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Abstract—With the wide-spread availability of photographic
and cartographic data, it becomes desirable to be able to geo-
localize any picture in the world. Existing approaches have
so far shown impressive results, but they are still lacking
in either precision or applicability. In the present work, we
explore as an additional cue, semantic image labeling coupled
with topographic maps. As an intermediate step towards the
ultimate goal of universal geo-localiztion, we show that these
cues are suitable for estimating the viewing direction of a
terrestrial image, given the image’s location.

I. INTRODUCTION

Due to massively available data for many parts of the

planet, automatic geo-localization of pictures comes into

reach and has recently inspired a lot of works in computer

vision [1]–[5]. Among these, the city-based approaches can

yield an exact position and orientation because they rely on

stable structures (e.g. buildings) that do not change much

over time. In contrast, on the countryside the problem is

much more difficult and approaches like [2] aim at figuring

out a rough neighborhood but cannot determine exact camera

parameters in terms of meters or optical axis. An additional

complication with countryside footage is, that photo collec-

tions (often used as reference material for localization [4])

tend to focus on the major tourist sites in cities but contain

little or no material in some less popular areas or hills or

forests. Also survey companies that collect street-level (i.e.

terrestrial) image data focus on urban areas, meaning that

most parts of the countryside are typically only covered from

an aerial perspective. In any case, correspondences between

an unknown terrestrial image and some older database pic-

ture are extremely hard to find, since vegetation changes not

only from one year to another but also between seasons, and

lighting and weather conditions make it virtually impossible

to find similar local image regions in forests, on grass land

or dirty roads. However, for virtually all parts of the world

topographic maps exist that represent lakes, rivers, roads

and railways, forests, settlements and so forth. So, if a

major road crosses a river this should give rich information

about the viewpoint and orientation of the image. Following

this idea, we are interested in the problem of finding the

camera pose based on semantic labels in an image rather

than trying to exactly match individual pixels. However,

it is still extremely challenging to accurately identify the

semantics in an image and label each pixel as belonging

to one out of many different possible classes reliably. Very

often the segmentation varies strongly depending on the

training set, training parameters or changes in camera pose,

in particular when many classes are involved. Consequently,

in this paper, we limit the number of image labels to four.

While this increases stability of the labeling, it reduces the

discriminative power of the segmentation such that we first

focus on the problem of finding the camera orientation given

its approximate position. This is an interesting problem in

itself, since in recent years, online photo collections1 have

gained a lot of popularity and nowadays millions of photos

are available online. Often these photos are geotagged,

placed somewhere on a map or have a GPS tag recorded

anyways. However, the viewing direction of the photo is

typically not available or has to be specified manually and

we see this as an excellent problem to demonstrate the

feasibility of image to topographic map alignment. In a

practical system, this could be one additional source of

information that is complementary to e.g. the sun, skylines

or other cues.

II. PREVIOUS WORK

We address the problem of aligning a terrestrial picture

with a topographic map given a GPS tag or the map

location where a user has dropped the photo. Several authors

have targeted the large scale recognition problem based on

assumptions about the sky [3] and sun [3], [6], the visible

horizon of mountains [7], [8], or satellite weather maps [1]

or low level image statistics from photo collections [2], but

the results of these approaches are limited to uncertainties

in the order of kilometers. Urban approaches can typically

localize much more precisely but they assume presence

of certain structures like nearby buildings with known 3D

geometry [9] or facades that have a sufficient number of

stable local image features on them [5], [10].

Maybe the closest work to ours in the literature is the

estimation of viewing direction based on a digital elevation

model [11]. Here the authors assume to know the camera

position and then align edges in the image with ridge and

contour features extracted from a 3D model. It is clear

that this works best when many characteristic mountains

are around and when little edges come from the texture

of the scene rather than the geometry. In contrast, in our

solution, one relies on the semantic type of terrain that is

1e.g. http://flickr.com http://panoramio.com
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available in the surrounding. This can easily be adapted

to different scenarios (different terrains can be expected in

humid or dry regions, in cold or warm areas or at the coast

or in the mountains). The problem is somewhat related to

those in remote sensing [12]. There, however, the position

and orientation is usually well known while the topographic

map (or semantic interpretation) of the surfaces needs to

be created or updated. In robotics, people have considered

indoor semantic localization, however this is mainly treated

as a discrete classification problem (“kitchen”, “hallway”,

“office”, ...) [13] or based on the (co-)occurence of some

classified objects [14], [15]. To the best of our knowledge

there has not been any similar attempt on orienting a

terrestrial image based on outdoor topographic maps before.

III. LABEL-BASED ALIGNMENT METHOD

To align the query image at hand with a topographic map,

we have to extract the semantic information, i.e. classify

each image pixel as being from one of several classes.

Second we warp the topographic map into the predicted

position of the terrestrial view for feature based alignment.

Query image: For labeling the query image, we stick

to a standard inference model that is based on offline learnt

likelihoods for the different semantic classes as well as a

smoothness constraint for neighboring pixels. We use the

ALE framework of [16] and distinguish the following labels:

residential area, bodies of water, sky, and “everything else”.

This choice is motivated by what types of surface can

reasonably be expected to be segmented and what classes of

surface are available on the topographic maps. Also, in this

contribution we do not focus on improving the state of the

art in segmentation and rather use the labeling as a building

block on top of which we perform the alignment. The data

set used in this paper consists of several locations (outlook

point, from a cottage, near a lake, from a hill), where for

each location several different images have been taken. The

data set is then partitioned into training and test set and the

training images are manually labeled. For an example of the

segmentation result, see Figs. 7 and 8.

Topographic map: The reference data to align images

against is generated from a topographic map and a digital el-

evation model. We use data obtained from the Swiss Federal

Office of Topography, but similar maps are also available

for other countries. The topographic data is represented

as a vector map. We rasterize it as pixel images with a

resolution of one pixel per meter. The chosen labels are

mapped to very different colors in order to make them more

easily distinguishable at later stages. These images and the

elevation model are converted using VirtualPlanetBuilder2

into a textured 3D terrain model. At the position of interest,

which may e.g. be obtained from the query image’s EXIF

tag, we render the model in each of the main directions.

2http://www.openscenegraph.org

Figure 1. Topographic panorama. Light blue: sky; dark blue: water; yellow:
settlements; green: other (mostly vegetation).

Lighting is deactivated so as to avoid distorting the colors.

These perspective views are then combined into one spher-

ical panorama, i.e. x- and y-pixel-coordinates map linearly

to yaw and pitch respectively. See Fig. 1 for an example.

A. Alignment

If the camera pose of the query image was an arbitrary 3D

rotation, one would have to map both the query image and

the panorama to the surface of a sphere and perform the

alignment in this space. In practice, however, the rotation

is far from arbitrary: As observed in [17], photographers

usually try to hold the camera horizontally and they seem

to be very good at it. In our experience, roll very rarely

exceeds 5 degrees.

Furthermore, pitch usually does not cover the whole range

that it theoretically could span: Angles close to ±90◦ would

show only sky or the photographer’s feet. To get a feeling

for how much a seemingly small pitch of e.g. 20◦ is,

consider a normal camera lens (meaning neither wide-angle

nor tele). As a rule-of-thumb in photography, the focal length

is approximately equal to the image diagonal [18] which

corresponds to a diagonal field-of-view of about 53◦. For

a 4:3 landscape image format this induces a 33◦ vertical

field-of-view. This means that already for a pitch of ±16.5◦,
objects that are straight in front of the user are just barely

visible at the top or bottom edge of the image. With a pitch

larger than that, these objects would move completely out

of view. Therefore, with the exception of special cases (like

e.g. the photographer standing very close to and looking up

along a tall object), the pitch tends to be at most a few tens

of degrees.

The fact that pitch tends to be reasonably small, and roll

very small can be used to simplify the alignment problem

considerably. One such simplification is the use of spherical

panoramas for alignment. In theory, yaw corresponds to a

horizontal translation in the panorama, while pitch and roll

correspond to more complicated non-rigid transformations.

Fortunately those angles are expected to be small, so roll and

pitch can be approximated quite well as rotation and vertical

translation respectively. See Fig. 2 for a comparison.
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Figure 2. Comparison between the true mapping and our approximation.
Left column: exact warping. Right column: approximate rigid transforma-
tion. Top row: 5◦ roll. Bottom row: 20◦ pitch.

B. Feature descriptor

Rather than naively finding the transformation which

maximizes the number of matching pixels between the label

map of the query image and the panorama, we choose to

use feature descriptors that we designed for this purpose.

This increases efficiency and, more importanly, robustness

against large non-matching areas. Such mismatches may be

due to misclassifications in the segmetation stage or objects

(such as trees or buildings) that are missing from the model.

Objects that are close to the camera cover a large portion

of the image and may introduce a big mismatching area.

See for example Fig. 7(b), where the trees in the foreground

induce a large green area that does not exist in the panorama.

If we were just optimizing for matching pixels, such an

area would unduly pull the optimum away from the true

alignment. We mitigate this effect by encoding only the

boundaries between uniform areas. This way, in case of a

mismatching area, we penalize only for the boundary rather

than the entire area.

In order to compute a feature, each of the � labels is

treated separately. The calculations are based on a binary

image indicating for each pixel whether or not it has been

given the label under consideration. The desciptor depends

on a square image region which is further subdivied into

k×k square tiles of size w×w pixels each. For each such tile,

we evaluate the average weighted by a gaussion distribution

with the tile’s center as mean and standard deviation σ =
w/2. This results in �k2 numbers total (over all labels), which

are gathered into one vector. The final descriptor is obtained

by scaling the vector such that it has unit norm. See Fig. 3

for an illustration.

We deliberately designed the descriptor to be not rota-

tionally invariant in order to leverage the fact that roll tends

to be small. This makes the desciptor more discriminative.

Nevertheless, we ensured that it is robust to small rotations,

see Fig. 4.

Using a keypoint detector has in our case two main

disadvantages: 1) Stable points (i.e. corners and junctions)

are not very frequent and 2) since the precise shape of
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Figure 3. Calculation of a feature descriptor. Top: Image patch from
which the desciptor is calculated. Row 2: Binary images corresponding
to one label each. Row 3: Weighted averages over their respective tiles.
Bottom: Final (normalized) feature desciptor.
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Figure 4. Robustness of the proposed feature desciptor with respect to
rotation. The image patch from Fig. 3 was used to generate this curve.
Similarity (as defined in Section III-C) to the 0

◦-desciptor remains above
0.99 for angles up to 6

◦. Thus, the maximum roll of 5◦ we expect is well
accomodated.

the boundaries often differs between the model and the

query image (see Fig. 7), it is unlikely that the same set

of keypoints will be detected in both images. We resolve

this issue by computing features densely, at steps of d
degrees. The glut of features is reduced by discarding those

that correspond to almost uniform areas. More precisely,

we define the non-unifomity of a feature vector f (before

normalizing) as

v(f) =
�

max
i=1

(
ik2

max
j=(i−1)k2+1

fj −
ik2

min
j=(i−1)k2+1

fj

)
(1)

and reject all features with v(f) less than some threshold

tvar min. The intuition is that for at least one of the labels,

the numbers should vary by at least tvar min for a descriptor

to be admitted. This strategy not only retains features at

corners and junctions, but also those describing edges, which

(although they don’t provide one-to-one correspondences)

still provide useful information for the alignment. See Fig. 5.
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Figure 5. Red dots mark the locations of feature points after rejecting
nearly uniform features. Note how only features near boundaries are
retained.

C. Hough transform

We determine the optimal alignment using a hough

transform. Prior knowledge about small roll and pitch can

be used to significantly reduce the parameter space. We

consider all the pairs of features with a similarity above some

threshold tsim min to be a putative feature correspondence.

As similarity measure, we use the euclidian scalar product

between the feature vectors.

s(f, f ′) = 〈f, f ′〉 (2)

This way, the complete similarity matrix can be very effi-

ciently calculated as a matrix product.

Every putative feature correspondence adds a vote to all of

the compatible yaw/pitch/roll combinations. Let the feature

points be given as (x, y) in the panorama and (x′, y′) in the

query, then α (yaw), β (pitch) and γ (roll) must fulfill these

equations:

x = α+ x′ cos γ − y′ sin γ (3)

y = β + x′ sin γ + y′ cos γ (4)

For any fixed x, y, x′, y′, the solution is a 1-parametric

family. The equations can easily be solved for α and β,

and then one can iterate over the values of γ to generate

solutions.

The weight of a putative feature correspondence (f, f ′)
depends on two things: uniqueness and similarity. Let F be

the set of all features in the panorama. We define the entropy

coefficient

cent = log
|F |

|{f ′′ ∈ F : s(f ′′, f ′) ≥ tsim min}|
(5)

This coefficient gets bigger, the fewer “similar” features f ′

has, i.e. the more unambiguously it matches.

Secondly, we define the similarity coefficient

csim = min

(
s(f, f ′)− tsim min

tsim max − tsim min
, 1

)
(6)

for some upper similarity threshold tsim max. This value is

clamped from above to 1 and it cannot become negative

since we only consider feature pairs with similarity at

least tsim min. This coefficient gets bigger, the stronger f ′

matches.

A putative feature correspondence adds a vote with weight

equal to cent · csim to each of the compatible yaw/pitch/roll

combinations. This way, our voting scheme favours un-

ambiguous and strong matches, while still making use of

weaker and more ambiguous ones. See Fig. 6 for an example

of the Hough transform.

IV. EXPERIMENTS

A. Parameter selection

For the feature desciptor, � = 4 is required by our choice

of labels. We further set k = w = 8, leading to 256-

dimensional desciptors which is a common size. We render

(full and partial) panoramas at 8 pixels/degree, that way one

tile of a descriptor covers exactly 1◦. Features are computed

at steps of d = 1◦. We set tvar min = 0.5, the exact value of

this parameter has little influence, since the gaussian PDF

decreases very quickly.

The parameter space for the Hough transform is dis-

cretized at a resolution of 1◦ in order to match d. For

pitch, we keep the full range of −90◦ . . . 90◦ since this

does not negatively impact efficiency; roll, however, does

and is therefore restricted to −5◦ . . . 5◦. Finally, we set

tsim max = 1.0 (the maximal value that makes sense) and

tsim min = 0.5; we can afford going so low because the

similarity coefficient ensures that weak matches do not get

undue weight.

B. Results

The queries are chosen to be images showing all 4

labels. This increases the chances that they contain enough

information for orienting the image.

Fig. 6 shows the Hough transform for Fig. 7(a). The

vertical alignment (pitch) is very strongly constrained, the

horizontal one (yaw) not so much. This is due to the fact

the the images contain mostly horizontal lines. Zero roll is

clealy preferred over more extreme values.

Fig. 7 shows some successful results. Note the difficulty

of the problem: Far-away mountains tend to blend with

the sky which makes segmentation very challenging. The

topographic maps contain very high geometric details (like

thin rivers or jagged boundaries), which are not recognizable

in the query images. Thus one can not rely on small details

for alignment. Some images, like (a-b) and to a lesser extent

(c), show foreground trees and hedges that are not present in

the panorama, so sometimes not even the coarse structures

match. An alignment algorithm needs to be robust against

all these effects.

Fig. 8 shows some unsuccessful results. For image (a) the

rough direction is about correct, but its sighlty too far right.

This may be due to the slight over-extension of the lake’s

left in end (in the segmentation) which got matched to the

right end (in the panorama). For image (b), only the closest
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Figure 6. Some slices through the Hough space for Fig. 7(a) corresponding
to different values of roll. From top to bottom: −5◦, 0◦, 5◦. Blue: zero
score, red: maximum score.

mountain range is visible and the rest is vanishing in fog.

Therefore, the detected horizon is lower than it should be.

Both images have a smaller field-of-view and thus fewer

features compared to those of Fig. 7, which also makes

alignment more difficult.

V. CONCLUSION AND FUTURE WORK

We have presented a method for aligning images to terrain

based on topographic maps. While there is still some room

for improvement in both the segmentation and the alignment

stage, we have demonstrated promising results especially on

images that are unlikely to be correctly aligned by earlier

approaches based on the horizon or visible mountain ridges,

due to lack of these features. It would be intersting to make a

combined system that uses all of these cues together so that

it is applicable to a wider range of images. Furthermore,

it seems natural to extend the present method so that in

addition to orientation, it also estimates location and possibly

even the camera’s intrinsics.

(a)(i)

(a)(ii)

(b)(i)

(b)(ii)

(c)(i)

(c)(ii)

(d)(i)

(d)(ii)

Figure 7. Some successful results. Rows (i): Left: Query image. Middle:
Segmentation. Right: View of the terrain model rendered from the estimated
viewpoint. Rows (ii): Panorama with estimated viewpoint overlaid in red.
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(a)(i)

(a)(ii)

(b)(i)

(b)(ii)

Figure 8. Some unsuccessful results. Rows (i): Left: Query image. Middle:
Segmentation. Right: View of the terrain model rendered from the estimated
viewpoint. Rows (ii): Panorama with estimated viewpoint overlaid in red.
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