
Efficient Visual Exploration and Coverage with a Micro Aerial Vehicle
in Unknown Environments

Lionel Heng, Alkis Gotovos, Andreas Krause, and Marc Pollefeys

Abstract— In this paper, we propose a novel and computa-
tionally efficient algorithm for simultaneous exploration and
coverage with a vision-guided micro aerial vehicle (MAV) in
unknown environments. This algorithm continually plans a path
that allows the MAV to fulfil two objectives at the same time
while avoiding obstacles: observe as much unexplored space as
possible, and observe as much of the surface of the environment
as possible given viewing angle and distance constraints. The
former and latter objectives are known as the exploration and
coverage problems respectively. Our algorithm is particularly
useful for automated 3D reconstruction at the street level and
in indoor environments where obstacles are omnipresent. By
solving the exploration problem, we maximize the size of the
reconstructed model. By solving the coverage problem, we max-
imize the completeness of the model. Our algorithm leverages
the state lattice concept such that the planned path adheres
to specified motion constraints. Furthermore, our algorithm is
computationally efficient and able to run on-board the MAV in
real-time. We assume that the MAV is equipped with a forward-
looking depth-sensing camera in the form of either a stereo
camera or RGB-D camera. We use simulation experiments to
validate our algorithm. In addition, we show that our algorithm
achieves a significantly higher level of coverage as compared to
an exploration-only approach while still allowing the MAV to
fully explore the environment.

I. INTRODUCTION

Micro aerial vehicles are soaring in popularity due to their
compact size and affordability. They are used in an increasing
number of applications such as aerial photography, aerial
surveillance, environmental monitoring, and search and res-
cue. An up-and-coming application is automated 3D recon-
struction of large environments. The generated 3D models
are used for many purposes such as visualization, geological
assessments, and model-based localization with a camera. In
outdoor scenarios, automated 3D reconstruction is achieved
by commanding a MAV equipped with a downward-looking
camera to follow a preset flight path at a high altitude [14].
The MAV records GPS and image data during the flight,
and afterwards, a 3D reconstruction pipeline converts the
recorded data to a 3D model. However, the assumption of
an obstacle-free environment makes this technique ill-suited
for use at the street level and in indoor environments where
obstacles are omnipresent. In these settings, the MAV has to
detect obstacles, usually with a forward-looking camera, and
factor them in its planning.

We attempt to simultaneously solve the exploration and
L. Heng {hjianyon@dso.org.sg} is with the Information Di-

vision, DSO National Laboratories, Singapore. A. Gotovos, A. Krause,
and M. Pollefeys {alkisg@inf.ethz.ch, krausea@ethz.ch,
marc.pollefeys@inf.ethz.ch} are with the Department of Com-
puter Science, ETH Zürich, Switzerland. Most of the work was done when
the first author was at ETH Zürich.

coverage problems for unknown 3D environments using a
vision-guided MAV. In the exploration problem, we want
to explore as much of the environment as possible, so
that the reconstructed 3D model is as large as possible.
In the coverage problem, we want to observe the entire
surface of the environment given viewing angle and distance
constraints so that the reconstructed 3D model is complete
and distortion-free.

In this paper, we describe our algorithm for efficient
visual exploration and coverage with a MAV in unknown
environments. Our algorithm is designed to run on-board
a MAV with limited computational resources. We assume
that the MAV’s pose is already known and that the MAV
is equipped with a forward-looking depth-sensing camera in
the form of either a stereo camera or a RGB-D camera. We
do not see these assumptions as restrictive, as the pose can
be provided by a SLAM system, and a depth-sensing camera
is low-cost and easy to mount on a MAV.

For efficient visual exploration and coverage, we use the
state lattice [17] as a discrete graphical representation of the
state space. This state lattice representation has two impor-
tant advantages with respect to computational efficiency:

1) the problem of path planning with motion constraints
reduces to an unconstrained graph search problem, and

2) translational invariance: any motion or edge that con-
nects two states also connects all other pairs of iden-
tically arranged states.

We exploit this translational invariance property by pre-
computing several aspects of the exploration and coverage
algorithm such that this algorithm is able to run in real-time
and on a computationally-constrained MAV.

As the quadrotor dynamics are differentially flat [15], the
control inputs can be expressed as a function of four flat
outputs [x, y, z, ψ] and their derivatives, where [x y z]T are
the coordinates of the center of mass of the quadrotor and
ψ is the yaw angle. Hence, we define the MAV’s state to be
[x y z ψ]T with zero roll and pitch, which results in a 4D
state space.

Our proposed algorithm alternately solves the exploration
and coverage problems. At each step of our proposed algo-
rithm, we first solve the exploration problem by looking for
goals located on the edges of currently known free space and
choosing the one with the highest information gain weighed
exponentially by its cost to reach. Subsequently, we solve
the coverage problem by planning a path to the selected
goal such that coverage is maximized subject to budgets
on the total path cost and planning time. We repeat this

procedure each time the path is blocked or the information
gain associated with the goal drops significantly.

Our exploration and coverage algorithm is novel in the
sense that, to the best of our knowledge, there is no other
existing work that solves both the exploration and coverage
problems in real-time. Exploration algorithms [18, 19] at-
tempt to fully explore an environment and run in real-time
but do not optimize coverage. Coverage planning algorithms
[3, 5, 6] attempt to fully cover an environment but require
a known map that accurately represents the environment of
interest. Next-best-view planning algorithms [4, 13] are most
similar to our work but assume a single-object scene. Thus,
they sample candidate views within a sphere around the
object before selecting the view with the highest information
gain. These algorithms do not scale well to multi-object
scenes in which more objects correlate to more sampling,
and in turn, a higher computational cost. Our algorithm is
able to run in real time on a computationally-constrained
MAV equipped with a forward-looking depth-sensing cam-
era. Furthermore, path planning with motion constraints is
integrated into our algorithm, which allows us to keep CPU
and memory usage to a minimum by removing the need for
a separate path planner.

A. Related Work

There has been work on exploration in 3D space [18, 19]
with a depth-sensing camera. Shade and Newman [18] for-
mulated the 3D exploration problem as a partial differential
equation (PDE). The solution is in the form of a vector field,
and the path of steepest descent through the vector field
is chosen. However, the chosen path may not respect the
motion constraints of the MAV, and furthermore, solving the
PDE in real time requires a GPU, which is not available
on a MAV. Shen et al. [19] demonstrated 3D exploration
running on-board a MAV. They use particles both as a
memory-efficient sparse representation of free space and for
identifying frontiers. The latter is achieved by simulating
the expansion of a system of particles with Newtonian
dynamics, and detecting regions of greatest expansion. These
exploration algorithms do not take coverage into account. By
not doing so, the reconstructed model will not be complete,
and distortion and holes will be prevalent.

On the other hand, existing approaches to the coverage
planning problem typically require a prior 3D model of
the environment and plan a path offline. Cheng et al. [3]
simplifies a 2.5D model of the environment as a set of
hemispheres and cylinders, and plans a path that completely
covers the surfaces. However, this approach does not general-
ize well to 3D models and to cluttered environments in which
objects not modelled well by hemispheres and cylinders may
not be fully covered. Englot and Hover [5] generate a set
of redundant view configurations that completely cover the
model, and find a feasible path that connects a subset of
the view configurations. To deal with imperfections in the a
priori map, Galceran et al. [6] iteratively optimizes the initial
planned coverage path using current sensor measurements. In
contrast, we do not require a prior model, and at the same

time, we plan a path in an online fashion and that explicitly
considers the motion constraints of the robot.

Next-best-view planning algorithms [4, 13] iteratively de-
termine in real-time the best viewing configuration for a
camera to go to such that the reconstructed model is as
complete as possible. However, to maintain computational
tractability, they assume a single-object environment that is
free of obstacles, and that the object location is known. They
exploit these assumptions by orienting all viewing configura-
tions towards the center of the object. These assumptions are
not applicable to our case of modelling an entire unknown
environment. Furthermore, these algorithms are myopic, and
as a result, there is no upper bound on the overall path length.

In the context of informative path planning, the problem
of maximizing the information gathered subject to a cost
budget constraint has been previously formulated as a sub-
modular orienteering problem [20, 1]. The algorithms used
in these cases are based on the recursive-greedy algorithm
for submodular orienteering proposed by Chekuri and Pal
[2], which has provable approximation guarantees, but is
prohibitively slow for real-time use on graphs with hundreds
or thousands of nodes like ours. We propose a linearized
approximation, based on the general framework proposed by
Iyer et al. [12] for submodular function optimization, which
drops theoretical guarantees, but performs fast enough to be
used in our setting.

II. EXPLORATION AND COVERAGE

We use a state lattice L to discretize the 4D state space;
the states are arranged in a regular 3D grid pattern while
the yaw angle is discretized non-uniformly. The presence of
an edge between two states indicates that it is feasible for
the robot to move between these two states given its motion
constraints. Each edge is assigned a weight that indicates the
cost of moving along the edge and the cost of a path between
two states is simply the sum of edge weights along the path.
We construct a set of edges in the form of primitive motions
that allows the MAV to turn on the spot, and move within
the camera’s field of view. In this way, the MAV will not
collide with an unseen object.

Furthermore, the state lattice allows us to precompute
several aspects of the exploration and coverage algorithm
such that the algorithm can efficiently run in real-time and
on-board the MAV. Ray-casting has been used to compute
the information gain [21] in 2D exploration with a laser-
guided robot. However, ray-casting is not computationally
feasible for stereo and RGB-D sensors which generate more
depth measurements by 2 orders of magnitude. In contrast,
by making use of precomputed data based on the state
lattice, we are able to efficiently compute the information
gain without the need for ray-casting. In addition, computing
the coverage typically requires computationally-expensive z-
mapping, however the use of precomputed data circumvents
the need for that. We only use a combination of memory
lookup operations and integer arithmetic operations to com-
pute information gain and coverage.

To choose a goal state, we compute a list of candidate
states located along frontiers and select the one that maxi-
mizes information gain and allows for rapid map expansion.
Once a goal is chosen, we aim to compute a path to it that
maximizes the total coverage provided by states in the path,
while constraining the maximum path length, as well as the
computation time. If the MAV reaches the goal, the path
is blocked, or the information gain associated with the goal
significantly decreases, we repeat both goal selection and
path planning.

A. Precomputation

1) Swath: Each edge in the state lattice encodes an
element in a predetermined set of primitive motions M. The
swath of a primitive motion is a set of voxels occupied by
the MAV’s footprint during the execution of the motion.
We precompute the swath for each primitive motion in
M. By precomputing these swaths, we avoid the use of
computationally-expensive simulation to check if the MAV
collides with an obstacle. Instead, we efficiently detect a
collision by checking if any voxel in the swath is occupied.

2) View Frustum: For each discrete yaw angle ψ ∈
{ψ1, ..., ψh}, we construct a view frustum which is parame-
terized by:

1) the view frustum origin which is equivalent to the
camera pose derived from the camera-MAV transform
and the MAV’s state [0 0 0 ψ]T , and

2) six planes whose normals point towards the center of
the view frustum.

We denote the set of voxels falling within the view frustum as
Vψ . To compute Vψ , we first find an axis-aligned minimum
bounding box that contains the six corners of the view
frustum. Subsequently, for each voxel v in the bounding
box, we check whether v falls within the view frustum by
computing the signed distance between v’s center and each
plane and checking whether that signed distance is positive.
If so, we add v to Vψ . All voxels in Vψ are sorted in order of
increasing distance from the camera center. For each voxel
v ∈ Vψ , we store the following information in a file:

1) pv , the local coordinates of v’s center with respect to
the view frustum origin,

2) the indices of all voxels that would be occluded by v
if it were occupied, and

3) the image coordinates of the projection of each face
on the image plane only if the projection meets certain
conditions discussed below.

For any voxel face, we store the image coordinates of its
projection only if two conditions are met: the ray from
the camera center through v’s center is incident on the
face with a viewing angle less than θmax, and the image
area of the projected face is at least p pixels. These two
conditions ensure distortion-free and highly-detailed texture
mapping, and in turn, a high-quality 3D textured model of
the environment.

Each instance of the exploration and coverage algorithm
loads the contents of this file into a lookup table. This view

Algorithm 1: Algorithm for computing I(sg).
input : environment map, lookup table, pg , Vψg

output: I(sg)

I(sg) = 0
for v ∈ Vψg do

p = pv + pg
set the label of v equal to that of the voxel located
at p in the environment map
if v is labeled as occupied then

query the lookup table to find O ⊂ Vψg where
O is the set of voxels occluded by v
mark all voxels in O as occluded

for v ∈ Vψg
do

if v is labeled as unknown and not marked as
occluded then

I(sg) = I(sg) + 1

Fig. 1: The camera pose is shown as a set of 3 perpendicular
axes. Occupied voxels are represented by green cubes. Voxels
corresponding to unknown space and occluded by occupied
voxels are represented by red cubes. These voxels are not
considered in the computation of the information gain.

frustum precomputation allows us to avoid computationally-
expensive floating-point arithmetic operations when evaluat-
ing utility functions for both exploration and coverage.

B. Choosing a Goal to Go To

When choosing a goal to go to, the MAV chooses a goal
at which it maximizes a utility function that rewards explo-
ration. Such goals are located on frontiers in the environment
map.

First, we construct a set of candidate goals G by including
all states located on frontiers. For any candidate goal sg ∈
G, we define the information gain I(sg) to be the number
of unexplored voxels that are enclosed in the corresponding
view frustum and are not occluded by occupied voxels. Fig. 1
illustrates an example of unexplored voxels that are occluded
by occupied voxels. Assume without loss of generality that
sg has coordinates pg and a discrete yaw angle ψg . Then
Vψg

contains the voxels encapsulated in the view frustum
that corresponds to sg . We efficiently compute I(sg) using
Alg. 1; this computation typically takes a few milliseconds.

Fig. 2: Candidate goals are shown as lines. These goals
are located on frontiers. The longer the line, the higher the
associated information gain. The more red the line, the higher
the path cost to the corresponding goal. A red arrow marks
the current pose of the MAV.

Given the current state of the MAV a ∈ L, we choose
the candidate goal that maximizes the utility function [7]:
U1(sg) = I(sg)e

−λ`min(a,sg), where λ is a parameter that
determines the trade-off between rapid exploration and filling
in details, and `min(a, sg) is the cost of the shortest path
from a to sg . Fig. 2 shows an example of candidate goals.

For purposes of efficiency, we use lazy evaluation such
that we do not have to compute I(sg) and `min(a, sg) for all
sg . We know that max(I) = max{|Vψ1

|, ..., |Vψh
|}. Using

Dijkstra’s algorithm, we evaluate each state s in order of
increasing `min(a, s) from the start state. Given the currently
evaluated state s, we compute the maximum attainable score
max(I)e−λ`min(a,s). If this maximum attainable score is
less than the maximum score m = max({I(sg1), ..., I(sgn)}
over all previously evaluated candidate goals sg1 , ..., sgn , we
know that we cannot get a score higher than m for a not-
yet-evaluated candidate goal which is guaranteed to have a
higher path cost than s, and thus, stop the evaluation. We
then plan a path to the candidate goal which corresponds to
the maximum score of m.

C. Planning a Path to the Goal

Given the current state of the MAV a ∈ L and the goal
state b = argmaxsg∈G U1(sg) obtained in the previous
section, we would like to plan a path from a to b, such that
a utility function U2 that expresses coverage is maximized.
More formally, if Pab is the set of all paths from a to b in
L, then we would like to solve

max. U2(P)

s.t. P ∈ Pab (1)
`(P) ≤ B,

where `(P) denotes the cost of the path as a sum of edge
weights and B is our path cost budget.

Given a set S of previously traversed states and a state
s, we define the marginal gain of the coverage function
C(s | S) := U2(S ∪ {s}) − U2(S) as the number of voxel
faces that:

1) are associated with occupied voxels,

Algorithm 2: Algorithm for computing C(s | S).
input : environment map, lookup table, p, Vψ
output: C(s | S)
initialize a zero 2D buffer with the same dimensions as
the camera image
C(s | S) = 0
for v ∈ Vψ do

p′ = pv + p
set the label of v equal to that of the voxel located
at p′ in the environment map
if v is labeled as occupied then

for each face f of v do
if f is marked as previously observed then

continue
query the lookup table to find J , the set of
image coordinates of the projection of f on
the image plane
for each j ∈ J do

if the pixel with coordinates j in the
buffer has a zero value, set the pixel’s
value equal to v’s index

for v ∈ Vψ do
if any pixel in the buffer has a value equal to v’s
index then

C(s | S) = C(s | S) + 1

2) have not been observed by the MAV at any state
t ∈ S given a maximum viewing angle of θmax and a
minimum projection area of p pixels, and

3) are observed by the MAV at state s given a maximum
viewing angle of θmax and a minimum projection area
of p pixels.

Assume without loss of generality that s has coordinates p
and a discrete yaw angle ψ. Then Vψ contains the voxels
encapsulated in the view frustum that corresponds to s. We
efficiently compute C(s | S) using Alg. 2 that is similar to the
z-buffering technique commonly used in computer graphics.
The 2D buffer computed in Alg. 2 is identical to a z-buffer
in the sense that each pixel in the buffer corresponds to
the closest voxel with respect to the camera. However, for
each pixel, we store the index of the closest voxel instead
of storing the distance to the closest voxel. We note that
the lookup table only contains image coordinates for voxel
face projections that meet the two conditions of a maximum
viewing angle and minimum projection area. As a result,
when computing the 2D buffer, we do not have to explicitly
consider these two conditions which are computationally
expensive. Although we do not compare depth values, it is
guaranteed that Alg. 2 records the index of the closest voxel
for each pixel in the 2D buffer as the voxels are stored in
order of increasing distance from the camera in the lookup
table. We can see that the precomputation step allows for

(a) A visualization of the computed 2D buffer at the be-
ginning of the flight. Red pixels correspond to faces of
occupied voxels whose incidence angle exceeds θmax or
whose projection area is below p pixels. Other non-white
pixels correspond to voxel faces whose incidence angle is at
most θmax, and are considered as new observations. Each
voxel is identified by a unique non-red color.

(b) A visualization of the computed 2D buffer several sec-
onds later as the MAV turns on the spot towards the left.
Green pixels correspond to voxel faces that are marked as
having been observed previously given the viewing angle and
projection area constraints. The computed marginal coverage
only includes new observations (colors other than red and
green) and not previous observations (green).

Fig. 3: Visualization of the 2D buffers computed in Alg. 2.

several optimizations that allow us to efficiently compute
C(s | S) within a few milliseconds. Note that the dependence
on previous observations S is implicit in the environment
map that is given as input to the algorithm. Fig. 3 illustrates
two examples of our 2D buffer.

If the coverage function is modular, that is, if it can be
written as a sum of weights over the states in the path
U2(P) =

∑
s∈P ws, then Eq. (1) is an instance of the orien-

teering problem [22]. Unfortunately, the coverage function
we are using does not satisfy modularity; intuitively, while a
state by itself may provide significant coverage, its marginal
coverage benefit is heavily reduced when we have already
visited “nearby” states in the lattice. However, the coverage

Fig. 4: A blue line represents the shortest path to the goal
state while a red line represents the path to the goal state that
maximizes coverage subject to path cost and planning time
budgets. Note that the planned path attempts to cover areas
with a high number of unobserved voxel faces. Cube face
outlines represent faces of unoccluded occupied voxels in the
environment map while solid cube faces represent voxel faces
that have been previously observed subject to the viewing
angle and minimum projection area constraints. Thin small
blue lines represent sampled states.

function satisfies a natural “diminishing returns” property
known as submodularity [16], which can be formally stated
as follows: for any two sets of already traversed states S ⊆ T
and any state s 6∈ T , it holds that C(s | T) ≤ C(s | S).

This makes Eq. (1) an instance of the submodular ori-
enteering problem which has been proven to be hard to
approximate up to a logarithmic factor of the optimum [2]. To
efficiently obtain an approximate solution, we use a two-step
approach, based on first obtaining an orienteering problem
by approximating the submodular function by a modular
one, and then computing an approximate solution for that
problem. More precisely, we first linearize the coverage
function by randomly subsampling N states from the lattice
and assigning to each sampled state, si, i = 1, . . . , N , a
weight equal to its marginal coverage given all previously
sampled states, that is, wsi := C(si | {s1, . . . , si−1}). We
use the modular surrogate function Û2(P) :=

∑
s∈P ws to

formulate the resulting orienteering problem instance as a
mixed integer program [22], which we solve using the Gurobi
Optimizer [8]. Since the orienteering problem is itself NP-
hard, Gurobi might fail to find the optimal path in reasonable
time; however, it allows us to specify a path cost limit and
time limit, and returns an approximate solution in the form
of the best feasible path computed up to that point.

Fig. 4 shows an example of such a path, and in addition,
the shortest path to the goal for purposes of comparison. We

Fig. 5: A simulated office-like environment in the v-rep
simulator.

observe that the planned path incorporates a wide variety of
yaw angles in order to maximize coverage, and visits areas
with a high number of unobserved voxel faces. As the MAV
visits each state along the path until either the goal is reached
or replanning is requested, the environment map is updated
with the new voxel face observations at that state.

III. EXPERIMENTS AND RESULTS

We use the v-rep simulator from Coppelia Robotics for
our simulation experiments. We simulate a quadrotor with
a RGB-D camera in an office-like environment shown in
Fig. 5. This RGB-D camera outputs 640×480 color and
depth images.

In each experiment, we incrementally map the environ-
ment in 3D using the tiled octree-based occupancy map
implementation [9] with dynamic tile caching. This imple-
mentation uses constant space regardless of the volume of
the environment to be mapped. As we use a RGB-D camera,
we utilize a beam-based inverse sensor measurement model
to update the occupancy map. In this model, cells within
σ m of the measurement are assigned a constant probability
poccupied corresponding to occupied space, cells at least σ m
in front of a measurement are assigned a constant probability
pfree corresponding to free space, and cells at least σ
behind the measurement are assigned a constant probability
punknown corresponding to unknown space. Using the full-
resolution depth images as input, we update the occupancy
map at 5 Hz using a single Intel 2.1 GHz core.

We parameterize the edge budget B as a multiple of the
shortest path cost from the current state a to the goal state
b, that is, B = κ`min(a, b), and set κ = 1.5. Furthermore,
we use a planning time budget of 3 seconds. We constrain
the MAV to fly at a specific height which is 1 m.

We compare our algorithm and a variant thereof with
the frontier-based exploration algorithm [11], which involves
going to the nearest frontier cell. Our algorithm involves
finding the goal state that maximizes U1, and computing a
path to that state by approximately solving (1). The variant of

Fig. 6: The paths taken by the MAV with the frontier-based
exploration algorithm, the variant of our algorithm, and our
algorithm are colored blue, green, and red respectively. Each
path starts at the center of the map. A circle marks the end
of the path.

TABLE I: For each algorithm, we compute the average over
10 runs of the path length and percentage of voxel faces that
are observed.

Algorithm Path Length (m) % voxel faces that
are observed

Frontier-based
exploration [11] 98.4 74.1%
Variant of our

algorithm 112.0 79.0%

Our algorithm 136.1 89.9%

our algorithm finds the goal state in an identical manner, but
just uses the shortest path to that state. Fig. 6 shows the path
taken by the MAV when we run each of the three algorithms:
the frontier-based exploration algorithm, the variant of our
algorithm, and our algorithm. We observe from this figure
that the path computed by our algorithm enforces a constant
change in yaw angle as the MAV moves throughout the
environment. In this way, we maximize coverage at the
expense of a longer path length.

We execute 10 runs of each algorithm. All algorithms
assume an initially unknown environment, and terminate
when there are no more frontiers left. For each algorithm,
we compute the average path length and percentage of voxel
faces that are observed over all runs; the results are shown
in Table I.

The results show that although our exploration and cov-
erage algorithm incurs the longest path length, it achieves
the highest coverage by a significant margin. Fig. 7 shows
the resulting coverage maps after the execution of both the
frontier-based exploration and our algorithm. We observe that

(a) (b)

Fig. 7: The resulting coverage maps after the completion of the frontier-based exploration (a) and our algorithm (b). From
visual inspection, we can see that our algorithm produces a significantly more complete map.

our algorithm generates a significantly more complete map.
For 3D reconstruction, coverage is of high importance, as
we seek a 3D model that is as complete as possible, and
thus, our exploration and coverage algorithm is suitable for
automated 3D reconstruction.

IV. CONCLUSIONS

We have proposed an algorithm, which is the first to
simultaneously solve the exploration and coverage problems
in real-time. Our algorithm follows a two-step approach:
(1) choose the goal state that maximizes information gain
weighed by the cost to get there, and (2) plan a path to
that goal state that maximizes coverage given path cost and
planning time budgets. By combining efficient exploration
and coverage, we facilitate automated 3D reconstruction in
cluttered environments with a MAV. Simulation experiments
show our algorithm to work well and in real-time on a
single CPU core that is similar to that found on MAVs
equipped with Intel Core i7 single-computer boards and sold
by Ascending Technologies.

In the near future, we plan to conduct real-world experi-
ments with our algorithm running on-board a MAV. However,
there is one obstacle we have to overcome before real-world
demonstrations can occur. Although we have developed a
real-time on-board implementation for SLAM [10] that is
able to close the loop, our mapping implementation [9] is not
able to close the loop. Currently, no CPU-based technique
exists for dealing with loop closures for 3D occupancy maps
in real-time.

V. ACKNOWLEDGEMENTS

The first author is funded by the DSO National Lab-
oratories Postgraduate Scholarship. This work is partially
supported by the SNSF V-MAV grant (DACH framework),
and an ERC Starting Grant.

REFERENCES

[1] J. Binney, A. Krause, and G. S. Sukhatme. Informative
path planning for an autonomous underwater vehicle.
In IEEE International Conference on Robotics and
Automation (ICRA), pages 4791 – 4796, 2010.

[2] C. Chekuri and M. Pal. A recursive greedy algorithm
for walks in directed graphs. In Foundations of Com-
puter Science (FOCS), pages 245–253, 2005.

[3] P. Cheng, J. Keller, and V. Kumar. Time-optimal uav
trajectory planning for 3d urban structure coverage.
In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 2750–2757, 2008.

[4] E. Dunn, J. van den Berg, and J. Frahm. Developing vi-
sual sensing strategies through next best view planning.
In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 4001–4008, 2009.

[5] B. Englot and F. S. Hover. Three-dimensional coverage
planning for an underwater inspection robot. Interna-
tional Journal of Robotics Research (IJRR), 32(9-10):
1048–1073, 2013.

[6] E. Galceran, R. Campos, N. Palomeras, M. Carreras,
and P. Ridao. Coverage path planning with realtime
replanning for inspection of 3d underwater structures.
In IEEE International Conference on Robotics and
Automation (ICRA), pages 6586–6591, 2014.

[7] H. Gonzalez-Banos and J.-C. Latombe. Navigation
strategies for exploring indoor environments. Interna-
tional Journal of Robotics Research (IJRR), 21(10-11):
829–848, 2002.

[8] I. Gurobi Optimization. Gurobi optimizer reference
manual, 2014. URL http://www.gurobi.com.

[9] L. Heng, D. Honegger, G. H. Lee, L. Meier, P. Tanska-
nen, F. Fraundorfer, and M. Pollefeys. Autonomous
visual mapping and exploration with a micro aerial
vehicle. Journal of Field Robotics (JFR), 31(4):654–
675, 2014.

[10] L. Heng, G. H. Lee, and M. Pollefeys. Self-calibration
and visual slam with a multi-camera system on a micro
aerial vehicle. In Proceedings of Robotics: Science and
Systems (RSS), 2014.

[11] D. Holz, N. Basilico, F. Amigoni, and S. Behnke.
Evaluating the efficiency of frontier-based exploration
strategies. In Robotics (ISR), 2010 41st International
Symposium on and 2010 6th German Conference on
Robotics (ROBOTIK), pages 1–8, 2010.

[12] R. Iyer, S. Jegelka, and J. Bilmes. Fast semidifferential-
based submodular function optimization. In Interna-
tional Conference on Machine Learning (ICML), pages
855–863, 2013.

[13] M. Krainin, B. Curless, and D. Fox. Autonomous
generation of complete 3d object models using next
best view manipulation planning. In IEEE International
Conference on Robotics and Automation (ICRA), pages
5031–5037, 2011.

[14] O. Küng, C. Strecha, P. Fua, D. Gurdan, M. Achtelik,
K.-M. Doth, and J. Stumpf. Simplified building mod-
els extraction from ultra-light uav imagery. ISPRS -
International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, XXXVIII-
1/C22:217–222, 2011.

[15] D. Mellinger and V. Kumar. Minimum snap trajectory
generation and control for quadrotors. In IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
pages 2520–2525, 2011.

[16] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An
analysis of approximations for maximizing submodular
set functions. Mathematical Programming, 14(1):265–
294, 1978.

[17] M. Pivtoraiko, R. A. Knepper, and A. Kelly. Differ-
entially constrained mobile robot motion planning in
state lattices. Journal of Field Robotics (JFR), 26(3):
308–333, 2009.

[18] R. Shade and P. Newman. Choosing where to go: Com-
plete 3d exploration with stereo. In IEEE International
Conference on Robotics and Automation (ICRA), pages
2806–2811, 2011.

[19] S. Shen, N. Michael, and V. Kumar. Stochastic
differential equation-based exploration algorithm for
autonomous indoor 3d exploration with a micro-aerial
vehicle. International Journal of Robotics Research
(IJRR), 31(12):1431–1444, 2012.

[20] A. Singh, A. Krause, C. Guestrin, and W. Kaiser. Effi-
cient informative sensing using multiple robots. Journal
of Artificial Intelligence Research (JAIR), 34(1):707–
755, 2009.

[21] C. Stachniss, G. Grisetti, and W. Burgard. Information
gain-based exploration using Rao-Blackwellized parti-
cle filters. In Proceedings of Robotics: Science and
Systems (RSS), Cambridge, USA, 2005.

[22] P. Vansteenwegen, W. Souffriau, and D. V. Oudheusden.
The orienteering problem: A survey. European Journal
of Operational Research (EJOR), 209(1):1–10, 2011.

