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Abstract

In this paper we present a new minimal solver for the rel-
ative pose of a calibrated stereo camera. It is based on the
observation that a feature visible in all cameras constrains
the relative pose of the second stereo camera to be on a
sphere around the feature which has a known position rela-
tive to the first stereo camera pose due to its triangulation.
The constraint leaves three degrees of freedom, two for the
location of the second camera on the sphere and the third
for rotation in the plane tangent to the sphere. We use three
temporal 2D correspondences, two correspondences from
the left (or right) camera and one correspondence from the
other camera to solve for these three remaining degrees of
freedom. This approach is amenable to stereo pairs having
a small overlap in their views. We present an efficient solu-
tion of this novel relative pose problem, theoretically derive
how to use our new solver with two classes of measurements
in RANSAC, evaluate its performance given noise and out-
liers and demonstrate its use in a real-time structure from
motion system.

1. Introduction

In this paper we present a new minimal solver for use
in stereo camera based structure from motion (SfM) or
visual simultaneous localization and mapping (VSLAM).
One popular application would be VSLAM for a humanoid
robot. Our approach is analogous to human vision where
both eyes overlap in only part of the total viewing frus-
tum. Excluding prior models humans posses, such as rel-
ative sizes of objects, expected relative positions, expected
ego-motion etc, depth could be perceived from the region
of overlap between our eyes while rotation is derived from
both overlapping and non-overlapping regions. This con-
figuration of eyes (or cameras) provides a large total field
of view of the two cameras while at the same time allowing

the scale to be fixed based on triangulation in the camera’s
region of overlap. This gives the best of what a two camera
system can deliver, a wide field of view for accurate rota-
tion estimation with an absolutely-scaled translation mea-
surement.

Our solution method is based on the observation that
a feature visible in all four cameras of the two poses of
a stereo camera constrains the relative pose of the second
stereo camera to be on a sphere around the feature which
has a known position relative to the first stereo camera pose
due to its triangulation, as shown in Figure 1. Features seen
in only the left or right camera at both poses (two-view fea-
tures) are labeled S1..3 and the feature seen in all four cam-
era views is labeled Q(four-view feature). Please note that
within this paper we refer to 2D image matches as corre-
spondences and 3D features or their projections as features.
The constraint leaves three degrees of freedom, two for the
location of the second camera on the sphere and the third
for rotation in the plane tangent to the sphere. We have
found algebraically that there is a degeneracy when using
all three two-view correspondences from the same camera
(left or right) and the camera is the same distance from the
four-view feature at both poses. To avoid this degeneracy
we use two two-view correspondences in the left (or right)
camera and one two-view correspondence in the other cam-
era to solve for the remaining three degrees of freedom.

The major advantage of our approach is that it uses the
total field of view of the two camera system to determine
the rotation, which maximizes accuracy. Given a stereo pair
with a small overlap between its views, one could triangu-
late 3D points in the region of overlap in the first stereo
camera and use the three point perspective pose solution [7]
or its generalized incarnation [12] to find the relative pose
of the second stereo camera with respect to the first camera.
Due to the small overlap, the relative rotation and transla-
tion from these methods could be inaccurate because most
of the 3D points would be in approximately the same view-
ing direction relative to the first camera. This problem is
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Figure 1. Geometry of stereo pair relative pose problem. Features
seen in only the left or right camera are labeled Si (two-view fea-
tures). The feature seen in both left and right cameras at both times
is labeled Q (four-view feature).
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Figure 2. The effect of a depth uncertainty on the accuracy of the
three point pose estimation method. At the initial camera pose
P0 the three features are triangulated. Their maximum likelihood
position and error covariances are shown. This large error in depth
can result in a highly inaccurate estimate of the second camera
pose P1.

illustrated in Figure 2. Our method fixes the rotation with
features which do not have to be in the region of overlap.
Accordingly, we get a more accurate rotation with small
overlap while suffering from less inaccuracy in translation
because we require only one feature to be triangulated ac-
curately at two different poses rather than three features to
be triangulated accurately in one pose.

Our solver necessitates some modification to standard
RANSAC [6] to account for the differing amount of in-
formation in a two-view correspondence and a twice-
triangulated four-view correspondence. We develop a
method to weigh the relative information in each type of
inlier to determine the best solution in the RANSAC pro-
cess. We also show how to modify the RANSAC stopping
criteria to account for two classes of measurement.

2. Background
Estimating SfM using multi-camera systems has been a

topic of recent interest in the literature. In some instances
one can take advantage of a reduced degree of freedom
(DOF) motion model to simplify SfM. This can be used to
estimate the planar motion of a wheeled robot for example.
This approach was taken by Stewenius and Astrom in [16]
where they theoretically derive solutions for planar SfM for
many different combinations of number of rigidly mounted

cameras, features and multi-camera system poses. In con-
trast, our approach is to be used with two-camera systems
which move with a full 6DOF.

A few approaches to solve for 6DOF motion of a multi-
camera system exist which can solve for the system’s mo-
tion without any overlapping views. Kim et al. described
one such method in [8]. They first calculate essential ma-
trices for all the system’s cameras and decompose these es-
sential matrices into rotation and translation direction. They
show that the scale of the motion can then be solved as a tri-
angulation problem.

Another approach was presented by Clipp et al. [3].
They solved the same problem using the minimal six point
feature correspondences, five in one camera to determine
the rotation and translation direction of the multiple camera
system and the sixth in another camera of the multi-camera
system which determines the scale. Both of these meth-
ods [3, 8] are based on decomposing the translation of the
systems’s cameras into translation of the total system and
the rotation induced translation. This can only be done in
special circumstances when these two vectors are not par-
allel or close to parallel. Accordingly, these methods are
only applicable to certain key frames in any general video
sequence.

The generalized epipolar constraint of multi-camera sys-
tems was developed by Pless in [13] to allow a network of
rigidly-coupled cameras to be treated as a single imaging
device for SfM. Pless suggests a linear 17-point solution
for relative motion using the generalized epipolar constraint
but left numerical results for this approach to future work.
Li et al. show in [10] that this standard linear 17-point ap-
proach to solve for relative motion using the generalized
epipolar constraint based on singular value decomposition
does not work in many common scenarios and propose a
non-minimal, linear solution that does.

Using Groebner bases Stewénius and Nistér [17] showed
that there are two minimal cases for the relative pose of a
generalized camera and developed the solution for the rela-
tive pose of two views with six ray correspondences. They
showed that up to 64 solutions may exist for the proposed
constraints. Their solution is degenerate if all cameras in the
multi-camera system are on a line, which is the case with a
stereo camera (our target here).

At the other end of the spectrum are methods which re-
quire all features used in pose estimation to be in the multi-
camera system’s region of overlap in the first pose. These
include the before mentioned three-point perspective pose
problem [7] and the generalized three point perspective pose
problem [12]. While they don’t suffer from the pure trans-
lation degeneracy, they do suffer when the views’overlap
is small, necessitating a large tradeoff between overlap and
total field of view.

Our approach, using one four-view feature to fix the



camera translation and three two-view correspondences to
find the rotation, occupies a middle ground in the space of
problems considered until now.

3. Solution Method
In this section we describe our approach for relative pose

estimation between two poses of a stereo rig. Let P0 and
P1 denote the projection matrices of the left and the right
camera for the first time instance, and P ′0 and P ′1 are those
for the second time instance. Without loss of generality,
we assume a rectified stereo system, i.e. P0 = (I|0) and
P1 = (I|b), where −b is the baseline between the cameras
on the stereo rig. General configurations can be reduced to
this case by appropriate rotation of the 2D feature positions
(corresponding to 3D camera rays emerging from the pro-
jection center).

Let (R|t) denote the Euclidean transformation between
the time instances, i.e.

P ′0 = (R|t) and P ′1 = (R|t+ b).

The 3D point visible in both cameras has coordinates X for
the first time instance and Y in the second instance (always
with respect to the left camera in the rig). Hence,

Y = RX + t,

and t = Y −RX . 2D feature matches p0 ↔ q0 visible only
in the left camera must satisfy the epipolar constraint,

qT
0 E0p0 = qT

0 [t]×Rp0 = 0. (1)

The epipolar constraint for feature correspondences p1 ↔
q1 only visible in the right camera can be easily derived as

qT
1 E1p1 = qT

1 [b+ t−Rb]×Rp1

= qT
1 [b+ Y −RX −Rb]×Rp1 with [t = Y −RX]

= qT
1

(
[b+ Y ]×R−R[X + b]×

)
p1, (2)

where we used the fact that [Rx]×Ry = (Rx) × (Ry) =
R(x× y) = R[x]×y for rotation matrices R.

Overall, Eq. 1 and 2 allows to express both essential ma-
trices in terms of the unknown rotation R, i.e.

E0 = [t]×R = [Y ]×R−R[X]×, and (3)
E1 = [b+ Y ]×R−R[X + b]×. (4)

In general, with two correspondences in the left camera
and one correspondence in the right camera, there are three
equations for the three degrees of freedom of the rotation.
Using e.g. unit quaternions to represent the rotation ma-
trix R, a polynomial system of four equations can be for-
mulated, which contains the three epipolar constraints and

the unit quaternion constraint. By computing the elim-
ination ideal (e.g. [4]) a 16th degree univariate polyno-
mial (with only even powers) is obtained. The two solu-
tions differing only in sign correspond to the quaternions
(q0, q1, q2, q3) and (−q0,−q1,−q2,−q3), which actually
represent the same rotation.

In our initial experiments we compute a Groebner ba-
sis trace for the polynomial system of equations described
above (using exact arithmetic in finite prime fields, as
in [15]), and generate efficient code automatically to solve
real instances of the pose estimation problem. In order to
allow real-time processing, we utilize a root finding pro-
cedure based on Sturm bracketing instead of using one of
the numerically more stable, but substantially slower ap-
proaches (e.g. [1, 2]). The observed numerical accuracy of
this method degrades with decreasing baselines in terms of
the 3D scene depths, which reduces its utility in real-world
situations. Nevertheless, the assumption of small motion (in
particular small rotations) of the camera system over time
(also commonly employed in differential feature tracking
methods) allows us to simplify the polynomial system as
follows.

First, we represent the rotation R by modified Rodrigues
parameters σ [14],

R(σ) = I +
8[σ]2× − 4(1− ‖σ‖2)[σ]×

(1 + ‖σ‖2)2
, (5)

where σ is a 3-vector. Since the modified Rodrigues param-
eters can be expressed in terms of the Euler axis ā and an-
gle θ as σ = ā tan(θ/4), the linearization error increases
with θ/4 instead of e.g. θ/2 for the classical Rodriguez
parametrization. Hence, this particular representation re-
laxes the assumption of small rotation angles in comparison
with other representations.

Under the assumption of small rotations, we approxi-
mate R(σ) by its second order Taylor approximation and
insert the resulting expression into Eqs. 3 and 4. The result-
ing polynomial system has three equations of degree two.
The corresponding Groebner basis trace leads to an 8th de-
gree polynomial and consists of only a few steps, hence the
induced solution procedure is considered to be numerically
stable. Root finding and backsubstitution give the modi-
fied Rodrigues parameters σ and the corresponding rotation
through Eq. 5, which is only an approximate solution to the
original problem. The reported possible rotations are non-
linearly refined to satisfy Eqs. 3 and 4 precisely.

4. RANSAC Considerations
The minimal solution method described in the previ-

ous section uses two modes of data points—point feature
matches in 3D space, and feature correspondences in 2D.
Hence, we have to deviate from the uniform treatment of
samples employed in traditional RANSAC settings.



The first modification addresses the refined stopping cri-
terion to account for the potentially different inlier ratios
for the two different types of correspondences. The algo-
rithm maintains the inlier ratio εl for features correspon-
dences only visible in the left camera, the inlier ratio εr for
features visible only in the right camera, and the inlier ratio
εd for features visible in both cameras (four-view features).
Without loss of generality we assume that two temporal cor-
respondences from the left camera and one correspondence
from the right camera are utilized in the minimal solver.
Then the modified stopping criterion is given by

n =
log(1− c)

log(1− ε2l εrεd)
, (6)

where n is the number of samples required to achieve con-
fidence c in the solution.

The inlier scoring function for a pose hypothesis also
needs adjustedment. In standard RANSAC the total count
of inliers is used to score the current hypothesis, which as-
sumes that all data points contain the same amount of in-
formation. In the given setup we face a mixed set of data
points consisting of 3D points visible in 4 images in total,
and 2D feature correspondences. In both cases the latent
variables have 3 degrees of freedom per sample—the coor-
dinates of the underlying 3D point. However, the dimen-
sion of the observed measurement is either 4-dimensional
(two 2D feature positions in either the left or the right cam-
era) or 8-dimensional (2D positions in both cameras at both
points in time). Consequently, the residual error lies in the
space orthogonal to the fitted manifold [18]. Accordingly,
the error space for 3D points visible in all cameras is 5-
dimensional (8-3), and the residuals for points visible either
in the left or right camera is 1-dimensional (4-3). There-
fore, inliers visible in both cameras carry five times more
information than single camera correspondences. Thus, the
utilized weighting to combine the respective inlier counts is
given by

score = 5×#Inliers(3D)
+ #Inliers(left) + #Inliers(right), (7)

where #Inliers(3D) denotes the number of inliers among
fully visible 3D points (four-view correspondences), and
#Inliers(left) and #Inliers(right) designate the inlier
counts of the respective two-view correspondences.

5. Minimal Problem for Stereo Cameras
In Table 1 we show the excess constraints for the case

where we have two stereo camera views for differing num-
bers of two-view and four-view correspondences. The case
with three two-view correspondences and one four-view
correspondence has zero excess constraints as it is a min-
imal solution. A second, as yet unstudied, minimal case

3D
0 1 2 3

0 -6 -3 -1 3
1 -5 -2 0 4
2 -4 -1 2 5

2D 3 -3 0 3 6
4 -2 1 4 7
5 -1 2 5 8
6 0 3 6 9

Table 1. Excess constraints for two stereo camera views

uses two four-view correspondences and one two-view cor-
respondence. That solution is left to future work.

Minimal cases are when the number of constraints (in-
dependent equations) equals the number of degrees of free-
dom (unknowns). Our proposed constraint allows for a min-
imal solution. Our situation is: M poses of a stereo camera,
N two-view correspondences, each observed in either the
left or right camera only, and Q four-view correspondences
seen in both the left and right camera at both points in time.
The degrees of freedom are six for each camera, three for
each two-view correspondence and three for each four-view
correspondence less the six for the coordinate frame of the
first camera leaving 6M+3(N+Q)−6 degrees of freedom.
The number of constraints is 2MN + 3MQ, two for each
two-view correspondence in each camera and three for each
four-view correspondence in each camera. Each four-view
feature yields three constraints because it is triangulated us-
ing the known stereo camera geometry. Table 1 gives an
overview of the number of constraints for all solvable com-
binations of 3D feature matches and 2D correspondences
for two stereo camera poses.

When a solution is under-constrained not all constraints
are independent and the geometry must be considered in
calculating the degree of under-determinacy. When over-
constrained each additional feature or correspondence gives
independent information to the system. This is why there
appears to be an inconsistency in the pattern of Table 1 be-
tween under-constrained and over-constrained geometry.

6. Degenerate Cases

In this section we describe certain configurations of fea-
tures which lead to degeneracies in our solution. The ma-
jor reason we use two two-view correspondences in the left
(or right) camera and one two-view correspondence in the
other camera to solve for the rotation is a degeneracy that
can occur when using correspondences only from one of
the cameras. If thee correspondences are selected from the
left camera to solve for the rotation and the four-view fea-
ture is equidistant from the left camera at both poses then
we have determined algebraically that the solution is de-
generate. The same goes for the right camera. However,



Figure 3. The first degenerate case. When all the features (two-
view and four-view) lie on a 3D line through the four-view feature
the second camera can be anywhere on a circle which is the inter-
section of the sphere and a plane orthogonal to the line containing
the four-view feature.

this is not a degeneracy of our method because we use two-
view correspondences from both the left and right cameras
to solve for the rotation.

One truly degenerate case that may arise with our
method in practice is when all three features, which give rise
to the 2D correspondences, lie of a line through the 3D point
used in the minimal solution at the center of the sphere. In
this case the camera can be anywhere on a circle described
by the intersection of the sphere and a plane through the
center of the sphere orthogonal to the line. This configura-
tion is depicted in Figure 3. This configuration might occur
in man made environments where straight lines are present.
However, this configuration is a common degenerate for all
relative pose solution methods.

7. Synthetic Experiments
In this section we evaluate the performance of our mini-

mal solver using two synthetic experiments. First we evalu-
ate the performance after nonlinear refinement of the solver
under varying levels of image noise with and without out-
liers to test the solver’s ability to deal with corrupted data.
Second we compare our solver to the three point perspective
pose solution without refinement while decreasing the over-
lap of the stereo pair by rotating the cameras on the rigid
system around their vertical axes.

The first experimental setup tests random motions of a
stereo camera. For ease of explanation we assume all units
of length are in meters. The two cameras have a baseline
of 0.5 m, have parallel optical axes and are placed in a stan-
dard stereo camera configuration where both camera centers
are on a line from the left optical axis to the right optical
axis orthogonal to the axes. The first camera is placed with
identity rotation and the left camera of the stereo head at the
origin. Three dimensional feature points are distributed in
a 20x20x20m volume in front of the camera. The second
camera pose is generated by first randomly translating the
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Figure 4. Rotation error and translation direction error after non-
linear refinement under varying noise with and without outliers.

camera between 0.2 and 3.5 meters in a random direction.
The minimum translation reduces the effect of being close
to the degenerate case when the two cameras are the same
distance from the 3D feature, which is the center of rotation.
The second stereo pair is then rotated randomly up to five
degrees in each of the three rotation axes. Based on visibil-
ity we divide the 3D features into three classes: those that
can be seen in both cameras of the stereo system at both
times (four-view features), those that can be seen only in
the left camera at both times and those that can be seen only
in the right. In this way we model the effect of a limited
overlap in the field of view.

We tested the performance of the novel minimal solver
under varying levels of noise and outliers. We use
RANSAC [6] to find an initial solution and do a bundle ad-
justment on the inliers to refine the relative pose solution.
Figure 4 shows the rotation and translation direction error
with varying levels of noise added to the features in the im-
ages with and without outliers. Given that our method uses
the 3D location of one feature, we triangulate the noisy im-
age measurements of this feature in both stereo pairs inde-
pendently and use the triangulated point locations as input
to our solver. Image noise is reported in degrees. For con-
text 0.1o corresponds to two pixels of a camera with a sixty
degree field of view and 1200 horizontal pixels. Figures 4
and 5 clearly show that our solver is able to separate inliers
from outliers in the presence of noise.

The second experiment is designed to test our method’s
performance vs. the three point perspective pose method
(p3p) in a typical indoor scenario. The camera is placed in
a corridor which has 3D features randomly distributed in the
0.1m thick walls. The corridor is 20m long, 2m high and 2m
wide. The first stereo camera is placed in the middle of the
corridor pointing down the corridor at the far wall, which
is 10m away from the camera. The second stereo camera is
randomly translated and rotated in a way that it is moving
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Figure 5. Error in the scale of camera translation under varying
noise with and without outliers. Error is given as
abs((norm(Test)− norm(Ttrue)/norm(Ttrue))).

down the hall and points on the far wall are visible.
We progressively reduce the overlap between the cam-

eras by rotating the left and right cameras’ optical axes
away from each other. We then compare the accuracy of the
relative pose calculated using our method and (p3p) after
RANSAC but without non-linear refinement. This provides
a measure of how close the RANSAC solution is to the true
solution. The closer to the true solution the more likely it
is that a non-linear refinement will find the global minimal
error solution. We test both methods on exactly the same
random motions, 3D feature locations and same noisy fea-
ture measurements over 1000 trials and report the average
results.

For the p3p method we first triangulate 3D points be-
tween the left and right cameras of the stereo system and
the initial pose, P0. We then use the projections of these tri-
angulated features in the left image of the stereo head at the
second pose, P ′0, to calculate the relative pose. We calcu-
late inliers and outliers and score both the p3p solution and
our solution method in the same manner. We use an adap-
tive stopping criterion so that we can compare the required
number of RANSAC samples to reach 99% confidence. We
also compare the rotation and translation direction error and
scale error of the two methods. In Figures 6 through 9 the
percentage on the legend shows the percent overlap at infin-
ity between the cameras. The cameras have a 60o field of
view horizontally and vertically.

Comparing Figures 6 and 7 one can clearly see that the
performance of the p3p method decreases with decreased
overlap in the cameras while our method has virtually con-
stant performance regardless of overlap. With 100% over-
lap p3p out-performs our method. However, with 25%
overlap the two methods perform comparably and with 5%
overlap our minimal solution out-performs p3p for typical
noise values. Figure 8 shows that our method performs with
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Figure 6. Comparison of rotation error after RANSAC without
outliers. This is the error for the best sample from RANSAC with-
out non-linear refinement.
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Figure 7. Comparison of translation direction error after RANSAC
without outliers. This is the error for the best sample from
RANSAC without non-linear refinement.

roughly the same scale error regardless of overlap while the
p3p method degrades. Figure 9 shows that p3p requires
more RANSAC samples to find a 99% confidence solution
than our method when the region of overlap is reduced.

8. Experimental Evaluation in Structure from
Motion

To demonstrate our minimal solver we have incorporated
it into a real-time (12fps processed), stereo camera based
structure from motion system. The system does 2D feature
tracking using a graphics processing unit (GPU) implemen-
tation of multi-camera scene flow [5]. This work is an ex-
tension of Kanade-Lucas-Tomassi (KLT) tracking [11] into
three dimensions. Features are matched between the two
cameras in the stereo head and triangulated. Image motion
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Figure 8. Error in the length of translation direction after RANSAC
without outliers for out solution method and p3p with varying
stereo camera overlap. No refinement is performed on the best
RANSAC sample.
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Figure 9. Number of samples required to achieve 99% confidence
in the best solution for out solution method and p3p with varying
stereo camera overlap.

can then be parameterized as the motion of the 3D feature
in front of the camera. This gives accurate correspondences
between the four cameras of a stereo pair at two different
times. In addition, we also track features that cannot be
matched between the left and right image using a standard
image space KLT formulation. The image feature tracking
runs at approximately seventy frames per second including
stereo feature matching and feature re-detection.

Estimating the scene structure and camera motion is
done using a RANSAC framework to find an initial pose
estimate, followed by a local bundle adjustment to refine
the camera poses and 3D feature estimates. Structure from
motion is performed only on key frames, which are deter-
mined based on the average feature motion in the images.
This considerably speeds up processing of a video sequence

without significant loss in accuracy. The RANSAC frame-
work uses the minimal solver described in this paper and
makes the modifications to RANSAC mentioned in sec-
tion 4. The local bundle adjustment is performed on the
previous seven key frames and all of the features visible in
at least two of those views. Additionally, the oldest two
camera poses are held fixed to ensure the continuity of the
SfM results as the sliding window of bundle adjusted views
is moved forward in time.

Figure 10 shows a top down view of the left camera path
calculated using a video sequence shot in an office environ-
ment. Example images of the video sequences are show in
Figure 11. The office loop is approximately 18 by 10 me-
ters. The camera rounded the loop twice. The path was not
exactly the same in both trips around the loop, which ac-
counts for most of the variation of the paths. Note the upper
left of Figure 10, where the camera path crosses over itself
three times just before the clockwise turn. This was a point
of constriction in the environment, which forced the camera
to take the same position on each trip around the loop and
is shown in the top right image of Figure 11.

9. Conclusion
In this paper we have introduced a novel minimal solu-

tion for the relative pose of a stereo camera using one fea-
ture observed in all four views, two two-view correspon-
dences from the left (or right) camera and one two-view
correspondence from the other camera. Our approach al-
lows the scaled translation to be estimated between poses
while at the same time enables a wide total field of view to
increase the relative motion estimation accuracy. We have
evaluated our solver on synthetic data with noise and out-
liers. An accuracy evaluation of an automatically gener-
ated solver using our constraints as proposed in [9] will be
the subject of future work. Additionally, we demonstrated
our solver’s application in a real-time structure from motion
system.
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