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Abstract

Specialists often need to browse through libraries containing many diag-

nostic hysteroscopy videos searching for similar cases, or even to review the

video of one particular case. Video searching and browsing can be used in

many situations, like in case-based diagnosis when videos of previously diag-

nosed cases are compared, in case referrals, in reviewing the patient records,

as well as for supporting medical research (e.g. in human reproduction).

However, in terms of visual content, diagnostic hysteroscopy videos contain

lots of information, but only a reduced number of frames are actually useful

for diagnosis/prognosis purposes. In order to facilitate the browsing task,
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we propose in this paper a technique for estimating the clinical relevance

of video segments in diagnostic hysteroscopies. Basically, the proposed tech-

nique associates clinical relevance with the attention attracted by a diagnostic

hysteroscopy video segment during the video acquisition (i.e. during the diag-

nostic hysteroscopy conducted by an specialist). We show that the resulting

video summary allows specialists to browse the video contents nonlinearly,

while avoiding spending time on spurious visual information. In this work,

we review state-of-art methods for summarizing general videos and how they

apply to diagnostic hysteroscopy videos (considering their specific character-

istics), and conclude that our proposed method contributes to the field with

a summarization and representation method specific for video hysteroscopies.

The experimental results indicate that our method tends to produce compact

video summaries without discarding clinically relevant information.

Keywords: Video Summarization, Video Indexing, Video Browsing,

Hysteroscopy, Medical Video

1. Introduction

Diagnostic hysteroscopy is a popular method for assessing and visualizing

regions of the female reproductive system like cervical channel, uterine cav-

ity, tubal ostea and endometrial characteristics. A diagnostic hysteroscopy

examination is performed by gynecologists with a small lighted telescopic

instrument (hysteroscope). During the examination, the hysteroscope trans-

mits an image sequence to a screen, while the gynecologist guides the instru-

ment to assess and diagnose uterine disorders.

In practice, several diagnostic hysteroscopies are performed daily. Each
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Figure 1: (a-b) Typical frames of a relevant hysteroscopy video segment, which is char-

acterized by unobstructed views of uterus details. (a) Tubular orifice examination. (b)

Uterine fundus analysis. (c) Some frames of an irrelevant video segment. These are char-

acterized by regions with mucus (middle and right) and undesired lighting effects (left).

diagnostic hysteroscopy lasts 3 minutes in average, and generates a contin-

uous (uninterrupted) video sequence. Hospitals and clinics often record the

full video sequence for establishing video-based diagnosis comparisons, for re-

viewing or referring cases, as well as for supporting studies in medical research

fields (like in human reproduction (Masamoto et al. (2000); Li et al. (2010);

Cunha-Filho et al. (2004, 2008); Gavião et al. (2007)) or in early detection

of cancer (Clark et al. (2002))). However, in practice only portions of the

recorded video sequences actually are relevant from the diagnosis/prognosis

point of view. Consequently, whenever a specialist needs to review a video

recorded case, he/she have to browse linearly through the video sequence

to find the desired contents. A diagnostic hysteroscopy video often contains

thousands of frames, and the task of browsing can be time-consuming.
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In this paper, we propose a video representation approach that allows fast

nonlinear browsing of hysteroscopy video contents. A video summary is gen-

erated by our method, which helps guiding the specialists to/through the rel-

evant video sequences. Using such an approach, hysteroscopy video libraries

can be built, and the video summaries may be used for indexing and/or fast

random access to contents of specific hysteroscopy video sequences.

In order to evaluate our approach, specialists were requested to indicate

video segments where the visual content could be represented by a single

frame. For a gynecologist, the interesting frames occur in video segments

that provide unobstructed views of the female reproductive system, as shown

in Figs. 1(a-b). The video segments with frames corrupted by lighting effects

(e.g. highlights), or affected by biological features like mucus secretion (as

exemplified in Fig. 1(c)), can not be used for diagnosis/prognosis, and do

not need to be further retrieved. Section 1.2 provides more details about the

characteristics of diagnostic hysteroscopy videos.

When the specialist is performing a diagnostic video hysteroscopy, he/she

guides the hysteroscope seeking relevant clinical findings. Little time is spent

observing clinically irrelevant areas, but most examination time is spent ex-

amining areas that may be relevant for the diagnosis/prognosis. When the

relevant areas are found, the specialist focuses the micro camera on the region

of interest, or moves it slowly to also examine its surroundings. Therefore,

clinically relevant video segments tend to be redundant, since they contain

similar frames due to the low camera activity (Gavião et al. (2007); Schar-

canski and Gavião (2006); Scharcanski et al. (2005)).

We build our approach based on an analysis of camera motion, as outlined
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in section 2. In practice, estimating camera motion from 2-D image motion

needs recognizing the scene configuration as a first step, and then choosing

the appropriate motion model to estimate the camera motion (Irani and

Anandan (1998); Torr et al. (1999)). Hysteroscopy videos are captured with

a hand-held camera, where the camera motion, and consequently the scene

configuration, constantly changes. Since 2-D and 3-D camera motion models

suffer from distinct kinds of degeneracies (Torr et al. (1999)), different camera

models could be selected for different scene configurations encountered along

the image sequence. Therefore, we approach the task of estimating camera

motion in hysteroscopy videos as a model selection problem, and propose

to select the appropriate motion model adaptively along the image sequence

before computing the motion analysis.

This paper is organized as follows. In the next subsection our approach is

justified within the context of motion-based video indexing literature. Hys-

teroscopy videos are described in detail in subsection 1.2. Section 2 presents

an outline of our method as well as our contributions. Section 3 discusses

the adopted methodology to compute consistent image tracking points from

real data. This methodology should be robust to deal with (i) noisy data,

(ii) the presence of false point matches, as well as (iii) degenerate scene

configurations. Section 4 presents the proposed hysteroscopy video represen-

tation. In Section 5 we report experiments and evaluate the effectiveness of

the proposed method. We discuss our experimental results in Section 6, and

Section 7 presents our conclusions. Appendix A presents a review of concepts

in the context of parametric camera motion estimation.
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1.1. Literature review and the summarization of hysteroscopy videos

Motion analysis is largely used in video processing tasks, however it is not

trivial to represent low-level motion features conveniently in terms of visual

content (Lew (2001); Chang (2002); Ngo et al. (2001); Del Bimbo (1999)).

Therefore, a large number of approaches have been proposed within this

research context (Duan et al. (2006); Ngo et al. (2003); Zhu et al. (2005);

Liu et al. (2003); Vasconcelos and Lippman (2000); Piriou et al. (2006); You

et al. (2007); Ho et al. (2006); Ma et al. (2005)). As discussed above, camera

motion is related to frame redundancy, and it is an useful feature in the

context of content-based hysteroscopy video summarization. Our approach

is based on camera motion quantification, therefore our review is oriented

towards this context.

Since camera motion is an indicator of hysteroscopy operator intention,

and it is often associated with visual changes, methods that characterize

camera motion qualitatively have been proposed in the nonparametric video

indexing literature. Duan et al. (2006) computed a motion feature space and

used mean-shift algorithm to recognize camera motion patterns, like panning,

tilting and zooming. Ngo et al. (2003) proposed classifying camera motions

by analyzing temporal patterns formed from spatial image slices. Such pat-

terns will delimit sub-shots, which are further grouped according to color

similarities and temporal closeness. Zhu et al. (2005) also proposed classi-

fying camera motion qualitatively. Histograms are computed from motion

vectors and typical camera movements, like panning and zooming, are asso-

ciated with distinct histogram shapes. However, the combination of different

camera movements appears frequently in videos recorded in a hand-held cam-
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era fashion, like hysteroscopy videos. Consequently, it could be difficult to

characterize camera motion patterns in terms of panning, rotating, tilting

and zooming, as proposed by Duan et al. (2006); Ngo et al. (2003) and Zhu

et al. (2005).

In the context of video content representation, many approaches start

by distinguishing camera motion (sometimes assumed as dominant motion)

from independent object motion (assumed as residual motion). To achieve

this, 2-D affine motion model has been widely used to explain the image

motion induced by the 3-D camera movement (Bouthemy et al. (1999); You

et al. (2007); Ho et al. (2006); Ma et al. (2005); Piriou et al. (2006); Tan et al.

(2000); Peyrard and Bouthemy (2005)). In general, authors argue that an

affine model can cope with most scene contexts and, even when it can not, it

gives satisfactory results for motion representation, keeping the complexity at

reasonable levels as well. However, when an affine camera model is adopted,

some assumptions are made about the scene context (Longuet-Higgins and

Prazdny (1980); Ma et al. (2003)). Considering the nature of hysteroscopy

videos, we can not assume some constrained scene contexts as realistic, as

discussed in section 1.2.3.

To overcome the limitations of affine motion models, a potential solution

would be to incorporate 3-D camera models and deal with generic scene con-

texts (e.g. view constraints (Hartley and Zisserman (2000)). However, this

idea has not attracted much attention in the CBVI (Content-Based Video

Indexing) research community (Rothganger et al. (2007); Waizenegger et al.

(2008)). The proposition of such methods can be justified by the follow-

ing difficulties in estimating 3-D camera models: (i) dealing with noisy fea-
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ture correspondences is challenging, specially in the case of small motions.

State-of-art solutions are iterative and depend on nonlinear optimization of

geometric constraints, making this process susceptible to local minima and,

consequently, unreliable (Sim and Hartley (2006)); (ii) 3-D camera models

usually are complex and require to make assumptions about the scene con-

figuration to estimate reliably the camera motion (see Appendix A.4)(Torr

et al. (1999); Hartley and Zisserman (2000); Ma et al. (2003)).

The 2-D and 3-D camera models complement each other: (a) 2-D models

are not suitable for some 3-D scene configurations, that could be properly

treated by 3-D camera models; and (b) some scene configurations can be

modeled in 2-D, but 3-D camera models degenerate and can not deliver reli-

able solutions. As explained in section 1.2.3, both scene contexts appear in

hysteroscopy videos. Therefore, we approach the task of estimating camera

motion in hysteroscopy videos as a model selection problem and propose to

use a state-of-art method (Frahm and Pollefeys (2006)) to select the appro-

priate motion model for different segments of a hysteroscopy video sequence.

However, it is important to note that we do not wish to estimate 3-D cam-

era motion precisely, as in 3-D scene reconstruction tasks (Wu et al. (2007);

Hartley and Zisserman (2000)). We just take advantage of rigid 3-D scene

constraints to quantify changes in the field of view associated with camera

movements.

1.2. Specific characteristics of hysteroscopy videos and video summarization

A video scene usually contains three fundamental information compo-

nents (Irani et al. (1997)): spatial/appearance information, temporal infor-

mation, and geometric (3D scene structure and camera motion) information.
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Therefore, we characterize hysteroscopy videos according to these compo-

nents:

1.2.1. Spatial information

Hysteroscopy image intensities are determined by the orientation of the

hysteroscope tip, which contains a point light source. Therefore, specular

highlights are likely present, as illustrated in the frames of the Fig. 1.

Moreover, due to wide angle optics, most hysteroscopes produce images

with noticeable distortion. Therefore, if a distortion-free pinhole camera

model is assumed, errors will be introduced in the motion estimate.

From the clinical point of view, hysteroscopy images are spatially classi-

fied as relevant or not relevant. Relevant images are characterized by unob-

structed views of the uterine wall and often show vascular details, as shown

in Fig. 1(b). On the other hand, irrelevant images do not show uterine de-

tails clearly. Usually, such irrelevant images are generated in two contexts.

Firstly, when the specialist moves the camera searching for uterine regions of

interest, and tends to move it faster than when observing a region of interest.

Therefore, the quality of the images is downgraded by the effects of fast cam-

era motion. Secondly, mucus secretion along with the flow of insufflated gas

produce bubbles, which can appear suddenly in the field of view, obstructing

relevant information. Fig. 1(c) exemplifies these irrelevant images.

1.2.2. Temporal information

Unlike comercial videos, diagnostic hysteroscopy is recorded as an unin-

terrupted image sequence in which the camera is manually guided through

the uterine cavity. Usually, specialists tend to move the camera slowly when
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they are examining important uterine regions. Therefore, a reasonable ques-

tion could be ”why a specilist do not simply press a capture button when

relevant images are being observed?”. The answer is not so obvious. In

clinical practice, the diagnostic procedure is based on the examination of dif-

ferent regions of the uterine wall. Therefore, the micro camera is relocated

frequently, and often artifacts downgrade video frames (or parts of them),

as illustrated in Fig. 1(c). Such undesired artifacts appear and disappear

suddenly during the examination, as explained in the previous section 1.2.1.

Thus, even by recording selectively with a record button, such artifacts would

still affect the video quality. Therefore, it is more practical to record videos

in full instead of using a record button.

1.2.3. Geometric information

In general, there are four distinct phases in a video hysteroscopy: (i)

initial uterine cavity examination, (ii) left and (iii) right tubal orifice ex-

amination and (iv) uterine fundus analysis. Specific examination goals are

achieved in each phase (Hamou (1991)). However, in terms of camera mo-

tion analysis, we identified distinct scene configurations associated with these

phases. Basically, the hysteroscopy video is obtained under three geometrical

scene contexts:

a) A panoramic examination, involving camera translation and rotation

in a 3-D environment (the uterine cavity) with clear depth variation,

as shown in the images of Fig. 1(a). These images were taken during

the right tubal orifice examination phase;

b) An approximate 2-D planar scene context, which takes place when
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Figure 2: Oblique-viewing endoscope allows the specialist to change viewing direction by

rotating the endoscope cylinder around its axis. Ideally, this is one of the degenerate

scene configurations, which must be recognized to avoid meaningless results in terms of

3-D motion constraints.

the specialist approaches the uterine wall to examine its endometrial

characteristics. This is typical of the uterine fundus phase, from which

we took some frames shown in Fig. 1(b);

c) Oblique-viewing endoscopes are widely used in hysteroscopies because

the viewing direction can be changed by simply rotating the endoscope

cylinder around its axis, as illustrated in Fig 2. In practice, this resource

is often used by the specialists and, as a result, scene configurations can

appear with the camera undergoing only rotations. Mathematically,

this movement can be modelled by two successive rotations, as proposed

by Yamaguchi et al. (2004).

The presence of distinct scene configurations is an important issue that

motivates our approach, since hysteroscopy videos are acquired from a hand-

held camera. Some scene configurations need to be recognized to overcome

limitations of the models used to estimate camera motion, as discussed in

sections 1.1 and Appendix A.4.
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2. Overview of our approach, contributions and paper outline

In this paper, we present an approach to summarize a hysteroscopy video

and allow specialists to browse nonlinearly the content of the hysteroscopy

video. As discussed in section 1, relevant frame sequences are associated with

slow camera motion and, thus, we propose recognizing/summarizing relevant

video segments by analysing the camera-induced motion. To achieve this, we

assume the uterine cavity as a rigid environment and adopt a structure-

from-motion approach (Ma et al. (2003)) to track and classify image point

matches consistent with a parametric camera motion model. Non-rigid and

independent motions are assumed to be associated with frames corrupted by

undesired biological features (i.e., frames presenting an obstructed view of

the uterine findings). Thus, a camera motion model is fitted to a set of image

point matches which are then referred as inliers and, since they have been

computed, we simply measure changes in the field of view by computing the

loss of persistent inliers through the image sequence.

The main contributions of our work are the following:

• Most video summarization methods proposed in the literature focus

on dynamic video content representations, which are constructed by

exploiting the structure of comercial/edited videos, i. e. by recogniz-

ing transitions between semantic units like scene and shots (Ngo et al.

(2005); Gao et al. (2009); Dimitrova et al. (2002); Bovik (2009)). How-

ever, diagnostic hysteroscopies are recorded as uninterrupted image

sequences, where the camera is manually guided through the uterine

cavity. Thus, our work contributes to better understanding of what

could be considered a hysteroscopy video shot;
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• Several summarization methods in the literature recognize semantic

units in videos and use predetermined rules to select key-frames, and

these key-frames eventually form the final video summary. Our method

can estimate the content overlap between neighboring frames and, for

this reason, can produce a video summary which is constructed adap-

tively with a reasonable balance between redundancy and information

loss;

• In the context of endoscopic video content retrieval, an interesting ap-

proach is proposed by Oh et al. (2007). The authors propose to classify

video frames into two classes, informative and non-informative frames.

This approach, along with Scharcanski and Gavião (2006), may rep-

resent the state-of-art in endoscopic video retrieval. Oh et al. (2007)

proposed to identify and discard non-informative frames in order to

reduce the number of frames to be analyzed by a physician. We show

that our method helps reducing the video contents browsing effort, since

redundant information is summarized, and non-informative data is dis-

carded. The approach proposed in this paper is computationally more

intensive than the method proposed by Scharcanski and Gavião (2006),

but our experiments indicate that our method potentially can outper-

form (significantly) the method in Scharcanski and Gavião (2006).

Additionally, our approach does not require any special device, like 3-D

sensors, to quantify camera motion. These devices have been employed to

compute the camera position precisely when the purpose is to recover 3-D

scene layouts from endoscopic images (Wu et al. (2007)).
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3. Robust camera model selection

Given a set of potential point correspondences between two views of a

scene, the computation of a camera motion relation T between these views

is a widely studied problem in computer vision, as reviewed in Appendix A.

In the estimation of T it is not possible to provide a set of perfect correspon-

dences due to noise in the image data and mismatches caused by ambiguities

in the feature descriptions. In addition, some scene configurations can lead to

incorrect estimates of T , as discussed in Appendix A.4. Therefore, a robust

method is necessary, since it should be capable of detecting degenerate scene

configurations from noisy data, and additionally deal with mismatches. In

this section, we discuss an approach to estimate T under the above mentioned

limitations.

3.1. Dealing with noise and mismatches

The most common technique to deal with mismatches in the set of corre-

spondences is the random sample consensus algorithm (RANSAC) (Fischler

and Bolles (1981)). It solves the two problems of computing a relation T ,

which best fits the data, and classifying the data as inliers (correct correspon-

dences) and outliers (Hartley and Zisserman (2000)). The RANSAC method

can be outlined in a few steps:

1. Select m random correspondences from the set of all potential corre-

spondences {p}, and compute a candidate relation Tc from this random

sample.
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2. Apply Tc to all potential correspondences {p} and classify them by

thresholding as inliers {inc} or outliers {outc}.

3. The best candidate relation Tc is that one which generates the largest

consensus set of inliers.

4. The random sampling is repeated until a sufficient number of samples

has been evaluated, or the desired probability ρ that a good candidate

relation has already been computed.

In the standard approach, RANSAC stops when the number of samples

(trials) S is at least

S = log(1− ρ)/ log(1− εm), (1)

where, ρ is the desired probability that at least one of the samples is free from

coarse errors, and for each candidate relation Tc the proportion of inliers ε in

the data is computed as |{inc}|/|{p}|. The number of trials S increases with

the outlier rate, but it is easy to see that it remains surprisingly small for

reasonable values of ρ, ε, and m. The minimal number m = dn
r
e of elements

required to compute the relation T depends on the number of constraints r

provided by each element and the number n of parameters of the relation.

For example, given at least m = 8 point correspondences it is possible to

solve linearly for the essential matrix E up to a scale, since each point corre-

spondence generate one linear equation (i.e. r = 1) in the entries of E (n = 8

parameters), as discussed in Appendix A.3.

In the context of essential matrix estimation, given an estimate of Es

(Equation A.4) from a RANSAC sample, the set of inliers can be determined

in terms of the symmetric epipolar distance error (Hartley and Zisserman
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(2000)), which measures how closely a pair of points x → x′ satisfies the

epipolar constraint (Equation A.1). The symmetric epipolar distance is based

on Equation A.2 and considers the distance d (in pixels) of a point x′ to its

projected epipolar line l′ = Ex (see Fig.A.16). Thus, given an estimate of

Es, a pair of corresponding points xi → x′i is classified as inlier if

d(x′i,Exi) + d(xi,E
Tx′i) < τ, (2)

where τ is an error threshold (in pixels).

3.2. Dealing with degenerate scene configurations

Besides the problems involving noise and the presence of mismatches, if

only degenerate correspondences are given it is not possible to compute the

correct relation T . As discussed in Appendix A.4, degeneracy means that the

data do not provide enough constraints to compute T uniquely. In practice,

it is hard to detect degenerate scene configurations from real data, since the

remaining constraints can be determined by the noise or mismatches.

Some approaches have been proposed in the literature for estimating the

essential matrix E (Equation A.1) (Torr (1997); Chum et al. (2005); Frahm

and Pollefeys (2006)). Essentially, given a set of image point correspondences,

these approaches choose between a homography H (degenerate data) and an

essential matrix E (non-degenerate data) as the camera motion model that

better explains the correspondences.

In this work, we follow the QDEGSAC method proposed by Frahm and

Pollefeys (2006), since it does not require any specific knowledge about the
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degeneracies of the data. QDEGSAC employs RANSAC to compute the cor-

rect solution and exploits the number of constraints provided by the data.

The algorithm was originally motivated by the limitations of RANSAC in

estimating the correct relation for quasi-degenerate data, which means most

data do not provide sufficient constraints to compute the relation uniquely

(degenerate data), and only a small fraction of the data provides the re-

maining constraints. For quasi-degenerate data the relation can always be

uniquely defined, but the RANSAC algorithm has a low probability of com-

puting the correct relation in this case, as discussed by Frahm and Pollefeys

(2006).

QDEGSAC can be applied to various estimation problems in computer vi-

sion, however we focus on the linear estimation of the essential matrix, hence

the data matrix A is given in terms of the eight-point algorithm (see Ap-

pendix A.3). As mentioned in Appendix A.4, A should have a rank rA = 8

to obtain a non trivial solution for Equation A.4. In the absence of noise,

rA = 8 means the data provides 8 linearly independent constraints and, con-

sequently, the entries of Es can be uniquely computed (up to scale) as the

1-dimensional null-space of A (Hartley and Zisserman (2000)). In this case,

the data is non-degenerate.

On the other hand, if rA < 8, a smaller number of independent constraints

is provided by the data and the solution Es becomes ambiguous, which re-

flects a degenerate scene configuration. Motion degeneracy and structure

degeneracy are common types of degeneracies (see Appendix A.4), and these

are characterized by rA = 6. In this case, the relation E degenerates in a

homography H (Torr et al. (1999)).
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From above, the rank of the data matrix A can be used to detect degen-

erate data if data is noise free. In practice, the computation of the rank is

inaccurate since it is sensitive to noise in the data. The noise disturbance

causes small singular values to occur, hence it is still possible to estimate

the rank by using an appropriate threshold on the singular values. However,

if a sample contains degenerate correspondences and some mismatches, the

rank rA of the data matrix increases, and rA appears to be similar to the

expected rank of a non-degenerate case. For this reason, the ambiguity can

not be detected by analyzing the singular values of the data matrix.

Nevertheless, the QDEGSAC algorithm can be interpreted as a robust

measurement of the rank rA of the data matrix A. Basically, the algorithm

consists of three phases (see Frahm and Pollefeys (2006) for details):

1. Initially, a RANSAC process estimates the relation assuming that the

data are not degenerate (i. e. assuming rA = 8). From this process,

the data is classified into inliers {in8} and outliers {out8}, according to

the estimated relation TRANSAC,8.

2. Afterwards, the rank of the data matrix is estimated robustly from

the inliers {in8}. This step is denoted as model selection and it deter-

mines a lower rank for degenerate data, even if mismatches generate

free constraints. Basically, a series of RANSACs is performed over

{in8}. Inliers in the set {in8} are tested to be consistent with relations

TRANSAC,dim, which employ a smaller number of constraints (dim < 8).

3. Finally, the model completion inspects the outliers of the previous

phases, attempting to find non-degenerate inliers that provide the re-

maining constraints to compute the 8 degrees of freedom of the relation
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Es.

The algorithm produces two sets of inliers, and it can be qualitatively

evaluated in terms of them:

• Degenerate inliers are those inliers that are in a degenerate config-

uration (e.g. coplanar points). These degenerate inliers are computed

in the dimension 6, which means they are consistent with a relation

TRANSAC,6 (rA = 6). Ideally, a degenerate scene configuration is de-

tected if all inliers computed in the dimension 8 are also obtained as

inliers in dimension 6.

• Non-degenerate inliers are those inliers that are not in a degenerate

configuration (e.g. are off-plane points). These inliers are consistent

with a relation TRANSAC,8, but not consistent with a relation TRANSAC,6.

3.3. Computational cost

When the data does not give support to a relation computed by employing

only 8 − i constraints (i > 0), the QDEGSAC algorithm is more computa-

tionally expensive. It follows from Equation 1 that a RANSAC process needs

a significant number of trials to prove that the data does not support a re-

lation TRANSAC,8−i. In order to reduce the unnecessary computational effort

in degenerate scenes, the process of testing the inliers {in8} in lower dimen-

sions (model selection) is stopped when the dimension 5 is achieved, since a

motion relation estimated at dimension 6 (like a homography) is appropri-

ate to explain data of practical degenerate scenes (Nistér (2000); Torr et al.

(1999)). Note, however that, in the case of non-degenerate data (dim = 8),
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this approach does not avoid a computationally expensive RANSAC process,

which tests the data in lower dimensions for degeneracies.

4. The proposed hysteroscopy video content representation

In this section, we present our hierarchical representation for hysteroscopy

videos that allows the specialists to fast browse the video content. We ex-

ploit consistent image point tracks through the image sequence to quantify

visual changes, and arrange frames hierarchically according to the number

of corresponding points they share. The idea is that if a set of image points

is observed through a set of frames, these frames hold an amount of content

overlap, and can have some level of content similarity.

Our approach is presented as follows: In section 4.1, we present the no-

tation for the initial set of point correspondences established through the

frame sequence. In section 4.2, we validate geometrically the set of image

point correspondences computed in the previous step. Section 4.3 presents

our approach to represent hysteroscopy videos in terms of their content, and

shows how this representation can be used for fast video browsing. Finally,

section 4.7 presents the criterion to select key-frames, which will constitute

the video summary, and will be used in the video browsing task.

4.1. Computing the set of potential point correspondences between frames

Our approach starts by detecting and tracking points at every pair of

consecutive frames Ij and Ij+1 of the video sequence. KLT tracker is used

for this purpose, since it has shown satisfactory results for tracking image

points in endoscopic scenes (Rai et al. (2006); Wu et al. (2007)). Thus,
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KLT algorithm delivers the set of potential point correspondences {pj}N−1
j=1 =

{xji → xj+1
i } between consecutive frames Ij and Ij+1, where N is the number

of frames in the video and M is the number of points correspondences to be

tracked from a given frame, i = 1 · · ·M . The value of M is user defined to

provide a high number of point correspondences that will be refined later,

and we set M = 650 in our experiments. In order to preserve a number of M

point tracks in each frame, if k points have been lost in frame Ij, they are

replaced and k new point tracks start at Ij, as implemented by Birchfield

(2009).

4.2. Constraining point correspondences to be consistent with the camera mo-

tion

In this section, we discuss our approach to integrate image point tracking

and geometrical validation of the point tracks, since the image points {xji} are

tracked independently and a (simplified) local translational motion model is

assumed, which is not general enough to explain the camera motion between

frames.

We are interested in quantifying camera movements by analyzing the 2-

D image motion induced by the camera itself and, for this reason, we start

selecting point correspondences from {pj} that are consistent with a camera

motion model. To achieve this, we essentially enforce the epipolar constraint

(Equation A.1) over pairs of corresponding points {xji → xj+∆
i } in {pj}. Due

to noise, consistent point correspondences (inliers) are selected in terms of

the symmetric epipolar distance error (Equation 2).

Hysteroscopy videos are acquired from a hand-held camera and distinct
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scene configurations become noticeable in some phases of a typical hystero-

scopic examination, as discussed in section 1.2.3. However, some scene con-

figurations are critical in the process of estimating the camera motion relation

between a pair of frames, making a preliminary step to detect degenerated

scene configurations necessary, as discussed in Appendix A.4. For example, in

the context of typical hysteroscopy examination phases, the uterine fundus

analysis characterizes a structure degeneracy, where the three dimensional

layout of the scene is nearly planar (see Appendix A.4 for details). On the

other hand, the panoramic examination phase characterizes a generic scene

context, where an essential matrix E could be estimated and employed to

compute the set of inliers.

Besides a certain degree of accuracy, we also wish to estimate the correct

camera model to compute as many consistent point tracks (inliers) as possi-

ble, since further decisions in our approach will be made in terms of inliers

consensus. As discussed in section 1.1, many approaches in the CBVI liter-

ature propose to use a simplified affine motion model (which is a particular

case of a homography model H) to explain camera motion. However, in some

hysteroscopy scene configurations, this would restrict the number of inliers,

keeping only those tracked points that are consistent with a portion of the

scene.

To deal with the difficulties discussed above, we adopt the QDEGSAC

algorithm as described in section 3. It detects degenerate scene configurations

automatically, and chooses a potential camera model between pairs of frames.

QDEGSAC is capable of dealing with mismatches in {pj}, as well as finding

inliers from noisy point correspondences. As output, QDEGSAC delivers the
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sets of inliers {in} for every pair of frames considered in the video sequence.

Only tracked points classified as inliers will be used in the next phase of our

approach, which is detailed in the next section.

4.3. Hierarchical representation for hysteroscopy videos

In this section, we propose a hierarchical representation for hysteroscopy

videos so that specialists can browse the video contents non-linearly. We

basically exploit the behavior of consistent point tracks through the video in

order to group neighboring frames iteratively. In the previous step, consistent

point tracks are computed and identified as inliers {in} in each pair of frames

(at regularly spaced intervals ∆).

Using KLT algorithm, we compute image point correspondences {pj}N−1
j=1

for every pair of consecutive frames Ij and Ij+1 in the sequence, since better

matching results are achieved when the motion between frames is fairly small.

However, in order to reduce the computational effort, we do not compute

inliers between consecutive frames at the original frame rate. Videos are

instead sampled at a ∆ > 1 frame rate, and little information is lost because

relevant hysteroscopy video segments are usually acquired under slow or no

camera motion, what produces an excessive number of frames (redundant

views of the same uterine region).

On the other hand, image point tracks are eventually lost, or they move

out of view as the video sequence evolves. Therefore, the number of point

correspondences between widely separated views is not always sufficient to

allow a reliable estimation of relations like the essential matrix E or the

homography H. For this reason, we set a conservative (small) value to ∆
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in our experiments, since we are interested in constructing a video repre-

sentation that starts quantifying small view changes (between temporally

close frames), but avoids computing relations between potentially redundant

consecutive frames.

We assume the frames Ij and Ij+∆ as irrelevant, and do not estimate the

relation between them, if the number of point correspondences M between

them drops below a conservative threshold ϕ of 50 point matches. Experi-

mentally, we have verified that irrelevant frame sequences are associated with

low rates of successfully matched points, and a rate of ϕ < 100 successfully

matched points have implied in a high rate of failure when finding M = 650

point matches. Therefore, we set M = 50 in our experiments. In the follow-

ing, we discuss some key concepts which are important for the comprehension

of the proposed video representation.

4.4. Consistent points

Let {xjcon} be the set of consistent points associate with the frame Ij.

A consistent point is defined as follows. Let {in}jj−∆ be the set of inliers

computed by the QDEGSAC algorithm between the frame Ij and its left

neighbor Ij−∆. Let {in}j+∆
j be the set of inliers computed between the frame

Ij and its right neighbor Ij+∆. An image point xji is defined as a consistent

point associated with the frame Ij if the correspondences xj−∆
i ↔ xji and

xji ↔ xj+∆
i are validated as inliers by the QDEGSAC algorithm. In other

words, xji ∈ {xjcon} if
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xj−∆
i ↔ xji ∈ {in}

j
j−∆ and

xji ↔ xj+∆
i ∈ {in}j+∆

j . (3)

4.5. Persistent points and content overlap

Each frame Ij is now represented by its set of consistent points {xjcon}.

Given the frames Ij and Ij+k∆, a point xji is defined as a persistent point

from Ij to Ij+k∆ when

xj+t∆i ∈ {xj+t∆con } where t = 0 . . . k, (4)

which means that xji and their corresponding points from Ij+∆ to Ij+k∆ must

be consistent points too.

Once we have defined the concept of persistent points, we introduce the

notion of content overlap between frames. Given the frames Ij and Ij+k∆,

and their sets of consistent points {xjcon} and {xj+k∆
con }, the content overlap

θj+k∆
j between Ij and Ij+k∆ is defined as the number of persistent points

computed from Ij to Ij+k∆.

Formally, let per(xji , k) be a boolean function whose purpose is to verify

the persistence of a point xji from Ij to Ij+k∆:

per(xji , k) =

 1, if xj+t∆i ∈ {xj+t∆con } where t = 0 . . . k,

0, otherwise.
(5)

Thus, given the frames Ij and Ij+k∆, the content overlap between them

is defined as

θj+k∆
j =

M∑
i=1

per(xji , k), (6)
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where M is the number of point correspondences established by the KLT

tracker.

Given three frames Ij−∆, Ij and Ij+∆, the content overlap θjj−∆ between

frames Ij−∆ and Ij is larger than θj+∆
j between Ij and Ij+∆ if

θjj−∆ > θj+∆
j , (7)

which means that the frames Ij−∆ and Ij contain more consistent points in

common than the frames Ij and Ij+∆.

4.6. Video segment tree

An iterative process is employed to group frames into video segments.

A video segment is represented as δa 7→ b, where a and b are the first and

the last frame of the video segment, respectively. New segments are formed

according to the content overlap test in Equation 7, and frames that share a

high number of consistent point tracks are grouped first.

The building block of the iterative process consists in analyzing sequences

of four frames. Given a sequence of four ∆-spaced frames Ij−2∆, Ij−∆, Ij and

Ij+∆, and their respective sets of consistent points {xj−2∆
con }, {xj−∆

con }, {xjcon}

and {xj+∆
con }, the two central frames, Ij−∆ and Ij, will be grouped into a new

video segment δj−∆ 7→ j if

θj−∆
j−2∆ ≤ θjj−∆ ≥ θj+∆

j . (8)

Fig. 3 illustrates this idea in terms of four views and the view overlaps be-

tween them. The view overlaps are computed with our content overlap metric

(Equation 6).
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Figure 3: The overlap between views will determine which of the frames will be grouped

first in our approach. The central frames Ij−∆ and Ij will constitute a video segment

δj−∆ 7→ j if the content overlap between them θjj−∆ is larger than the content overlaps

θj−∆
j−2∆ and θj+∆

j , which are computed with relate to their neighboring frames Ij−2∆ and

Ij+∆.

As single frames, video segments also are represented by sets of consistent

points. However, in the case of video segments, such sets are constituted by

consistent points that persist from the first to the last frame of the video

segment, as defined in Equation 4.

As the iterative process goes on, new frames will aggregate to a video

segment and the number of persistent points in the segment will decrease,

since tracked points are eventually lost, or move out of view due to camera

motion. Therefore, a video segment δa 7→ b is considered stable, and it will

not aggregate frames any more, when the overlap between the video segment

and its ∆-spaced neighbor frame Ia−∆, and the overlap between the video

segment and its ∆-spaced neighbor frame Ib+∆, drop below a threshold ζ, i.

e. when

θa 7→ b
a−∆ < ζ and θb+∆

a 7→ b < ζ, (9)

where θa 7→ b
a−∆ and θb+∆

a 7→ b represent the content overlap between the video seg-

ment δa 7→ b and its previous frame Ia−∆ and its next frame Ib+∆, respectively.
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Figure 4: The iterative process groups neighboring frames to form video segments by (i)

grouping single frames into new video segments, (ii) aggregating single frames to existing

video segments or (iii) grouping neighboring video segments into larger video segments.

Actually, the iterative process develops in three ways: (i) grouping single

frames into new video segments, (ii) aggregating single frames to existing

video segments, or (iii) grouping neighboring video segments into larger video

segments. This is illustrated in Fig. 4. The iterative process will stop when

the video segments become stable (they stop to aggregate frames), i. e. when

the content overlap between every neighboring video segment decreases below

the threshold ζ, as defined in Equation 9.

To each one of the video segments formed we associate a key-frame. Thus,

at the end of the iterative process, a final set of video segments is provided

and, from each of them, a key-frame is selected, which will finally constitute

the video summary. This video summary will guide a specialist in the task

of browsing the video content. Once a specialist has selected a key-frame

Ia 7→ b
kf , he/she can browse the related content in the corresponding video seg-

ment δa 7→ b. To achieve this, we propose to exploit the hierarchical structure

produced by the iterative process when constructing each video segment.

This structure produces a valuable information for video content browsing

purposes, as we will discuss next.

Each final video segment can be represented by a hierarchical binary tree,
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which preserves the information about the pairs of video segments that were

grouped iteratively until the final video segment is constituted. Fig. 4(iii) il-

lustrates a binary tree, where the final step to constitute the video segment is

represented by dotted lines, and the grouped video segments are represented

in a solid line style. We call the binary tree associated with a video segment

the video segment tree.

Such representation is helpful for organizing the hysteroscopy video con-

tent, since it allows the specialists to generate a video summary with more, or

less, details/key-frames without introducing spurious frames into the sum-

mary. This is achieved by traversing the video segment tree through its

levels: from the upper to the lower levels to increase the number of key-

frames, and from the lower to the upper levels to generate a more compact

video summary. This idea is illustrated in Fig. 5, which shows a particular

video segment tree in which the task of browsing can be represented by an

imaginary horizontal line across the tree (gray arrows), where more or less re-

dundant video summaries (represented as a set of key-frames) are generated

by sliding this line vertically. In each level of the tree, the set of subseg-

ments (subtrees) are determined at the intersection of this line with the tree

structure. A subsegment has an associated key-frame, the set of key-frames

constitute the current level of the tree. Thus, once the specialist has selected

a key-frame on the top of a video segment tree, he/she can browse the related

video content without introducing frames which would be out of the video

segment context.

Since a video segment tree delimits a sequence of content-related frames,

the delimited video sequence can be analogous to a shot, which is a video
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Figure 5: A particular video segment tree in which the task of browsing is represented

as an imaginary horizontal line across the tree (gray arrows). As this line slides through

the levels of the tree, more or less compact video summaries are produced in terms of the

number of key-frames. The intersections × will determine a hierarchy of video subsegments

(subtrees), which will constitute the final video segment at the top of the tree.

unit widely exploited in CBVI literature to represent the content of com-

mercial/edited videos. Besides, an important advantage of the tree repre-

sentation is that it allows a guided browsing of the video segment content

as one navigates through the levels of the tree. The frame grouping process

starts by grouping frames with a high degree of content overlap, frames with

a low degree of content overlap are grouped at upper levels of the tree, hence

redundant frames are progressively inserted into the video summary as the

specialist traverses the segment tree from the upper to the lower levels. Thus,

our guided video browsing is oriented towards less redundant summaries,

which is a desirable feature in the context of video browsing applications.

4.7. Selection of key-frames

Given a video segment δa 7→ b, or a video subsegment, and its associated

set of consistent points {xa 7→ b
con }, the selected key-frame Ia 7→ b

kf is the frame

with the largest content overlap among the frames in the video segment. To
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quantify this criterion we take into account what we call consistent point

duration, that is the number of frames in which an image point is tracked as

a consistent point. Recall that each of the frames in a video segment δa 7→ b

has an associated set of consistent points {xacon}, {xa+∆
con }, . . . , {xb−∆

con }, {xbcon} .

For each set of consistent points, we compute the mean duration, and the

frame with the highest mean duration is selected as the key-frame Ia 7→ b
kf .

Let con(xji ) be a boolean function that verifies if xji is a consistent point

associated with frame Ij:

con(xji ) =

 1, if xji ∈ {xjcon};

0, otherwise.
(10)

Thus, within a video segment δa 7→ b, we can define the mean duration of

the points {xji}Mi=1 associated with frame Ij as

d̂ur(Ij) =

∑M
i=1

∑b
t=a con(xti)

M
, (11)

where M is the number of point tracks computed by the KLT tracker in each

frame. Thus, the key-frame Ia 7→ b
kf associated with δa 7→ b is the frame Ij where

Ia 7→ b
kf = arg max

j=a...b
d̂ur(Ij). (12)

In case of two or more frames of the same video segment having the

same highest mean duration, the first frame in the sequence is selected as a

key-frame.

5. Experimental results
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Table 1: Description of the videos used in our experiments: hyst1 : traditional hys-

teroscopy examination with well-defined phases and abnormal findings; hyst2 : a short

examination with relevant frames degraded by numerous small specular regions; hyst3 :

many relevant frame sequences suddenly interrupted by undesired effects or fast camera

motion; hyst4 : challenging image sequences from the persistence of the tracked points,

since the frames show low texture content.

Videos Number of Number of video segments

frames selected by the specialists

hyst1 3013 9

hyst2 2080 5

hyst3 5500 5

hyst4 7500 12

In this section, we present several experiments with synthetic and real se-

quences. We conducted experiments on four interpreted hysteroscopy videos,

which were recorded at 30 frames per second. Table 1 shows a short descrip-

tion of the videos. These videos were selected based on their visual char-

acteristics, which represent potential difficulties for the proposed approach.

Fig. 6 shows the median frame of the video segments manually selected by

specialists. We evaluate the performance of our approach in terms of the

results of consistent image point tracking and video summarization.

5.1. Experiments on synthetic data

We first test our summarization approach on synthetic data. Since the

correct camera motion relation is known, the results estimated by QDEGSAC

can be evaluated in comparison with the actual set of inliers and outliers

(the ground truth). In the context of degenerate scenes, such results can
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be evaluated qualitatively in terms of the set of degenerate inliers, since the

undesired detection of non-degenerate inliers would be caused by the limi-

tations of QDEGSAC in dealing with noise and mismatches. The following

notation is employed in this section:

• TActual represents the correct camera motion relation between two points

of view (frames);

• {in}Actual represents the set of actual inliers, which gives support to

TActual;

• {out}Actual represents the set of actual outliers (mismatches), which

does not give support to TActual;

• {in}τQDEGSAC represents the set of inliers delivered by the QDEGSAC

algorithm, where τ is the error threshold (in pixels) that allows to

accept a pair of corresponding points as an inlier. {in}τQDEGSAC gives

support to the estimated camera motion relation TQDEGSAC .

We randomly generate a set of 100 3D points with a depth variation of

10-50 units of focal length (u.f.l.). The interframe rotation is α ∈ {0, 5}

degrees around a random axis of rotation, and the interframe translation is

|t| ∈ {0, 5} u.f.l. with a random direction of translation. The views are

obtained by perspective projection using an image size of 512 × 512 pixels.

Zero-mean gaussian noise with a standard deviation of σ = [0, 1] pixels is

added to the point correspondences in two views. All parameters were set

with the intention of approaching real data conditions. Figures 7-12 show

measures that result from the average of 100 QDEGSAC runs.
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Fig. 7 shows the performance of QDEGSAC in computing a relation with

high support in the point correspondences for (|t|, α) = (5, 5), as a function of

noise σ. Given an error threshold of τ pixels to accept a point correspondence

as an inlier, we compute the number of inliers delivered by the QDEGSAC

algorithm (see Fig. 7, left). Results are shown for τ ∈ {1, 2, 3}. Additionally,

Fig. 8 shows the performance of QDEGSAC under degenerate scene config-

urations for (|t|, α) = (5, 5) and coplanar points (planar scene). Fig. 8 also

shows the proportion of degenerate inliers, which should be as high as pos-

sible, since the scene configuration is degenerate and the undesired presence

of non-degenerate inliers can be explained by noise.

Given the correct camera motion relation TActual between the views, we

compute the mean error for the inliers {in}τQDEGSAC delivered by QDEGSAC,

where τ ∈ {1, 2, 3}. We use a homography model H as the correct motion

relation TActual between degenerate views. In this case, we employ the sym-

metric transfer error (Hartley and Zisserman (2000)), which measures how

closely a pair of points xi → x′i satisfies a relation H. For non-degenerate

scene configurations, we employ the symmetric epipolar error, as defined in

Equation 2. Fig 9 shows the errors for both degenerate and non-degenerate

scene configurations as a function of noise σ. Planar and pure rotation scene

configurations has given almost the same errors. Note that data is corrupted

only by noise in this stage, i. e. it does not contain mismatches. Thus, we

observed the following:

1. The performance of the algorithm deteriorates with the amount of

noise.

2. As expected, the computational effort increases with the amount of
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noise. The noise makes the proportion of inliers to decrease, hence the

required number of RANSAC trials S increases (see Equation 1).

3. However, the required number of QDEGSAC trials in degenerate scenes

is significantly smaller than the number of trials in generic scenes. In

non-degenerate scenes, QDEGSAC needs a significant number of trials

to verify if the inliers are not supported by a relation computed with

less than 8 constraints, as discussed in section 3.3.

4. The best performance has been achieved by employing QDEGSAC

with τ = 3. It gives the lowest computational effort, as well as the

highest number of inliers under noisy point correspondences (no mis-

matches). Besides, it gives almost the same symmetric error compared

to QDEGSAC with τ = 1 or 2.

Note that we wish to compute as many inliers as possible in the image

sequence, hence our major concern is to avoid losing these consistent tracked

points due to the presence of noise or mismatches. Mismatches can lead to

a high number of inlier losses since an estimated motion relation Tmis, which

is supported by mismatches, can stop the tracking process of actual inliers,

since they could be considered as outliers in terms of Tmis. Therefore, we

also evaluate how mismatches affect the performance of QDEGSAC in terms

of the actual inlier losses, especially for higher values of τ like τ = 3 pixels.

Please note that the higher the τ value is, the higher is the chance of

classifying mismatches as inliers, and consequently, the higher is the risk of

loosing consistently tracked points. Therefore, we have not considered values

of τ higher than 3 pixels in our experiments.
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Fig. 10 shows the number of actual inlier losses for (|t|, α) = (5, 5) as

a function of the number of mismatches. We generate a set of mismatches

by selecting randomly a translation direction and a translation magnitude.

Additionally, gaussian noise with σ = 0.1 pixels has added to the point cor-

respondences in the two views. Fig. 11 shows the number of actual inlier

losses under degenerate scene configurations for (|t|, α) = (0, 5) (pure rota-

tion). Fig. 11 also shows the proportion of degenerate inliers as well as the

undesired presence of non-degenerate inliers.

We also evaluated the symmetric epipolar error for the inliers {in}τQDEGSAC
delivered by QDEGSAC in terms of the correct camera motion relation

TActual. Fig 12 shows the errors for both degenerate and non-degenerate

scene configurations. Note that we employ a homography H model as the

correct motion relation TActual for non-degenerate scenes. Fig 12 also shows

the error computed over {in}τQDEGSAC against the ground truth error, which

is computed for the ground truth set of inliers {in}Actual. In order to give an

idea of the set of mismatches employed in these tests, we also compute the

error over all point correspondences, which include all mismatches.

Considering the effects caused by mismatches, we observed the following:

1. The computational effort increases with the number of mismatches,

since RANSAC requires more trials to reach a consensus in the set of

correspondences, as discussed above in terms of noisy points.

2. In terms of actual inlier losses, better results has been achieved by

employing QDEGSAC with τ = 3. There is a clear trade off in choosing

τ : it should be sufficiently high to avoid actual inlier losses due to the

effects of noise and, at the same time, it should be as low as possible
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to avoid classifying mismatches as inliers. In our experiments, τ = 3

gave the best results. For example, in degenerate scene configurations,

as shown in Fig. 11, τ = 1 results in false non-degenerate inliers, but

τ = 3 was less sensitive to this problem.

3. Qualitatively, the performance of QDEGSAC starts deteriorating around

a mismatch rate of 10%. The transfer error computed for degener-

ate scenes is quite higher than the epipolar error computed for non-

degenerate scenes. Since mismatches support the estimated motion

relation, they are understood by the QDEGSAC algorithm as non-

degenerate inliers. The homography, which is the correct motion rela-

tion, can not explain non-degenerate inliers, and gives a high transfer

error for the mismatches that are incorrectly included in the estimated

set of inliers.

5.2. Experiments with real sequences

We evaluate the performance of QDEGSAC on real conditions of noise

and mismatches, as well as the overall performance of our approach in se-

lecting relevant information from hysteroscopy sequences.

5.2.1. Performance of the QDEGSAC algorithm on real sequences

We now test the performance of the QDEGSAC algorithm on frame pairs

from several video sequences, e.g. the Tubal Orifice sequence, which is illus-

trated in Fig 13.

Due to the difficulty of determining a ground truth in real hysteroscopy

sequences, we test QDEGSAC in terms of the number of successfully tracked

points, and the corresponding symmetric epipolar error. Although this is an
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indirect measurement of the quality of the results, it gives a good indication

of the quality of the estimated relation when mismatches exist in the data.

We observed the following:

1. The error increases with the temporal distance between frames.

2. Although QDEGSAC delivers a relatively high number of inliers in

dimension 6 with τ = 3 for generic scenes, it gives the best performance

in terms of the number of inliers and trials. Table 2 summarize the

results for the Tubal Orifice sequence.

3. QDEGSAC with τ = 2 gives the most coherent results in terms of

scene configurations detection; for planar (degenerate) or almost planar

sequences, it gives a high number of inliers in dimension 6; for non-

planar scenes, like the Tubal Orifice sequence, a low number of inliers

was detected in dimension 6. This was verified even for temporally

close frames.

5.2.2. Experimental results on video summarization

In this section, we evaluate the performance of our approach on video

summarization. The experiments were conducted on four interpreted hys-

teroscopy videos: hyst1, hyst2, hyst3 and hyst4. The videos were selected

from a hysteroscopy library with more than 10.000 exams, which are usu-

ally recorded in a DVD format with interlaced frames. In order to minimize

difficulties in the point tracking process, the videos were deinterlaced by

employing the bob deinterlace method available in the VirtualDub software

(www.virtualdub.org). The deinterlacing process splits frames in separate
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Table 2: Results for sequence Tubal Orifice averaged over 100 QDEGSAC runs. Residual

error is given in pixels.

Frames 1-10 10-20 1-20

# KLT matches 547 469 426

# inliers for τ = 1 359 333.10 266.31

# inliers for τ = 2 480.02 397.08 355.44

# inliers for τ = 3 507.01 428.67 389.23

Res. error for τ = 1 (σ) 0.26 0.25 0.28

Res. error for τ = 2 (σ) 0.42 0.44 0.45

Res. error for τ = 3 (σ) 0.63 0.64 0.64

# required trials for τ = 1 786.77 694.27 2129.10

# required trials for τ = 2 192.63 206.42 295.80

# required trials for τ = 3 68.28 98.39 231.45
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fields, hence the videos are processed at a double frame rate in our experi-

ments.

Since τ = 3 results in the lowest computational effort, as well as the

highest number of inliers, without a significant impact on the quality of

the results, we employed the QDEGSAC algorithm with τ = 3 pixels. We

have experimentally verified that ∆ = 5 satisfies the requirements discussed

in section 4.3 and therefore the videos are processed at regularly spaced

intervals of ∆ = 5 frames.

Two specialists assisted in the interpretation of the videos. In order to

make the interpretation of the results easy, the specialists were requested

to indicate important video segments, where the visual content could be

represented by a single frame. Surprisingly, we verified that the specialists

missed some relevant video segments (that were pointed out in our ground

truth set). In diagnostic hysteroscopy, it is common to capture different

relevant views of the uterine region in subsequent micro camera motions,

i.e. an uterine region is captured by one view and then captured again in

an even better view of the same uterine region. Specialists tend to consider

both image sequences as relevant (see Section 1.2.1), and that generates

redundancy because the video segments selected by the experts often are

part of a subset of relevant video segments. Thus, in the remaining of this

paper we will distinguish the set of important video segments selected by the

specialists from the set of relevant video segments in a given hysteroscopy

video. The important video segments is a reduced subset of the relevant

video segments.

Fig 14 shows the entire set of video segments trees computed throughout
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the videos. Recall that frames that share a high number of consistent point

tracks are grouped first in the iterative process, which stops when the overlap

between neighboring frames (or neighboring video segments) drops below a

threshold ζ. We have experimentally found that ζ can be set in the range

[1, 10] without noticeable changes in the resulting set of video segments,

therefore we set ζ = 10 in our experiments. Thus, the tree structure results

from frame sequences associated with slow camera motion.

Fig 15 shows in detail 8 segment trees, and the associated key-frames

computed on a smaller sequence of 700 frames from the video hyst1. Note

that this sequence starts with a panoramic examination, then the operator

runs fast through irrelevant frames, until he reaches an uterine region in

which he spends most of time diagnosing potential disorders.

Table 3 shows a summary of the results and a comparison between the pro-

posed approach and the method proposed by Scharcanski and Gavião (2006).

The Precision measure mentioned in Table 3 quantifies the performance of

the methods in discarding irrelevant frames (as defined in section 1.2.1) and

is defined as follows:

Precision =
#relevantframes

#relevantframes+ #irrelevantframes
. (13)

Note that the proposed approach (M1) produces less false positives (i. e.

higher precision) and a significant reduction in the number of key-frames

(without discarding relevant information). Data-rate reduction quantifies

the decrease in the number of frames in the final summary in relation to

the number of frames N in the video. As a refinement of our approach, we

discard segment trees associated with video segments that last less than 1/3

seconds. Otherwise, the data-rate reduction values would be 89%, 87,7%,
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83,6% and 83,4% for hyst1, hyst2, hyst3 and hyst4, respectively.

In Section 1.1, we discussed some of the drawbacks of applying generic

video summarization methods to diagnostic hysteroscopy videos. Also, we

tested state-of-art methods designed for generic video summarization on hys-

teroscopy videos, illustrating that these methods are not adequate for hys-

teroscopies. In the Content-Based Visual Information Retrieval (CBVIR)

literature we find several cluster analysis techniques that extract temporal-

structural information from video sequences automatically. In these cases,

similar adjacent frames are grouped in shot units, and such frame clusters

are further grouped into scenes, and also in larger video structural compo-

nents (Dimitrova et al. (2002)). Visual data clustering is a central concept

in many recent state-of-art summarization methods (Ngo et al. (2005); Gao

et al. (2009); Hanjalic and Zhang (1999); Rasheed and Shah (2005); Zhu

et al. (2005)), and devising new methods for adjusting thresholds is an ongo-

ing challenging research issue, since the efficiency and the results obtained by

these methods often depend on the threshold settings. Therefore, we avoid

critically tuning thresholds by adopting in our tests the adaptive unsuper-

vised cluster analysis approach proposed by Hanjalic and Zhang (1999). We

observed experimentally that such methods often provide : (a) good data-

rate reduction, but the set of key-frames tend to not include representative

frames from each important video segment for the specialists, i. e. false neg-

atives are often found; and (b) frames of distinct hysteroscopy examination

phases tend to be grouped together in the same cluster, which is not desir-

able (see Section 1.2.3). This is inconvenient in the daily medical practice

because: (1) important information is omitted in video summary, and (2)
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Table 3: Summary of results: A comparison between the proposed method (M1) and the

method (M2) proposed by Scharcanski and Gavião (2006).

Videos hyst1 hyst2 hyst3 hyst4

Methods M1 M2 M1 M2 M1 M2 M1 M2

Data-rate reduction (%) 97.5 96.1 97.6 94.6 97.2 95.8 97.5 93.9

Number of key-frames 76 117 51 111 154 226 191 456

Precision 0.98 0.97 1 0.91 0.92 0.84 0.90 0.82

the contents of each hysteroscopy phase are semantically distinct and should

not be mixed in the resulting video summary.

6. Discussion

Our main goal is to measure changes on the field of view that result

from the camera motion. We do not treat occlusions, consequently point

tracks that are lost due to, for example, specular highlights affect negatively

the proposed content overlap metric (since the loss of those tracks were not

actually caused by the camera motion). Thus, potentially better results could

be achieved by considering only point tracks that moved out of the field of

view, since neighboring frames which are very similar in terms of content

(except for specular highlights) may be placed incorrectly in different video

segments.

In some videos, we found few irrelevant video segments in which the cam-

era remains static for few seconds. According to experienced gynecologists, it
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may be attributed to the inexperience of some specialists in the hysteroscopy

procedure, or due to the existence of undesired obstacles that sometimes are

difficult to overcome, such as mucus and bubbles (see section 1.2.1) stuck

on the hysteroscope tip. Our approach can not deal with these situations

very well, since a sufficient number of correspondences, which are consistent

with a rigid motion model, are detected in an irrelevant video segment. This

downgrades the precision of the summaries delivered by our method.

The most intensive computational effort of our approach is the point

tracking process. It takes hours to process an entire hysteroscopy video on

an desktop computer with Intel Core 2 Duo with 2 processors at 1.66GHz and

2GB of RAM. Our approach is not intended to deliver results in real time,

however the performance of tracking process could be dramatically improved

by employing the GPU-based KLT tracker proposed by Sinha et al. (2006).

An important issue which has been under investigation is the capabil-

ity of KLT method in tracking image points through relevant hysteroscopy

video segments, given the well-known difficulties involved in establishing cor-

respondences among widely separated frames/views. At conventional frame

rates, our experiments indicate that the specialist does not move the cam-

era fast enough to make the KLT tracker lose point tracks due to the fast

camera motion, regardless of irrelevant hysteroscopy video segments whose

characteristics are presented in section 1.2.1.

From a methodological point of view, our approach operates locally in the

video sequence, since only neighboring frames are considered in the process of

summarization. Usually, with the purpose of producing compact summaries,

generic video summarization methods estimate how informative individual
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frames are by analyzing their properties in the context of the entire video

sequence. We have found that this strategy may lead to unacceptable results

in hysteroscopy videos. It is not reasonable to compare frames from distinct

phases of a diagnostic hysteroscopy examination video. Thus, our method is

designed to deal specifically with the hysteroscopy videos, but it may not be

the best choice for summarizing generic videos.

According to our preliminary experiments, the proposed approach can

produce very compact video summaries, and these summaries include frames

from every important video segment selected by specialists. In addition,

in comparison with a state-of-art method, the proposed approach not only

produces more compact summaries (in terms of number of key-frames) by

an average of 44%, but also produces more precise summaries, which contain

less false positives than comparable state-of-art methods (see Table 3).

7. Conclusion and future work

We have presented an approach for detecting the video segments that

attracted the specialist attention during a diagnostic hysteroscopy video ac-

quisition. The video segments relevance are estimated in proportion to the

attention they attract (i.e. their redundancy), and these information are used

to produce rich video summaries for fast browsing. Relevant video segments

are detected by tracking and classifying point matches in frames along the

video sequence that are consistent with a parametric camera motion model.

The point tracking task is challenging, and we performed a detailed evalua-

tion to show the limitations of the proposed methodology. Our experiments
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suggest that consistent point tracking along the video sequence can be used

to assign relevance to diagnostic hysteroscopy video segments (i.e. to the

hysteroscopy video contents).

In this paper we also proposed a hierarchical scheme for browsing diag-

nostic hysteroscopy videos. Although the proposed technique can be com-

putationally complex, the experimental results suggests that compact video

summaries can be produced without discarding important information as

false negatives. Comparing our approach with other state-of-art methods,

our experiments suggest that our method tends to produce hysteroscopy

video summaries that are nearly 44% more compact, in average (i.e., our

method tends to produce less false positives than comparable state-of-art

methods). Besides, the proposed representation is flexible, and allows the

user to organize the hysteroscopy video contents in a video summary with a

desired level of details, minimizing the occurrence of spurious frames in the

video summary. Future work will concentrate on improving our method by

introducing a mosaic representation for key-frames within degenerate scene

configurations.
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Appendix A. Camera motion from image point correspondences

54



We briefly review some concepts used in our approach, like geometrical

issues involved in the representation of 3-D static scenes and the degeneracies

that can appear in estimating camera motion. More details can be found

in Ma et al. (2003); Hartley and Zisserman (2000); Torr et al. (1999).

Appendix A.1. Feature extraction and tracking

Usually, a first step in estimating camera motion from a video sequence

consists in establishing point correspondences between the images. Ideally,

such corresponding points should be projections of the same point in space,

as illustrated for two images in Fig. A.16 (x and x′ are projections of X).

The feature extraction step consists of selecting a number of interesting

points, which can be detected with subpixel accuracy using the Harris cor-

ner detector (Harris and Stephens (1988)). Once a set of interesting points

have been selected in an image, the Kanade-Lucas-Tomasi (KLT) (Lucas

and Kanade (1981); Shi and Tomasi (1994)) tracker can be used to search

for point correspondences in the next images. The KLT tracker delivers a

set of potential point correspondences {xi → x′i} between pairs of images.

Each correspondence is computed independently of the others, without con-

sidering a global motion consistency, which would involve all computed cor-

respondences. It is important to note that most tracking methods, like the

KLT tracker, often deliver ambiguities and false matches (Ma et al. (2003)),

and therefore subsequent steps must be robust to overcome such limitations.

Appendix A.2. Camera motion
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Consider two images of the same scene taken from a camera which is

moving relative to this scene, where the coordinates of a 3-D world point

X = (X, Y, Z, 1)T, and the corresponding 2-D image point x = (x, y, 1)T, are

represented in homogeneous coordinates. Following a basic pinhole camera

model, each image is associated to a camera projection matrix P, and a

3-D world point X is projected on the first image plane as x = PX and as

x′ = P′X on the second image plane (Hartley and Zisserman (2000)). Since x

and x′ are the images of the same 3-D world point, they are understood as an

image point correspondence x→ x′. Assuming the camera is calibrated, the

corresponding image points x and x′ satisfy the epipolar constraint (Longuet-

Higgins (1981))

x′TEx = 0, (A.1)

where E is a 3 × 3 matrix which encodes the relative pose (rotation R and

translation t) between the two cameras C and C′, as shown in Fig A.16.

E is called the essential matrix and, given a number of image point corre-

spondences, the entries of E can be recovered from the set of the generated

epipolar equations, as explained in Appendix A.3.

As shown in Fig. A.16, a 3-D world point X and their projections, which

are the image points x and x′, lie on the epipolar plane. This is an important

property that is exploited to search for image point correspondences, and

these correspondences will support an estimate of E (the camera motion).

For each point x in the first image, there will be a corresponding epipolar line

l′ in the second image. The epipolar line l′ is determined by the intersection

of the epipolar plane with the second image plane, as illustrated in Fig. A.16.

Thus, there is a projective mapping {x 7→ l′ | x′ ⊂ l′} which is represented
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by the essential matrix E, where

l′ = Ex and l = ETx′. (A.2)

The points e and e′ are known as epipoles and they are determined by the

intersection of the line connecting the camera centers (the baseline) with the

image planes.

Appendix A.3. Estimating the essential matrix

Given a number of image point correspondences xi → x′i, the epipolar

constraint (Equation A.1) is true for any pair of them. Thus, every pair of

corresponding points gives one constraint on E. Since E is a 3 × 3 matrix

which is determined up to a scale factor, it has 3×3−1 unknowns. Therefore,

8 pairs of corresponding points are sufficient to compute the entries of E with

a linear algorithm. This is the essence of the Eight-Point Algorithm (Longuet-

Higgins (1981); Hartley (1997)). Basically, the Equation A.1 is rewritten in

terms of the known coordinates of corresponding points x = [x y 1]T and

x′ = [x′ y′ 1]T:

[ xx′ yx′ x′ xy′ yy′ y′ x y 1 ] Es = 0 (A.3)

with Es = [E11 E12 E13 E21 E22 E23 E31 E32 E33]T, which is obtained by

stacking the entries of the matrix E. Thus, from a set of eight image point

correspondences we can stack their coordinates in a matrix A and, in the

absence of noise, the vector Es will satisfy
x1x

′
1 y1x

′
1 x
′
1 x1y

′
1 y1y

′
1 y
′
1 x1 y1 1

...
...

...
...

...
...

...
...

x8x
′
8 y8x

′
8 x
′
8 x8y

′
8 y8y

′
8 y
′
8 x8 y8 1

Es = AEs = 0. (A.4)
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In the presence of noise, the solution of this system of equations can be

approximated by employing the Singular Value Decomposition (SVD) (Golub

and Loan (1989)), as long as the eight equations are linearly independent.

Appendix A.4. Degenerate scene configurations

Successful methods for computing image point correspondences consis-

tent with camera motion impose geometric constraints over putative image

point matches, as introduced in Appendix A.2. However, there are some

scene configurations in which geometric constraints fail to yield reliable re-

sults. Therefore, compute the essential matrix E from image correspondences

requires some assumptions about the camera motion and scene structure.

Scene configurations which do not conform to these assumptions are known

as degenerate configurations.

Two types of degenerate scene configurations often appear in practice:

motion degeneracy, when the camera undergoes a pure rotation around the

optical center (there is no camera translation), and structure degeneracy,

when the three-dimensional layout of the viewed scene is planar or, in a ap-

proximate way, the depth variation inside the scene is small compared to the

distance between the camera and the scene. In both cases, it is not possible

to determine the epipolar geometry, since the set of degenerate image cor-

respondences does not provide enough constraints to compute E uniquely,

and there will be a family of relations which will explain the data equally

well (Hartley and Zisserman (2000)). Structure and motion degeneracies can

be mathematically expressed in terms of the rank of the matrix A (Equa-

tion A.4). Under a noise-free context, the matrix A must have rank 8 to
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provide a unique solution, and it must have rank 6 when it is derived from

structure or motion degenerate correspondences.

In the absence of noise the detection of these degenerate cases would not

be too hard. However, starting from real (noisy) data, the problem is much

harder since the remaining constraints in the equations can be determined

by the noise. The effects of assuming non-degenerate scene configurations

in image sequences include the loss of consistent image point tracks, as well

as the inclusion of wrong image point matches due to over-fitting of the

estimated geometric model, as reported by Torr et al. (1999).

Appendix A.5. Lens distortion correction and camera calibration

Usually, the field of view of endoscopes is narrow and wide-angle lens

are employed to overcome this limitation. However, wide-angle lenses cause

radial distortion in the images captured through them. Therefore, a linear

pinhole camera model can not be directly applied, since the image x = (x, y)

of a 3-D world point X is projected away from the position determined

by a perfect perspective projection, like that induced by a pinhole cam-

era. The distortion coefficients and the calibration matrix K can be com-

puted using well established camera calibration techniques (Zhang (1999);

Tsai (1987); Heikkilä and Silvén (1997)). In this work, we use a calibration

package (Bouguet (2009)) which is based on the work of Heikkilä and Silvén

(1997).
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(a)

(b)

(c)

(d)

Figure 6: Median frame of the video segments selected by the specialists in each video.

(a) hyst1. (b) hyst2. (c) hyst3. (d) hyst4.
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Figure 7: Number of computed inliers and the average number of QDEGSAC trials re-

quired to compute them as a function of noise for |t| = 5 u.f.l. and α = 5 degree (a generic

scene configuration).

Figure 8: Performance of QDEGSAC for a planar (degenerate) scene configuration as

a function of noise, where (|t|, α) = (5, 5). (Top) Number of computed inliers and the

average number of QDEGSAC trials required to compute them. (Bottom) Proportion of

degenerate inliers computed for τ ∈ {1, 2, 3}.
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Figure 9: Mean errors computed over the sets of inliers delivered by QDEGSAC

{in}τQDEGSAC (τ ∈ {1, 2, 3}) as a function of noise levels, where (|t|, α) = (5, 5). (Left)

Error computed under generic scenes. (Right) Error computed under planar (degenerate)

scene configurations.

Figure 10: Performance of QDEGSAC as a function of the number of mismatches for

generic scene configurations, where |t| = 5 u.f.l., α = 5 degree and σ = 0.1 pixels. (Left)

Number of actual inlier losses and (right) the average number of required QDEGSAC

trials.
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Figure 11: Performance of QDEGSAC as a function of the number of mismatches for

a degenerate scene configuration, where |t| = 0 u.f.l., α = 5 degrees and σ = 0.1 pixels.

(Top) Number of actual inlier losses and the average number of required QDEGSAC trials.

(Bottom) Proportion of degenerate inliers for τ ∈ {1, 2, 3}.

Figure 12: Mean errors computed over the sets of inliers delivered by QDEGSAC

{in}τQDEGSAC (τ ∈ {1, 2, 3}) and the ground truth set of inliers {in}Actual, as a function

of the number of mismatches. (Left) Error computed under generic scene configurations

with (|t|, α) = (5, 5). (Right) Error computed under degenerate scenes, including the error

computed over all point correspondences (including mismatches).
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(a) (b) (c)

(d) (e) (f)

Figure 13: Top: frames 1, 10 e 20 of the Tubal Orifice sequence. Bottom: 2D displace-

ments of the tentative point correspondences from the current view to the next (”→”).

(a) Frame 1. (b) Frame 7. (c) Frame 13. (d) Two-dimensional displacements from frame

1 to 7. (e) Two-dimensional displacements from frame 7 to 13. (f) Two-dimensional

displacements from frame 1 to 13.
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(a)

(b)

(c)

(d)

Figure 14: Segment trees computed throughout the videos. X-axis represents the frames

in the video sequence. Horizontal line segments represent the important video segments

manually selected by specialists. (a) hyst1. (b) hyst2. (c) hyst3. (d) hyst4. Notice the

important video segments appear associated with noticeable trees.
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Figure 15: Segment trees and the associated key-frames computed over a smaller sequence

of frames from the video hyst1. Top 8 segment trees as a function of the frame sequence.

The solid horizontal line (red) represent the important video segment manually selected

by the specialists. Middle The video sequence sampled at regularly spaced intervals of

25 frames. Bottom The 8 key-frames computed for each of the 8 segment trees. Note

that all key-frames are clinically relevant, since they provide unobstructed views of uterus

details, however only the 1667 is contained in the important video segment indicated by

the specialists. We discard segment trees associated with video segments that lasts less

than 1/3 seconds.

Figure A.16: Projections x and x′ of a 3-D world point X lie on the same plane, which is

known as epipolar plane. This is an important property that is widely exploited to search

for correspondences, which will support the camera motion computation between C and

C′ in terms of E.
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