
Adaptive, Real-Time Visual Simultaneous Localization and Mapping

Brian Clipp1, Christopher Zach1,Jongwoo Lim2, Jan-Michael Frahm1 and Marc Pollefeys1,3

Department of Computer Science1 Honda Research Institute USA, Inc.2 Department of Computer Science3

The University of North Carolina Mountain View, CA, USA ETH Zurich, Switzerland
Chapel Hill, NC, USA jongwoo.lim@gmail.com marc.pollefeys@inf.ethz.ch

{bclipp,cmzach,jmf}@cs.unc.edu

Abstract

In this paper we present a real-time simultaneous local-
ization and mapping system which uses a stereo camera as
its only input. We combine the benefits of KLT feature track-
ing, which include high speed and robustness to repetitive
features, with wide baseline features, which allow for fea-
ture matching after large camera motions. Updating the
map of feature locations and camera poses is considerably
more expensive than performing KLT tracking. For this rea-
son we use the optical flow measured by the KLT tracker to
adaptively select key frames for which we do a full map and
camera pose update. In this way we limit the processing to
only ”interesting” parts of the video sequence. Addition-
ally, we maintain a consistent scene scale at low cost by
using a GPU implementation of multi-camera scene flow,
a generalization of KLT to the motion of image features in
three dimensions. The system uses multiple sub-maps; scal-
able, bag of features recognition and geometric verification
to recover from motion estimation failure or ”kidnapping”.
This architecture allows the robot to grow the existing map
online and in real time while storing all of the data nec-
essary for an off-line optimization to complete loops. We
demonstrate the robustness of our system in a challenging
indoor environment that includes semi-reflective glass walls
and people moving in the scene.

1. Introduction
The autonomous, multi-purpose robot is an enduring

dream of both science fiction aficionados and the gen-
eral public. These robots might take over the day to day
drudgery of domestic labor, clean up hazardous waste or
assist the disabled among many possible tasks. To achieve
complete autonomy in environments previously unknown to
the robot a robot must be able to create a map of its envi-
ronment while maintaining its pose within the map. This
process is known in the robotics literature as simultaneous
localization and mapping (SLAM).

A robot must use sensors to measure its environment
as part of the SLAM process. These sensors may include
wheel encoders, LIDAR sensors, acoustic range sensors or
cameras. Cameras are an attractive option because of their
low cost, low power use and passive nature. When cameras
are used as the primary sensors the SLAM process is known
as visual SLAM (VSLAM).

We have developed an online, real-time visual slam sys-
tem for use in humanoid robots which estimates the full
six degree of freedom pose of the robot. Our system per-
forms both Kanade-Lucas-Tomasi (KLT) style differential
feature tracking, and wide baseline (SIFT [12]) feature ex-
traction/matching on the graphics processing unit (GPU).
Combining the strengths of both methods speeds the SIFT
feature matching process, makes our system more robust to
repetitive features and allows us to detect previously visited
ares in the environment (loop detection) using a vocabulary
tree approach [15].

We can hide the relatively higher cost of SIFT extrac-
tion/matching and 3D pose estimation by performing those
operations only for key frames. Key frames are selected
based on the optical flow measured by the relatively faster
KLT feature tracking. This novel, adaptive, optical-flow-
based, approach to key frame selection limits the majority
of the computation to more informative frames in the se-
quence.

The remainder of this paper will first give some back-
ground on research in visual SLAM and some recent work
in the area. We will then describe our system in detail and
justify the novel aspects of its design. Experimental re-
sults will then be given for a video sequence from a chal-
lenging environment which includes semi-transparent glass
walls and people moving in the scene. Finally, we will con-
clude with our observations of open research problems that
must be solved to make VSLAM a truly viable option for
guiding autonomous robots.

1



2. Background
Visual simultaneous localization and mapping has been

a topic of interest in the vision community for more than a
decade. Early work includes that of Azarbayejani and Pent-
land [1] who used an extended Kalman filter framework to
estimate the camera’s motion, scene structure and the cam-
era’s focal length simultaneously. This seminal work does
not operate in real time. Davison was the first to present a
real time VSLAM system using a monocular camera in [5].
Davison’s system is able to operate in small, office scale
environments in real time, completing loops of this limited
scale. However, as the size of the environment grows, the
cubic scaling complexity of the extended Kalman filter with
map size makes it too slow for real time applications.

Eade and Drummond presented the first real time parti-
cle filter approach to monocular VSLAM in [7]. Their sys-
tem could also map small, office scale environments in real
time. As a particle filter their approach can theoretically
complete loops in environments of any size. With a particle
filter the hope is that at least one particle in the distribution
contains a correct representation of the map with the loop
completed. For this to be the case over large and complex
environments, the number of particles must be too large for
real-time processing. This limitation is probably the reason
why the particle filter has not been in use in many recent
VSLAM systems.

Roboticists have made many strides in performing
SLAM using laser ranging (LIDAR), acoustic and other
sensors to map large environments [17]. Vision researchers
have recently focused on extending VSLAM systems to
larger, more complex environments than a desktop or a sin-
gle room as well. To extend VSLAM to larger areas a
method is needed to re-detect previously visited areas. A
brute force approach would be to match all wide baseline
features from all images to find loops. This is much too
slow for real-time operation.

Nistér and Stewenius introduced vocabulary tree meth-
ods to find visually similar images in [15]. A vocabulary
tree quantizes feature vectors (SIFT descriptors in our case)
into visual words which are thought to be visually simi-
lar. The tree is pre-trained on a large set of general im-
ages so that it’s quantization can be used on most scenes.
A histogram approach taking into account the infrequency
of certain visual words in the scene is used to determine
likely matching images. More recent work on appearance
based scene matching has been done by Cummins and New-
man [4]. Their ”FAB-MAP” approach learns a generative
model of scene appearance and in contrast to previous ap-
proaches uses the co-appearance of features in a scene to
reason about the likelihood of a scene match.

Once loops are detected in the robot’s path the ac-
cumulated error in the path must be corrected to com-
plete the loop. Loop correction in most vision-based ap-

proaches to SLAM involves some variant of sparse bun-
dle adjustment [18] or sub-mapping. Bundle adjustment
treats the process of generating a globally accurate map as a
non-linear minimization problem. The minimization prob-
lem’s objective function measures the difference between
the expected and measured projections of the features in
the scene. When the cameras are calibrated intrinsically
(known focal length, center of projection, skew and pixel
aspect ratio) the minimization method adjusts the feature
positions and camera poses to minimize this reprojection
error.

The sparsity of the bundle adjustment problem has lead
to many clever optimizations such as using the Schur com-
plement and other sparse matrix techniques. However,
bundle adjustment remains orders of magnitude too slow
for use in an online system if it is to globally correct the
map between frames. Recently Klein and Murray [11]
have demonstrated a parallel tracking and mapping (PTAM)
framework. In this framework visual odometry [14] is per-
formed in one real-time thread while a second thread per-
forms global corrections to the map such as loop comple-
tion in an offline, background manner. In this way the map
is kept locally correct in real time as new images are added
but global corrections such as loop completion can be per-
formed without real time constraints.

Sub-mapping is another option for dealing with global
loop completion. In sub-map approaches such as that of
Clemente et al. [3] a complete map is made up of many sub-
maps connected by geometric transformations. Loops can
be completed by adjusting the transformations between sub-
maps while holding the camera poses and features within
the sub-maps fixed. One major drawback of this approach is
that all of the error accumulated in the sub-maps is corrected
in the transformations between sub-maps. This forces all of
the error into just a few parts of the map. Additionally, this
loop closing method has not been demonstrated yet in a real
time system.

Our system combines what we see as the best approaches
in the literature to detect, track and match features; estimate
the relative motion of the stereo camera since the previous
time; detect loops in the robot’s path and correct large scale
drift in the map.

3. System Description
Our VSLAM system’s operations can be divided into

temporally local and global mapping operations. The tem-
porally local operations estimate the change in the robot’s
pose since the previous frame. Sub-modules include dif-
ferential feature tracking, 6DOF pose estimation, SIFT fea-
ture extraction and local geometry guided SIFT matching.
Global mapping operations try to detect when the robot
views a previously mapped area and correct the robot’s pose
to the existing map. Our system uses a map of sub-maps



approach to store our representation of the environment. At
any time the robot can be moving in any one submap. After
each new key frame we attempt to join the current sub-map
to the other sub-maps given the new SIFT features extracted
from the current frame. Using sub-maps allows us to both
recover from being lost (the kidnapped robot problem) and
to recover from tracking failures. These can occur due to ex-
cessive camera motion or a scene that is devoid of features
such as a white wall. Figure 1 is a flow chart of the VSLAM
system. In that chart temporally local operations are shown
in the left column and the other two columns contain the
global mapping operations.

3.1. Temporally Local Operations

Temporally local operations include all of the sub-
modules that function in the calculation of the robot’s pose
relative to the last key frame. This begins with radial undis-
tortion, followed by differential feature tracking. If there
is sufficient optical flow to have another key frame, SIFT
features are extracted and the 3D relative pose is estimated
using the KLT features. A windowed bundle adjustment is
performed on the relative pose estimate. SIFT features are
then matched using the relative geometry calculated from
the KLT feature correspondences as a guide. Since we use
a windowed bundle adjustment these new SIFT correspon-
dences will be included in the bundle adjustment while pro-
cessing the next key frame. This completes the operations
needed to perform what is essentially visual odometry [13].
We will now discuss each of these sub-operations in detail.

Our radial undistortion process is based on the non-
parametric radial undistortion method of Hartley and
Kang [10]. We chose this method because of problems we
encountered when using cameras with large radial distortion
and a polynomial distortion model. This method first finds
the center of distortion and then fits a radially symmetric
non-parametric curve to the radial distortion of a camera.
The only other assumption made about the distortion is that
it increases monotonically with distance from the center of
distortion. The undistortion method is well suited to wide
angle cameras whose distortion cannot be readily modeled
by a polynomial function but works well on narrow field of
view cameras as well. We use a GPU program to correct for
the image’s distortion. We store the undistortion map as a
set of matched samples of distorted and undistorted radius
as well as the center of distortion. Between samples we use
interpolation to arrive at a continuous function.

The second step in our process, and the only step other
than radial undistortion that happens in every frame, is dif-
ferential feature tracking. One might wonder why we do
both differential, KLT style feature tracking and also use
SIFT features. By using both feature measurement meth-
ods we combine their strengths while avoiding their weak-
nesses. KLT feature tracking is an order of magnitude faster

than SIFT extraction. However, KLT features cannot be
matched over wide baselines, making KLT features unsuit-
able for detecting previously visited areas in the environ-
ment. We can use the optical flow measured by the KLT
feature tracker to adaptively select key frames that are sig-
nificantly different than the last key frame. We then only
extract SIFT features and do 3D pose estimation on key
frames. In this way we are able to hide the higher cost of
SIFT extraction and updating the 3D pose by only perform-
ing those operations on select key frames in the sequence.

We use our own NVIDIA CUDA implementation of
multi-camera scene flow [6] to perform differential fea-
ture tracking. Multi-camera scene flow is an extension of
KLT tracking into three dimensions. The process can be
divided into feature extraction, which occurs only in key
frames, and feature tracking, which is performed between
all frames. Feature extraction begins when corner features
are extracted from the image using the minimum eigenvalue
in the structure tensor to measure corner strength. Non-
maximal suppression is performed to find only the strongest
response for a given corner feature. We then use a paral-
lel, sparse stereo matching algorithm to perform normalized
cross correlation based matching across the stereo head’s
two cameras. The matched features are then triangulated.
Corner features are tracked by determining how the fea-
ture must have moved in three dimensions in front of the
camera to have generated the image measurements. This
parametrization enforces the epipolar constraint between
the stereo images with only slightly more than double the
cost of two independent standard KLT feature tracking pro-
cesses.

In addition to improved speed, using both KLT and SIFT
together eliminates the all-to-all matching of SIFT descrip-
tors which is a very costly operation. Instead we can match
SIFT features using the geometry calculated with the KLT
features as a guide as well as the know geometry of the
stereo head. This has the added benefit of reducing prob-
lems with miss-matches due to repetitive features as well.

Our system uses KLT feature correspondences in a
RANSAC framework followed by a windowed bundle ad-
justment [8] to find an initial estimate of the camera’s mo-
tion. Because KLT features are tracked using a small im-
age motion assumption repetitive features in the scene are
unlikely to be matched in the video over time. Of course
the sparse stereo match when initializing features in multi-
camera scene flow can still fail, but at least we can eliminate
incorrect temporal feature matches.

Since SIFT feature are extracted in the image and then
typically matched based on descriptor distance alone, they
can yield unreliable matches when there are repetitive fea-
tures in the scene. Lowe suggests only matching fea-
tures that are sufficiently distinct from other features in the
scene [12]. Unfortunately, this eliminates valuable infor-



Figure 1. Flow chart of the VSLAM System. Temporally local operations are shown in the left column while global mapping operations
are in the middle and right columns.

mation. The 3D geometry calculated with the KLT feature
correspondences gives us a measure of where SIFT features
should project in the image and hence allows us to disam-
biguate features that have similar descriptors (repetitive fea-
tures).

Figure 2 illustrates this process. In the figure the 3D
SIFT feature is shown as the large red dot and it has been tri-
angulated from the previous stereo camera pair. The system
has used the differential KLT features in RANSAC to esti-
mate the system’s rotation and translation (R and T ). Two
features are in the left image of the second stereo pair that
might match the 3D SIFT feature. We can use the projection
of the 3D feature into the left image to guide feature match-
ing. Note that this guided matching can be used to match
features that were seen not only in the recent past but also
can re-detect features that were stored in the map on a pre-
vious trip through an area. Re-detecting previously mapped
SIFT features greatly reduces the accumulated error in the
reconstruction as shown in Figure 6.

3.2. Global Operations

Global operations allow our system to recover from ”kid-
napping” or loss of tracking and also join newly mapped
areas to existing sections of the map. In our system these
operations are performed by the same module. It uses a
vocabulary tree to find areas of existing sub-maps that are
visually similar to the current frame, but not in the current

Figure 2. Repetitive SIFT feature disambiguation. Using the ex-
pected projection of the 3D SIFT feature (large red dot) and the
camera motion measured with the differential KLT features we
can determine which of the two features in the image (small red
dots) should match the 3D SIFT feature.

sub-map and geometrically verifies matched SIFT features
to determine if two sub-maps should be combined into one.

The fundamental global operations are determining
when two sub-maps should be joined because an area of
overlap has been found and when to break sub-maps be-
cause the robot is moving into a previously unmapped area.
Breaking apart sub-maps just to join them together later
seems a strange thing to do in a VSLAM system and re-
quires some justification.

Splitting sub-maps provides an effective method to deal
with accumulated drift in the robot’s path in a real time sys-



tem. Correcting for accumulated error using bundle adjust-
ment is too computationally expensive to do within the real
time bounds between two video frames for even relatively
small loops. We create a new sub-map when the system
stops matching to previously mapped features and is only
performing visual odometry. A transformation between the
old and new sub-maps is stored to allow the robot to nav-
igate from one to the other. When the system comes back
into an area that has been previously mapped and there has
not been much error accumulated (measured by the repro-
jection errors) we can re-join the sub-maps. Otherwise the
robot can begin to operate in the old sub-map again by lo-
calizing itself to the previously mapped features. In this
case a transformation is added between the last robot pose
in the new sub-map and the old sub-map it is re-entering. In
this way breaking apart the map can deal with the error that
accumulates in visual odometry.

The process of joining two sub-maps is shown in Fig-
ure 3. In the first pane the separation between the two sub-
maps is represented by their green and blue colors. The sys-
tem is currently operating in the green sub-map. The second
pane shows the system finding visually similar images and
extracting the features seen in those images. In the last pane
the sub-maps are joined by matching the red 3D SIFT fea-
tures to the features seen in the most recent frame in the
current sub-map and geometrically verifying them. Since
there is only one sub-map at the end of the process all cam-
eras are shown in blue. Note that if the green sub-map had
not started from an unknown position but had branched off
of the existing sub-map, we would have to check the repro-
jection error at both ends of the green camera path before
joining the sub-maps.

We begin the sub-map joining process by measuring the
visual similarity between the current image and the images
in the other sub-maps. Rather than store all of the images
we use a bag-of-features approach to represent the images.
The features are quantized into visual words using a high
speed, GPU implementation of a vocabulary tree [15]. An-
other possible approach to detecting visually similar areas
was developed by Cummins and Murray in [4]. We store in-
verted files which tell for a given visual word, what frames
it was seen in. This set of inverted files grows as the map is
extended to reflect the new key frames that are added. When
we want to find out what images are similar to the current
image we take the SIFT features in the current image, quan-
tize them with the vocabulary tree and then use the inverted
files to generate a histogram of likely matching images. We
also weight the visual words according to their frequency in
the set of images, with less frequent visual words weighed
higher in the scoring because they are more visually distinc-
tive. The scoring system returns a list of frames ordered by
their likelihood of matching the current frame along with
their matching scores. After calculating a list of visually

Figure 3. The process of joining two sub-maps. In the first pane the
separate sub-maps are represented by the green and blue colors.
The system is currently operating in the green sub-map. The sec-
ond pane shows the most visually similar stereo image at the center
of the ellipse and the nearby cameras are also within the ellipse.
The SIFT features visible in the images in the ellipse are shown as
red dots. In the final pane the SIFT features have been matched to
the features extracted in the latest image in the green sub-map, the
matches have been geometrically verified and the two sub-maps
have been joined using the transformation calculated during geo-
metric verification using the three point perspective pose method.

similar images we remove those images that are in the cur-
rent sub-map, since those images cannot be used to join the
current map to another.

Simply because two images are visually similar does not
mean that they show the same scene. To ensure this we must
first match the SIFT features using their descriptors and per-
form a geometric verification. To increase our chances of
correctly joining the current sub-map to an existing sub-
map we match the features in the current image, not to just
the top scoring image, but also to the images that are near
it in its sub-map [16]. To do this we find all of the images
near the top scoring image and recover the features from the



database that are seen in each of those images.
Each of the SIFT features near the top scoring image

has a 3D estimate and also has a SIFT descriptor. Sim-
ply because two descriptors map to the same visual word
through the vocabulary tree does not mean they necessarily
match. We use a GPU based matching algorithm to find the
most likely match between the feature descriptors we see
in the current image and the descriptors extracted from the
map database. The GPU algorithm parallelizes the all-to-
all matching of descriptors and critically, performs the dot
products of the 128 float long descriptors on the graphics
processor. This greatly speeds up the matching process.

Once we have matched the features in the current im-
age to features in the other sub-map we use the three point
perspective pose method [9] in a RANSAC [2] framework
to geometrically verify the matches. If enough matches
are found to be correct, a bundle adjustment is performed
starting from the best relative pose solution found using the
RANSAC procedure. The two sub-maps are then combined
based on the transformation between the camera’s pose in
the current sub-map and the camera’s pose in the other sub-
map which was found using the other sub-map’s features.
Features which were matched and geometrically verified are
combined in the database so that their 3D positions reflect
the fact that the sub-maps are joined.

Breaking apart sub-maps is a much simpler process. The
system simply changes the current sub-map number to one
that is unused and if tracking has failed it clears all features
in the new sub-map. Otherwise the features seen in the
current image are added to the new sub-map. This means
that a single feature can have multiple different sets of co-
ordinates, one set for each of the different sub-maps it is
stored within. This allows us to break sub-maps without
loosing correspondence information between images in dif-
ferent sub-maps.

4. Experimental Results
We chose a particularly difficult office environment to

demonstrate the system’s robustness in this paper. The loop
taken by our robot (in this case a Point Grey Bumblebee
stereo camera) is approximately eighteen by ten meters.
The office has two glass walls, shown in the lower left and
center images of Figure 4 and on the map in turquoise in
Figure 5. The walls present a large semi-reflective, semi-
transparent surface which can cause problems with feature
matching. However, our system can find features whose ap-
pearance is not viewpoint dependent and robustly estimate
the robot’s path.

Another challenging aspect of the office environment is
the relative sparsity of features on the walls of the hallway
shown in the upper left of Figure 4. The lack of texture
on the walls means that most corner features, or extrema in
difference of Gaussian space do not have a distinctive lo-

cal patch around them. This would present a problem for
SIFT feature matching approaches since they rely on the
distinctiveness of the descriptors to accurately match fea-
tures. However, the differential KLT features are easily
tracked from frame to frame and allow the system to op-
erate robustly in this part of the scene. Of course, because
there are few reliable SIFT features extracted in this part of
the scene sub-maps cannot be joined in this part of the map.

Processing the sequence of video shown here was done
at eight frames per second, fast enough to track a camera
being moved by an operator. The first pass around the loop
in the map was completed in an offline process from pre-
recorded data. Once that is done the system can localize the
camera to the existing map in real time and also extend the
map into new areas. Figure 6 shows how matching currently
detected SIFT features with features already in the map (re-
detecting them) can greatly reduce the accumulated error in
the robot’s path.

In the future we plan to make correcting for loops a back-
ground process handled by another thread. A major stum-
bling block to this is the open research problem of how to
avoid and deal with local minima in the bundle adjustment.
This is one of the reasons that global map correction for
loops remains an off-line process requiring user interaction.

5. Conclusion
In this paper we have presented an online VSLAM sys-

tem that both recovers from lost tracking and kidnapping
in real time. Our system uses differential feature tracking
to adaptively select key frames based on optical flow. For
those key frames we extract SIFT features that allow us to
detect when the robot enters a previously mapped area. This
combined approach gives both high speed and allows for
wide baseline feature matching.

Future work on the system will include moving the
global map correction using bundle adjustment into a back-
ground process. This will allow the system to add new
frames to the map at full frame rate while correcting for
newly completed loops.

Developing this system has made clear some open re-
search problems to be solved if VSLAM is to work in prac-
tice outside the laboratory. The first is primarily a hardware
issue. The office environment we tested in has many win-
dows which lead to a very high dynamic range in the scene.
Even using auto exposure or auto-gain the dynamic range
of the camera cannot match the scene. There are certainly
many features in the scene that could not be detected be-
cause of the low dynamic range of the cameras relative to
the scene, such as items on a desk in front of a window
which appear almost black in the sequence because of the
bright, sunlit windows behind them.

Another issue is how to deal with changes in the scene.
The office we tested in has a set of tables and chairs for a



Figure 4. Sample frames from the left camera of the stereo pair for the office sequence. Note the reflective glass far wall in the lower left
image and glass half wall in the lower middle image. Our system is able to robustly handle these challenging scene components.

Figure 5. The camera path (magenta and blue axes) and 3D feature estimates(blue dots) overlaid on a layout of the office environment
where we ran our system. Full height walls are shown in black and half-height partitions are shown in gray. The turquoise walls are made
of glass.

break area. Moving the chairs after the VSLAM system has
mapped the office caused the system to no longer recognize
that part of the scene. One method to deal with this is to
try to extract features on 3D scene planes rather than in the
image as was done by Wu et al. in [19]. We will be look-
ing into ways to combine dense 3D geometry with sparse
feature detection in future work with the goal of finding im-
movable objects in the scene such as the walls, the ceiling

and floor. The system could then re-localize itself to these
immovable features regardless of change in the rest of its
environment.

6. Acknowledgements
This work was supported in part by Honda Research

Institute USA Inc. We would also like to thank Arnold
Irschara for the use of his vocabulary tree data.



Figure 6. A comparison of the motion estimation using only visual
odometry only with no re-detection of SIFT features after they go
out of view (top image) and using re-detection of SIFT features
(bottom image). Note the overlap in the path when areas are re-
detected in the bottom vs. when no re-detection is performed in
the top.

References
[1] A. Azarbayejani and A. Pentland. Recursive estimation of

motion, structure, and focal length. TPAMI, 17(6):562–575,
Jun 1995.

[2] R. Bolles and M. Fischler. Random sample consensus: A
paradigm for model fitting with applications to image analy-
sis and automated cartography. Commun. ACM, 24(6):381–
395, June 1981.

[3] L. Clemente, A. Davison, I. Reid, J. Neira, and J. Tardos.
Mapping large loops with a single hand-held camera. In
Robotics: Science and Systems, June 2007.

[4] M. Cummins and P. Newman. FAB-MAP: Probabilistic Lo-
calization and Mapping in the Space of Appearance. The
International Journal of Robotics Research, 27(6):647–665,
2008.

[5] A. Davison. Real-time simultaneous localisation and map-
ping with a single camera. In ICCV, volume 2, pages 1403–
1410, Oct. 2003.

[6] F. Devernay, D. Mateus, and M. Guilbert. Multi-camera
scene flow by tracking 3-d points and surfels. In CVPR, vol-
ume 2, pages 2203–2212, 2006.

[7] E. Eade and T. Drummond. Scalable monocular slam. In
CVPR, pages I: 469–476, 2006.

[8] C. Engels, H. Stewenius, and D. Nister. Bundle adjust-
ment rules. In Photogrammetric Computer Vision, Septem-
ber 2006.

[9] R. Haralick, C. Lee, K. Ottenberg, and M. Nolle. Review
and analysis of solutions of the three point perspective pose
estimation problem. IJCV, 13(3):331–356, December 1994.

[10] R. Hartley and S. B. Kang. Parameter-free radial distor-
tion correction with center of distortion estimation. Pattern
Analysis and Machine Intelligence, IEEE Transactions on,
29(8):1309–1321, Aug. 2007.

[11] G. Klein and D. Murray. Improving the agility of keyframe-
based slam. In ECCV ’08: Proceedings of the 10th European
Conference on Computer Vision, pages 802–815, Berlin,
Heidelberg, 2008. Springer-Verlag.

[12] D. Lowe. Distinctive image features from scale-invariant
keypoints. IJCV, 60(2):91–110, November 2004.

[13] D. Nistér. A minimal solution to the generalised 3-point pose
problem. In CVPR, pages I: 560–567, 2004.

[14] D. Nistér, O. Naroditsky, and J. Bergen. Visual odometry.
volume 01, pages 652–659, Los Alamitos, CA, USA, 2004.
IEEE Computer Society.

[15] D. Nistér and H. Stewnius. Scalable recognition with a vo-
cabulary tree. In CVPR, pages 2161–2168, 2006.

[16] G. Schindler, M. Brown, and R. Szeliski. City-scale location
recognition. In CVPR, pages 1–7, June 2007.

[17] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics
(Intelligent Robotics and Autonomous Agents). The MIT
Press, September 2005.

[18] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon.
Bundle adjustment – a modern synthesis. In B. Triggs,
A. Zisserman, and R. Szeliski, editors, Vision Algorithms:
Theory and Practice, volume 1883 of Lecture Notes in Com-
puter Science, pages 298–372. Springer-Verlag, 2000.

[19] C. Wu, B. Clipp, X. Li, J.-M. Frahm, and M. Pollefeys. 3d
model matching with viewpoint invariant patches (vips). In
CVPR, 2008.


