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Abstract— A wide range of robotic systems needs to estimate
their rotation for diverse tasks like automatic control and
stabilization, among many others. In regards of the limitations
of traditional navigation equipments (like GPS and inertial
sensors), this paper follows a vision approach based on the
observation of vanishing points (VPs). Urban environments
(outdoor as well as indoor) generally contain orthogonal VPs
which constitutes an important constraint to fulfill in order
to correctly acquire the structure of the scenes. In contrast to
existing VP-based techniques, our method inherently enforces
the orthogonality of the VPs by directly incorporating the
orthogonality constraint into the model estimation step of the
RANSAC procedure, which allows real-time applications. The
model is estimated from only 3 lines, which corresponds to
the theoretical minimal sampling for rotation estimation and
constitutes our 3-line RANSAC. We also propose a 1-line
RANSAC when the horizon plane is known. Our algorithm
has been validated successfully on challenging real datasets.

I. INTRODUCTION

This paper is dedicated to the estimation of the full rotation

(3 degrees of freedom) for robotic applications. It is essential

for a wide range of tasks like humanoid stabilization [1] and

ground/aerial vehicle control [2] among many others. It also

permits to greatly simplify the motion estimation and 3D

reconstruction [3][4]. Traditional navigation equipments like

GPS and IMU have well known limitations. For example,

GPS cannot work in indoor environments or covered places

(tunnel, underground) and IMU accumulates error over time.

With the advances of optics and the increase of computa-

tional power, a vision-based approach has gained in interest.

A vision sensor is attached onto the robotic system and

information is extracted from the images to estimate the cam-

era rotation, and in turn, the rotation of the robotic system.

Existing methods can be divided into three main categories.

The first one relies on feature correspondence and epipolar

geometry [5][6] or SLAM [7][8]. Whereas impressive results

have been obtained recently, several important limitations

and difficulties still exist: matching feature points is time

consuming and a complicated task in real world applications

and some epipolar models are scene-dependent (e.g. essential

matrix is unstable in planar environment). Moreover they

are overkill in the sense they estimate the complete motion

(rotation plus translation), although only rotation might be

needed (e.g. airplane orientation stabilization).

The second category refers to the feature correspondence-

free methods. For example, [9] proposed an appealing prob-

abilistic approach but assumes that the number of features is

known and does not treat outliers and occlusion. [10] works

in the frequency domain by spherical Fourrier transform, and

thus is computationally expensive. Moreover, it is sensitive

to translation and dynamic environment.

The third category takes into consideration the points

at infinity since their motion is translation invariant. [11]

developed an appearance-based approach and showed inter-

esting results. However it suffers from several limitations:

it estimates only one angle, is sensitive to occlusion, and

assumes that the tracked image part is far away, the car

follows a planar motion and the camera is perfectly vertical.

An important set of points at infinity is the vanishing points

(VP), that are the intersection of the projection of world

parallel lines in the image. The approach presented in this

paper belongs to this third category and is based on VPs.

The remainder of this paper is divided into three main

parts. In section II, we review the existing works on rotation

estimation based on lines and VPs. Then we introduce our

new approach, namely the 1- and 3-line RANSAC, in section

III. Finally, we present some experimental results.

II. EXISTING WORKS

Urban environments generally exhibit numerous lines that

are either parallel or orthogonal to the gravity direction,

which leads to orthogonal VPs (the so-called Manhattan

world). Maintaining this orthogonality constraint is of key

importance to respect the scene structure [12][13][14]. Given

a set of lines extracted in images, many methods have been

proposed for clustering these lines into sets of world parallel

lines and computing their associated VPs, which, in turn,

permits to compute the rotation. The common goal is to

search for the VPs supported by the highest number of lines.

Existing methods can be divided into four categories.

The first category is based on the Hough transform (HT)

[15][16][17][18]. The direction of the intersection of each

line pair is computed and accumulated in the angular bins.

The bin containing the highest number of entries corresponds

to the dominant VP. This approach is sensitive to the quanti-

zation level of the bins and might lead to multiple detections

[19]. Moreover, since the VPs are detected independently, it

does not directly impose the VP orthogonality constraint.

The second category alternates between the line clustering

and VP estimation steps [20][12], generally following a

expectation-maximization (EM) algorithm. Given an initial

VP, EM alternates between performing an expectation (E)

step, which computes the expectation of the line clustering

evaluated for the current VP, and a maximization (M) step,



which computes the VPs given the data clustering found at

the E step. This process iterates with the new VPs until

convergence. These alternating methods heavily rely on the

initialization and do not fulfill our real-time requirement.

The third category relies on a (quasi-)exhaustive search.

For example, [21] samples the rotation search space to

determine the rotation maximizing the number of clustered

lines. This method can obtain very satisfying results and is

able to enforce the VP orthogonality. However it depends on

the sampling rate and has to process a lot of samples for fine

sampling or large search space.

The fourth category refers to the popular RANSAC frame-

work [22]. It is a simple but efficient general method to dis-

tinguish inliers and outliers and also estimate the underlying

dominant model. [23][24][25], among many others, applied

it for VP estimation. Two lines are randomly selected to

create a VP hypothesis and the number of lines passing

by this hypothesized VP is counted. This procedure is

repeated during several iterations and outputs the VP (and

the associated line clustering) that maximizes the number

of line inliers. To detect multiple VPs, RANSAC can be

sequentially applied on the remaining outliers [25] but cannot

permit to impose the VP orthogonality. We refer to this tech-

nique as “independent RANSAC”. J-linkage algorithm [26]

applied by [27] obtained interesting results but is too much

computationally expensive for real-time robotic applications.

Finally, [28] presented a polynomial approach to impose the

VP orthogonality but can only consider algebraic cost and

does not run in real-time.

III. PROPOSED APPROACH

We now propose our new approach. Our two main objec-

tives are VP orthogonality and real-time. First, concerning

the orthogonality, let notice that if a method does not

return orthogonal VPs (e.g. HT or independent RANSAC),

an orthonormalization step based on the Frobenius norm

to find the “nearest” orthogonal solution [29] is generally

applied. Since this is performed after the model estimation,

it decreases the quality of the solution. A similar phenomena

can be observed by the 7-point algorithm for the fundamental

matrix computation in which the singular values are cor-

rected afterwards [30]. Therefore it is important to explicitly

enforce the VP orthogonality constraint directly when the

model is estimated.

Second, given the large proportion of line outliers, a robust

estimator is necessary. For real-time applications, RANSAC

[22] is a popular and appropriate choice. In the following, we

explain our approach to incorporate the orthogonality con-

straint directly into the model estimation step of RANSAC.

We start by reminding the spherical representation, then we

present the line parametrization adopted in this paper and

finally introduce our 3-line and 1-line approaches.

A. Spherical representation

Gaussian sphere is a convenient way to represent an image

when the intrinsic calibration parameters of the camera are

known. It has been used since [15] and has been generalized

to the concept of equivalent sphere to represent images

Fig. 1. Equivalent sphere projection: a world line (L1) is projected onto
the sphere as a great circle (C1) and the projection of parallel lines (L1

and L2) intersect in 2 antipodal points (I and I′).

acquired by various types of cameras such as pinhole,

fisheye, omnidirectional and catadioptric [31]. Interested

readers are invited to refer to [31][32] for details about

the projection equations between the original image and its

spherical representation.

A world line Li is projected onto the equivalent sphere as

a great circle which is represented by a unit normal vector

ni. The great circles of world parallel lines intersect in two

antipodal points, as illustrated in Fig 1. They correspond

to the vanishing point and are computed by v = ni × nj

where ni and nj are the normal vectors of the great circles

corresponding to two world parallel lines.

B. Line extraction

We applied the generalized polygonal approximation of [4]

to extract the lines. For completeness and self-readability,

we briefly explain it in the following. The method starts

by extracting edges and building chains of connected edge

pixels. Then these chains are projected onto the equivalent

sphere and the great circle constraint (cf section III-A) is

tested. For each chain, this test is performed by computing

the geodesic (angular) distance between the chain points

and the great circle whose normal vector is obtained by

n = P1 × PM (where Pi is the ith point of the chain in the

sphere and M is the chain length). If the maximum distance

is lower than a threshold, then the chain is considered a

line. Otherwise, we split the chain at the furthest point and

apply the same procedure for the two sub-chains until they

are considered a line or their length is too short. We finally

obtain a list of normals corresponding to the great circles of

the detected lines.

C. 3-line RANSAC

RANSAC [22] processes as follows: random selection of

data, model estimation and count of the inliers verifying this

model. This process is repeated a certain number of iterations

and outputs the model leading to the highest number of

inliers. In the following, we explain our approach to enforce

the VP orthogonality directly into the model estimation step.

A first important issue is the number of required samples

that are randomly selected to estimate the model since

the number of RANSAC iterations (and thus the algorithm

complexity) exponentially grows with the number of required

samples [30]. This refers to the notion of “minimal sampling”



Fig. 2. Illustration of our proposed 3-line (left) and 1-line (right) RANSAC
algorithms. cf text for detailed explanations. Best seen in color.

(also called “minimal solution”). A considerable amount of

energy has been devoted to this topic in the computer vi-

sion community, such as [33][34][35][36], generally leading

to mathematically appealing but computationally expensive

polynomial systems. In contrast, we will show that our

approach is both simple and computationally cheap.

Complete rotation has three DOF and each line provides

one constraint. Therefore the minimal solution for rotation

estimation is three lines. Our approach uses this minimal

sampling and its process is illustrated in Figure 2-left. Each

RANSAC iteration starts by randomly selecting three lines.

The first two lines (shown in red) intersect at a VP v1
(and its antipodal point v′

1
). The great circle of normal v1

(shown in dashed red) corresponds to the definition set of

all the possible orthogonal VPs. The third line (shown in

green) intersects this set at v2 (and its antipodal point v′
2
),

which defines the second VP. Finally, the third VP v3 is

computed by the cross-product of v1 and v2. This last step

is not necessary if only two VPs have to be extracted. Like

for the traditional point-based epipolar methods [30], the

process can be further accelerated and more efficient by

privileging some geometric configurations of samples: lines

with different orientations and a third line distant from v1.

Finally, it is interesting to note that the main computation

is performed by simple cross and dot products, which are

computationally cheap operators.

To emphasize that the orthogonality constraint is directly

Fig. 3. Distance between a line l (whose middle point is c and endpoints
are e1 and e2) and a vanishing point v in the image space.

incorporated in the model estimation step of RANSAC and

in analogy to the naming of the traditional epipolar-based

methods (e.g. the 4-point algorithm for homography [30],

the 5-point algorithm for the essential matrix [36] and the 7-

and 8-point algorithm for the fundamental matrix [30]), we

refer to our method as “3-line RANSAC”.

D. 1-line RANSAC

Inspired by the 1-point RANSAC of [37] in the context of

car trajectory estimation, we developed a 1-line RANSAC to

obtain the orthogonal VPs and the rotation. We alleviate the

assumption of a planar non-holonomic motion of [37] by the

knowledge of the horizon plane. This plane can be known

apriori (e.g. camera vertically aligned), manually estimated

or automatically computed by any existing techniques like

sky/ground segmentation [38][39].

Figure 2-right illustrates our approach. The vector vh
represents the normal of the horizon plane (shown in blue),

which generally corresponds to the vertical/gravity direction.

Each RANSAC iteration starts by randomly selecting one

line. This line (shown in red) intersects the horizon at a VP

v1 (and its antipodal point noted v′
1
). Finally, the third VP

v2 is computed by the cross-product of v1 and vh.

E. Inlier definition

Given the VPs obtained by the 1- and 3-line methods,

the next RANSAC step is to count the number of inliers.

A line l is considered an inlier when its distance to the VP

v is lower than a residual threshold [22]. This distance can

be computed in several ways. One way is to compute the

geodesic distance on the sphere: i.e. | arcsin(n · v)| where

n represents the great circle normal of the line l. Another

way is to compute the distance in the image space: for

example the average orthogonal distance from the endpoints

of the line l to an auxiliary line l̃ defined as the line passing

through v and minimizing this average orthogonal distance

(or passing through v and the middle point of the line l), as

illustrated in Fig 3 [30]. It is also possible to consider the

maximal orthogonal distance [27].

IV. EXPERIMENTAL RESULTS

This section presents experimental results obtained by the

proposed approach. Our algorithm accepts as input a set of

lines (cf section III-B) and returns, in a fully automatic way,

the detected VPs, the line clustering (i.e. which line belongs

to which VP) and the 3D rotation. Additional results are



Fig. 4. Representative examples of line clustering and vanishing point
extraction by the proposed 3-line RANSAC on Google Street View images.
Each conic corresponds to a detected line and all parallel lines have the
same color. For a better visualization, the conics have been enlarged and
the supporting line pixels are not displayed.

available on the authors’ website. For all the experiments

shown in this paper, the number of RANSAC iterations for

our approach is automatically computed with a safe outlier

ratio of 70%, a guaranteed accuracy of 99% and a minimal

sampling of 1 and 3, respectively for the 1- and 3-line

RANSAC, which leads to only 13 and 169 iterations [30]. In

addition, the involved operations are computationally cheap,

and thus the proposed approach can run in real-time.

A. Google Street View

We applied our algorithm on real omnidirectional images

issued from the Google Street View dataset1. The sequences

have been acquired by an omnidirectional camera attached

on the roof of a car driving in the city of Pittsburgh, USA.

The projection of the input image onto the equivalent sphere

is performed by linear mapping like in [40]. Because of the

distortions inherent to the wide field of view, the world lines

appear as not straight lines, but as conics in the image. Figure

4 illustrates some representative results of line clustering and

VP detection obtained by the proposed 3-line RANSAC.

Figure 5 shows results obtained by the proposed 1-line

RANSAC. Since the camera of the Google Street View

dataset is aligned with the vertical, the normal of the hori-

zon is simply (0, 0, 1). The corresponding horizon line is

displayed in blue. Note that this calibration step needs to

be done only once. Experiments showed that the proposed

1-line RANSAC provided satisfying results and is perfectly

suitable for real-time applications.

1copyrighted and kindly provided by Google.

Fig. 5. Line clustering and vanishing point extraction by the proposed
1-line RANSAC. Same color code as in Figure 4. The blue line represents
the horizon line.

B. Reflective facade

We also applied our approach to two challenging se-

quences of a building facade composed of multiple reflective

windows acquired by a hand held camera. Because of the

large portion of reflections in the image, feature tracking

(e.g. Harris corners+KLT [41][42] or SIFT [43]) cannot work

reliably and thus visual odometry methods [5][6] are likely

to fail. Figure 6-(b,e) presents some representative results.

It shows our method works also when only two VPs are

visible, without any difficulties. Since the rotation ground

truth is not available, we performed fronto-parallel image

rectification for verification (cf Fig 6-(c,f)). We obtained vi-

sually appealing results for the whole sequences: the rectified

images are stable and the horizontal and vertical lines of the

facade are now perfectly aligned with the image axis, which

demonstrates the robustness and accuracy of our approach.

C. Comparison

We compared the algorithm complexity of the sampling

approach (noted SA) of [21] and the proposed 1- and 3-

line RANSAC. SA was selected because it can directly

enforce the VP orthogonality. For SA, we considered the

sampling rates T of 0.1◦ (fine) and 0.5◦ (coarse) with a

search space size varying between 0.5◦ (very small) and

10◦ (intermediate) for each angle. As explained above, the

number of RANSAC iterations was automatically computed

to 13 and 169, respectively for the proposed 1- and 3-line

approaches. The complexity comparison is shown in Figure

7. Concerning SA, the number of iterations greatly increases

with the search space size, especially when the sampling

rate is finer. As expected, the complexity of our RANSAC

algorithms is always smaller than for SA, except when a

coarse sampling (0.5◦) and a small search space (less than

1.5◦) are considered, which is not recommended for real

examples: the coarse sampling likely misses the solution,

which leads to non-accurate results, and the small search

space assumes a very limited inter-frame motion.

In terms of line clustering, Figure 8 shows a represen-

tative comparison of the results obtained by “independent

RANSAC” (cf section II), the sampling approach of [21]

(with a fine sampling rate of 0.1◦) and the proposed 3-line

RANSAC. It confirms the fact that independent RANSAC

can capture bundles of lines, but not especially orthogonal

bundles. The proposed method and the sampling approach
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Fig. 6. Representative results obtained by our 3-line RANSAC for two sequences of reflective facade (top and bottom rows). (a,d): original image; (b,e):
line clustering and VP detection, (c,f): fronto-parallel image rectification.
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Fig. 7. Comparison of the algorithm complexity of the sampling approach
(noted SA) [21] with different parameters and the proposed 1- and 3-line
RANSAC. The x-axis represents the search space size for SA and the y-axis
corresponds to the number of iterations in logarithmic scale.

return similar clustering results, the difference being that

our algorithm requires much less iterations (cf Fig 7). For

additional comparison between the 3-line RANSAC and SA,

we measured the efficiency of the algorithms in terms of

number of clustered lines. Results are presented in Figure

9. As expected, the SA efficiency is improved with a finer

sampling rate. Moreover it shows our 3-point RANSAC

outperforms SA. The low quality of the results of SA around

the frame 120 is due to the fact that the car had a sudden

rotation, larger than the search space size of 10◦. In contrast,

our method does not assume any motion smoothness and can

handle this situation without any difficulties.

Fig. 8. Comparison of line clustering and VP detection by independent
RANSAC (top), the sampling method of [21] (middle) and the proposed
3-line RANSAC (bottom).

V. CONCLUSION

In this paper, we have introduced a simple-but-powerful

fully automatic 3-line RANSAC algorithm. The VP or-
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thogonality constraint is directly enforced during the model

estimation step of the RANSAC procedure and uses just 3

lines as the minimal sampling. It provides several important

advantages: simultaneous estimation of multiple VPs, orthog-

onality constraint and low complexity for real-time process-

ing, which constitutes the main contribution of our work.

Our second contribution is a related 1-line RANSAC for

situations where the horizon plane is known. Our approach

has been successfully applied on challenging real data such

as the Google Street View dataset and reflective facades.
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