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Abstract. Lens distortions in off-the-shelf or wide-angle cameras block
the road to high accuracy Structure and Motion Recovery (SMR) from
video sequences. Neglecting lens distortions introduces a systematic er-
ror buildup which causes recovered structure and motion to bend and
inhibits turntable or other loop sequences to close perfectly. Locking
back onto previously reconstructed structure can become impossible due
to the large drift caused by the error buildup. Bundle adjustments are
widely used to perform an ultimate post-minimization of the total re-
projection error. However, the initial recovered structure and motion
needs to be close to optimal to avoid local minima. We found that bun-
dle adjustments cannot remedy the error buildup caused by ignoring
lens distortions. The classical approach to distortion removal involves
a preliminary distortion estimation using a calibration pattern, known
geometric properties of perspective projections or only 2D feature cor-
respondences. Often the distortion is assumed constant during camera
usage and removed from the images before applying SMR algorithms.
However, lens distortions can change by zooming, focusing and temper-
ature variations. Moreover, when only the video sequence is available
preliminary calibration is often not an option. This paper addresses all
fore-mentioned problems by sequentially recovering lens distortions to-
gether with structure and motion from video sequences without tedious
pre-calibrations and allowing lens distortions to change over time. The
devised algorithms are fairly simple as they only use linear least squares
techniques. The unprocessed video sequence forms the only input and no
severe restrictions are placed on viewed scene geometry. Therefore, the
accurate recovery of structure and motion is fully automated and widely
applicable. The experiments demonstrate the necessity of modeling lens
distortions to achieve high accuracy in recovered structure and motion.
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1 Introduction

1.1 Previous Work

Much research exists that acknowledges the importance of modeling lens distor-
tions. Most papers determine lens distortions using calibration patterns [2,3,7,
13-15], known geometric properties of perspective projections [2,4,8,9,11,12]
or 2D feature correspondences [5,9,10,17]. After this pre-calibration, the dis-
tortions are often assumed constant during the remainder of the camera usage,
a valid assumption if no zooming or focusing is performed. However, when only
the video sequence is available a preliminary calibration is often impossible and
other ways to recover lens distortions are needed.

Lens distortions are mostly considered after the application of an ideal pin-
hole projection model. Some work also exists to include distortions implicitly in
projection equations using intermediate parameters without physical meaning
[14]. The extraction of the distortion parameters from the latter, e.g. to undo
or add the same distortion to computer generated graphics which need to be
incorporated in Augmented Reality, is often difficult and not well conditioned.
This is due to the strong coupling between intrinsic, extrinsic and distortion
parameters. As several authors [2,9,10,15] stated, this coupling can result in
unacceptable variance of the recovered parameters. Therefore, a decoupling of
the projection equations in a part modeling ideal pinhole projection and a part
modeling lens distortions is used by [4,15].

This paper is most closely related to [15] but presents a new way to sequen-
tially determine lens distortions together with structure and motion from a video
sequence without preliminary calibration using calibration patterns or specific
geometric scene properties. Due to this sequential nature, the lens distortions
are also allowed to change over time as can happen in reality.

1.2 Overview

A first section will describe the camera projection model. Subsequently, the esti-
mation of all parameters given 3D-2D correspondences is explained. The model
consists of a pinhole projection part and a lens distortion part. The estima-
tion of both are realized iteratively, each described in a separate section. This
estimation needs initialization which is considered in a following section. Ex-
periments demonstrate the importance of modeling distortions, we finish with a
short summary and propose future research topics.

2 The Camera Model

The model describing the projection process from 3D scene points to 2D im-
age coordinates consists of several sequential steps, shown in Figure 1. First, a
projection takes place according to the classical pinhole model.

my ~ P, M, (1)
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radfactor Ky

Fig. 1. The camera model from left to right: First, the 3D space is projected onto an
image plane IT, with a pinhole camera. Next, this plane is transformed with K ' to
yield the ideal image plane IT;. In the ideal image plane the radial distortion factor
is applied to give coordinates in the distorted image plane II,. Finally, this plane is
transformed back using K4 to end up in the real image plane I7,.

P, = KP[RT| - RTt]

fo sp up
Ky,=1|0r,fpvy
0 0 1

in which M, = (X,.,Y;, Z,,W,;)T and m, = (xp,yp,wp)T are the homogeneous
coordinates of the 3D point and its projection onto the pinhole image plane IT,,.
P, is a 3 x 4 matrix and ‘~’ denotes that (1) is valid up to a scale factor. P,
can be decomposed in internal and external calibration parameters. K, is called
the calibration matrix which contains the focal length f,, the pixel aspect ratio
rp, the skew s, and the principal point (up,vp). R and ¢ determine the rotation
and translation in world coordinates.

Next, the distortions transforming the ideal pinhole image into an image
that conforms more to real images are modeled. Various distortions exist [16]
but radial distortion, described by the following model, is the most prominent.

1. Using a distortion calibration matrix similar to K, transform the pinhole
image coordinates m,, to the ideal image plane II; where the radial distortion
center equals (0,0).

m; = K 'm,, (2)
fa 84 uq

Kqg= |0 rafqvg
0 0 1

K can differ from K, as cameras can be recovered in a projective framework
in which K, has no physical meaning. While radial distortions take place
around the physical optical axis, the principal point (up, v,) cannot be used
as the distortion center. K, is therefore considered the Euclidean version
of Kp,. As in modern cameras the skew is negligible and aspect ratio is
practically 1, we can fix sq and r4 to 0 and 1 respectively while keeping
the distortion center (ugq,vq) and focal length fy variable. As shown in [4,
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9], the latter allows to model de-centering distortions together with radial
distortions. Note, however, that all parameters could be made variable if
desired.

2. Next, a radial distortion is applied to m; to yield the distorted image coor-
dinates mgy in the distorted image plane I1,.

mgq = m; X radf actor

n
radf actor = Z kjrfj

=0

with 7, = /22 + y? 3)

where k; are the radial parameters. The model for radfactor is common
in literature except that we take ko not to equal 1 but make it act as a
parameter for a reason later explained. A decreasing radf actor for increasing
r; introduces barrel distortion; otherwise it introduces pincushion distortion.

3. Finally, the distorted coordinates my are transformed with K, to yield the
final real image coordinates m,. in the real image plane I7,..

m, = Kdmd (4)

An ambiguity exists between the radial parameters k; and K 4. Scaling f; and
sq with sc results in scaling the ideal image plane II; around the distortion center
with sc~!. Therefore, radfactor has to remain unchanged to obtain identical m,
after distortion. In equation (3) only r; is scaled, but an appropriate change of
k; can compensate this, hence the ambiguity. To resolve the ambiguity fq and
sq will be scaled such that every m; will lie in the range [—1,1] in I7;. This will
condition algorithms for numerical stability.

Above we stated that strong parameter coupling can result in unacceptable
variance of the recovered parameters. This has to be clarified as an ambiguity is a
perfect coupling. Suppose two parameters describe an ambiguity, asin a x b= c
where c¢ is a constant an increase in a can be compensated by a decrease in
b. The camera model estimation, explained in the following sections, consists
of separate steps in which some parameters are held constant at each step.
Therefore, fixing one parameter during a step automatically determines the value
of the other parameter with which it forms the ambiguity, avoiding any danger
of large parameter variances.

3 Camera Model Estimation

During sequential Structure and Motion Recovery from video sequences we ad-
vance each time by calculating the camera pose for the current frame given
3D-2D correspondences (M,,m,), as explained in [1]. Given the 3D-2D corre-
spondences, we wish to minimize the following error:

: l L oa rl\\2
min m.. — proj (M.
P, Kok, El (my — proj(My))
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in which proj() denotes the total projection, described in section 2, and P,, K4
and k; are the parameters to be optimized. The error is the residual reprojection
error in the real image which forms the natural goal for minimization as this is
the only error visible to human observers.

The camera model consists of two parts; a first part models a pinhole projec-
tion; a second part describes lens distortions. We therefore opted to perform the
error minimization as an iterative process where each part is minimized while the
other is kept constant. As stated above, the coupling between all parameters is
strong if solved for in a single global optimization. The decoupling in this multi-
step iterative procedure reduces this problem and allows to use simple linear
least squares techniques. The iterative procedure has the following lay-out:

1. Initialize the distortion parameters K4 and ;.

2. Given the distortion parameters and m,, one can compute m,. In Figure 1
this corresponds to a motion from right to left towards the plane II,.

3. Given (M,,m,) correspondences estimate P, minimizing the residual repro-
jection error.

4. Given the projection matrix P, and M,, one can compute m,. In Figure 1
this corresponds to a motion from left to right towards the plane IT,.

5. Given (myp, m,) correspondences determine K4 and k; minimizing the resid-
ual reprojection error.

6. Return to step 2 until convergence.

The initialization step 1 will be explained in section 4. The following sections
clarify step 5 and step 3 respectively.

3.1 Lens Distortion Estimation

At this point a previous best pinhole camera matrix P, has been determined.
Given (myp, m,) correspondences, we look for the distortion parameters K, and
k; minimizing the following residual reprojection error:

. ! . 1\\2
min m.. — distort(m 5
®h 2 (m;. (my)) (5)

in which distort() determines the second part (lens distortions) of the camera
model. The residual is expressed in the real image plane IT,., the only plane in
which we can finally see the errors as all other image planes IT,, II; and II; are
virtual. Substituting equations (2) and (3) in (4) we get nonlinear equations in
the distortion parameters. However, given constant m;, we note that fixing Ky
gives linear equations in k;. Vice versa, taking k; constant yields linear equations
in the elements of K;. Therefore, another iterative solution surfaces:

1. Use the current K; and P, to form a compound camera matrix which
projects a 3D point M, directly onto the ideal image plane IT;: P; = K;le.
Use P; to project all M, to their corresponding m; which from now on are
assumed constant. Note that assuming m; constant is equal to fixing P;.
In the following steps K4 will change, requiring P, to compensate for this
change to keep P; constant. The altered P, will be determined in step 6.
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2. Given K, and equations (3) and (4) we can determine k; minimizing (5)
with linear least squares techniques.

3. Using k; and equation (3) we can distort all m; to their corresponding mq
in the distorted image plane I1,.

4. Given mg and equation (4) we can determine Ky minimizing (5) with linear

least squares techniques.

Return to step 2 until convergence.

6. Because m; and therefore P; were assumed constant and K, changed during
iteration, we update P, by extracting the new K, from P;: P, = K,P;

ot

The use of parameter kg, in conventional radial distortion modeling taken to be
1, will now be explained. The camera matrix P, used in step 1 will have been
estimated before the lens distortions are updated in step 2—5. Therefore, P, will
have been estimated based on an image where radial distortion can be under-
or overestimated. This leads to a P, predicting well the 3D-2D correspondences
(M,,m,) on a certain circle around the distortion center in II,.. But for barrel
lens distortions it will overestimate the predicted positions of m, outside this
circle and underestimate them inside it and vice versa for pincushion distortions,
as shown in Figure 2. These over- and underestimations will be compensated for
by the estimation of the distortion parameters in steps 2 — 5. However, note that
the estimated radfactor should almost equal 1 on the circle for which P, already
fits best. By fixing kg to 1 we also demand radfactor to equal 1 at the distortion
center. As Figure 2 shows, this constrains radfactor (3) to be a non-monotone
function. However, we know that radial distortions in real lenses have a more
or less monotone function. Therefore, it is better to allow kg to be a parameter,
representing a scaling of the pinhole image plane II, and the camera matrix P,
around the distortion center to achieve a monotone radfactor function as shown
in Figure 3.

3.2 Pinhole Camera Estimation

In this section the distortion parameters K4 and k; are kept constant and the
estimation of camera matrix P, using 3D-2D correspondences (M,.,m,) is con-
sidered. Given m, and the estimated distortion parameters we can undo the
distortion to calculate their corresponding m,. The camera matrix P, which
minimizes

min Z(mi, — pinhole(M?))? (6)

P

can be found by iteratively re-weighted least squares minimization [6] given the
previously estimated camera matrix P, as initialization. pinhole() represents
the pinhole projection model, described in (1), and the residual error (6) is an
error living in the pinhole image plane IT,,. Since the only image plane visible to
human observers is the real image plane II,., the residuals should be transferred
to the latter as also noted by [12]. Equation (3) shows that in the neighbor-
hood of m, the ideal image plane and the pinhole image plane is scaled with
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Fig. 2. Left: If the barrel distortion is underestimated the pinhole camera model fits
perfectly on a certain circle (thick) around the distortion center but underestimates
the distortion outside this circle (dark gray) and overestimates it inside the circle (light
gray). The dotted circles are predicted by the pinhole model, the solid circles are the
real distorted ones. The estimated radial factor will try to compensate these over- and
underestimations. Right: Same but now for pincushion distortion. In both examples
the radial factor is forced to create a bump in its curvature (solid curve) while the best
match would be the dash-dotted radial factor curve.

radfactor E?:o kjr?j to get to the real image plane. Therefore the residual of
m,, is scaled with exactly this factor to calculate its counterpart in the real image
plane. The new error measure then becomes:

min [radf actor (mé) *
o

(mi, — pinhole(M!))]? (7

4 Initialization

The iterative multi-step estimation of all projection parameters needs an initial
starting point. Using a sequential Structure and Motion Recovery methodology
the projection parameters of each frame are estimated while running through
the video. Considering the time-continuity, we can take the previous frame’s dis-
tortion parameters as a starting point for the current frame. To initialize the
sequential recovery of structure, motion and distortion we use the same method
as described in [1] where two initial camera matrices P, are determined by
decomposing a Fundamental Matrix. This decomposition assumed the Funda-
mental Matrix to be estimated between two images with zero lens distortion and
therefore the initial distortion parameters for these cameras can be taken as:

fa 0 ug
0 favq (8)
001

ko=1andVj#0: k; =0 9)

Kq
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distortion distortion
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Fig. 3. Left: Same situation as in Figure 2 but now the circles predicted by the pinhole
model are up-scaled in the image plane II, so that the distortion is an overestimation
everywhere. This makes it possible for the radial factor to be a monotone function of
the radius which is more natural for real lenses. Right: The same but now the dotted
circles predicted by the pinhole camera model are down-scaled.

The initial aspect ratio ry and skew s; are respectively taken 1 and 0 which
is reasonable for real cameras. The initial distortion center (uq,v4) equals the
image center and the initial focal length f; is chosen such that the image corners
form a bounding box in the ideal image plane IT; which lies in the [—1, 1] range
for conditioning numerical algorithms.

Given a real camera with lens distortions, we therefore start from an initial-
ization which is not correct as both initial cameras are distortion free. However,
minimizing the reprojection error for each frame using the supplied distortion
parameters to remove any systematic error, the distortion parameters will most
often converge to the real ones. At this point we cannot provide any mathemati-
cal proof but the statement is backed up with extensive simulations on artificial
and real video sequences which show the relevance of modeling lens distortions.
When we dispose of the video camera we could use any available off-line tech-
nique that uses calibration patterns to find better initial values for the distortion
parameters.

5 Experimental Results

We conducted experiments on artificial and real-life video sequences to test the
usefulness of sequential modeling lens distortions during Structure and Motion
Recovery. First, an artificial sequence (500 frames, image resolution 720 x 576)
without lens distortions was created. The scene consisted of boxes positioned at
different depths. Figure 4 shows the recovered Structure and Motion when no
radial distortion was estimated. It corresponds very well with the ground truth.
Next, we artificially added barrel lens distortions, which moved points in the
image corners with 25 pixels from their original position. At first we did not
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Scene

Camera Path

Fig. 4. Left: Top view of the scene structure. Several boxes are placed at different
depths. Right: The recovered structure (upper dots) and motion (lower line) from an
artificial video sequence without radial distortions.

Fig. 5. Left: The recovered structure and scene when radial distortion was present but
not modeled by the program. Right: The recovered structure and motion when the
radial distortion was also modeled as described in this paper. The camera moved from
right to left. As the system only converged after 200 frames the part of the structure
on the far right still shows some residual bending.

try to recover the distortion which introduced a systematic error buildup in the
recovered Structure and Motion. Figure 5 shows how the unmodeled radial dis-
tortion bends the recovered structure and motion. When we also tried to recover
the lens distortions the distortion parameters converged after approximately 200
frames (Figure 6) and the recovered structure and motion resembles more the
ground truth as also shown in Figure 5.

Next, a second artificial sequence (image resolution 720 x 576) was made
to investigate the error buildup with or without modeling lens distortions. It
consisted of a turntable sequence of a teapot. Figure 7 shows the first frame of
the original and radial distorted versions. A single round trip counts 100 frames.
We performed ten round trips and therefore the total sequence consisted of 1000
frames. Due to periodicity the frames whose frame number are equal modulo
100 are the same. The error buildup during sequential Structure and Motion
Recovery is measured as the projection errors in cameras that are supposed to
be the same due to this periodicity. Equal cameras are supposed to project 3D
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Fig. 6. From left to right [frames 0,10,50,100,150 and 200]: The convergence of the
estimated radial factor (solid curve) towards the ground truth (dash-dot). The abscissa
represents the radius in the ideal image plane I7;. The ordinate represents the radial
distortion factor radfactor.

scene points onto the same image locations. However, this is not the case when
error buildup is present which can therefore be measured as the average projec-
tion error between ‘equal’ cameras. This projection error, expressed in pixels, is
calculated between cameras separated by one round trip (relative error buildup).
Artificial sequences were made having no distortion, barrel distortion and pin-
cushion distortion. For each different kind of distortion the influence of the num-
ber of estimated radial distortion parameters was investigated (the number of
parameters are counted excluding parameter kg to correspond to more common
conventions). Table 1 displays the results from which several conclusions can be
drawn. First, when radial distortion (barrel or pincushion) is present, not mod-
eling it leads to a large error buildup. When modeling the radial distortion it
converges except when 1 or 3 parameters are used to model the lens distortions.
Next, when no radial distortion was present the results also show that the best
error buildup was obtained if no radial distortion was modeled. However, mod-
eling it anyway the results did not completely deteriorate. Another important
conclusion is that two radial parameters are often sufficient for convergence as
the higher order terms only have a small contribution but using a higher number,
e.g. 6, does not necessarily introduce divergence. Actually, we suspect a trade-off
to exist. The exact ground truth radial distortion might be sufficiently modeled
using only a few parameters. In this framework, however, the radial distortion
needs to converge from an initial erroneous estimate to its final correct value.
This convergence is a dynamic event in which more degrees of freedom increase
the convergence rate. Once converged, a high number of parameters might lead
to modeling the residual noise instead of the physical underlying lens distor-
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Table 1. relative error buildup in pixels: frame 100x(i-1) - frame 100xi

Radial calibration matrix Kgq with fq = 461.025, rq = 1, s¢ = 0 and (ug,vq) =
(360, 288) on images of resolution 720 x 576. The number of radial parameters are
counted excluding ko.

Scenario rad. param|i = 1| 2 3 4 5 6 7 8 9
barrel 0 16.55|16.91|16.87(17.13| 17.49 | 17.47 | 18.15 |18.57|18.62

ground truth 1 12.09|12.87|13.87|14.83| 15.66 | 16.95 | 18.71 |20.76|22.19
2 6.55 | 4.05|2.56 | 0.28 | 0.08 | 0.08 | 0.07 |0.07 | 0.06
ko = 1. 3 26.73|46.34|54.46|87.63|130.52|197.76|242.24|79.49|35.18
ki = -0.01 4 6.86 | 5.67 | 5.85 | 5.42 | 3.52 | 3.57 | 4.67 | 5.06 | 7.45
ks = -0.01 6 3.04]0.90|0.12 | 0.11 | 0.08 | 0.06 | 0.09 |0.07 | 0.07
ks = -0.01 8 5.034.583.79|1.30| 0.18 | 0.08 | 0.08 |0.08 | 0.08
0 0.63]0.06 | 0.05|0.05| 0.05 | 0.04 | 0.03 |0.05|0.05
1 5.92 | 8.59 {10.52|12.09| 13.39 | 13.06 | 10.64 |10.21| 8.93
2 1.15|0.14 { 0.07 | 0.09 | 0.08 | 0.06 | 0.06 | 0.05 | 0.05
no radial 3 5.23 [11.92(24.28|37.68| 36.70 | 42.63 | 57.89 [61.17|69.63
4 1.180.30 { 0.08 | 0.08 | 0.08 | 0.06 | 0.09 |0.11 | 0.09
6 0.50 | 0.07 | 0.07 | 0.05| 0.06 | 0.06 | 0.06 | 0.07|0.07
8 3.86 |1.63|0.080.07| 0.07 | 0.08 | 0.06 |0.07|0.06
pincushion 0 17.69|17.02{16.63|15.97| 15.73 | 15.48 | 15.27 |14.85|15.18
ground truth 1 15.92(15.24(14.88(15.29| 16.38 | 19.41 | 21.24 |20.63|19.41
2 4.46 | 1.62 | 0.56 | 0.08 | 0.08 | 0.07 | 0.07 | 0.07 | 0.06
ko = 1. 3 13.33|21.10|34.93|45.30| 42.28 | 47.66 | 51.76 |54.16|56.45
ki = 0.01 4 3.050.790.10 | 0.09| 0.08 | 0.08 | 0.06 | 0.07|0.07
ks = 0.01 6 3.30|4.60|2.56 | 1.03| 0.14 | 0.12 | 0.09 | 0.08 | 0.07
ks = 0.01 8 5.00|4.88|6.16 |6.11| 6.30 | 6.05 | 6.07 | 7.18 | 6.31

tions. The strange phenomenon that odd number of parameters 1 and 3 do not
converge still has to be investigated. Because of the complex interactions that
are involved in this sequential structure, motion and lens distortion recovery a
theoretical proof of convergence is very difficult. From the results, however, it
is clear that not modeling present lens distortions always leads to bad results
while better outcomes can be achieved by modeling the lens distortions. Figure
7 shows the difference in recovered camera positions of the turntable sequence
with and without modeling of lens distortions. Without the consideration of
distortions a systematic error is incorporated, clearly shown by the diverging
camera path. When lens distortions are considered, they are captured and after
an initial transient behavior the camera follows a periodic cyclic path as was the
case in reality.

Figure 8 shows real-life footage (1200 frames, image resolution 720 x 576)
representing the roof of an ancient fountain. The reconstruction without modeled
lens distortions is shown in Figure 9. Clearly the roof which in reality is straight
bends backwards in the reconstruction because of the present barrel distortion.
When lens distortions were considered, modeling six radial parameters k;, the
reconstructions as shown in Figure 10 could be achieved. The first reconstruction
in Figure 10 took two frames with zero radial distortion as a starting point. The
second reconstruction took the final radial distortion values obtained by the



12 Kurt Cornelis et al.

T,
IR

<

%65, S

K654, Eooy
Start ~  S&4 e TS
NSERY 2o

S YNFEREECS

Fig. 7. Top: First frame of the original turntable sequence, the barrel distorted version
and the pincushion distorted version respectively. Bottom Left: Divergence of the es-
timated camera path due to lack of radial distortion modeling when a barrel distorted
version of the original turntable sequence was used. Bottom Right: Convergence of the
camera path when the actual radial distortion is modeled. The camera path does not

diverge but converges onto a circular path.

Table 2. relative error buildup in pixels: frame 100x(i-1) - frame 100xi

radial calibration matrix K; with f; = 461.025, r4 = 1, s4 = 0 and
(ud,vd) = (360,288) on images of resolution 720 x 576. Variation of radial
distortion parameters between (ko,k1,k2,ks) = (1.,—0.01,—-0.01,—-0.01) and

(Ko, k1, k2, ks) = (1., —0.03, —0.03, —0.03)

Scenario|rad. param|i=1 2 | 3 | 4 | 5 | 6 | 7| 8 | 9
barrel 6 3.05 |0.83|0.08|0.07(0.08(0.08|0.08/0.07{0.08

previous run as a starting point and therefore could achieve a structure which
closely resembles the real structure as no initial transients were present.

Because the strategy of sequentially modeling lens distortions allows for vary-
ing distortions, we tested another artificial video sequence similar to the teapot
sequence. A round trip of the turntable sequence consists of 100 frames. We
varied the radial distortion from one extreme at frame 0 to another extreme at
frame 50, returning to the first extreme at frame 100. Again ten round trips were
made and the error buildup assessed as shown in Table 2. Figure 11 shows how
the estimated radial distortion moves between the two ground truth extreme ra-
dial distortions, proving that variable distortions pose no immediate problems.
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6 Summary

In this paper we described how lens distortions could be recovered sequentially
from a video sequence together with structure and motion without the need for
preliminary distortion calibration or specific scene geometry. In a first section
the camera model that approximates the real projection process was discussed.
It consisted of two parts, an ideal pinhole camera model and a subsequent dis-
tortion model which could model radial and de-centering distortions. In a fol-
lowing section it was shown how the parameters of this camera model could
be estimated in a multi-step iterative way given 3D-2D correspondences. The
multi-step algorithm consisted of a separate estimation of the ideal pinhole cam-
era model and the distortion parameters. This separation diminished the strong
coupling between all the camera parameters which exists in a single global min-
imization formulation. The following sections explained how the pinhole camera
parameters and the distortion parameters could be estimated by applying only
linear least squares techniques. Subsequently, as the sequential nature of Struc-
ture, Motion and Distortion Recovery needs initialization it was shown that
this consisted of 2 cameras with zero distortion or any off-line pre-calibration of
the distortion if the video camera was still available. Experiments identified the
advantages of taking lens distortions into account by demonstrating results on
artificial and real video sequences. It showed that modeling lens distortion was
crucial to the minimization of the error buildup. The negligence of lens distor-
tions would introduce a systematic error which causes severe error buildup in
recovered scene structure and cameras which could inhibit loop video sequences
to close perfectly. Accurate camera retrieval enables the recognition and track-
ing of 3D scene points which were reconstructed at an earlier stage of the video
processing. As demonstrated in [1] this recovery of scene points reduces drift in
sequential algorithms by a large amount. This benefit would be lost if camera
retrieval suffers from error buildup due to unmodeled lens distortions.

7 Future work

This work introduced the modeling of lens distortions in a sequential Structure
and Motion Recovery framework. The lens distortions were modeled using the
radial distortion formulation with a moving distortion center so that de-centering
distortions could also be modeled. In [15] tangential and thin prism distortions
are also modeled and these formulations could be used to even further optimize
the camera model to best fit reality. However, too many free parameters could
turn the process unstable and unreliable as one may be modeling noise instead
of the physical projection process. This has to be investigated.
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Fig. 8. A couple of frames from a video sequence showing an ancient fountain roof.
When pasted together, these give an idea of what the real roof looks like.

Fig. 9. Top view of the reconstruction of the fountain roof without modeling radial
distortions. While the roof is straight in real life the curvature of the scene structure
is clearly visible.

Fig. 10. Left: Top view of the reconstruction if the radial distortion was modeled with
an initialization of 2 frames without radial distortion. Right: Result if the final radial
distortion of a first run was taken as initialization for the program.

Fig.11. From left to right [frames 300,325,355,375]: The variation of the estimated
radial factor (solid curve) between the two ground truth extremes(dash-dot). The ab-
scissa represents the radius in the ideal image plane II;. The ordinate represents the
radial distortion factor radfactor.



