures is known as Byzantine failures
- Characterized by
 - Undetected erroneous computation
 - Opposite of "fail fast (with an error or no result)"
- "erroneous" can be "malicious" (intent is the only distinction)
- Very difficult to detect and confine Byzantine failures
- Do all you can to avoid them
- Lamport et al., "The Byzantine Generals Problem," ACM TOPLAS 1982.

Aside: Byzantine Generals Problem

The Byzantine Generals Problem

LESLIE LAMPORT, ROBERT SHOSTAK, and MARSHALL PEASE SRI International

Reliable computer systems must handle malfunctioning components that give conflicting information to different parts of the system. This situation can be expressed abstractly in terms of a group of generals of the Byzantine army camped with their troops around an enemy city. Communicating only by messenger, the generals must agree upon a common battle plan. However, one or more of them may be traitors who will try to confuse the others. The problem is to find an algorithm to ensure that the loyal generals will reach agreement. It is shown that, using only oral messages, this problem is solvable if and only if more than two-thirds of the generals are loyal; so a single traitor can confound two loyal generals. With unforgeable written messages, the problem is solvable for any number of generals and possible traitors. Applications of the solutions to reliable computer systems are then discussed.

Categories and Subject Descriptors: C.2.4. [Computer-Communication Networks]: Distributed Systems—network operating systems; D.4.4 [Operating Systems]: Communications Management network communication; D.4.5 [Operating Systems]: Reliability—fault tolerance

General Terms: Algorithms, Reliability

Additional Key Words and Phrases: Interactive consistency

https://dl.acm.org/citation.cfm?id=357176

RowHammer, Revisited

- One can predictably induce bit flips in commodity DRAM chips
 >80% of the tested DRAM chips are vulnerable
- First example of how a simple hardware failure mechanism can create a widespread system security vulnerability

