
Unknown Radial Distortion Centers
in Multiple View Geometry Problems
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Abstract. The radial undistortion model proposed by Fitzgibbon and
the radial fundamental matrix were early steps to extend classical epipo-
lar geometry to distorted cameras. Later minimal solvers have been pro-
posed to find relative pose and radial distortion, given point correspon-
dences between images. However, a big drawback of all these approaches
is that they require the distortion center to be exactly known. In this
paper we show how the distortion center can be absorbed into a new
radial fundamental matrix. This new formulation is much more practical
in reality as it allows also digital zoom, cropped images and camera-lens
systems where the distortion center does not exactly coincide with the
image center. In particular we start from the setting where only one of
the two images contains radial distortion, analyze the structure of the
particular radial fundamental matrix and show that the technique also
generalizes to other linear multi-view relationships like trifocal tensor
and homography. For the new radial fundamental matrix we propose
different estimation algorithms from 9,10 and 11 points. We show how
to extract the epipoles and prove the practical applicability on several
epipolar geometry image pairs with strong distortion that - to the best
of our knowledge - no other existing algorithm can handle properly.

1 Introduction

When trying to relate images, the robust estimation of the fundamental matrix
based on local feature correspondences is a very powerful approach. Stochastic
estimation algorithms such as RANSAC can find the correct two-view relation
with high probability and at the same time distinguish inliers and outliers to the
model (i.e. mismatches). However, this approach relies on the appropriateness
of the model, i.e. it assumes that the images strictly obey to the pinhole camera
model. In practice however, images can contain significant distortion induced
by the lens (system) of a real camera. Consequently, in the literature several
camera models and techniques have been proposed to model such distortion [3,
6, 16, 1, 17, 4, 9]. However, for automatic registration of images obtained from in-
ternet sources or archives, an offline camera calibration phase is not feasible.
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In such cases lens distortion has to be considered directly in the multi-view ge-
ometry estimation stage. This was the idea of the undistortion model proposed
by Fitzgibbon [6] that has been extended to the radial fundamental matrix by
Barreto and Daniilidis [1]. The assumption is that undistortion can be modeled
in a radial fashion with respect to a distortion center. The main drawback in
both formulations is that the distortion center must be known in advance, which
we argue is not practical when images stem from sources like archives or internet
photo collections. Using a wrong distortion center renders the whole concept of
radial distortion meaningless, although assuming the distortion center to be at
the center of the image can sometimes still be a valid approximation. However,
in the case of cropped images or images taken with digital zoom no heuristics
exist where to place the distortion center. Consequently, in this contribution we
generalize the radial fundamental matrix (and all other multilinear multiple view
relations) to unknown distortion centers. This is very analogue to the ideal pin-
hole case where the essential matrix was generalized to the fundamental matrix
[5] that could then account for any principal point. Also in the case of the radial
fundamental the dimensions of the matrix do not change once the distortion
center is considered and linear algorithms require the same number of points for
estimating it.

For clarity of presentation we start from the setting where only one of the
two images contains radial distortion and analyze the structure of the particular
radial fundamental matrix. It will turn out that a change of distortion center acts
linearly on the lifted point representation, allowing to do the same generalization
for other multi-view geometry relations like homograpy, trifocal tensor and so
forth. We then continue to derive different estimation algorithms for our radial
fundamental matrix from 9,10 and 11 points that exploit the specific algebraic
structure and show how to extract the epipoles. Finally, we prove the practical
applicability of the new theory on several epipolar geometry image pairs with
strong distortion that - to the best of our knowledge - no other existing algorithm
can handle properly.

2 Previous Work

For ideal pinhole cameras the essential matrix has been introduced by Longuet-
Higgins [14] and it allowed efficient computation of the relative pose between two
views. However, pre-calibration of these views was mandatory and prevented us-
ing this technique for images with unknown calibration parameters since one
had to know e.g. focal length and principal point of both cameras. Much later,
the introduction of the fundamental matrix [5, 15] removed this restriction and
allowed to work with unknown images, zoom cameras and led to a whole theory
of auto-calibration from images and projective reconstruction (cf. to [10]). Prac-
tically, already the original 8-point algorithm from [14] could have been applied
to the uncalibrated setting, but due to notation and for historic reasons this was
not clear before the proposal of the fundamental matrix. Nowadays, the core of
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Longuet-Higgins algorithm is known as the 8- point algorithm for fundamental
matrix estimation [10].

The fundamental matrix applies to ideal pinhole cameras, but real cameras
have lenses that sometimes result in distortion of the image and, due to the
shape of the lens, this distortion is typically radially-symmetric with respect to
a distortion center. Many formulations exist to cope with this problem (e.g. [6,
16, 1, 17, 4, 9]. According to one of the classical distortion models [3] the defor-
mation of an undistorted point into a distorted point (as caused by the lens) is
represented by a polynomial equation, but due to the nature of the distortion
function it was not easily possible to estimate the inverse of the distortion di-
rectly from point correspondences. Fitzgibbon[6] has suggested to directly model
the undistortion of a point rather than the distortion and argued that earlier
distortion models were as good or bad empiric approximations to the true lens
behaviour as an undistortion model might be. Having an undistortion model has
the advantage that one can directly work with distorted coordinates, which is
what is measured in an image.

However, similarly as in the derivation of the essential matrix of Longuet-
Higgins, now Fitzgibbon assumed that the distortion center is known beforehand.
Later, his model was reformulated into the radial fundamental matrix by Barreto
and Daniilidis[1]. They proposed a linear 15 point method to estimate the matrix
and recently it has been shown by Kukelova et al. [12] that this view relation
can be estimated actually from only 9 correspondences in a minimal solver. All
of the above mentioned papers kept the strong requirement that the distortion
center needs to be known in advance, which practically prevented the use of
these techniques for unknown, cropped images or in the case of (digital) zoom.
Li et al. [13] addressed the unknown distortion center problem, but they need
a calibration grid or a very high number of noise-free point correspondences,
among other restrictions.

In this paper we will show that the position of the distortion center can be
absorbed into the radial fundamental matrix in very much the same way as the
principal point is absorbed into the fundamental matrix.

3 The Lifting-Trick for Radial Distortion

3.1 Second-Order Radial Distortion Models

The traditionally used second-order distortion model in computer vision with
unknown center of distortion (dx, dy)T ∈ R2 describes the radial distortion as(

xd
yd

)
=

(
xu
yu

)
+ λr̃2

((
xu
yu

)
−
(
dx
dy

))
, (1)

where (xd, yd)T ∈ R2 and (xu, yu)T ∈ R2 are the distorted and the undis-
torted point, respectively, whereas λ ∈ R is the distortion coefficient and r̃2 =∥∥(xu, yu)T − (dx, dy)T

∥∥2 is the squared Euclidean distance between the center
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of distortion and the undistorted point. Eq. 1 is a distortion model since it ac-
tually describes the distorted point in explicit form: given the undistorted point
(xu, yu)T and the distortion parameters λ and (dx, dy)T , the distorted point can
be computed easily by evaluating the right-hand side of Eq. 1.

Fitzgibbon [6] has proposed a slightly different model, which he showed to
be equivalently powerful as the model above, i.e. it provides the same approxi-
mation accuracy to the underlying true distortion. However, his model enjoys an
interesting property. Specifically, this radial distortion model can conveniently
be expressed with homogeneous coordinates

pu =

xuyu
1

 ∼=
 xd

yd
1 + λr2

 , (2)

with r2 = x2d + y2d and where ∼= denotes equality up to a scalar multiple. In
this paper, we extend his formulation to the case where not only the distortion
coefficient λ is unknown, but the center of radial distortion (dx, dy)T as well. In
this case, his model can be extended by starting with(

xd
yd

)
=

(
xu
yu

)
+ λr2

((
xu
yu

)
−
(
dx
dy

))
, (3)

where r2 =
∥∥(xd, yd)T − (dx, dy)T

∥∥2. The only distinction to the model in Eq. 1
is that the distance is now measured between the distorted point and the center
of radial distortion. In contrast to the distortion model in Eq. 1 however, Fitzgib-
bon’s model actually is an undistortion model: the right-hand side of Eq. 3 is
linear in the undistorted point (xu, yu)T and hence one can compute an explicit
form for this undistorted point given the distorted point (xd, yd) and the distor-
tion parameters λ and (dx, dy)T . In the following section, we are going to show
how this more complex formulation can be conveniently handled with a lifting
trick.

3.2 Lifting to 4D Space

Lifting is a process in polynomial algebra which embeds a problem with non-
linear polynomial terms in a higher dimensional linear space. In our case, radi-
ally distorted points in the projective 2-plane P2 will be mapped to points in
projective 3-space P3. A distorted point with homogeneous coordinates pd =
(xd, yd, zd)T ∈ P2 will be mapped to the point (xdzd, ydzd, z

2
d, x

2
d + y2d)T ∈ P3.

Hence, the projective 2-plane P2 is mapped to a quadric surface in P3 de-
fined through

{
(x, y, z, w) ∈ P3|zw − x2 − y2 = 0

}
1. Interestingly and most im-

portantly, the lifted distorted points can be mapped to the undistorted points
by a fixed linear transformation, as we will derive shortly. Note that the same
lifting scheme has been proposed by Barreto and Daniilidis [1] (see Eq. 7 in their

1 Points of the form (xdzd, ydzd, zd, x
2
d + y2d)T fulfill this equation zw− x2 − y2 = 0 as

can easily be verified by setting x = xdzd, y = ydzd, z = z2d, w = x2d + y2d.
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paper). Their derivation is however closely linked to the fundamental matrix, but
we would like to highlight that this lifting trick can be applied independently
of the type of multiple view constraint, i.e. it applies to homographies, trifocal
tensors, etc as well. Furthermore, Barreto and Daniilidis assumed a known cen-
ter of radial distortion. In the following, we show in detail how the same lifting
scheme can be generalized to the case of unknown distortion center, resulting in
a different linear transformation matrix than the one derived in [1], though.

Let us now present this lifting trick in detail, starting from the distortion
model in Eq. 3. Simple algebraic manipulation of Eq. 3 leads to(

xd
yd

)
+ λr2

(
dx
dy

)
=
(
1 + λr2

)(xu
yu

)
, (4)

which shows that the undistorted point (xu, yu)T is a scalar multiple of (xd, yd)T +
λr2(dx, dy)T . The scalar factor can be absorbed with a homogeneous represen-
tation

pu =

xuyu
1

 ∼=
xd + λr2dx
yd + λr2dy

1 + λr2

 =

1 dx
1 dy

1

xd − dxyd − dy
1 + λr2

 . (5)

For additional generality and in order to stay closer to [1], let us represent the
distorted point pd = (xd, yd, zd) ∈ P2 as an element of projective 2-space. The
previous equation Eq. 5 then becomes

pu ∼=

1 dx
1 dy

1

xdz−1d − dx
ydz
−1
d − dy

1 + λr2

 , (6)

with r2 =
(
xdz
−1
d − dx

)2
+
(
ydz
−1
d − dy

)2
. Some further algebraic manipulations

allow us to expose all the components due to the distorted point on the right
hand side

pu ∼=

1 dx
1 dy

1


 xdz

−1
d − dx

ydz
−1
d − dy

1 + λ
((
xdz
−1
d − dx

)2
+
(
ydz
−1
d − dy

)2)
 (7)

=

1 dx λdx
1 dy λdy

1 λ




xdz
−1
d − dx

ydz
−1
d − dy

1(
xdz
−1
d − dx

)2
+
(
ydz
−1
d − dy

)2
 (8)

∼=

1 dx dx
1 dy dy

1 1




1
1

1
λ




1 −dx
1 −dy

1
−2dx −2dy d

2
x + d2y 1


︸ ︷︷ ︸

=L∈R3×4


xdzd
ydzd
z2d

x2d + y2d

 , (9)
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where in Eq. 8 the lifting trick has been used and Eq. 9 is equal to Eq. 8 up to a
scale factor of z2d which does not matter since pu ∈ P2 is an element of projective
2-space2. This derivation provides an important insight and leads to one of the
main contributions of this paper. Eq. 9 shows that the undistorted homogeneous
coordinates pu can be expressed by a 3× 4 linear transformation L applied from

the left to the lifted data vector
(
xdzd, ydzd, z

2
d, x

2
d + y2d

)T ∈ P4. This linear alge-
braic representation has far reaching consequences. All multiple-view geometry
entities, such as homographies or fundamental matrices, act on homogeneous co-
ordinates of undistorted points. Unfortunately, if the input images are radially
distorted, these entities are no longer applicable. However, these entities can be
lifted to a higher dimensional space by multiplying them (either from the left
and/or the right) with the 3-by-4 matrix L thereby acting on radially distorted
lifted coordinates. The matrix L is a function of the radial distortion parameters
and therefore also unknown. However, given sufficiently many distorted image
observations, the lifted multiple view entities can be estimated nonetheless. This
will be demonstrated in the following sections with the fundamental matrix.

4 Single-Sided Radial Fundamental Matrix

The fundamental matrix captures the projective relation between two camera
views [10]. Given a homogeneous point correspondence pu and qu between two
images of the same 3D point, the fundamental matrix relates these points by the
constraint qTu Fpu = 0. The fundamental matrix actually maps a point in one
image to an epipolar line in the other image. Since neither qu nor pu can be the
zero vector, F has a non-trivial left and right nullspace. These nullspaces actually
correspond to the two epipoles. The next section shows how the fundamental
matrix can be extended to handle a radially distorted point measurement pd
instead of an undistorted measurement pu.

4.1 Derivation of the Single-Sided Radial Fundamental Matrix

Let us now assume that one of the two images is radially distorted, say the one
where feature point pu has been observed. This means that only the radially
distorted point (xd, yd)T is known. Thanks to the derivation in Sec. 3.2, we
know how to handle this situation. A simple right-multiplication by L lifts the
fundamental matrix (on one side) to a 4D projective space which allows to use
the radially distorted measurements

0 = qTu Fpu = qTu FL


xdzd
ydzd
z2d

x2d + y2d

 = qTu F̂


xdzd
ydzd
z2d

x2d + y2d

 , (10)

2 Of course in practice, the measurement will be normalized such that zd = 1 and the
formulas simplify slightly. Nevertheless, the more general representation is easier to
interpret in terms of mappings between projective spaces.



Unknown Radial Distortion Centers in Multiple View Geometry Problems 7

where the single-sided radial fundamental matrix F̂ = FL ∈ R3×4 has been in-
troduced. The decomposition L = [I | 0]+λ (dx, dy, 1)

T (−2dx,−2dy, d
2
x + d2y, 1

)
leads to another interesting representation of the single-sided radial fundamental
matrix

F̂ = FL =

[F | 0] + Fλ

dxdy
1

(−2dx − 2dy d
2
x + d2y 1

) . (11)

4.2 Properties of the Single-Sided Radial Fundamental Matrix

Since the single-sided radial fundamental matrix F̂ = FL is given as the product
between the ordinary rank-2 fundamental matrix F and the matrix L, its rank
equals 2. As a 3×4 matrix of rank 2, the single-sided radial fundamental matrix
has 3 · 2 + 2 · 4 − 2 · 2 − 1 = 9 degrees of freedom (minus one due to the scale
ambiguity)3.

Unfortunately, the number of parameters we are looking for equals 7 for
the standard fundamental matrix plus 3 for the radial distortion parameters.
Hence, there are 10 parameters but only 9 degrees of freedom in the single-sided
radial fundamental matrix. This implies that there is a one-parametric family of
perfectly valid solutions. Hence, given a single-sided radial fundamental matrix,
it is not possible to uniquely extract the underlying fundamental matrix and
the 3 radial distortion parameters. This is in contrast to previous work [1, 12]
which assumed a known radial distortion center which decreased the number of
parameters by 2. This allowed the unique extraction of all the 8 parameters.
Nevertheless, in the remainder of this section, we will show that the epipoles are
unique and how they can be extracted from the single-sided radial fundamental
matrix even if the radial distortion center is unknown.

The extraction of the left epipole e′ from the rank-2 matrix F̂ is easy: Since
F̂ = FL, both F̂ and F share the same left-nullspace and hence e′ equals
the left nullspace of F̂ . This nullspace can be easily computed e.g. with the
singular-value decomposition of F̂ . The right epipole is more tricky since there
is a two-dimensional right nullspace N = [n1, n2] ∈ R4×2 of F̂ ∈ R3×4, i.e.
F̂N = 0 ∈ R3×2. This nullspace can again be computed with the singular-
value decomposition of F̂ . The lifted coordinates of the distorted right epipole
e ∈ P3 must lie in this nullspace since the undistorted epipole lies in the right
nullspace of the standard fundamental matrix F which is a factor of F̂ = FL.
Hence, due to this fact and since the distorted coordinates are only defined up
to scale, the lifted coordinates of the distorted epipole e(α) = αn1 + (1 − α)n2
can be parametrized with one parameter α ∈ R. As described at the beginning
of Sec. 3.2, valid points (x, y, z, w) ∈ P3 in the lifted space are restricted to a
quadric surface defined through the equation zw − x2 − y2 = 0. Plugging the

3 A matrix A ∈ Rm×n of rank r can be factorized A = BC with B ∈ Rm×r and
C ∈ Rr×n. The matrix factors are unique up to a multiplication with a regular
matrix Q ∈ Rr×r, i.e. A = BQQ−1C and as such A has mr + rn − r2 degrees of
freedom.
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one-parametric representation e(α) into this quadric equation yields a quadratic
equation in α which can be solved easily in closed form. This results in two
equally valid solutions for the distorted coordinates of the right epipole. Note
that this is an inherent characteristics of the Fitzgibbon distortion model which
always provides two possible distorted points, given the undistorted point and
the radial distortion parameters4.

4.3 Further Examples - Two-Sided Radial Fundamental and
Homographies

As already previously mentioned, the same lifting trick can be applied to other
entities in multiple view geometry in the presence of radial distortion with un-
known center of radial distortion. For example, the two-sided radial fundamen-
tal matrix where both images are radially distorted is given by left- and right-
multiplying the standard fundamental matrix with the transformations mapping
lifted points to undistorted points, i.e.(

x′d, y
′
d, 1, x

′
d
2

+ y′d
2
)
L′

T
FL

(
xd, yd, 1, x

2
d + y2d

)T
= 0 (12)

If both images have the same radial distortion, then L = L′. This results in a 4×4
two-sided radial fundamental matrix which is again of rank 2 and has therefore
4 ·2+2 ·4−2 ·2−1 = 11 degrees of freedom. There are 7+3+3 = 13 parameters
(7 due to the standard fundamental matrix and twice times 3 parameters for the
two distortion models), and again, there is no unique solution for the parameters.
However, the two epipoles can be extracted analogously to the single-sided radial
fundamental matrix.

Another example is given by a one-sided radial homography. Again multi-
plying the lifted coordinates x̃ of the distorted image from the left by L yields
x′ ∼= HLx̃ and hence the one-sided radial homography HL is a full rank 3 × 4
matrix. Both the two-sided radial fundamental matrix and the one-sided radial
homography can be estimated with linear methods analogously to the algorithms
presented next for the single-sided radial fundamental matrix.

5 Single-Sided Radial Fundamental Matrix Estimation

The algebraic epipolar constraint

qT F̂
(
xd yd 1 x2d + y2d

)T
= 0 (13)

can be rewritten using kronecker products [7] as(
xd yd 1 x2d + y2d

)
⊗ qT︸ ︷︷ ︸

A

vec(F̂ )︸ ︷︷ ︸
f

= 0 (14)

4 Solving Eq. 3 for the distorted coordinates (xd, yd)T given (xu, yu)T , λ, and (dx, dy)T

asks for intersecting two conics which in this specific instance can have up to two
solutions.
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From each correspondence, we obtain a different row vector Ai. Stacking 11 of
these equations on top of each other we obtain an 11× 12 matrix and f must lie
in the null space of that matrix, like in the 8-point algorithm for estimating the
fundamental matrix. Similarly, rank two of the resulting matrix can be enforced
via a singular value decomposition afterwards.

The ten point algorithm In an analogous way to the 7-point-algorithm for
classical fundamental matrix estimation, we use one correspondence less than is
required for the linear solution above and obtain a two-dimensional null-space
spanned by f1 and f2. The true f must thus be a linear combination of both,
where we can fix one of the coefficients, since f is only defined up to scale.

f = αf1 + f2 (15)

We now perform the inverse operation to vectorization and reassemble the matrix
F̂ from the vector f , and for convenience of notation, explicitely write down the
columns:

F̂ =
(
F̂1 F̂2 F̂3 F̂4

)
(16)

We now choose alpha such that

det
(
F̂1 F̂2 F̂3

)
= 0 (17)

which is the same step as in the standard seven-point algorithm. Thus, from ten
correspondences and one cubic determinant constraint we estimate the matrix
F̂ . However, in the presence of noise, it is however not guaranteed that F̂ will
have rank two, since the last column of F̂ can vary freely. Again, rank two of
the resulting matrix can be enforced via SVD afterwards.

The nine point algorithm As mentioned above, in the ten-point-algorithm
only the first three columns of F are forced to be in a 2D subspace, however,
the last column could still vary freely in the presence of noise. Consequently,
we might enforce also the last three columns of F to be linearly dependent. To
start, we can use only nine correspondences and obtain a 3D nullspace

f = αf1 + βf2 + f3 (18)

We now choose α and β such that

det
(
F̂1 F̂2 F̂3

)
= 0 ∧ det

(
F̂2 F̂3 F̂4

)
= 0 (19)

These are two cubic equations in α and β and according to Bezout’s theorem
there cannot be more than nine discrete solutions. The derivation of the exact
solution is out of the scope of this paper, however the interested reader is refered
to Groebner basis methods [11]. As argued before, there are nine degrees of
freedom in F̂ and so there can be no solution based on less than nine points.
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6 Experiments

In this section we demonstrate the usefulness of the presented formulation and
prove empirically that the new model can cope with arbitrary distortion centers
while earlier methods cannot. We first analyse this using synthetic data and
then with real images. In the experiments, we use image pairs in which one
image has known instrinsics and the other image has unknown focal length,
radial distortion center and radial distortion coefficients. In the experiments
with synthetic data we use random camera configurations, different distortion
centers and different distortion parameters. Due to the lack of earlier methods
for our setting, the results are compared to those obtained with the state of the
art radial distortion solver from Kukelova et al.[12], although this latter method
assumes the distortion center to be at the center of the image and also estimates
distortion for both cameras. In contrast, in our setting, one of the images in each
image pair has known intrinsics and the distortion center is not at the center
of the image. We then test the algorithms with real world images which were
taken with cameras that exhibit a significant level of distortion. We generated
cropped versions of these images, so that the center of distortion would not lie
at the center of the image.

6.1 Evaluation with synthetic data

The first set of tests for the semicalibrated case was performed using synthetic
data. All tests with synthetic data were performed with a set of 100 random 3D
points and 1000 generated random camera poses. The first camera was placed
at the origin, with fixed parameters, pointed towards the set of 3D points. The
1000 random poses were generated for the second camera, by generating random
translations, random rotations and random focal lengths, varying between 1/2
and 2x the focal length of the first camera. For each camera pose we projected
the 3D points on both cameras, distorted the points on the image of the second
camera according to the distortion model in Eq. 3, setting the displacement of
the distortion center to vary between 0 and the width/height of the image and
using different values for the distortion coefficient. For each setting we computed
the number of inliers with each algorithm. Results are presented in Fig. 1. We can
see that, as the center of distortion is placed further away from the image center,
the number of identified correspondences is constant for both implementations
of our method, whereas method [12] increasingly fails to correctly identify the
correspondences, as it does not correctly model the position of the distortion
center.

6.2 Test with real images

To test the theory on real images we first matched a set of uncalibrated, distorted,
cropped images to an image with known calibration parameters using different
datasets. The undistorted images were cropped in such a way that the center
of distortion would be located away from the center of the resulting image.
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(a) Distortion parameter of λ = 0.1.
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(b) Distortion parameter of λ = 0.01.

Fig. 1: Boxplots of the number of inliers for 1000 randomly generated camera
poses with varying distortion center. Note that our 11- and 10-point algorithms
nearly always find all the 100 inliers.

To extract features in the images we used SURF[2], and then we computed
a number of putative matches in each image pair by standard feature space
matching. This produced a number of matches for each image pair, not all of
which were correct correspondences. We then ran both the 11 point and 10 point
implementations of our algorithm and [12], in a RANSAC framework with same
parameters and constructing hypotheses on the same sample sets. In the end
we computed the number of inliers with a threshold of 3 pixels. To obtain the
epipolar error (used for classifying outliers) we computed the distance in pixels
between a point and the epipolar line in the undistorted image. Before applying
the point correspondences to the different algorithms, we normalise the image
measurements similarly to the 8-point algorithm [8]. For the calibrated image
we use the inverse of the camera intrinsics for the normalization, and for the
uncalibrated/distorted/cropped one we use an initial estimate of the focal length,

fguess = W/2
tan(fovguess/2)

, where W is the image width and fovguess = 50◦ is an a-

priori estimate of the field of view. Furthermore, the image points are normalised
with respect to the center of the image. As the normalisation is only performed
to enhance the conditioning of the system, any similarity transformation is a
valid normalisation in our formulation.

Results for one of the tested datasets are shown in Fig. 2 where we can see the
inliers identified by method of [12] and our new method in an image pair where
the image on the left has been previously undistorted with an offline camera
calibration phase and the image on the right has unknown distortion parameters
and was also cropped so that the distortion center is now in the upper part of the
image. One can visualy see that our method is able to identify a higher number of
inliers, especially in areas away from the distortion center. Fig. 3a shows a direct
comparison of which inliers are identified by our new method and [12]. Again we
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(a) 146 inliers identified by the method from Kukelova et al. [12]

(b) 294 inliers identified by our new method.

Fig. 2: Results for dataset ’Shopping’.

can see that both methods identify inliers close to the center of distortion but our
method identifies extra inliers away from the distortion center. Similar results
can be obtained for different datasets in Fig. 3b and Fig. 3c. For the image pair
in Fig. 3b the distorted image was cropped so that the distortion center was
placed in the bottom right region of the image. For the image pair in Fig. 3c the
distorted image was cropped so that the distortion center was placed in the top
left region of the image. Also for these image pairs, the method from [12] found
only a spatially confined set of correspondences near the center of distortion,
whereas our method would be able to use more correspondences also far away
from the center of distortion, where radial distortion is more severe. The inliers
found by the method of [12] must be explained as an algebraic fit to the data,
because the algorithm was not geometrically designed to cope with an unknown
distortion center. To the best of our knowledge, the approach presented in this
paper is the only one designed to handle epipolar geometry problems with fully
unknown radial distortion.

7 Conclusion

We have shown that the lifting of image points into 4-space can consider the
distortion center in a linear way. This allows for instance to generalize the radial
fundamental matrix to the case of unknown distortion centers, facilitating now
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(a) Dataset ’Shopping’

(b) dataset ’Church’ (c) dataset ’Corner’

Fig. 3: Comparison between our method and [12]: red are the inliers found by
both methods; green are the extra inliers found by our method; blue are inliers
found by the method from Kukelova et al. not found by our method.

practical use of the radial fundamental matrix even with cropped or zoomed
images or more generally with images where the center of distortion is unknown.
We have proven this by devising different algorithms to estimate the matrix from
point correspondences and have shown results on real images that we believe
cannot be obtained with any other existing framework. Furthermore, since a
change of distortion center can be expressed linearly in 4-space, now the radial
distortion model with unknown center can be applied to all multilinear multiple
view relations, such as the trifocal tensor and homographies. Besides this, the
insight about the distortion center might pave the way for a series of new minimal
solvers with unknown distortion center. On top of this we believe that the new
radial fundamental matrix can open the door to a theory of radial distortion
self calibration, i.e. on top of focal length and principal point one could now
look for the distortion coefficient and the distortion center when given multiple
image pairs or image sequences, enforce some constraints (e.g. constant distortion
center throughout a sequence) and so forth.
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