
Using Vanishing Points to Improve Visual-Inertial Odometry

Federico Camposeco and Marc Pollefeys1

Abstract— This work presents a method for increasing the
accuracy of standard visual inertial odometry (VIO) by ef-
fectively removing the angular drift that naturally occurs
in feature-based VIO. In order to eliminate such drift, we
propose to leverage the predominance of parallel lines in
man-made environments by using the intersection of their
image projections, known as vanishing points (VPs). First, an
efficient inertial-based method is presented that accurately and
efficiently detects such points. Second, a strategy to deal with
these measurements within the framework of an EKF-based
VIO system is presented. Furthermore, special care is taken
in order to ensure the real-time execution of the estimator
in order to comply with time-critical applications running
on computationally constrained platforms. Experiments are
performed in a mobile device on challenging environments
and evaluated against the same VIO system without the use
of VPs, demonstrating the superior accuracy when employing
the proposed framework.

I. INTRODUCTION

Having accurate and low-latency estimates of a mobile
robot’s pose is fundamental for the success of autonomous
missions. In order to achieve this, several solutions have been
proposed in the literature. In particular, recent advances in
visual-inertial egomotion estimation, as well as the low cost
and high computational power of consumer-grade mobile
electronics, make Camera-IMU systems a very attractive
candidate to tackle the localization problem [1], [2], [3].

However, standard VIO techniques rely on the use of
point-features as visual updates to an EFK framework, while
using the measurements from the IMU as an input to the
system used to propagate the filter’s state. These type of
methods have been shown in [4], [5] and [3] to have unob-
servable degrees of freedom in the global x, y, z position of
the Camera-IMU system and its rotation around the direction
of gravity (yaw). Under several motion profiles this will
lead to a loss in accuracy for yaw [6]. This may lead to
accumulation of errors along these unobservable states which
will tend to grow linearly with time [7].

The dominant strategy to deal with drift inherent in VIO
is to perform loop closure whenever the same place is visited
twice. This method has some important disadvantages with
respect to our approach: it requires the trajectory to actually
close, computational resources need to be allocated to back-
propagate the refined trajectory whenever a loop closure is
detected and it’s memory consuming. Although loop closure
and VP detection incur in additional computational costs,
VP detection provides to the system line segments as a

1The authors are with the Computer Vision and Geometry Group,
Institute for Visual Computing, Computer Science Department, ETH Zürich
{fede, marc.pollefeys}@inf.ethz.ch

needed step of the detection. These can potentially be used
as measurements for the VIO.

By recognizing the presence of predominant vanishing
points in man-made scenarios, the estimate of the VIO can be
improved by providing a global measurement of the rotation
around gravity. In this work, a real-time method for making
use of this information is proposed.

Herein we present a novel approach of integrating infor-
mation provided by the Manhattan World assumption in the
form of vanishing points to a VIO system. For this purpose,
we propose a full system contributing:
• Efficient and robust line-segment classification using

an inertial-aided RANSAC, along with a least square
solution for the computation of a refined VP using such
classified segments.

• An extension to a VIO system to effectively include
the detected VPs using a delayed update for real-time
execution. This effectively allows many underpowered
systems to calculate the VP on the background and
update the estimate of the filter whenever the VP
becomes available.

The rest of the paper is organized as follows. Relevant
work in the matter is given in Section II, and providing
an overview to the VIO system used in Section IV. The
method proposed includes VP detection and its integration to
a VIO system, described in Sections III and V respectively.
Details on the experiments conducted and results obtained
are in Section VI. Finally, closing remarks are provided in
Section VII.

II. RELATED WORK

A. Visual Inertial Fusion

Aiming to improve computer vision techniques of relative
pose estimation, many approaches have been proposed to use
relative orientation information from an IMU as a prior to
the pose problem, such as [8] and [9].

Because of the complementary nature of visual and inertial
systems [10], other approaches focus on fusing visual and
inertial data in an optimal way. These are usually classi-
fied into two categories, tightly and loosely-coupled visual-
inertial fusion. In loosely-coupled systems, such as [11], the
measurements from the IMU are used as an auxiliary and
independent input to a stereo pose estimation framework.
Weiss et. al. in [12] do the opposite and use a vision-only
keyframe-based visual SLAM pose estimate to update an
EKF that uses IMU readings as input for propagation.

In contrast, tightly-coupled visual inertial fusion jointly
estimates the state of the IMU and Camera, taking into

2015 IEEE International Conference on Robotics and Automation (ICRA)
Washington State Convention Center
Seattle, Washington, May 26-30, 2015

978-1-4799-6923-4/15/$31.00 ©2015 IEEE 5219

account the correlations between the internal states of both
sensors. For instance, Kelly et al. [1] as well as Lynen et
al. [13] propose a tightly coupled method that estimates
not only the kinematic state of the system, but the relative
pose of the camera and the IMU, as well as the biases of
the accelerometer and gyroscope. Also, Mourikis et al. [2]
presented a multi-state Kalman filtering method (MSCKF)
that keeps a constant complexity and uses a sliding window
of past poses.

Related to our approach [7] proposed to use observations
of lines with a known direction along with point feature
measurements to remove the unobservability around yaw. In
their method they directly observe image lines and assign
them to a world direction using a Mahalanobis check, for
which they need to initially align the system’s yaw with one
of the building’s VPs. In contrast to this method, ours directly
observes VPs and tracks them by keeping them as system
states. This allows us to use multiple vanishing directions at
the same time (see Fig. 2c and the accompanying video) as
well as deal with cases in which vanishing directions are not
observed for extended periods of time (in the case of high
drift, a new VP could be initialized instead). Additionally
our approach emphasizes realtime operation by proposing a
delayed update as well as a 1-line RANSAC VP detection
which cheaply discards outlier lines.

B. Vanishing Point Detection

Several methods have been proposed for vanishing point
detection. Recently, an algebraic method Mirzaei et al. [14]
was proposed to accurately and robustly estimate a triad of
vanishing points from a single image. However, this approach
assumes that all three vanishing directions are visible on the
image, while this is not necessarily the case in many real-
world scenarios.

Bazin et al. [15] propose two methods for VP detection.
A 3-line RANSAC [16] approach, which also assumes all
three vanishing directions visible, and a 1-line RANSAC
that instead assumes a known vertical. In order to detect
the vanishing direction we also leverage the direction of
gravity similar to [15]. However, we do not assume to
be able to obtain the triplet of vanishing points by doing
cross product between the vertical (gC) and one VP (which
assumes a perfect estimate of the vertical). Instead we treat
the observation of a vanishing point independently and use
the direction of gravity as a queue. Because of this, we do
not observe the full rotation from the vanishing directions (as
in [14] or in [17]), but simply keep track of the VP direction
as a state of the filter and use its observation to update our
estimates of the orientation of the system and the directions
of the vanishing points, similar to [18].

III. INERTIAL-AIDED VANISHING POINT DETECTION

The steps followed to provide the system with the VP
estimates are as follows:

(a) Detect line segments, then use the camera intrinsic
calibration to normalize the segments’ end and start

points. This gives two camera-centered rays for each
segment.

(b) Calculate the vanishing line (VL) using the current
estimate of the direction of the vertical (see Fig. 1).
Notice that we only use the current estimate of the
vertical to efficiently find the VP, however for the final
estimate of the VP the current state estimate is not
used (see III-C). A VL is defined as the intersection of
parallel plane (in this case, parallel also to the ground
plane) and the plane at infinity [19].

(c) Classify the segments into two sets using RANSAC.
For the highest voted VP, the first set, S‖, contains all
the segments that point in the direction of the VP. The
second set, S⊥, contains the segments that intersect the
VL at a point orthogonal to the VP.

(d) Refine the estimates of the VP given by RANSAC
using both sets of segments.

Because of the computational cost of these steps (specially
the line detection step), the system is adapted to handle the
computation of VPs as a background process in order to
maintain an uninterrupted execution of the pose estimator
(see Section V-E).

Fig. 1: Schematic of the VP detection method. Segments are
classified into S‖ and S>, shown as green and blue segments.
Using the direction of gravity, we can trace the VL, shown
as the red dotted line.

A. Line detection

We use a simplified version of the Line Segment Detector
(LSD) proposed by [20] to first detect line segment in the
image. The LSD algorithm takes a gray-scale image as an
input and returns a set of detected line segments.

First, the image’s gradient is computed. Starting seeds at
the pixels with high gradient magnitude, the algorithm then
does region growing of gradient-aligned pixels neighboring
the seed pixel. Each region, called line-support region, is
used to calculate a segment by fitting rectangle. However, the
original LSD has subsequent steps to minimize the number
of false detections. To decrease the computational burden
from the line detection, we decided to remove the refinement
and false positive detection and replace it by a simple line
segment size threshold.

5220

B. 1-Line RANSAC for segment classification

Given that in a Camera-IMU system the direction of the
gravity in the camera frame is known (provided the extrinsic
calibration between camera and IMU is known), we use this
fact to our advantage in order to find VPs in an efficient
manner. In order to classify the segments into S‖ and S⊥, we
employ a RANSAC scheme. From the full set of normalized
segments, we randomly produce VP hypotheses and check
for the size of the combined sets. The ouput of this is a
rough estimate of the most-voted VP and, more importantly,
the two sets of inliers.

Usually in order to produce a VP hypothesis we need
to intersect at least two segments. However, if we have
knowledge of its corresponding vanishing line (VL), we
know that the VP must lie on the VL [19]. Thus, intersecting
any segment with this VL will yield a VP hypothesis, as
shown in Fig. 1. We employ a geodesic metric in order to
define a segment as inlier,

duk,v =

∣∣∣∣arctan(|uk × v|
uk · v

)∣∣∣∣ (1)

where v is the hypothesis of the vanishing point, duk,v is the
distance in radians and uk is the normal of the kth element of
the segment set. This gives the advantage that the metric can
be used for segments that intersect the same VP and those
which intersect the VL orthogonal to the current VL hypoth-
esis by setting the residual to min (duk,v, |π/2− duk,v|) . If
this is lower than an angle threshold, then the segment is
counted as an inlier, adding it to its corresponding set.

C. Least Squares Solution

Once we have found the most supported hypothesis, we
get two supporting sets, parallel lines to the VP (S‖) and
orthogonal lines to the VP (S⊥). From these two sets we
now intend to compute a refined direction for the VP. In
order to do so we propose a simple least squares scheme
that minimizes the cost function

E(v) =
∑
i∈S‖

(v · ui)
2
+
∑
j∈S⊥

((v × aC) · uj)
2
, (2)

subject to ‖v‖ = 1, where v is the vanishing point being
refined, and aC = C (CIq) · am

‖am‖ , where am is the measured
acceleration at the time of the acquired frame1. Notice that
we no longer use the geodesic sphere distance and instead
have opted for a simple dot product. This is valid since
we no longer need to admit both parallel and orthogonal
normal vectors using the same expression. We now proceed

1This neglects the effects of acceleration on the system. This proved to
be a valid assumption for low acceleration applications, such as handheld
applications. Furthermore, we assume that C (CIq) is a known calibration
constant.

to minimize (2), for that we rewrite

E(v) = v>
(∑

i
uiui

>
)

v − λv>v +

(v × aC)
>
(∑

j
ujuj

>
)
(v × aC) (3)

∂E

∂v
= 0 =

(∑
i
uiui

>
)

v +

baCc>×
(∑

j
ujuj

>
)
bgCc×v − λv

λv =
[∑

i
uiui

> − bgCc>×
(∑

j
ujuj

>
)
bgCc×

]
v (4)

where bac× is the skew-symmetric matrix of the vector a.
The resulting expression (4) is an eigenvalue problem of the
form Ax = λx, obtained by applying the Lagrange multiplier
to (3) to enforce ‖v‖ = 1. The problem can thus be solved
using standard numerical methods. In our implementation,
the terms are weighted using the length of the segment,
assigning a larger importance to segments that are usually
detected more reliably and with more accuracy by LSD. This
experimentally showed an increase in the accuracy of the
detection.

IV. VISUAL INERTIAL FILTER

As the underlying feature-based visual-inertial system, we
have chosen the one proposed in [2]. The advantage of
this VIO system is twofold: First, it has been shown to
provide state-of-the art results in VIO while maintaining a
computational complexity that is linear with the observed
corner features (which in this case are KLT [21] tracks).
Second, the method keeps a sliding window of the camera
poses, which will be of use when performing the delayed
update using VPs (see Section V-C). This method, however,
is not a full visual-inertial SLAM method, as it does not keep
track of the features it uses for its estimate in the state, an
thus, makes no attempt at doing any loop closure.

In the following, we provide details regarding the structure
of the filter and point feature update strategy employed by
the chosen system [2].

A. Structure of the state vector

The core EKF state includes the pose, velocity and IMU
biases of the system:

XIMU =
[
I
Gq
> b>g

Gv>I b>a
Gp>I

]>
(5)

where I
Gq is the orientation unit quaternion describing the

rotation from frame {G} to frame {I}, GvI and GpI are the
velocity and positions of the IMU in {G}, and ba and bg
are the biases of the accelerometer and gyroscope expressed
as 3-vectors. The error-state of the system can be written as:

X̃IMU =
[
δθ>I b̃>g

Gṽ>I b̃>a
Gp̃>I

]>
. (6)

Here the standard additive error is used for all terms except
the orientation, which is handled as an error quaternion δq
that arises from q = δq ⊗ q̂, where ⊗ is the quaternion
multiplication and δq ' [12δθ

> 1]. Finally, if we assume a

5221

sliding window of N past IMU poses, the EKF error-state
vector becomes:

X̃ =
[
X̃>IMU δθ>I1

Gp̃>I1 · · · δθ
>
IN

Gp̃>IN

]>
. (7)

At regular frame intervals, the pose of the system is cloned
and the cloned pose is kept in the state and propagated
along with the current pose and biases whenever a new IMU
measurement is available. [2] and [22] for details regarding
the The reader is referred to propagation step.

B. Point feature update

As mentioned, the system used here [2] relies on point
features for its update. These are computed from KLT
tracks computed at each frame. The way in which the point
feautures are handled as updates to the EKF was proposed
in [2] and is summarized here for completeness.

Whenever a tracked point feature, fj , is no longer detected
or when the clone of the pose that originated it is going to
be discarded from the state, an update is triggered for such
feature. The set of Mj camera poses (see (7)) that observed
fj are used to triangulate the feature into the global frame
Gp̂fj , and thus, the point in the global frame is correlated
with the state of the system and cannot be directly used
by the standard EKF update equation. To overcome this, the
residual of the observation rj is projected to the left nullspace
(here A) of the linearized model of the feature observation:

rj ' Hj
XX̃ + Hj

f
Gp̃fj (8)

rjo = A>
(
zj − ẑj

)
' A>Hj

XX̃ + A>nj (9)

Where Hj
X and Hj

f result from stacking the Jacobians of zji
w.r.t. the state and the feature position, respectively, and p̃fj
is the error of the position estimate of fj . After the projection
into the nullspace, we can now use ro and A>Hj

XX̃ to
perform the regular EKF update. Since A is unitary, A>nj

can also be simply written as njo, a diagonal matrix with the
pixel noise as diagonal entries.

V. VANISHING POINT UPDATE

One could adopt a method that does not require to keep
track of the VP in the state, for example, by simply using
a voting scheme to determine the direction of the VP in the
global frame. However, tracking the direction of the VP as
part of the filter allows us to account for the uncertainty of
the VP in the world frame and update the filter optimally
(up to linearization errors).

However, in order to initialize a first estimate of the
VP in the global frame we do use a voting scheme. This
means that our system is capable of keeping track of more
than one VP in the state. Thus, this method supports man-
made environments with corridors or structures at non square
angles w.r.t. each other, i.e. a superposition of Manhattan
Worlds (known as ”Atlanta world” [23]).

A. Initialization of new vanishing points

Since we are assuming an intrinsically calibrated camera,
we simplify the discussion by assuming VP measurements
as homogeneous vectors measured in the normalized image
plane. Whenever a new VP measurement is registered, in
the form of a unit vector in the camera frame vC , we do an
angle check against a set C of VP candidates in the global
frame to be added to the filter state:

vnewG := C (I

Gq̂)C (I

Cq)vC (10)

θi = D
(
P0,π/2 · vnewG , viG

)
, viG ∈ C (11)

where D(·) is a measure of angular distance and C(q) is the
corresponding rotation matrix of a quaternion q. If the angle
θi falls bellow a threshold, member i gains a vote and, if
already present in the EKF’s state, we proceed to use vnewG

to update the filter, otherwise vG is added to C.
Since we operate under the Manhattan assumption, we

also do an angle check of vC rotated around gravity by
π/2 (as Po,π/2 in (11)), this way any candidate and its
corresponding orthogonal counterpart (around the direction
of gravity) are considered as the same vanishing direction.
This means that we can keep track of only one VP in the
state that corresponds to both principal x, y directions of the
Manhattan World.

At every update, only the highest voted candidate in C
is chosen for state augmentation, provided that it has a
minimum amount of votes.

B. Vanishing point error representation

A vanishing point is considered a direction in 3-space,
encoded as a unit vector in R3 and consisting of two degrees
of freedom. In order to update the filter using the same
amount of degrees of freedom, we will parametrize the error
representation of the VPs. We use a tangent space to the unit
sphere, which is a map R3 7→ S2, namely, f(y) = ŷ/ |ŷ|
with ŷ = [y> 1]>. So, f maps the origin to [0 0 1]> and its
Jacobian is ∂f/∂y = [I | 0]>[19].

Consider now x to be a unit vector in R3, and let Hv(x)

be its Householder matrix such that Hv(x)x = [0 0 1]>. We
can now use this to parametrize a vector x ∈ R3 to lie on
a unit sphere by setting x = Hv(x)f(y), with y ∈ R2. The
Jacobian of this parametrization is:

∂x

∂y
= Hv(x) [I | 0]>. (12)

In our particular case this means that we can use a plane
tangent to the current estimate of the VP in the global frame,
v̂G, and encode its error in the state δv̂G by using

v̂G = Hv(v̂G) · f (δv̂G) . (13)

Whenever a VP is added to the state, the augmented error
state vector becomes:

X̃ =
[
X̃>IMU X̃>Clones δv̂1

G δv̂2
G · · ·

]>
. (14)

5222

C. Measurement model

The camera measures a VP as zj , which is a projection
of the normalized vector vjG, i.e.

zj = Π C (CIq)C (I

Gq)vjG + ηj (15)

where Π represents a projection matrix, so that

zj = Π vjC + ηj , Π =

[
1 0 0
0 1 0

]
(16)

vjC =
1√

u2 + v2 + 1

uv
1

+ ηj (17)

with u and v being the coordinates of the observed vanishing
point2. For the update, we need to relate the measurement
error z̃j to the state vector X̃,

z̃j = zj − ẑj ' HjX̃ + ηj , (18)

where ẑj = h(X̃) is the expected measurement obtained by
evaluating (15) at the current state estimate and the Jacobian
Hj is equal to

Hp

[
02×15 | 02×3 · · ·Hk

θI · · · 02×3 | 02×3 · · ·HvG
· · · 02×3

]
,

(19)
where the index k corresponds to the pose that was cloned
when the measurement j was scheduled (as will be discussed
in Section V-E). The partial derivatives are:

Hp =
∂h

∂vjC
= Π (20)

Hk
θI =

∂vjC
δθI

= C (CIq) bC (I

Gq̂)vjGc× (21)

Hj
vG

=
∂vjC
δθ

= C (CIq)C (I

Gq̂)Hv(v̂G) [I | 0]>. (22)

The Jacobian Hj can now be used to update the filter
or to augment the state along with the Jacobian w.r.t. the
measurement noise.

D. Measurement noise

As it can be seen from (16)-(17) and if we consider the
noise in the measurements to be corrupted with additive,
zero-mean, white, Gaussian noise:

um = u+ ηu vm = v + ηv, (23)

then we have zj as a nonlinear function of the vector in
the camera frame vjC . In order to compute the covariance
of the innovation (as well as the Mahalanobis distance for
data association) we need the derivative of the measurement
model h w.r.t. the measurement noise, ∂h/∂nu,v , since

zj =
1√

u2m + v2m + 1

[
um
vm

]
(24)

' 1√
u2 + v2 + 1

[
u
v

]
+ Γu,v · nu,v (25)

2Here we make the assumption that the camera directly observes the van-
ishing direction as a normalized image point, whereas in reality the camera
observes only line segments. This simplifies the derivation while allowing
to incorporate a more meaningful uncertainty into the measurement.

which results in the following Jacobian

Γu,v =
1

(u2 + v2 + 1)3/2

[
(v2 + 1) −uv
−uv (u2 + 1)

]
(26)

The resulting covariance calculated using (26) can be shown
to be positive definite [24].

We can now compute the innovation covariance of the
EKF as

Sk = HkPk|k−1H
>
k + ΓRkΓ

> (27)

with Rk as 2 dimensional zero-mean Gaussian noise mea-
sured in pixels. With Sk we can finally update the estimates
of the system using the usual EKF gain.

E. Vanishing point detection scheduling

Because of its complexity, the line detection step might
not be able to complete before a new frame is available to
the system. We thus take advantage of the sliding window of
clones in the state and adopt a delayed-measurement strategy
that allows for real-time execution of the filter while being
able to schedule line-detection tasks and use them when they
become available.

Whenever a new pose Tk, corresponding to frame Ik,
becomes cloned in the state, we schedule the frame for
vanishing point detection. This is executed on a separate
thread, and the cloned pose is kept on the state until the
thread finishes and returns the VPs detected. We keep track
of the poses waiting for VPs to be computed, so we keep
Tk from being marginalized if we require to clone a new
pose. At this point the clone Tk is updated with vk, the VP
detected on frame Ik as detailed on Section V-C.

VI. RESULTS

The experiments were carried out in man-made environ-
ments, such as indoor scenarios. In order to test the system’s
suitability for real-time operation on computationally con-
strained systems, a mobile device was employed. The testbed
is equipped with an NVIDIA Tegra K1 processor with 4GB
of RAM, a global-shutter fisheye camera and an IMU. Each
frame processed was first undistorted before running LSD
on them.

Given the high accuracy of the underlying system [2],
large datasets had to be gathered in order to make the angular
drift more noticeable. For instance, in Fig. 2c the length of
the trajectory was over 1.4 kilometers in length. In order
to quantize the error, the building plans were used. Fig. 3a
shows the error of the trajectory at the control points situated
in the locations shown as yellow dots in Fig. 2c Finally,
Fig. 3b shows the decrease in uncertainty when using VPs
to update the system. Although the uncertainty decreases,
one would expect the standard VIO uncertainty to be higher,
as we have no global observation of it. This is due to
an inconsistency in the linearized model used in VIO, as
discussed in [25].

It should be emphasized that the system is capable of
keeping track of several vanishing points, accommodating
thus to superpositions of Manhattan-like environments. That

5223

(a)

(b)

(c)

Fig. 2: Fig. a shows a sample of the VP detection with inlier lines depicted in green. Fig. b shows a top-down view of
a trajectory comparison spanning 1.4 kilometers and four floors performed inside the Computer Science building at ETH
Zürich. In red the VIO-only solution is shown and in blue the trajectory using VPs. Fig. c shows a top-down view of a
640 meter long dataset which exhibits two (non-orthogonal) vanishing points, shown in green. For this dataset, six control
points were situated at key locations in order to quantify the error (Fig. 3a).

is, if an environment has sections of its construction at non-
right angles w.r.t. each other, the system will simply initialize
a new vanishing point to account for this new principal
direction. Whenever a new VP is set to be initialized as a
state in the filter but we have reached the maximum number
of VP allowed in the filter, we check if the new VP has more
votes than any of the VPs currently in the filter. In order to
show this capability, the dataset shown in Fig. 2c exhibits
two groups of orthogonal VP directions.

As mentioned, special care was put into making the system
run at framerate regardless of the computational burden of
the VP detection step. This means that the scheduler would

not be relaying tasks at framerate on most mobile systems,
but in fact runs in the background continuously and process
the most recent frame whenever a VP detection cycle is
finished. For the platform used, VP were detected at an
average of every 3.5 frames. More specific timings for the
platform used are listed in Table (I).

VII. CONCLUSIONS

In this paper we have shown that by carefully leveraging
the available information in a Camera-IMU system, and by
exploiting the types of structures in man-made environments,
we can efficiently and reliably detect and keep track of van-
ishing directions. It was shown that the information provided

5224

(a)

(b)

Fig. 3: Fig. a compares the error of the trajectory at the
control points (see Fig. 2) of the proposed system vs VIO.
Fig. a compares the covariance of the rotation around the
direction of gravity

Cost of step Mean
State propagation 0.48 ms

Point features update 0.82 ms
Line detection 31.2 ms

1-line RANSAC classification 1.4 ms
LLS VP solution 0.23 ms

VP voting and update 0.41 ms

TABLE I: Timings for the system. Notice that the timing for
KLT is not present, since it was executed on the GPU.

by such measurements is complimentary information to the
classical VIO framework, and effectively eliminates angular
drift, increasing the overall accuracy of the estimates.

The system proposed is an inexpensive solution to the
localization problem, specially for low-cost or computation-
ally constrained platforms, such as mobile robots or hand-
held devices. Because of the nature of vanishing points, the
method is a good alternative to full-scale SLAM, since its
complexity does not increase with the length of the trajectory,
nor it requires the same place to be re-visited. However, in
order to also constrain drift in x, y and z, a loop closing step
is suggested. Naturally, such step would also benefit from the
increased accuracy of the pose estimates of this method to
use as a prior for loop closure, being particularly beneficial
after long trajectories.

REFERENCES

[1] J. Kelly and G. S. Sukhatme, “Visual-inertial sensor fusion: Localiza-
tion, mapping and sensor-to-sensor self-calibration,” The International
Journal of Robotics Research, vol. 30, no. 1, pp. 56–79, 2011.

[2] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint kalman
filter for vision-aided inertial navigation,” in Robotics and Automation,
2007 IEEE International Conference on, pp. 3565–3572, IEEE, 2007.

[3] E. S. Jones and S. Soatto, “Visual-inertial navigation, mapping and
localization: A scalable real-time causal approach,” The International
Journal of Robotics Research, vol. 30, no. 4, pp. 407–430, 2011.

[4] A. Martinelli, “Vision and imu data fusion: Closed-form solutions for
attitude, speed, absolute scale, and bias determination,” Robotics, IEEE
Transactions on, vol. 28, no. 1, pp. 44–60, 2012.

[5] J. Kim and S. Sukkarieh, “Improving the real-time efficiency of inertial
slam and understanding its observability,” in Intelligent Robots and
Systems, 2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ Interna-
tional Conference on, vol. 1, pp. 21–26, IEEE.

[6] M. Bryson and S. Sukkarieh, “Observability analysis and active
control for airborne slam,” Aerospace and Electronic Systems, IEEE
Transactions on, vol. 44, no. 1, pp. 261–280, 2008.

[7] D. G. Kottas and S. I. Roumeliotis, “Exploiting urban scenes for
vision-aided inertial navigation.,” in Robotics: Science and Systems,
2013.

[8] F. Fraundorfer, P. Tanskanen, and M. Pollefeys, “A minimal case
solution to the calibrated relative pose problem for the case of two
known orientation angles,” in Computer Vision–ECCV 2010, pp. 269–
282, Springer, 2010.

[9] Z. Kukelova, M. Bujnak, and T. Pajdla, “Closed-form solutions to
minimal absolute pose problems with known vertical direction,” in
Computer vision–ACCV 2010, pp. 216–229, Springer, 2011.

[10] J. Lobo and J. Dias, “Vision and inertial sensor cooperation using grav-
ity as a vertical reference,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 25, no. 12, pp. 1597–1608, 2003.

[11] K. Konolige, M. Agrawal, and J. Sola, “Large-scale visual odometry
for rough terrain,” in Robotics Research, pp. 201–212, Springer, 2011.

[12] S. Weiss, M. W. Achtelik, S. Lynen, M. Chli, and R. Siegwart, “Real-
time onboard visual-inertial state estimation and self-calibration of
mavs in unknown environments,” in Robotics and Automation (ICRA),
2012 IEEE International Conference on, pp. 957–964, IEEE, 2012.

[13] S. Lynen, S. Omari, M. Wueest, M. W. Achtelik, and R. Siegwart,
“Tightly coupled visual-inertial navigation system using optical flow,”
in Research, Education and Development of Unmanned Aerial Sys-
tems, vol. 2, pp. 251–256, 2013.

[14] F. M. Mirzaei and S. I. Roumeliotis, “Optimal estimation of vanishing
points in a manhattan world,” in Computer Vision (ICCV), 2011 IEEE
International Conference on, pp. 2454–2461, IEEE, 2011.

[15] J.-C. Bazin and M. Pollefeys, “3-line ransac for orthogonal vanishing
point detection,” in Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on, pp. 4282–4287, IEEE, 2012.

[16] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381–395, 1981.

[17] J.-C. Bazin, Y. Seo, C. Demonceaux, P. Vasseur, K. Ikeuchi, I. Kweon,
and M. Pollefeys, “Globally optimal line clustering and vanishing
point estimation in manhattan world,” in Computer Vision and Pattern
Recognition (CVPR), 2012 IEEE Conference on, pp. 638–645, IEEE,
2012.

[18] J. Montiel and A. J. Davison, “A visual compass based on slam,” in
Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE
International Conference on, pp. 1917–1922, IEEE, 2006.

[19] R. Hartley and A. Zisserman, Multiple view geometry in computer
vision. Cambridge university press, 2003.

[20] R. G. Von Gioi, J. Jakubowicz, J.-M. Morel, and G. Randall, “Lsd:
A fast line segment detector with a false detection control,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 32,
no. 4, pp. 722–732, 2010.

[21] B. D. Lucas, T. Kanade, et al., “An iterative image registration
technique with an application to stereo vision.,” in IJCAI, vol. 81,
pp. 674–679, 1981.

[22] N. Trawny and S. I. Roumeliotis, “Indirect kalman filter for 3d attitude
estimation,” University of Minnesota, Dept. of Comp. Sci. & Eng.,
Tech. Rep, vol. 2, 2005.

[23] G. Schindler and F. Dellaert, “Atlanta world: An expectation max-
imization framework for simultaneous low-level edge grouping and
camera calibration in complex man-made environments,” in Computer
Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the
2004 IEEE Computer Society Conference on, vol. 1, pp. I–203, IEEE,
2004.

[24] N. Trawny and S. Roumeliotis, “Sun sensor model,” tech. rep.,
University of Minnesota, Dept. of Comp. Sci. & Eng., Tech. Rep,
2005.

[25] J. A. Hesch, D. G. Kottas, S. L. Bowman, and S. I. Roumeliotis,
“Towards consistent vision-aided inertial navigation,” in Algorithmic
Foundations of Robotics X, pp. 559–574, Springer, 2013.

5225

