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Abstract

The projections of world parallel lines in an image inter-

sect at a single point called the vanishing point (VP). VPs

are a key ingredient for various vision tasks including rota-

tion estimation and 3D reconstruction. Urban environments

generally exhibit some dominant orthogonal VPs. Given a

set of lines extracted from a calibrated image, this paper

aims to (1) determine the line clustering, i.e. find which

line belongs to which VP, and (2) estimate the associated

orthogonal VPs. None of the existing methods is fully sat-

isfactory because of the inherent difficulties of the problem,

such as the local minima and the chicken-and-egg aspect.

In this paper, we present a new algorithm that solves the

problem in a mathematically guaranteed globally optimal

manner and can inherently enforce the VP orthogonality.

Specifically, we formulate the task as a consensus set max-

imization problem over the rotation search space, and fur-

ther solve it efficiently by a branch-and-bound procedure

based on the Interval Analysis theory. Our algorithm has

been validated successfully on sets of challenging real im-

ages as well as synthetic data sets.

1. Introduction

Parallel lines of the world are projected into perspective

images as intersecting lines and their point of intersection

is called a vanishing point (VP). Each set of parallel lines is

thus associated to a VP. Popular applications of VPs in com-

puter vision are calibration [5][6][28], rotation estimation

[2][15][8] and 3D reconstruction [23][7]. Urban environ-

ments generally exhibit numerous lines that are either par-

allel or orthogonal to the gravity direction, which leads to

orthogonal VPs (the so-called Manhattan world [8][6][15]).

This paper is dedicated to the fundamental problem of line

clustering and orthogonal VP estimation. Given a set of

lines extracted from a calibrated image, the goal is to (1)

determine the line clustering (i.e. find which line belongs

Figure 1. Given a set of lines extracted in calibrated images (left),

our goal is to cluster these lines with respect to their (unknown-

but-sought) orthogonal vanishing points (right). Each color corre-

sponds to a set of parallel lines.

to which unknown-but-sought VP) and (2) estimate these

associated orthogonal VPs, as depicted in Fig 1.

This problem has to be differentiated with 2 other situ-

ations: calibrated/uncalibrated and pixels/lines. The uncal-

ibrated case, studied in [5][6][15][28], is essentially devel-

oped for calibration purpose. The calibrated case (studied in

our paper) has been addressed by [2][3], among many oth-

ers, and these methods will be reviewed in the remaining of

this paper. Some approaches also worked on the raw pixels

rather than on the extracted lines, like [8][19].

The targeted task is a typical chicken-and-egg problem:

if the line clustering is known, then the VPs can be com-

puted and reciprocally, if the VPs are known, the line clus-

tering can be retrieved. Many methods have been proposed

since the last 30 years [3], but none of them is fully satisfac-

tory because of the inherent difficulties of the problem. For

example, they might get stuck in local minima, the VP or-

thogonality is complicated to impose and data might contain

outliers that must be detected. Thus the line clustering/VP

estimation problem still remains an open issue.

In contrast to existing works, we present a novel mathe-

matical setup that explicitly maximizes the number of clus-

tered lines in a guaranteed globally optimal manner, while

inherently enforcing the orthogonality of the VPs. Specifi-
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cally, we formulate our goal as a consensus set maximiza-

tion problem over the rotation search space, and solve it

efficiently by combining Interval Analysis theory with a

branch-and-bound procedure.

This paper is organized as follows. First, we recall the

concept of equivalent sphere and review existing works.

Second, we define the mathematical formulation of the

problem. Third, we introduce the concept of interval analy-

sis and present our global optimization method. Finally, we

present some experimental results on synthesized data and

real images.

2. Sphere Representation and Related Works

Most of existing methods perform on a spherical repre-

sentation of the lines. That is why this section recalls the

sphere representation, and then, reviews related works.

2.1. Equivalent Sphere

The Gaussian sphere is a convenient way to represent an

image when the camera calibration parameters are known.

It has been used since [3] for traditional pinhole images and

has been extended to the concept of equivalent sphere to

handle various types of cameras such as fisheye, omnidirec-

tional, catadioptric and so on [31].

A world line Li is projected onto the sphere as a great

circle which is represented by a unit normal vector ni. The

great circles of world parallel lines intersect in two antipo-

dal points [4]. They correspond to the vanishing point and

are computed by v = ni × nj where ni and nj are the nor-

mal vectors of two world parallel lines.

2.2. Existing methods for line clustering

Given a set of lines, many methods have been proposed

for clustering parallel lines and computing their associated

VPs. The common goal is to search for the VPs contain-

ing the highest number of lines. Existing methods can be

categorized into four main categories.

The first category relies on the Hough transform (HT)

[3][24][17] to detect the VPs. For each of the possible line

pairs, the direction of the intersection of the pair is com-

puted and accumulated in the angular bins. The dominant

VP is obtained by selecting the bin that contains the high-

est number of entries. However, this approach is sensitive

to the quantization level of the angular bins and might lead

to multiple detections, as confirmed by [26]. In addition,

it does not directly impose the orthogonality constraint on

VPs since they are detected independently.

The second category is based on RANSAC: a simple-

yet-powerful method to distinguish the inliers/outliers un-

der an unknown model and compute this model [9].

[1][30][27] applied this approach for line clustering and VP

detection. The process starts by randomly selecting two

lines to create a VP hypothesis and then counts the num-

ber of lines passing by this hypothesized VP. After a cer-

tain number of iterations, it returns the VP (and the asso-

ciated line clustering) maximizing the number of line in-

liers. To detect multiple VPs, RANSAC can be sequen-

tially applied on the remaining outliers [27]. The case of

“simultaneous” estimation of multiple VPs could be han-

dled by multi-RANSAC [32], an extension of RANSAC to

multiple models, or the recent J-linkage algorithm [29] ap-

plied by [28]. Whereas interesting results can be obtained

by all these methods, an important theoretical limitation

of RANSAC and its variants (multi-RANSAC, J-linkage,

etc...) is that they do not guarantee the optimality of their

solution (in terms of maximizing the number of inliers).

Moreover they are non-deterministic: different runs on the

same data might produce different results. [16] proposed a

method to overcome these limitations, but is limited to lin-

ear problems with linear distance functions. Very recently,

[20] presented a polynomial approach to impose the VP or-

thogonality. However this can only consider algebraic cost.

In contrast, our approach can deal with (non-linear) geo-

metric cost, which is considered more meaningful [13], and

explicitly maximizes the consensus set.

The third category refers to a (quasi-)exhaustive search

on some of the unknown entities. For example, [4] per-

forms a sampling of the rotation search space to determine

the most consistent rotation, i.e. the one which maximizes

the number of clustered lines. This method performs quite

well in practice and imposes the VP orthogonality. How-

ever it depends on the sampling step and the initialization.

Furthermore, it does not guarantee to find the best solution

even with a very fine sampling.

The fourth category directly faces the chicken-and-egg

problem, generally following the EM approach [2][8]. It al-

ternates between an expectation (E) step, which estimates

the line clustering given the current or hypothesized VPs,

and a maximization (M) step, which computes the VPs

given the data clustering estimated at the E step. This pro-

cedure iterates with the newly computed VPs until conver-

gence. However these methods heavily rely on the initial-

ization and can converge to a local solution.

3. Problem Statement

This section states the mathematical formulation of the

problem. First, we express it as a consensus set maximiza-

tion. Secondly, we show that the optimization can be per-

formed on the rotation space instead of directly the VPs.

3.1. Mathematical Formulation

As explained in the introduction, line clustering and VP

estimation constitute a chicken-and-egg problem. A solu-

tion would be to test all the possible (finite but generally

untractable) line clustering possibilities and select the one



that maximizes a certain consistency measure. This ap-

proach is the most popular. On the contrary, we privilege

the other solution: test the VPs (or rotation) and pick up

the one that maximizes the VP consistency. It may sound

counter-intuitive because the search space of VPs (or rota-

tion) is continuous. But we will show that it actually pro-

vides a simpler formulation and can guarantee the VP or-

thogonality.

We adopt the approach of consensus set maximization

where the goal is to maximize the number of clustered lines.

Let ni be the ith extracted line with i = 1 . . .N . Let the set

{v} represents the M orthogonal VPs {v} = {v1, . . . , vM}
where 1 ≤ M ≤ 3. Let the set S of input data be partitioned

into an inlier-set Sin ⊆ S and an outlier-set Sout ⊆ S with

Sout = S − Sin. To distinguish inliers/outliers, we follow

the popular “residual tolerance method” [9]. Concretely,

we consider that the line-VP pair (ni, vj) is an inlier if their

geometric (geodesic) distance is lower than a residual toler-

ance τ , i.e. | arccos(ni · vj) −
π
2 | < τ . This τ can be set

easily (e.g. 1◦) and it is what most of inlier/outlier detection

methods do. This inlier pair is noted (ni, vj) ∈ Sin and ni

is clustered to vj . The outlier-set Sout contains the lines that

do not belong to any VPs. We allow a line to (accidentally)

belong to more than one VP. If needed, a “one-matching”

constraint could be applied (cf section 4.3). The problem

can be now formulated as a consensus set maximization:

max
{v}

card(Sin) (1)

s.t. | arccos(ni · vj)−
π
2 | < τ, ∀(i, j) ∈ Sin ⊆ S (2)

and ‖vj‖ = 1, ∀j and vTj vk = 0, ∀j, k with j 6= k (3)

This formulation says that, given a residual tolerance τ
on the geometric geodesic distance, the goal is to find the

largest consensus set (i.e. maximize the number of inliers)

under an unknown model (here a set {v} of orthonormal

VPs), and estimate these VPs. Solving system (1) provides

not only the orthonormal VPs maximizing the number of

clustered lines but also the clustering information.

3.2. Rotation instead of VPs

First of all, working directly on the VPs in system (1)

complicates the optimization drastically because theM VPs

are encoded by 3M real values, M constraints for their unit

length and CM
2 orthogonality constraints (i.e. the number of

combinations of 2 elements out of M ). Moreover the sys-

tem contains quadratic constraints (orthogonality and unit

length) and non-linearities (arccos for the geometric dis-

tance). Therefore system (1) is very difficult to solve.

As a solution, it is interesting to note that orthonormal

VPs can be represented by a single rotation R [4]. Let C
be an initial orthonormal basis (e1, e2, e3), where ej repre-

sents the jth axis of the canonical basis, i.e. e1 = (1, 0, 0),

e2 = (0, 1, 0) and e3 = (0, 0, 1). By applying a rotation R
to C, a new orthonormal basis is obtained and can represent

the orthogonal VPs. Therefore, searching M orthonormal

VPs is similar to search one particular rotation. Searching

over the rotation space simplifies imposing (1) the VP or-

thogonality constraints since the initial basis is orthogonal

and (2) the VP unit norm constraint since the canonical axes

have a unit norm and the rotation is isometric. For now,

we write the rotation by R ∈ SO(3), independently of its

parametrization, to indicate that it belongs to the set of the

three-dimensional rotation group.

Therefore the system (1) can be rewritten as:

arg max
R∈SO(3)

3
∑

j=1

N
∑

i=1

δ(ni, Rej) (4)

with the inlier function based on the geometric cost:

δ(u, v) =

{

1 if | arccos(u · v)− π
2 | < τ

0 otherwise
(5)

3.3. Remaining mathematical challenges

Despite the reformulation, system (4) still involves some

important mathematical challenges. First of all, it con-

stitutes a difficult (chicken-and-egg) non-convex problem.

Secondly, the rotation group SO(3) is a complicated space

to work on. For example, whereas several rotation param-

eterizations exist, rotation is not a linear operator with re-

spect to the variables representing its three degrees of free-

dom (DOF): Euler angles involve non-linear trigonometric

functions, quaternions are applied by a quadratic operation

and necessitate a bilinear unit-length constraint, axis-angles

are converted to another representation, etc...

Since the maximization of eq (4) is performed over the

rotation, the optimal solution could be found if the cost was

examined for every rotation of SO(3). This is impossible in

practice because there are infinitely many rotations. An al-

ternative could be an algorithm like Levenberg-Marquardt

[18], but it might converge to a local minimum depend-

ing on the initialization because of the non-convexity of the

function.

4. Proposed Optimization Method

This section presents our proposed optimization method

to solve the consensus set maximization system (4). Our

method combines interval analysis theory and branch-and-

bound procedure. By an appropriate feasibility test, it suc-

cessively removes the infeasible rotation intervals and re-

fines the potential intervals. In this section, we first intro-

duce branch-and-bound, then we show how to develop a

feasibility test by the help of interval analysis; and finally,

we introduce our general optimization framework.



4.1. Introduction to Branchandbound

For some types of functions, the branch-and-bound algo-

rithm (BnB) can overcome the limitations listed in section

3.3 and provide a globally optimal solution. It has been

recently popularized in the computer vision community by

[12] (due to space limitation, readers are invited to refer

to this paper for detailed information). The basic idea of

BnB is to divide the search space into smaller spaces and

remove the spaces that cannot contain a solution better than

the current one. This removing decision is made by a fea-

sibility test and the associated bounds. BnB has been re-

cently applied to diverse tasks like motion estimation for

non-overlapping multi-camera rigs [14] or tilt-pan camera

calibration [25]. In order to apply BnB for our problem, we

need to parameterize the search space and obtain the lower

and upper bounds of the cost function. It will lead us to

the development of the first line clustering algorithm whose

global optimality is guaranteed.

4.2. Introduction to Interval Analysis

The difficulty of BnB is to develop a feasibility test.

Concretely, the feasibility test aims at computing the lowest

and highest values of the objective function, called bounds,

that can be obtained in a studied region of the search space.

For example [12][25] manually derived the extreme bounds,

but this is applicable only for some “well-arranged” func-

tions. On the contrary, in our application, computing the

bounds of a given rotation search space region is challeng-

ing, for example because of the non-linearities of the geo-

metric cost and of the rotation operator and the binary out-

put inlier function. Therefore an adapted technique must be

developed. To automatically obtain the bounds of a rotation

interval, we adopt the theory of interval analysis (IA).

Interval analysis [21, 11, 22] is a form of mathematical

computation defined on intervals, rather than on real num-

bers. At the beginning it was mainly employed for bounding

the measurement errors of physical quantities for which no

statistical distribution was known. A more recent applica-

tion of IA is to compute provably correct upper and lower

bounds on the range of a function over an interval. This

property is very interesting because it allows us to know the

minimum and the maximum number of possible clustered

lines for a given rotation interval.

An interval X = [a, b] is defined as [a, b] = {x ∈ R|a ≤
x ≤ b}. A point-interval is an interval where the bounds are

equal, i.e. a = b. Interval arithmetic defines a set of oper-

ations on intervals. The four elementary interval arithmetic

are defined as:

• [a, b] + [c, d] = [a+ c, b+ d]

• [a, b]− [c, d] = [a− d, b− c]

• [a, b]×[c, d] = [min(ac, ad, bc, bd),max(ac, ad, bc, bd)]

• [a, b]/[c, d] = [min(a
c
, a
d
, b
c
, b
d
),max(a

c
, a
d
, b
c
, b
d
)]

These four interval arithmetic operations are enclosures of

point arithmetic operations. Let I be the set of all the

intervals. An interval function F : I
n → I

n is called

an inclusion function for a function f : R
n → R

n if

f(X) ⊆ F (X), ∀X ∈ I
n, where f(X) = {f(x)|x ∈

X} = [inf f, sup f ] over the interval X . By replacing the

real arithmetic operators in a real function f by the inter-

val correspondents, we obtain a natural inclusion function

FNI ; the range of values of f(x) for x ∈ X is bounded by

FNI(X) ≤ f(x) ≤ FNI(X) if there is not the case of a

division by an interval containing zero in the evaluation of

FNI . In the BnB algorithm, the size of the domain is re-

duced step by step and so are the lower/upper bounds of the

natural extension of the cost function in eq (4).

4.3. Proposed BnBIA Algorithm

We parameterized rotation by Euler angles. If needed,

other representations like angle-axis or quaternion can also

be used. Let define a rotation angle interval (RAI) as a

set of 3 intervals for the roll α, pitch β and yaw γ an-

gles (for general 3D rotation): I = {[α, α], [β, β], [γ, γ]}.

For 1D rotation, the RAI would contain only 1 interval,

e.g. I = {[α, α]}. Given a RAI I , Algorithm1 com-

putes the associated interval rotation RI and interval VPs

vI and returns the lower and upper-bounds of the cardinal-

ity ZI = [ZI , ZI ] of the clustered lines (i.e. the minimum

and maximum number of possible clustered lines for that

interval), by the help of Interval Analysis (cf section 4.2).

By abuse of notation, we consider a RAI I as a point-RAI

if its bounds ZI is a point-interval, i.e. ZI = ZI . The

optional constraint that a line can belong to at most 1 VP

(cf Section 3) can be simply applied by truncating the value
∑

j zij to 1 ∀i = 1 . . .N .

Our BnB-IA optimization procedure can now be for-

mulated. Analyzing the RAIs is similar to search in a

graph. The two most popular search methods are breadth-

first search (BFS, cf Alg2) and depth-first search (DPS).

Our BFS algorithm starts with an initial RAI I0 and re-

turns the globally optimal rotation, the associated VPs and

line clustering. I0 can be initialized by any algorithms and

its volume only influences the convergence speed slightly.

The main idea consists in splitting the rotation search space

into intervals and analyzing these intervals. Let LI =
{I1, . . . , IN} the list of rotation angle intervals. For each

non-point RAI Ik in LI , we subdivide Ik, along the longest

angle dimension, into 2 smaller RAIs and compute the

lower and upper cardinality bounds ZIk = [ZIk , ZIk ].
The point-RAIs are not studied because their cardinality is

a known and fixed integer (point-cardinality). Let Z∗ be

the highest cardinality lower-bound in the cardinality list

LZ . Then we remove all the RAIs of LI whose cardinal-

ity upper-bound is lower than Z∗ because it is certain they

cannot contain the optimal solution, as illustrated in Fig 2-



Algorithm 1 Lower and upper-bounds by IA

Input: an interval of rotation angles I =
{[α, α], [β, β], [γ, γ]}

Compute the rotation matrix of interval I: RI

Compute the 3 VPs vIj by RI with j = 1, 2, 3
for each vj do

for each ni do

cij = | arccos(ni · v
I
j )− π/2| = [cij , cij ]

if cij < T then

zij = [1, 1] (in any case it is an inlier)

else

if cij ≥ T then

zij = [0, 0] (in any case it is an outlier)

else

zij = [0, 1] (clustering still unknown)

end if

end if

end for

end for

Return: the clustering bounds ZI =
∑

i

∑

j zij =

[ZI , ZI ]

left. Indeed it means there is at least one interval (the one

associated to Z∗) which provides, in the worst case, more

clustered lines than these infeasible RAIs.

We propose to combine this approach with an additional

removal step. Given a RAI I = {[α, α], [β, β], [γ, γ]}, we

compute the angle centers (α̃, β̃, γ̃) by calculating the av-

erage of each angle (e.g. α̃ = (α + α)/2) and then build

the associated rotation. Given this rotation, the clustering

can be found by directly testing the constraint of eq (5) and

we obtain a potential number ZI
c of clustered lines for this

interval. The subscript c refers to the fact that the rotation

center is tested. This numberZI
c provides a key information

to remove extra intervals and is inserted in the BnB proce-

dure of Algorithm 2. Figure 3 illustrates the fact that this

rotation center test can remove some intervals that cannot

be discarded by the lower/upper bound approach.

The procedure is repeated, and at each iteration, the size

of the remaining RAIs is reduced. Traditional BnB algo-

rithms finish either when the resolution of all the boxes be-

comes very small (e.g. the difference between the lower and

upper angles is less than 0.01◦), or when the cost reaches

a certain threshold (which guarantees the result only up to

a certain level of accuracy) or when a single candidate re-

mains in the list. These stopping criteria are correct but we

propose two alternative criterions for our application. We

suggest that the algorithm finishes when (case 1) at least one

cardinality point-interval with the maximum upper-bound

is obtained or (case 2) at least one interval whose rota-

tion center leads to the maximum upper-bound is obtained.

Figure 2. Management of the interval list. Left: removing the in-

tervals I3 and I5 because their upper-bounds are lower than the

maximum lower-bound of the list, ie. ZI1 = 15. Right: the al-

gorithm finishes because the upper-bound of the point-interval I2
equals the maximum upper-bound of the list.

Algorithm 2 BnB and IA line clustering

Input: Search space of the rotation angles I0 =
{[α, α], [β, β], [γ, γ]}
LI = {I0} (i.e.initialization of the list of rotation angles

intervals)

repeat

for each Ik non-point-interval of LI do

Subdivision along the longest dimension and store

in LI

Compute lower ZIk and upper ZIk bounds of the 2

children by Alg.1 and store in LZ

Take the rotation center of each child and compute

the clustering value ZIk
c , and store in LZc

end for

Z∗ = maxk{Z
Ik ∈ LZ}, Z ′

c = maxk{Z
Ik
c ∈ LZc

}

Remove all Ik from LI such that ZIk < Z∗ or ZIk <
Z ′
c

until ∃l such that ZIl = ZIl = maxk ZIk (i.e. there

exists at least one point interval whose upper-bound is

the max upper-bound)

or ∃l such that ZIl
c = maxk ZIk (i.e. there exists at

least one interval whose rotation center leads to the max

upper-bound)

Return: I l (i.e. the interval of the rotation angles pro-

viding the highest number of clustered lines)

The second case is obvious and the first one is also valid.

Because the cardinality intervals of any RAI I has integer

bounds, the rotations inside this interval lead to the max-

imum number of possible clustered lines (cf Fig 2-right).

These alternative criterions still guarantee the global op-

timality of the solution and provide two main advantages.

First, all the intervals in the list LI do not have to be stud-

ied/subdivided/removed since the algorithm stops when at

least one interval is guaranteed to provide the optimal solu-

tion. Second, it does not require any heuristic thresholds on

the interval resolution or on the cost.

Given that the search region contains the solution, our



Figure 3. Removing intervals by testing the rotation center. Left:

the traditional lower/upper bound method does not permit to re-

move any intervals. Right: testing the rotation center (depicted

in red for I3) permits to remove several intervals (I1, I2 and I4

indicated in blue).

approach is mathematically guaranteed to converge to the

globally optimal solution because BnB is a globally optimal

framework when the bounds estimated for each box envelop

the values obtained by each element in the boxes [12][25].

In this paper, the bounds are automatically computed by the

provably reliable IA technique.

5. Experimental Results

This section presents experimental results for both syn-

thesized and real data. Additional results for omnidirec-

tional videos composed of hundreds of images from the

Google Street View dataset are available on the authors’

website. We developed our method in Matlab and imple-

mented first order inclusion for IA. If necessary, higher-

order inclusion functions could also be used [22].

For comparison purpose, we also implemented several

existing works reviewed in section 2.2:

• Hough transform [24] with different number of bins

(100, 200 and 300 for each angle on the sphere surface)

• RANSAC with a sequential search of the VPs (referred

to as “Seq-Ransac”) [27]

• RANSAC with a simultaneous search of the VPs (re-

ferred to as “Sim-Ransac”): 3 lines are randomly se-

lected, intersection of the first two gives v1 and inter-

section of the third line and the plane orthogonal to v1
gives v2. Finally, the cross-product of v1 and v2 pro-

vides v3

• EM algorithm [2] initialized by HT

• the quasi-exhaustive search of [4] (referred to as “Ex-

haus”) with various sampling rates: 0.2◦ (for very fine

sampling), 0.5◦ (intermediate) and 1◦ (coarse) with an

offset of ±10◦

If a method does not provide orthogonal VPs, we applied

a popular orthonormalization based on the Frobenius norm

to find the “nearest” orthogonal solution [10] and then re-

counted the inliers. In all the experiments, we set τ = 1◦

and searched for M = 3 VPs. The cases where only 1 or

2 VPs exist do not create any difficulties: the extra VPs are

simply not associated to any lines.

5.1. Synthesized Data

In this section, we intend to check how well our BnB-

IA algorithm works, especially in terms of optimality and

convergence. For this aim, we synthesized data containing

2 or 3 orthogonal clusters of 5 to 100 parallel lines. To

mimic real situations, the orientations of the line normals

have been corrupted by a gaussian noise of 3◦ and some

outlier lines have been added. Given the line normals, the

goal is to cluster the lines and estimate their associated VPs.

Figure 4 illustrates a representative comparison of the

number of inliers found by the proposed method and several

existing works. Since RANSAC-based methods are not de-

terministic, we run them 1000 times and display their distri-

bution with a boxplot. As expected, Sim-Ransac performs

better than Seq-Ransac in average because it inherently im-

poses the VP orthogonality. The quasi-exhaustive search

works quite well (when the nb of samples is tractable) and

EM manages to improve the results of Hough-100. Our

method obtains 32 inliers, which exactly corresponds to the

number of synthesized inliers. On the contrary, the ex-

isting works span between 20 and 30 inliers. In all the

experiments, our number of inliers was always higher or

equal than the one obtained by the existing works. Apart

the mathematically guaranteed global optimality of our al-

gorithm, some reasons exist to explain why the existing

works do not perform as well. First, HT and the quasi-

exhaustive search might miss the global solution because

of the search space sampling/quantization. A second reason

is that RANSAC methods can only hypothesize VP models

from the selected lines, i.e. cannot generate VPs not directly

supported by the randomly selected lines.

Figure 4. Comparison of the number of inliers detected by the pro-

posed approach and some existing works (cf text for more details).



To illustrate the convergence of the algorithm, two kinds

of figures are of main interest: the upper- and lower-bound

evolution curve and the shrink of the total volume of the

remaining RAIs. To measure its speed, we used the num-

ber of iterations, rather than the absolute CPU time because

it depends on the language and the implementation quality.

Figure 5 illustrates the convergence of the global lower and

upper bounds for a representative experiment with 2 VPs,

50 lines per VP and 20% of outliers. It takes only 318 itera-

tions (about 3 seconds) to find that the maximum cardinality

is 100 lines. The total volume of the parameter space drops

very quickly. It is interesting to note that the volume does

not have to reduce to 0 since our algorithm stops as soon as

there is at least one point interval whose upper-bound equals

the maximum upper-bound, as explained in section 4.3.

We also analyzed the effects of the BnB search region

size (from±10◦ to±40◦ for each angle), data amount (from

1 to 3 VPs and from 0 to 100 lines per VP), noise level (from

0◦ to 5◦) and proportion of outliers (from 0% to 80%). First

of all, it is important to emphasize that extensive experi-

ments showed that neither the search region size, nor the nb

of VP/lines nor the level of added noise nor the fraction of

outliers affected the BnB-IA algorithm’s convergence, i.e.

the lower and upper-bounds always converged. Second, we

also always obtained a higher or equal number of inliers

compared to existing works. Third, the algorithm generally

runs in a couple of seconds, which is fast compared to pre-

vious works related to BnB [12]. RANSAC and HT-based

methods are obviously faster but, as discussed previously,

they lack in exactness and cannot guarantee the optimality

of their solution. Experiments also demonstrated the scala-

bility of the method. For example, Figure 6 illustrates that a

much larger search region (from±10◦ to ±40◦ that is to say

43 = 64 times larger) affects the number of BnB iterations

very slightly and, in turn, the execution time. Moreover,

since each box of the BnB can be analyzed independently,

our method can be implemented on GPUs to run in parallel,

which greatly reduces the execution time.

5.2. York urban database for real images

In order to verify the clustering obtained by our al-

gorithm on real images, we tested it on the York urban
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Figure 5. Convergence of the upper and lower cardinality bounds

(left) and convergence of the volume of the search space (right)

Figure 6. Distribution of the number of BnB iterations of our algo-

rithm, for 1000 runs, with respect to the search region size: ±10
◦

and ±40
◦ around the synthesized rotation on the same random

data composed of 2 VPs, 10 lines per VP and 20% of outliers.

Figure 7. Typical results obtained by our method on the York urban

database [8] for outdoor with 2 VPs (top) and indoor with 3 VPs

(bottom). Left: set of extracted lines provided in the database.

Right: automatic line clustering by our method.

database [8] which contains the true clustering obtained

manually. This database consists of 102 perspective indoor

and outdoor images of man-made environments with their

associated intrinsic calibration parameters. Each image in

the database contains 2 or 3 VPs, a set of line segments man-

ually extracted (119 lines in average without outliers) and

their ground truth clustering. To reduce input data noise, we

filtered out the segments whose length is less than 5% of the

image height. Given the set of line segments, we apply our

algorithm to find the clustering and then compare it with the

ground truth. For each line clustered by our algorithm, we

successfully obtain the true clustering, which demonstrates

the correctness of our approach. Figure 7 shows some rep-

resentative results obtained by our method.

6. Conclusion

Given a set of lines extracted in calibrated images, this

paper faced the problem of line clustering and orthogonal



VP estimation in urban environments. Existing works have

several important limitations (sphere quantization, search

space sampling, initialization, randomness of the results,

post-orthonormalization, etc...), the most important one be-

ing that they all might lead to a local minimum.

In contrast, our first contribution is an algorithm that

solves the problem in a mathematically guaranteed glob-

ally optimal manner: we can find the line clustering and

the associated VPs leading to the globally optimal largest

number of clustered lines. The optimization is performed

by a branch-and-bound framework coupled to the Interval

Analysis theory. Our second contribution is the inherent en-

forcement of the VP orthogonality. Moreover, the proposed

approach can handle the case of any number of orthogonal

VPs (i.e. 1, 2 and 3), be applied for a large range of images

(e.g perspective and omnidirectional) and efficiently deals

with outliers. Our algorithm has been validated successfully

on both synthesized data and challenging real images.
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