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Abstract

This paper introduces a novel, robust approach for
6DOF motion estimation of a multi-camera system with
non-overlapping views. The proposed approach is able to
solve the pose estimation, including scale, for a two camera
system with non-overlapping views. In contrast to previous
approaches, it degrades gracefully if the motion is close to
degenerate. For degenerate motions the technique estimates
the remaining 5DOF. The proposed technique is evaluated
on real and synthetic sequences.

1. Introduction

Recently, interest has grown in motion estimation for
multi-camera systems as these systems have been used to
capture ground based and indoor data sets for reconstruc-
tion [20, 4]. To combine high resolution and a fast frame-
rate with a wide field-of-view, the most effective approach
often consists of combining multiple video cameras into a
camera cluster. Some systems have all cameras mounted to-
gether in a single location, eg. [1, 2, 3], but it can be difficult
to avoid losing part of the field of view due to occlusion (i.e.
typically requiring camera cluster placement high up on a
boom). Alternatively, for mounting on a vehicle the system
can be split into two clusters so that one can be placed on
each side of the vehicle and occlusion problems are mini-
mized. We will show that by using a system of two cam-
era clusters, consisting of one or more cameras each, sepa-
rated by a known transformation, the six degrees of freedom
(DOF) of camera system motion, including scale, can be re-
covered.

An example of a multi-camera system for the capture of
ground based video is shown in Figure 1. It consists of two
camera clusters, one on each side of a vehicle. The cameras
are attached tightly to the vehicle and can be considered a
rigid object. This system is used for experimental evalua-

Figure 1. Example of a multi-camera system on a vehicle

tion of our approach.
Computing the scale, structure and camera motion of a

general scene is an important application of our scale es-
timation approach. In [16] Nistér et al. investigated the
properties of visual odometry for single-camera and stereo-
camera systems. Their analysis showed that a single camera
system is not capable of maintaining a consistent scale over
time. Their stereo system is able to maintain absolute scale
over extended periods of time by using a known baseline
and cameras with overlapping fields of view. Our approach
eliminates the requirement for overlapping fields of view
and is able to maintain the absolute scale over time.

The remainder of the paper is organized as follows. The
next section discusses the related work. In section 3 we in-
troduce our novel solution to finding the 6DOF motion of
a two camera system with non-overlapping views. We de-
rive the mathematical basis for our technique in section 4
as well as give a geometrical interpretation of the scale con-
straint. The algorithm used to solve for the scaled motion is
described in section 5. Section 6 discusses the evaluation of
the technique on synthetic data and on real imagery.

2. Related Work

In recent years much work has been done on egomotion
estimation of multi-camera systems. Nistér et al. [16] pro-
posed a technique that used a calibrated stereo camera sys-
tem with overlapping fields of view for visual navigation.
The proposed algorithm employed a stereo camera system
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to recover 3D world points up to an unknown Euclidean
transformation. In [9] Frahm et al. introduced a 6DOF
estimation technique using a multi-camera system. Their
approach assumed overlapping camera views to obtain the
scale of the camera motion. In contrast, our technique does
not require any overlapping views. In [19] Tariq and Del-
laert proposed a 6DOF tracker for a multi-camera system
for head tracking. Their multi-camera motion estimation is
based on known 3D fiducials. The position of the multi-
camera system is computed from the fiducial positions with
a MAP based optimization. Our algorithm does not require
any information about the observed scene. Therefore, it has
a much broader field of application.

Another class of approaches is based on the generalized
camera model [10, 17] of which a stereo/multi-camera sys-
tem is a special case. A generalized camera is a camera
which can have different centers of projection for each point
in the world space. An approach to the motion estimation of
a generalized camera was proposed by Stewénius et al. [18].
They showed that there are up to 64 solutions for the rela-
tive position of two generalized cameras given 6 point cor-
respondences. Their method delivers a rotation, translation
and scale of a freely moving generalized camera. One of
the limitations of their approach is that centers of projection
cannot be collinear. This limitation naturally excludes all
two camera systems as well as a system of two camera clus-
ters where the cameras of the cluster have approximately
the same center of projection. In [12] motion estimation
for non-overlapping cameras was solved by transforming it
into the well known triangulation problem. The next section
will introduce our novel approach to estimating the 6DOF
motion of commonly used two/multi camera systems.

3. 6DOF Multi-camera Motion

The proposed approach addresses the 6DOF motion es-
timation of multi-camera systems with non-overlapping
fields of view. Most previous approaches to 6DOF mo-
tion estimation have used camera configurations with over-
lapping fields of view, which allow correspondences to be
triangulated simultaneously across multiple views with a
known, rigid baseline. Our approach uses a temporal base-
line where points are only visible in one camera at a given
time. The difference in the two approaches is illustrated in
figure 2.

Our technique assumes that we can establish at least five
temporal correspondences in one of the cameras and one
temporal correspondence in any additional camera. In prac-
tice this assumption is not a limitation, as a reliable estima-
tion of camera motion requires multiple correspondences
from each camera due to noise.

The essential matrix which defines the epipolar geome-
try of a single freely moving calibrated camera can be esti-
mated from five points. Nistér proposed an efficient algo-

Figure 2. (a) Overlapping stereo camera pair, (b) Non-overlapping
multi-camera system

rithm for this estimation in [15]. It delivers up to ten valid
solutions for the epipolar geometry. The ambiguity can be
eliminated with additional points. With oriented geometry
the rotation and the translation up to scale of the camera
can be extracted from the essential matrix. Consequently a
single camera provides 5DOF of the camera motion. The
remaining degree is the scale of the translation. Given these
5DOF of multi-camera system motion (rotation and trans-
lation direction) we can compensate for the rotation of the
system. Our approach is based on the observation that given
the temporal epipolar geometry of one of the cameras, the
position of the epipole in each of the other cameras of the
multi-camera system is restricted to a line in the image.
Hence the scale as the remaining degree of freedom of the
camera motion describes a linear subspace.

In the next section, we derive the mathematical basis of
our approach to motion recovery.

4. Two Camera System – Theory

We consider a system involving two cameras, rigidly
coupled with respect to each other. The cameras are as-
sumed to be calibrated. Figure 3 shows the configuration
of the two-camera system. The cameras are denoted by C1

and C2, at the starting position and C′
1 and C′

2 after a rigid
motion.

We will consider the motion of the camera-pair to a new
position. Our purpose is to determine the motion using im-
age measurements. It is possible through standard tech-
niques to compute the motion of the cameras up to scale,
by determining the motion of just one of the cameras using
point correspondences from that camera. However, from
one camera, motion can be determined only up to scale. The
direction of the camera translation may be determined, but
not the magnitude of the translation. It will be demonstrated
in this paper that a single correspondence from the second
camera is sufficient to determine the scale of the motion,
that is, the magnitude of the translation. This result is sum-
marized in the following theorem.

Theorem 1. Let a two camera system have initial con-
figuration determined by camera matrices P1 = [I | 0]
and P2 = [R2 | − R2C2]. Suppose it moves rigidly to
a new position for which the first camera is specified by
P′1 = [R′1 | − λR′1C

′
1]. Then the scale of the translation,



λ, is determined by a single point correspondence x′ ↔ x
seen in the second camera according to the formula

x′�Ax + λx′�Bx = 0 (1)

where A = R2R′1 [(R′1
� − I)C2]×R2

� and B =
R2R′1 [C′

1]×R2
�. In this paper [a]×b denotes the skew-

symmetric matrix inducing the cross product a × b.

Figure 3. Motion of a multi-camera system consisting of two
rigidly coupled conventional cameras.

In order to simplify the derivation we assume that the co-
ordinate system is centered on the initial position of the first
camera, so that P1 = [I | 0]. Any other coordinate system
is easily transformed to this one by a Euclidean change of
coordinates.

Observe also that after the motion, the first camera has
moved to a new position with camera center at λC′

1. The
scale is unknown at this point because in our method we
propose as a first step determining the motion of the cam-
eras by computing the essential matrix of the first camera
over time. This allows us to compute the motion up to scale
only. Thus the scale λ remains unknown. We now proceed
to derive Theorem 1. Our immediate goal is to determine
the camera matrix for the second camera after the motion.
First note that the camera P′1 may be written as

P′1 = [I | 0]

[
R′1 −λR′1C

′
1

0� 1

]
= P1T .

where the matrix T, is the Euclidean transformation induced
by the motion of the camera pair. Since the second camera
undergoes the same Euclidean motion, we can compute the
camera P′2 to be

P′2 = P2T

= [R2 | − R2C2]

[
R′1 −λR′1C

′
1

0� 1

]

= [R2R
′
1 | − λR2R

′
1C

′
1 − R2C2]

= R2R
′
1[I | − (λC′

1 + R′1
�C2)] . (2)

From the form of the two camera matrices P2 and P′2, we
may compute the essential matrix E2 for the second camera.

E2 = R2R
′
1[λC′

1 + R′1
�C2 − C2]×R2

�

= R2R
′
1[R

′
1
�C2 − C2]×R2

� + λR2R
′
1[C

′
1]×R2

�(3)

= A + λB .

Now, given a single point correspondence x′ ↔ x as
seen in the second camera, we may determine the value of
λ, the scale of the camera translation. The essential matrix
equation x′�E2x = 0 yields x′�Ax + λx′�Bx = 0, and
hence:

λ = −x′�Ax
x′�Bx

= −x′� (
R2R′1[R

′
1
�C2 − C2]×R2

�)
x

x′� (
R2R′1[C

′
1]×R2

�)
x

(4)

.
So each correspondence in the second camera provides a

measure for the scale. In the next section we give a geomet-
ric interpretation for this constraint.

4.1. Geometric Interpretation

The situation may be understood via a different geomet-
ric interpretation, shown in Figure 4. We note from (2)
that the second camera moves to a new position C′

2(λ) =
R′1

�C2 + λC′
1. The locus of this point for varying values

of λ is a straight line with its direction vector C′
1, passing

through the point R′1
�C2. From its new position, the cam-

era observes a point at position x′ in its image plane. This
image point corresponds to a ray v′ along which the 3D
point X must lie. If we think of the camera as moving along
the line C′

2(λ) (the locus of possible final positions of the
second camera center), then this ray traces out a plane Π;
the 3D point X must lie on this plane.

On the other hand, the point X is also seen (as image
point x) from the initial position of the second camera, and
hence lies along a ray v through C2. The point where this
ray meets the plane Π must be the position of the point X.
In turn this determines the scale factor λ.

4.2. Critical configurations

This geometric interpretation allows us to identify crit-
ical configurations in which the scale factor λ cannot be
determined. As shown in Figure 4, the 3D point X is the
intersection of the plane Π with a ray v through the camera
center C2. If the plane does not pass through C2, then the
point X can be located as the intersection of plane and ray.
Thus, a critical configuration can only occur when the plane
Π passes through the second camera center, C2.

According to the construction, the line C′
2(λ) lies on the

plane Π. For different 3D points X, and corresponding im-
age measurement x′, the plane will vary, but always contain
the line C′

2(λ). Thus, the planes Π corresponding to dif-
ferent points X form a pencil of planes hinged around the



Figure 4. The 3D point X must lie on the plane traced out by the
ray corresponding to x′ for different values of the scale λ. It also
lies on the ray corresponding to x through the initial camera center
C2.

Figure 5. Rotation Induced Translation to Translation Angle

axis line C′
2(λ). Unless this line actually passes through

C2, there will be at least one point X for which C2 does not
lie on the plane Π, and this point can be used to determine
the point X, and hence the scale.

Finally, if the line C′
2(λ) passes through the point C2,

then the method will fail. In this case, the ray corresponding
to any point X will lie within the plane Π, and a unique
point of intersection cannot be found.

In summary, if the line C′
2(λ) does not pass through the

initial camera center C2, almost any point correspondence
x′ ↔ x may be used to determine the point X and the trans-
lation scale λ. The exceptions are point correspondences
given by points X that lie in the plane defined by the cam-
era center C2 and the line C′

2(λ) as well as far away points
for which Π and v are almost parallel.

If on the other hand, the line C′
2(λ) passes through the

center C2, then the method will always fail. It may be
seen that this occurs most importantly if there is no cam-
era rotation, namely R′1 = I. In this case, we see that
C′

2(λ) = C2 + λC′
1, which passes through C2. It is easy to

give an algebraic condition for this critical condition. Since
C′

1 is the direction vector of the line, the point C2 will
lie on the line precisely when the vector R′1

�C2 − C2 is
in the direction C′

1. This gives a condition for singularity

Figure 6. Critical motion due to constant rotation rate

(R′1
�C2 − C2) × C′

1 = 0, or rearranging this expression,
and observing that the vector C2 × C′

1 is perpendicular to
the plane of the three camera centers C2, C′

1 and C1 (the
last of these being the coordinate origin), we may state:

Theorem 2. The critical condition for singularity for scale
determination is

(R′1
�C2) × C′

1 = C2 × C′
1 .

In particular, the motion is not critical unless the axis of ro-
tation is perpendicular to the plane determined by the three
camera centers C2, C′

1 and C1.

Intuitively, critical motions occur when the rotation in-
duced translation R′1

�C2 − C2 is aligned with the transla-
tion C′

1. In this case the angle Θ in Fig. 5 is zero. The
most common motion which causes a critical condition is
when the camera system translates but has no rotation. An-
other common but less obvious critical motion occurs when
both camera paths move along concentric circles. This con-
figuration is illustrated in figure 6. A vehicle borne multi-
camera system turning at a constant rate undergoes critical
motion, but not when it enters and exits a turn.

Detecting critical motions is important to determining
when the scale estimates are reliable. One method to deter-
mine the criticality of a given motion is to use the approach
of [8]. We need to determine the dimension of the space
which includes our estimate of the scale. To do this we
double the scale λ and measure the difference in the frac-
tion of inliers to the essential matrix of our initial estimate
and the doubled scale essential matrix. If a large propor-
tion of inliers are not lost when the scale is doubled then
the scale is not observable from the data. If the scale is ob-
servable the deviation from the estimated scale value would
cause the correspondences to violate the epipolar constraint,
which means they are outliers to the constraint for the dou-
bled scale. When the scale is ambiguous doubling the scale
does not cause correspondences to be classified as outliers.
This method proved to work practically on real data sets.



Figure 7. Algorithm for estimating 6DOF motion of a multi-
camera system with non-overlapping fields of view.

5. Algorithm

Figure 7 shows an algorithm to solve relative motion
of two generalized cameras from 6 rays with two centers
where 5 rays meet one center and sixth ray meets the other
center. First, we use 5 correspondences in one ordinary
camera to estimate an essential matrix between two frames
in time. The algorithm used to estimate the essential ma-
trix from 5 correspondences is the method by Nistér [15]. It
is also possible to use a simpler algorithm which gives the
same result developed by Li and Hartley [13]. The 5 corre-
spondences are selected by the RANSAC (Random Sample
Consensus) algorithm [7]. The distance between a selected
feature and its corresponding epipolar line is used as an in-
lier criterion in the RANSAC algorithm. The essential ma-
trix is decomposed into a skew-symmetric matrix of transla-
tion and a rotation matrix. When decomposing the essential
matrix into rotation and translation the chirality constraint
is used to determine the correct configuration [11]. At this
point the translation is recovered up to scale.

To find the scale of translation, we use Eq. 4 with
RANSAC. One correspondence is randomly selected from
the second camera and is used to calculate a scale value
based on the constraint given in Eq. 4. We have also used
a variant of the pbM-Estimator [6] to find the initial scale
estimate with similar results and speed to the RANSAC ap-
proach. This approach forms a continuous function based
on the discrete scale estimates from each of the correspon-
dences in the second camera and selects the maximum of
that continuous function as the initial scale estimate.

Based on this scale factor, the translation direction and
rotation of the first camera, and the known extrinsics be-
tween the cameras, an essential matrix is generated for the
second camera. Inlier correspondences in the second cam-
era are then determined based on their distance to the epipo-
lar lines. A linear least squares calculation of the scale
factor is then made with all of the inlier correspondences

from the second camera. This linear solution is refined
with a non-linear minimization technique using the GNC
function [5] which takes into account the influence of all
correspondences, not just the inliers of the RANSAC sam-
ple, in calculating the error. This error function measures
the distance of all correspondences to their epipolar lines
and smoothly varies between zero for perfect correspon-
dence and one for an outlier with distance to the epipolar
line greater than some threshold. One could just as easily
take single pixel steps from the initial linear solution in the
direction which maximizes inliers, or equivalently minimiz-
ing the robust error function. The non-linear minimization
simply allows us to select step sizes depending on the sam-
pled Jacobian of the error function, which should converge
faster than single pixel steps and allows for sub-pixel preci-
sion.

Following refinement of the scale estimate, the inlier cor-
respondences of the second camera are calculated and their
number is used to score the current RANSAC solution. The
final stage in the scale estimation algorithm is a bundle ad-
justment of the multi-camera system’s motion. Inliers are
calculated for both cameras and they are used in a bundle
adjustment refining the rotation and scaled translation of the
total, multi-camera system.

While this algorithm is described for a system consisting
of two cameras it is relatively simple to extend the algo-
rithm to use any number of rigidly mounted cameras. The
RANSAC for the initial scale estimate, initial linear solu-
tion and non-linear refinement are performed over corre-
spondences from all cameras other than the camera used in
the five point pose estimate. The final bundle adjustment is
then performed over all of the system’s cameras.

6. Experiments

We begin with results using synthetic data to show the al-
gorithm’s performance over varying levels of noise and dif-
ferent camera system motions. Following these results we
show the system operating on real data and measure its per-
formance using data from a GPS/INS (inertial navigation
system). The GPS/INS measurements are post processed
and are accurate to 4cm in position and 0.03 degrees in ro-
tation, providing a good basis for error analysis.

6.1. Synthetic Data

We use results on synthetic data to demonstrate the per-
formance of the 6DOF motion estimate in the presence of
varying levels of gaussian noise on the correspondences
over a variety of motions. A set of 3D points was generated
within the walls of an axis-aligned cube. Each cube wall
consisted of 5000 3D points randomly distributed within a
20m x 20m x 0.5m volume. The two-camera system, which
has an inter-camera distance of 1.9m, a 100o angle between



Figure 8. Angle Between True and Estimated Rotations, Synthetic
Results of 100 Samples Using Two Cameras

Figure 9. Angle Between True and Estimated Translation Vectors,
Synthetic Results of 100 Samples Using Two Cameras

optical axes and non-overlapping fields of view, is initially
positioned at the center of the cube, with identity rotation.
A random motion for the camera system was then gener-
ated. The camera system’s rotation was generated from a
uniform ±6o distribution sampled independently in each
Euler angle. Additionally, the system was translated by a
uniformly distributed distance of 0.4m to 0.6m in a random
direction. A check for degenerate motion is performed by
measuring the distance between the epipole of the second
camera (see Fig. 3) due to rotation of the camera system and
the epipole due to the combination of rotation and transla-
tion. Only results of non-degenerate motions with epipole
separations equivalent to a 5o angle between the translation
vector and the rotation induced translation vector(see Fig. 5)
are shown. Results are given for 100 sample motions for
each of the different values of normally distributed, zero
mean Gaussian white noise added to the projections of the
3D points into the system’s cameras. The synthetic cameras
have calibration matrices and fields of view which match
the cameras used in our real multi-camera system. Each
real camera has an approximately 40o x 30o field of view
and a resolution of 1024 x 768 pixels.

Results on synthetic data are shown in figures 8 to
11. One can see that the system is able to estimate the
rotation (Fig. 8) and translation direction (Fig. 9) well
given noise levels that could be expected using a 2D fea-
ture tracker on real data. Figure 10 shows a plot of
‖Test − Ttrue‖ / ‖Ttrue‖. This ratio measures both the ac-
curacy of the estimated translation direction, as well as

Figure 10. Scaled Translation Vector Error, Synthetic Results of
100 Samples Using Two Cameras

Figure 11. Scale Ratio, Synthetic Results of 100 Samples Using
Two Cameras

the scale of the translation and would ideally have a value
of zero because the true and estimated translation vectors
would be the same. Given the challenges of translation esti-
mation and the precise rotation estimation we use this ratio
as the primary performance metric for the 6DOF motion es-
timation algorithm. The translation vector ratio along with
the rotation error plot demonstrate that the novel system per-
forms well given a level of noise that could be expected in
real tracking results.

6.2. Real data

For a performance analysis on real data we collected
video using an eight camera system mounted on a vehicle.
The system included a highly accurate GPS/INS unit which
allows comparisons of the scaled camera system motion cal-
culated with our method to ground truth measurements. The
eight cameras have almost no overlap to maximize the total
field of view and are arranged in two clusters facing toward
the opposite sides of the vehicle. In each cluster the camera
centers are within 25cm of each other. A camera cluster is
shown in Fig. 1. The camera clusters are separated by ap-
proximately 1.9m and the line between the camera clusters
is approximately parallel with the rear axle of the vehicle.
Three of the four cameras in each cluster cover a horizontal
field of view on each side of the vehicle of approximately
120o x 30o. A fourth camera points to the side of the vehi-
cle and upward. Its principle axis has an angle of 30o with
the horizontal plane of the vehicle which is colinear with
the optical axes of the other three cameras.



Figure 12. Angle Between True and Estimated Translation Vec-
tors, Real Data with Six Cameras

Figure 13. Angle Between True and Estimated Rotations, Real
Data with Six Cameras

Figure 14. Scale Ratio, Real Data with Six Cameras

In these results on real data we take advantage of the
fact that we have six horizontal cameras and use all of the
cameras to calculate the 6DOF system motion. The upward
facing cameras were not used because they only recorded
sky in the sequence. For each pair of frames recorded at
different times, each camera in turn is selected and the five
point pose estimate is performed for that camera using cor-
respondences found using a KLT [14] 2D feature tracker.
The other cameras are then used to calculate the scaled mo-
tion of the camera system using the five point estimate from
the selected camera as an initial estimate of the camera sys-
tem rotation and translation direction. The 6DOF motion
solution for each camera selected for the five point estimate
is scored according to the fraction of inliers of all other cam-
eras. The motion with the largest fraction of inliers is se-
lected as the 6DOF motion for the camera system.

In table 1 we show the effect of critical motions de-
scribed in section 4.2 over a sequence of 200 frames. Crit-

Figure 15. Scaled Translation Vector Difference from Ground
Truth, Real Data with Six Cameras

‖Test−Ttrue‖
‖Ttrue‖ 0.23 ± 0.19
‖Test‖
‖Ttrue‖ 0.90 ± 0.28

Table 1. Relative translation vector error including angle and error
of relative translation vector length mean ± std.dev.

ical motions were detected using the QDEGSAC [8] ap-
proach described in that section. Even with critical motion
the system degrades to the standard 5DOF motion estima-
tion from a single camera and only the scale remains am-
biguous as shown by the translation direction and rotation
angle error in Figures 12 and 13. This graceful degradation
to the one camera motion estimation solution means that the
algorithm solves for all of the possible degrees of freedom
of motion given the data provided to it.

In this particular experiment the system appears to con-
sistently underestimate the scale with our multi-camera sys-
tem when the motion is non-critical. This is likely due to a
combination of error in the camera system extrinsics and
error in the GPS/INS ground truth measurements.

Figure 16 shows the path of the vehicle mounted multi-
camera system and locations where the scale can be esti-
mated. From the map it is clear that the scale cannot be
estimated in straight segments as well as in smooth turns.
This is due to the constant rotation rate critical motion con-
dition described in section 4.2. We selected a small section
of the camera path circled in figure 16 and used a calibrated
structure from motion (SfM) system similar to the system
used in [15] to reconstruct the motion of one of the sys-
tem’s cameras. For a ground truth measure of scale error
accumulation we scaled the distance traveled by a camera
between two frames at the beginning of this reconstruction
to match the true scale of the camera motion according to
the GPS/INS measurements. Figure 17 shows how error
in the scale accumulates over the 200 frames (recorded at
30 frames per second) of the reconstruction. We then pro-
cessed the scale estimates from the 6DOF motion estima-
tion system with a Kalman filter to determine the scale of
the camera’s motion over many frames and measured the
error in the SfM reconstruction scale using only our algo-
rithm’s scale measurements. The scale drift estimates from



Figure 16. Map of vehicle motion showing points where scale can
be estimated

Figure 17. Scaled structure from motion reconstruction

the 6DOF motion estimation algorithm clearly measure the
scale drift and provide a measure of absolute scale.

7. Conclusion

We have introduced a novel algorithm that determines
the 6DOF motion of a multi-camera system with non-
overlapping fields of view. We have provided a complete
analysis of the critical motions of the multi-camera system
that make the absolute scale unobservable. Our algorithm
can detect these critical motions and gracefully degrades to
the estimation of the epipolar geometry. We have demon-
strated the performance of our solution through both syn-
thetic and real motion sequences. Additionally, we embed-
ded our novel algorithm in a structure from motion system
to demonstrate that our technique allows the determination
absolute scale without requiring overlapping fields of view.
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