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Abstract. Given a picture taken somewhere in the world, automatic
geo-localization of that image is a task that would be extremely useful
e.g. for historical and forensic sciences, documentation purposes, orga-
nization of the world’s photo material and also intelligence applications.
While tremendous progress has been made over the last years in visual
location recognition within a single city, localization in natural envi-
ronments is much more difficult, since vegetation, illumination, seasonal
changes make appearance-only approaches impractical. In this work, we
target mountainous terrain and use digital elevation models to extract
representations for fast visual database lookup. We propose an auto-
mated approach for very large scale visual localization that can efficiently
exploit visual information (contours) and geometric constraints (consis-
tent orientation) at the same time. We validate the system on the scale
of a whole country (Switzerland, 40 000km2) using a new dataset of more
than 200 landscape query pictures with ground truth.

1 Introduction and Previous Work

In intelligence and forensic scenarios as well as for searching archives and organis-
ing photo collections, automatic image-based location recognition is a challenging
task that would however be extremely useful when solved. In such applications
GPS tags are typically not available in the images requiring a fully image-based
approach for geo-localization. During the last years progress has been made in
urban scenarios, in particular with stable man-made structures that persist over
time. However, for recognizing the camera location in natural environments the
problem is substantially more challenging since vegetation changes rapidly dur-
ing the seasons, and lighting and weather conditions (e.g. snow lines) make the
use of appearance-based techniques (e.g. using patch-based local image features
[1,2]) very difficult. Additionally, dense street-level data commonly used is lim-
ited to cities and major roads, and for the mountains or countryside only aerial
footage exists that is much harder to relate with terrestrial imagery.

This paper targets camera geo-localization in natural environments. In par-
ticular we focus on recognizing the skyline in a query image, given a digital
elevation model (DEM) of a country — or ultimately, the world. In contrast to
previous work of matching e.g. a peak in the image to a set of mountains known
to be nearby, we aggregate shape information across the whole skyline (not only
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Fig. 1. Different stages in the proposed pipeline: (a) Query image somewhere in
Switzerland, (b) sky segmentation, (c) sample set of extracted 10◦ contourlets, (d)
recognized geo-location in digital elevation model, (e) overlaid visible horizon at esti-
mated position.

the peaks) and search for a similar configuration of basic shapes in a large scale
database that is organized to allow for query images of largely different fields
of view. The method is based on sky segmentation (either automatic or easily
supported by an operator for challenging pictures such as those with reflection,
occlusion or taken from inside a cable car).

Contributions. The main contributions are a novel method for robust contour
encoding as well as two different voting schemes to solve the large scale cam-
era pose recognition from contours. The first scheme operates only in descriptor
space (it checks where in the model a panoramic skyline is most likely to contain

the current query picture) while the second one is a combined vote in descriptor
and rotation space. We validate the whole approach using a public digital ele-
vation model of Switzerland that covers more than 40 000km2 and a set of more
than 200 images from different sources with ground truth information that is
published along with the paper. In particular we show the improvements of all
novel contributions compared to a baseline implementation motivated by clas-
sical bag-of-words [3] based techniques like [2]. Also, we demonstrate that the
horizon is highly informative and can be used effectively for localization.

Previous Work. To the best of our knowledge there has never been a similar
attempt at large-scale localization of a photo based on a digital elevation model
before. The closest works to ours are smaller scale navigation and localization
in robotics [4,5], and building/location recognition in cities [1,6,2] or with re-
spect to community photo collections of popular landmarks [7]. These, however,
do not apply to landscape scenes of changing weather, vegetation, snowlines, or
changing lighting conditions. The robotics community has considered the prob-
lem of robot navigation and robot localization using digital elevation models
for quite some time. Talluri et al. [8] reason about intersection of known view-
ing ray directions (north, east, south, west) with the skyline and relies thus on
the availability of 360◦ panoramic query contours and the knowledge of vehicle
orientation (i.e. north direction). Thompson et al. [9] suggest general concepts
of how to estimate pose and propose a hypothesize and verify scheme. They
also rely on known view orientation and match viewpoint-independent features



(peaks, saddle points, ...) from a DEM to features found in the image, this way
ignoring much of the skyline information. In [10], computer vision techniques
are used to extract mountain peaks which are matched to a database of nearby
mountains to support a remote operator in navigation. However, we believe that
their approach of considering relative positions of absolute peaks detected in a
DEM is too restrictive and would not scale to our orders of magnitude larger
problem, in particular with respect to less discriminative locations. [11] proposes
to first match three features of a contour to a digital elevation model and esti-
mate an initial pose from that before a non-linear refinement. Also here the first
step of finding three good correspondences is again not easily possible in larger
databases. [5] assumes panoramic query data with known heading, and computes
super-segments on a polygon fit, however descriptiveness/robustness is not eval-
uated on a bigger database, while [12] introduces a probabilistic formulation for
a similar setting. The key point is that going from tens of potential locations to
millions of locations requires a conceptually different approach, since exhaustive
image comparison or trying all “mountain peaks” simply does not scale to a
large-scale geo-localization problem. Similarly, for urban localization, in [13] an
upward looking 180◦ field of view fisheye is used for navigation in urban canyons.
The authors render untextured city models near the predicted pose and extract
contours for comparison with a query image. Also this is meant as a local method
for navigation. Most recently, in [14] the authors optimize the camera orientation
given the exact position, i.e. they estimate the viewing direction given a good
GPS tag. None of the above systems considered large scale recognition.

On the earth scale, the authors of [15] source photo collections and aim
at learning location probability based on color, texture, and other image-based
statistics. Conceptually, this is not meant to find an exact pose based on geo-
metric considerations but rather discriminates landscapes or cities with different
(appearance) characteristics on a global scale. The authors of [16] exploit the
position of the sun (given the time) for geo-localization. In the same work it
is also shown that identifying a large piece of clear sky without haze provides
information about the camera pose (although impressive given the data, still
more than 100km average localization error is reported). Both approaches are
appealing for excluding large parts of the earth from further search but do not
aim at exactly localizing the camera within a few hundred meters.

Besides attacking the DEM-based, large scale geo-localization problem we
propose new techniques that might also be transferred to bag-of-words ap-
proaches based on local image patches (e.g. [3,1,2]). Those approaches typically
rely on pure occurrence-based statistics (visual word histogram) to generate a
first list of hypotheses and only for the top candidates geometric consistency
of matches is checked. Such a strategy fails in cases where pure feature coocur-
rence is not discriminative but where the relative locations of the features are
important. Here, we propose to do a (weak) geometric verification already in
the histogram distance phase. Furthermore, we show also a representation that
tolerates largely different document sizes (allowing to compare a panorama in
the database to an image with an order of magnitude smaller field of view).



2 Mountain Recognition Approach

The location recognition problem in its general form is six-dimensional since
three position and three orientation parameters have to be estimated. We make
the assumption that the photo has been taken not too far from the ground
and use the fact that people rarely twist the camera relative to the horizon
[17] (i.e. small roll). We will propose a method to solve that problem using the
outlines of mountains against the sky (a skyline), which we call the visible

horizon. For the visual database we seek a representation that is robust with
respect to tilt of the camera which means that we are effectively left with esti-
mating the 2D position on our height model (latitude and longitude) and the
viewing direction of the camera. The visible horizon of the DEM is extracted
offline at regular grid positions (360◦ at each position) and represented by a col-
lection of vector-quantized local contourlets (contour words, similar in spirit to
visual words obtained from quantized image patch descriptors [3]). In contrast
to visual word based approaches, additionally an individual viewing angle αd

(αd ∈ [0; 2π]) relative to north direction is stored. At query time, a sky segmen-
tation technique is applied that copes with the often present haze. Subsequently
the extracted contour is robustly described by a set of local contourlets plus
their relative angular distance αq with respect to the optical axis of the camera.
Then, we use an inverted file system for the contour words to find the most
promising location and simultaneously vote for the viewing direction, which is
an integrated geometric verification already during the bag-of-words search.

2.1 Processing the Query Image

Sky Segmentation. The estimation of the visible horizon can be cast as a
foreground-background segmentation problem. Virtually any good segmentation
method could be used here and the focus of this paper is on the recognition, not
on the segmentation part. Consequently, due to space limitations in the following
we can only sketch our implementation roughly:

Since sky and mountains have different local statistics with respect to color,
gradient and other cues’ distribution, we decided to follow a standard approach
based on unary data costs [18,19] for a pixel being assigned sky or ground and
smoothness costs along the visible horizon that depend also on the local im-
age structure [20]. As we assume almost no camera roll and since overhanging
structures are extremely rare, finding the highest foreground pixel (foreground
height) for each image column provides an excellent approximation, at the same
time allowing for a dynamic programming solution (as suggested already in e.g.
[21]). To obtain the data term for a candidate height in a column we sum all
foreground costs below the candidate contour and sky costs above the contour,
where we have trained a pixel’s color and gradient likelihoods for ground and
sky. Furthermore, we dehaze the image according to [22] and exploit the (con-
tinuous) relative depth information (obtained from dehazing and normalized to
maximum depth 1) to steer the smoothness term similar to [20]. The intuition
is that when running along the visible horizon from one candidate height in
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Fig. 2. Contour word computation: (a) raw contour, (b) smoothed contour with n sam-
pled points, (c) sampled points after normalization, (d) contourlet as numeric vector,
(e) each dimension quantized to 3 bits, (f) contour word as 24-bit integer.

one column to a candidate height in the next column, there should be local
evidence in terms of an orthogonal depth gradient on the connection line. We
train weights and foreground/sky likelihoods on a manually labelled offline data
set. Further, we add interaction capabilities for a potential user where simple
strokes can mark foreground or sky in the query picture forcing these pixels and
all below or above to these labels. This provides a simple and effective means to
correct very challenging situations (e.g. reflections in picture from inside a cable
car, power lines or people corrupting the skyline) or previously unseen colors
(e.g. picture at sunset or night).

Contourlet Extraction. In the field of shape recognition, there are many
shape description techniques that deal with closed contours, e.g. [23]. However,
recognition based on partial contours is still a largely unsolved problem, because
it is difficult to find representations invariant to viewpoint. For the sake of ro-
bustness to occlusion, to noise and systematic errors (inaccurate focal length
estimate or tilt angle), we decided to use local representations of the visible
horizon curve (compare also [24] for an overview on shape features).

To describe the contour, we consider overlapping curvelets of width w (imag-
ine a sliding window, see Fig. 1). These curvelets are then sampled at n equally
spaced points, yielding each an n-dimensional vector ỹ1, . . . , ỹn (before sampling,
we low-pass filter the horizon to avoid aliasing). The final descriptor is obtained
by subtracting the mean and dividing by the feature width (see Fig. 2(a)–(d)):

yi =
ỹi − ȳ

w
for i = 1, . . . , n where ȳ =

1

n

n∑

j=1

ỹj (1)

Mean subtraction makes the descriptor invariant w.r.t. vertical image location
(and therefore robust against camera tilt). Scaling ensures that the yi’s have
roughly the same magnitude, independently of the feature width w.

The next step is vector quantisation (Fig. 2(e)–(f)). Since our features are
very low-dimensional compared to traditional patch-based feature descriptors
like SIFT [25], we choose not to use a vocabulary tree. Instead, we directly



quantize each dimension of the descriptor separately, which is both faster and
much more memory-efficient compared to a vocabulary tree and the best bin is
guaranteed to be found. Each yi falls into one bin and the n associated bin num-
bers are concatenated into a single integer (contour word). For each descriptor,
we also make note of the viewing direction αq (relative to the camera’s optical
axis) where the feature was observed, which can be calculated using the camera’s
intrinsics. We have verified that an approximate focal length estimate is enough.
In case the focal length is completely unknown, it is possible to sample several
tentative values (see evaluation in Section 3).

2.2 Visual Database Creation

The digital elevation model we use for validation is available from the Swiss
Federal Office of Topography, and similar data sets exist also for the US and
other countries. There is one sample point per 2 square meters and the height
quality varies from 0.5m (flat regions) to 3m-8m (above 2000m elevation) average
error1. This data is converted to a triangulated surface model with level-of-detail
support in a scene graph representation2. At each position on a regular grid on
the surface (every 0.001◦ in N-S direction and 0.0015◦ in E-W direction, i.e. 111m
and 115m respectively) and from 1.80m above the surface3, we render a cube-
map of the textureless DEM (face resolution 1024×1024) and extract the visible
horizon by checking for the rendered sky color. Overall, we generate 3.5 million
cubemaps. Similar to the query image, we extract contourlets, but this time with
absolute viewing direction. We organize the contourlets in an index to allow for
fast retrieval. In image search, inverted files have been used very successfully
for this task [3]. We extend this idea by also taking into account the viewing
direction, so that we can perform rough geometric verification on-the-fly. For
each word we maintain a list that stores for every occurrence the panorama ID
and the azimuth αd of the contourlet.

2.3 Recognition and Verification

Baseline. The baseline for comparison is an approach borrowed from patch
based systems (e.g. [26,1,2]) based on the (potentially weighted) L1-norm be-
tween normalized visual word frequency vectors:

DE(q̃, d̃) = ‖q̃− d̃‖1 =
∑

i

|q̃i − d̃i| or DEw(q̃, d̃) =
∑

i

wi|q̃i − d̃i| (2)

with q̃ =
q

‖q‖1
and d̃ =

d

‖d‖1
(3)

1 http://www.swisstopo.admin.ch/internet/swisstopo/en/home
2 http://openscenegraph.org
3 Synthetic experiments verified that taking the photo from ten or fifty meters above
the ground does not degrade recognition besides very special cases like standing very
close to a small wall.

http://www.swisstopo.admin.ch/internet/swisstopo/en/home
http://openscenegraph.org


Where qi and di is the number of times visual word i appears in the query or
database image respectively, and q̃i, d̃i are their normalized counterparts. wi is
the weight of visual word i (e.g. as obtained by the term frequency - inverse
document frequency (tf-idf) scheme). This gives an ideal score of 0 when both
images contain the same visual words at the same proportions, which means
that the L1-norm favors images that are equal to the query.

[26] suggested transforming the weighted L1-norm like this

DEw(q̃, d̃) =
∑

i

wiq̃i +
∑

i

wid̃i − 2
∑

i∈Q

wi min(q̃i, d̃i) (4)

in order to enable an efficient method for evaluating it by iterating only over
the visual words present in the query image and updating only the scores of
database images containing the given visual word.

“Contains”-Semantics. In our setting, we are comparing 10◦–70◦ views to
360◦ panoramas, which means that we are facing a 5×–36× difference of mag-
nitude. Therefore, it seems ill-advised to implement an “equals”-semantics, but
rather one should use a “contains”-semantics. We modify the weighted L1-norm
as follows:

DC(q,d) =
∑

i

wi max(qi − di, 0) (5)

The difference is that we are using the raw contour word frequencies, qi and di
without scaling and we replace the absolute value | · | by max(·, 0). Therefore,
one only penalizes contour words that occur in the query image, but not in the
database image (or more often in the query image than in the database image).
An ideal score of 0 is obtained by a database image that contains every contour
word at least as often as the query image, plus any number of other contour
words. If the proposed metric is transformed as follows, it can be evaluated just
as efficiently as the baseline:

DC(q,d) =
∑

i∈Q

wiqi −
∑

i∈Q

wi min(qi, di) (6)

This subtle change makes a huge difference, see Fig. 5(a) and Table 1: (B) versus
(C). Note that this might also be applicable to other cases where a “contains”-
semantics is desirable.

Location and Direction. We further refine retrieval by taking geometric in-
formation into account already during the voting stage. Earlier bag-of-words
approaches accumulate evidence purely based on the frequency of visual words.
Voting usually returns a short-list of the top n candidates, which are reranked
using geometric verification (typically using the number of geometric inliers).
For performance reasons, n has to be chosen relatively small (e.g. n = 50). If the
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Fig. 3. Voting for a direction is illustrated using a simple example: We have a query
image (a) with contour words wi and associated angles αqi. We consider a panorama
(b) with contour words in the same relative positions αdi as the query image. Since the
contour words appear in the same order, they all vote for the same viewing direction α

(c). In contrast, we consider a second panorama (d) with contour words in a different
order. Even though the contour words occur in close proximity they each vote for a
different direction αi, so that none of the directions gets a high score (e).

correct answer already fails to be in this short-list, then no amount of reordering
can bring it back. Instead, we check for geometric consistency already at the
voting stage, so that fewer good candidates get lost prematurely. Not only does
this increase the quality of the short-list, it also provides an estimated viewing
direction, which can be used as an initial guess for the full geometric verification.
Since this enables a significant speedup, we can afford to use a longer short-list,
which further reduces the risk of missing the correct answer.

If the same contour word appears in the database image at angle αd (relative
to north) and in the query image at angle αq (relative to the camera’s optical
axis), the camera’s azimuth can be calculated as α = αd − αq. Weighted votes
are accumulated using soft binning and the most promising viewing direction(s)
are passed on to full geometric verification. This way, panoramas containing the
contour words in the right order get many votes for a single direction, ensuring
a high score. For panoramas containing only the right mix of contour words,
but in random order, the votes are divided among many different directions,
so that none of them gets a good score (see Fig. 3). Note that this is different
from merely dividing the panoramas into smaller sections and voting for these
sections: Our approach effectively requires that the order of contour words in the
panorama matches the order in the query image. As an additional benefit, we
do not need to build the inverted file for any specific field-of-view of the query
image.

Geometric Verification. We verify the top 1000 candidates with a geometric
check. Verification consists in calculating an optimal alignment of the two visible
horizons using iterative closest points (ICP). While we consider in the voting
stage only one angle (azimuth), ICP determines a full 3D rotation. First, we
sample all possible values for azimuth and keep the two other angles at zero.
The most promising one is used as initialization for ICP. In the variants that
already vote for a direction, we try only a few values around the highest ranked
ones. The average alignment error is used as a score for re-ranking the candidates.



Fig. 4. Oblique view onto Switzerland model (40 000km2). Spheres indicate the 213
query images’ ground truth coordinates (size reflects 1km tolerance radius). Source of
DEM data: Bundesamt für Landestopografie swisstopo (Art. 30 GeoIV): 5704 000 000

3 Evaluation

Query Set. In order to evaluate the approaches we assembled a set of photos
from different sources such as internet photo collections and on site. For all of the
photos, we verified the GPS tag or location estimate by comparing the skyline to
the surface model. For a large part the information is consistent, only for a small
fraction the position did not match the digital elevation model view. This can be
explained by a bad cell phone GPS tag, because of bad/no GPS reception at the
time the photo was taken. For these cases, we use dense geometric verification (on
each 111×115m grid position up to a 10km radius around the tagged position) to
generate hypotheses for the correct GPS tag. We verify this by visual inspection
and remove the image in case of no agreement. The whole set of query images
is available at the project website4 and the distribution of pictures on the map
is displayed in Fig. 4. For all of the query images FoV information is available
(e.g. from EXIF tag). However, we have verified experimentally that also in case
of fully unknown focal length the system can be applied by sampling over this
parameter (see Fig. 8 for an example).

Parameter Selection. The features need to be clearly smaller than the im-
ages’ field-of-view, but wide enough to capture the geometry rather than just
discretization noise. We consider descriptors of width w = 10◦ and w = 2.5◦.
The number of sample points n should not be so small that it is uninformative
(e.g. n = 3 would only distinguish concave/convex), but not much bigger than
that otherwise it risks being overly specific, so we choose n = 8. The curve is
smoothed by a Gaussian with σ = w

2n , i.e. half the distance between consecutive
sample points. Descriptors are extracted every σ degrees.

Each dimension of the descriptor is quantized into k bins of width 0.375,
the first and last bin extending to infinity. We chose k as a power of 2 that
results in roughly 1 million contour words, i.e. k = 8. This maps each yi to 3
bits, producing contour words that are 24 bit integers. Out of the 224 potential
contour words, only 300k–500k (depending on w) remain after discarding words
that occur too often (more than a million) or not at all.

4 http://cvg.ethz.ch/research/mountain-localization

http://cvg.ethz.ch/research/mountain-localization


Voting scheme Descriptor width Dir. bin size Geo. ver. Top 1 correct
(A) random N/A N/A no 0.008%
(B) “equals” 10◦ N/A no 8%
(C) “contains” 10◦ N/A no 30%
(D) loc.&dir. 10◦ 2◦ no 45%
(E) loc.&dir. 10◦ 3◦ no 44%
(F) loc.&dir. 10◦ 5◦ no 46%
(G) loc.&dir. 10◦ 10◦ no 42%
(H) loc.&dir. 10◦ 20◦ no 38%
(I) loc.&dir. 2.5◦ 3◦ no 30%
(J) loc.&dir. 10◦&2.5◦ 3◦ no 62%
(K) loc.&dir. 10◦&2.5◦ 3◦ yes 88%

Table 1. Overview of tested recognition pipelines

Recognition Performance. All of the tested recognition pipelines (see Ta-
ble 1) return a ranked list of candidates. We evaluate them as follows: For every
n = 1, . . . , 100, we count the fraction of query images that have at least one
correct answer among the top n candidates. We consider an answer correct if it
is within 1km of the ground truth position (see Fig. 4).

In Fig. 5(a), we compare different voting schemes: (B) voting for location only,
using the traditional approach with normalized visual word vectors and L1-norm
(“equals”-semantics); (C) voting for location only, with our proposed metric
(“contains”-semantics); (E) voting for location and direction simultaneously (i.e.
taking order into account). All variants use 10◦ descriptors. For comparison, we
also show (A) the probability of hitting a correct panorama by random guessing
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Fig. 5. Retrieval performance for different: (a) voting schemes, (b) bin sizes in direc-
tion voting, (c) descriptor sizes. (d) Retrieval performance before and after geometric
verification. (e) Fraction of queries having (at most) a given distance to the ground
truth position. Not shown: 21 images (9.9%) with an error between 7 and 217km.



(the probability of a correct guess is extremely small, which shows that the
tolerance of 1km is not overly generous). Our proposed “contains”-semantics
alone already outperforms the baseline (“equals”-semantics) by far, but voting
for a direction is even better!

In Fig. 5(b), we analyze how different bin sizes for direction voting affects
results. (D)–(H) correspond to bin sizes of 2◦, 3◦, 5◦, 10◦, 20◦ respectively. While
there are small differences, none of the settings outperforms an other consis-
tently: Our method is quite insensitive over a large range of this parameter.

In Fig. 5(c), we study the impact of different descriptor sizes: (E) only 10◦

descriptors; (I) only 2.5◦ descriptors; (J) both 10◦ and 2.5◦ descriptors combined.
All variants vote for location and direction simultaneously. While 10◦ descrip-
tors outperforms 2.5◦ descriptors, the combination of both is better than either
descriptor size alone. This demonstrates that different scales capture different
information, which complement each other.

In Fig. 5(d), we show the effect of geometric verification by aligning the full
countours using ICP: (J) 10◦ and 2.5◦ descriptors voting for location and direc-
tion, without verification; (K) same as (J) but with geometric verification. We
see that ICP based reranking is quite effective at moving the best candidate(s) to
the beginning of the short list: With probability 88%, the top-ranked candidate
is within a radius of 1km from the ground truth position. See Fig. 5(e) for other
radii. In computer assisted search scenarios, an operator would choose an image
from a small list which would further increase the percentage of correctly recov-
ered pictures. Besides that, from geometric verification we not only obtain an
estimate for the viewing direction but the full camera orientation which can be
used for augmented reality. Fig. 6&7 show successful and unsuccessful examples.

We also ran the experiment after artificially adding tilt to the queries and
determined that recognition performance is largely unaffected up to 20◦ tilt.

Fig. 6. Sample Results: Input Image (top row), depth image from dehazing (second
row), segmentation (third row) and augmentation of retrieved contour from database
onto bright version of original image (bottom row). The images in the third and the
two right-most columns have been segmented with the help of user interaction.



Fig. 7. Some incorrectly localized images. This usually happens to images with a rel-
atively smooth horizon and only few distinctive features. The pipeline finds a contour
that fits somewhat well, even if the location is completely off.

Field-of-View. Fig. 8 illustrates the effect of inaccurate or unknown field-of-
view (FoV). For one query image, we run the localization pipeline (K) assuming
that the FoV is 11◦ and record the results. Then we run it again assuming that
the FoV is 12◦ etc, up to 70◦. Fig. 8 shows how the alignment error and estimated
position depend on the assumed FoV.

In principle, it is possible to compensate a wrong FoV by moving forward
or backward. This holds only approximately if the scene is not perfectly planar.
In addition, the effect has hard limits because moving too far will cause objects
to move in or out of view, changing the visible horizon. Between these limits,
changing the FoV causes both the alignment error and the position to change
smoothly. Outside of this stable range, the error is higher, fluctuates more and
the position jumps around wildly.

This has two consequences: First, if the FoV obtained from the image’s meta-
data is inaccurate it is usually not a disaster, the retrieved position will simply
be slightly inaccurate as well, but not completely wrong. Second, if the FoV is
completely unknown, one can get a rough estimate by choosing the minimum
error and/or looking for a range where the retrieved position is most stable.
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Fig. 8. (a) Query image. (b) Alignment error of the best position for a given FoV.
Dashed lines indicate the limits of the stable region and the FoV from the image’s
EXIF tag. (c) Alignment error of the best FoV for a given position. See http://

cvg.ethz.ch/research/mountain-localization for an animated version. (d) Shaded
terrain model. The overlaid curve in (c) and (d) starts from the best location assuming
11◦ FoV and continues to the best location assuming 12◦, 13◦, etc. Numbers next to
the markers indicate corresponding FoV.

http://cvg.ethz.ch/research/mountain-localization
http://cvg.ethz.ch/research/mountain-localization


Runtime. We implemented the algorithm partly in C/C++ and partly in Mat-
lab. On the evaluation dataset 51% of the images were segmented completely
automatically, 42% required small user interaction, such as correcting for oc-
clusions and 7% needed more intensive manual labeling i.e. correcting for small
snow fields and reflections etc. After segmentation, one image takes 10 seconds
to find the camera’s position and rotation in an area of 40 000km2 (Exhaustively
computing an optimal alignment between the query image and each of the 3.5M
panoramas would take on the order of several days). For comparison, the authors
of [14] use a GPU implementation and report 2 minutes for determining rotation
alone (assuming that the camera position is already given).

4 Conclusion and Future Work

We have presented a system for large scale location recognition based on digital
elevation models. This is very valuable for geo-localization of pictures when no
GPS information is available (for virtually all video or DSLR cameras, archive
pictures, in intelligence and military scenarios). We extract the sky and repre-
sent the visible horizon by a set of contour words, where each contour word is
represented together with its offset angle from the optical axis. This way, we can
do a bag-of-words like approach with integrated geometric verification, i.e. we
are looking for the panorama (portion) that has a similar frequency of contour
words with a consistent direction. We show that our representation is very dis-
criminative and the full system allows for excellent recognition rates close to 90%
on our challenging dataset including different seasons, landscapes and altitudes.
We believe that this is a step towards the ultimate goal of being able to geo-
localize images taken anywhere on the planet, but for this also other additional
cues of natural environments have to be combined with the given approach. This
will be the subject of future research.
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