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Abstract The research on tracking templates or image

patches in a sequence of images has been largely dom-

inated by energy-minimization-based methods. How-

ever,since its introduction in [22], the learning-based

approach called Linear Predictors has proven to be an

efficient and reliable alternative for template tracking,

demonstrating superior tracking speed and robustness.

But, their time intensive learning procedure prevented

their use in applications where online learning is essen-

tial. Indeed, [18] presented an iterative method to learn

Linear Predictors; but it starts with a small template

that makes it unstable at the beginning.

Therefore, we propose three methods for highly ef-

ficient learning of full-sized Linear Predictors – where

the first one is based on Dimensionality Reduction us-

ing the Discrete Cosine Transform; the second is based

on an efficient reformulation of the learning equations;

and, the third is a combination of both. They show dif-

ferent characteristics with respect to learning time and

tracking robustness, which makes them suitable for dif-

ferent scenarios.
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1 Introduction

Due to its large range of applications, template track-

ing has been extensively studied in the past. The main

task of template tracking is to follow a specified tem-

plate over time, i.e. over a sequence of consecutive

images. This is done by estimating the parameters of

the template warping function, defining how the im-

age data occupied by the template is warped from one

frame to another. Examples of such warping functions

are affine transformations or homographies. Applica-

tions can be found in areas such as augmented reality,

human-computer interfaces, medical imaging, surveil-

lance, vision-based control, or visual reconstruction.

While energy minimization has become a common

technique for estimating template parameters from

frame to frame, tracking-by-detection methods became

popular recently, as they reached a state where tem-

plate parameter estimation is possible at or close to

frame rate. A further alternative are learning based ap-

proaches, where the relation between image intensity

differences and template parameters is learned using

exemplary data. While energy minimization approaches

are flexible at run-time and tracking-by-detection meth-

ods do not put constraints on inter-frame motions,

learning based techniques have shown to allow much

faster online tracking.

One of the most successful learning based ap-

proaches for template tracking are Linear Predictors,

or template tracking using hyper-plane approximation,

proposed by Jurie and Dhome [22]. Although fast and
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robust, it contains a computationally expensive learn-

ing phase which prohibits it from being used in scenar-

ios where new scenes need to be handled online. We

address this limitation by presenting three learning ap-

proaches which lead to learning times that are up to

two orders of magnitude faster than [22].

In the remainder of this paper, we first discuss re-

lated work (Sec. 2) and introduce the original approach

as proposed by Jurie and Dhome [22] (Sec. 3). We then

present our learning approaches starting with a dimen-

sionality reduction approach which makes use of the

Discrete Cosine Transform (Sec. 4), introduced in [20];

followed by a reformulation of the learning process

(Sec. 5), introduced in [21]; and finally a combination of

the two (Sec. 6). New training data is added by updat-

ing an existing Linear Predictor (Sec. 7) [12]. We then

demonstrate the usefulness of our proposed approaches

using mobile applications (Sec. 9). In the experiments

(Sec. 8) we analyze the characteristics of the proposed

approaches under different scenarios and with respect

to the related work.

2 Related Work

Template tracking approaches can be categorized in

three different sets of methods: tracking-by-detection

(TBD) [12,14,15,13,16,17,33], template tracking based

on energy minimization [29,36,11,5,7,1,2,30,4,6,35],

as well as learning based methods [8,24,22,23,10,34,

31,32,38,18,19]. While tracking-by-detection methods

do not put constraints on the possible location of the

template to track, i.e. the template is searched in the

whole image independent of its location in the previous
frame, they are, in general, significantly slower than

frame-to-frame tracking approaches. The time consum-

ing training procedure and the restrictions in the pos-

sible pose space further limit these approaches. Energy

minimization based approaches usually have the advan-

tage in creating and modifying templates online, while

learning based methods are significantly better in track-

ing speed. Additionally, Jurie et al . [22] showed that

Linear Predictors are superior to Jacobian approxima-

tion in terms of tracking speed and robustness, and

we showed in [18] that Linear Predictors outperform

methods based on energy minimization such as Efficient

Second-order Minimization [4] (ESM).

Tracking-by-Detection-based approaches. We can fur-

ther categorize TBD approaches into methods that are

based on keypoint detection and on a sliding window

which is also known as template matching. Özuysal et

al . [33] introduced FERNs where keypoints are ex-

tracted and then classified by estimating the probabil-

ity of each keypoint falling under a specific class. Un-

fortunately, the corresponding learning process is time

consuming and is error-prone if the number of avail-

able keypoints is limited, which is the case if small re-

gions are considered. Holzer et al . [17] presented an ap-

proach called Distance Transform Templates (DTTs),

where the distance transform is used to extract closed

contours, and to describe and match the extracted con-

tours using FERNs [33]. This approach needs a signif-

icant amount of time in learning, and detects objects

only at about 10 frames per second. In [12,14], Hinter-

stoisser et al . proposed two patch-based TBD methods,

where keypoints are used as starting point to match

patches and estimate their pose. Although the use of

keypoints enables processing at almost video frame-

rate, it constrains its repeatability by the underlying

keypoint detector. In their recent work [15,13,16], Hin-

terstoisser et al . overcome the limitations of keypoint

detectors by using sliding window approaches. Indeed,

this allows a robust object detection; however, it im-

poses restrictions on the possible pose space since the

necessary processing increases with the amount of cov-

ered poses. Even with reasonable constraints on the

pose space, it is still significantly slower than frame-

to-frame tracking.

Keyframe-based approaches. This type of approach re-

lies on creating a set of keyframes that represent the

object or scene and are used in an optimization in or-

der to obtain stable pose estimation [37] and, if the

model of the object or scene is not available, create a

map of the tracked environment [25]. The keyframes are

hereby either created in an offline process from a known

model [37] or selected online in case the model needs to

be created while tracking [25]. These keyframe-based

approaches usually rely on keypoints or other discrimi-

native image features, e.g . edges [26], which are tracked

from frame to frame and matched against keyframes.

Similar to some of the Tracking-by-Detection-based

methods, keyframe-based approaches tend to become

error-prone if the number of available keypoints or fea-

tures is limited. This especially holds if the object or

region of interest is small. However, if sufficient image

features are available, these approaches provide very

stable and robust tracking.

Energy minimization-based approaches. These ap-

proaches build upon the early work of Lucas and

Kanade [29]. Improvements since then include: differ-

ent update rules of the warp function [29,11,5,36,7,1],

handling of occlusions and illumination changes [11], as

well as considering different orders of approximation of

the error function [30,4]. When looking at the different
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update rules that have been proposed over time, we can

classify them into four categories, which are the addi-

tive apporach [29], the compositional approach [36], the

inverse additive approach [11,5] and the inverse compo-

sitional approach [7,1]. The inverse approaches hereby

switch the roles of the reference and the current im-

age, which allows to move some of the computations

into the initialization phase, making the tracking phase

more efficient. Hager and Belhumeur [11] addressed the

problems in illumination changes and occlussions. The

usage of second-order instead of first-order approxima-

tions led to a faster convergence speed and larger con-

vergence areas [30,4]. For a more detailed and complete

overview of energy-based tracking methods, we refer the

readers to [2].

Learning-based approaches. Learning-based approaches

can be divided into approaches that apply offline or on-

line learning. Online learning is often used to track ob-

jects that are not known a-priori or change appearance

over time. Prominent examples of an online learning

approach is the tracking approach of Grabner et al . [8],

as well as the Tracking-Learning-Detection approach of

Kalal et al . [24]. Both approaches are semi-supervised

approaches where the tracking process is split into a

frame-to-frame tracker, a detector that localizes all ob-

served appearances of the tracked object and corrects

the tracker if necessary, as well as a learning procedure

which estimates the errors of the detector and updates

it in order to avoid them in future. While [8] uses a

semi-supervised online boosting strategie for learning,

[24] uses so called PN learning where two sets of experts

are used to estimate missed detections and false alarms.

These combinations of tracking, detection and learning

allow to handle changes in appearance as well as oc-

clusions. However, while they give good results when

tracking a bounding box around an object they are not

suited to track the full pose of objects.

A prominent approach in tracking based on offline

learning is tracking using Linear Predictors. Linear Pre-

dictors for template tracking or template tracking using

hyperplane approximation was first introduced by Jurie

and Dhome [22]. Their proposed method used randomly

warped samples of the initial template to learn Linear

Predictors and applies them to predict the parameter

updates in template tracking. In contrast to previous

methods, the “Jacobians” are here computed once dur-

ing the learning phase and the parameter updates are

computed using simple matrix multiplications. A more

detailed description of this method is in Sec. 3.2. An

extension of this method in order to handle occlusions

has been presented in [23]. Gräßl et al . showed how

invariance with respect to illumination changes can be

achieved [9] and how tracking accuracy can be increased

by intelligently selecting the points for sampling from

the image data [10]. Zimmermann et al . [38] moved

away from using one big single template into numer-

ous small templates, track them individually, and com-

bine their seperate motion estimates into a single one.

Holzer et al . [18,19] presented a method for adapting

existing Linear Predictors in order to modify online the

covered area of template while tracking. This reduces

the initial learning time by start tracking with a small

template and grow it over time. Instead of creating a

predictor, Mayol and Murray [32] collect a set of train-

ing samples in order to fit the current sampling region

to this pre-trained set using general regression.

Among the learning based approaches using Lin-

ear Predictors, none of them can learn large templates

at run-time. Therefore, we present learning approaches

with this criterion.

3 Tracking Framework

Our proposed template tracking approaches are built

from the work of Jurie and Dhome [22]. While we in-

troduce new learning procedures that significantly re-

duce the necessary learning time, we keep the tracking

stage the same. In this section, we introduce our no-

tations and review the method proposed by Jurie and

Dhome [22].

3.1 Template and Parameter Description

Without loss of generality, we use a rectangular tem-
plate that covers an area of ns = w · h square pixels

and locate sample points that uniformly subsample the

template into a grid of np points as shown in Fig. 1.

The sample points are used to efficiently describe the

image intensities in the template instead of using its full

resolution. From the template in Fig. 1, we define the

parameter vector µ = (p0, p1, p2, p3, p4, p5, p6, p7)> that

contains the image coordinates of the four corners which

are used to parameterize a homography. Note that nei-

ther our proposed approaches nor the approach of Jurie

and Dhome [22] are limited to this type of sample point

arrangement, rectangular shape or transformation.

3.2 Template Tracking based on Linear Predictors

Given a template in the reference image, the goal of

template tracking is to follow the selected template

from one frame to the next and to estimate its pose

in each frame.
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(p4, p5)(p6, p7)

template

sample point

Fig. 1 A template is represented by a set of regularly placed
sample points. Its pose is parameterized using its four corner
points.

In the reference image, we define the initial loca-

tion of the template using the parameter vector µR

that stores the eight parameters from the four cor-

ners of the template, and the image intensity vector

iR = (iR,1, iR,2, · · · , iR,np)> that has the image inten-

sity at the corresponding sample points; while we as-

sign µC as the current parameter vector and iC as the

image intensity vector in the current frame. However,

unlike iR, the elements of iC are the image intensities

extracted from the current frame at the sample point

locations of the template pose from the previous frame

or previous iteration µC−1.

To track the location of the template and estimate

the pose in the current frame, Jurie and Dhome [22]

introduce the Linear Predictor matrix A that relates

the parameter vectors and the intensity vectors as:

δµ = Aδi (1)

where δi = iC − iR is the image intensity difference and

δµ is the parameter update. This tracking algorithm is

summarized in Alg. 1.

Algorithm 1 Tracking using Linear Predictors

function Track (in Image I,
in TemplateParameters µC−1,
out TemplateParameters µC)

Compute homography Tµ from µC−1.
for level = 1→ nl do

for iteration = 1→ ni do
Extract image data from I at sample points warped
with Tµ.
Normalize image data.
Compute image difference vector δi.
Compute parameter update δµ = Alevelδi.
Compute homography Tδµ from δµ.
Tµ ← TµTδµ.

end for
end for
Compute µC from Tµ.

The 8 × np matrix A is precomputed by imposing

nt, where nt � np, random transformations δµi for

i = 1, . . . , nt on µR and computing the corresponding

image difference vectors δii. These vectors are concate-

nated into an 8 × nt matrix Y =
(
δµ1, δµ2, . . . , δµnt

)
and np × nt matrix H = (δi1, δi2, . . . , δint), which are

used to reformulate Eq. (1) as:

Y = AH. (2)

Using a closed-form solution, we solve for A as:

A = YH>
(
HH>

)−1
. (3)

This formulation requires to invert an np × np matrix

HH> where a typical value of np is 20 · 20 = 400. Due

to the large size of this matrix, learning Linear Pre-

dictors using Eq. (3) is computationally expensive, and

limits their use in real-time applications where the envi-

ronment is unknown and templates have to be learned

online. Throughout the paper, we focus on reformulat-

ing the learning procedure to find A in Eq. (3) and

to evaluate the robustness in tracking for each learning

procedure.

In practice, the image data vector i is normalized

such that the elements have zero mean and unit stan-

dard deviation, which increases the robustness against

illumination changes. Furthermore, to prevent HH>

from being rank-deficient due to the zero mean of the

vectors, we add random noise to the normalized image

intensity difference vectors in H.

3.3 Multi-Layered Tracking

To improve the tracking performance, we apply a multi-

layer approach where we compute nl Linear Predictors

A1, . . . ,Anl and use one Linear Predictor per layer.

Each of these Linear Predictors is trained for differ-

ent amounts of motion where the first one is trained

for large motions and the latter ones for consecutively

smaller motions. Additionally, each of the Linear Pre-

dictors is applied multiple times in tracking. Within

this paper, we use nl = 5 and three iterations for each

predictor. The complete algorithm for learning Linear

Predictors is given in Alg. 2.

4 Efficient Predictor Learning using

Dimensionality Reduction

Our first approach reduces the size of δii from np to nr
by applying the Discrete Cosine Transform (DCT). As

a consequence, it reduces the number of rows in H from

np to nr and the size of HH> from np×np to nr ×nr.
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Fig. 2 Demostration of how the 2D-DCT is applied on reshaped image data.

Algorithm 2 Learning Linear Predictors

function Learn (in Image I,
in TemplateParameters µ,
out Set of Linear Predictors A = {Ai})

for level = 1→ nl do
Create set of random transformations and put them into
the matrix Y =

(
δµ1, δµ2, . . . , δµnt

)
.

Apply random transformations on µ and extract image
differences H = (δi1, δi2, . . . , δint) from I.
Normalize image data and add random noise.
Compute Linear Predictor Alevel
Add Alevel to A.

end for

In general, DCT is known to give good results in

image compression. This process involves transforming

the image into the frequency space and removing the

DCT coefficients that correspond to high frequencies.

In relation to our approach, it is advantageous to filter

the high frequencies because they tend to include noise

and de-stabilize tracking.

Mathematically, the 2-dimensional DCT U of a k×k
matrix V is defined as:

U = DCT(V) = CVC> (4)

where the elements of the matrix C are defined as:

Ci,j =

√
αi

k
cos

[
π(2j + 1)i

2k

]
(5)

with

αi =

{
1 if i = 0,

2 otherwise.
(6)

Contrary to Eq. (4) where the 2D DCT is applied on a

2D matrix, our approach needs to apply the DCT on a

reshaped 1D vector δii as δîi = DCT(δii) to form the

matrix Ĥ =(δî1, δî2, . . . , δînt).

Therefore, we define an np×np matrix WDCT that

directly maps the image difference vectors δii to their

DCT counterparts δîi (see Fig. 2). By using a function

that converts the elements of a 2D matrix Vi into a

1D column vector δii as δii = reshape(Vi), where Vi is

the 2D template image data in frame i, we can compute

WDCT as:

WDCT =
(
b1,b2, · · · ,bnp

)
(7)

where bm = reshape(CBmC>) and Bm is a matrix

with all elements set to 0 except for the m-th ele-

ment which is set to 1. This makes the set of matrices

{B1, . . . ,Bnp} as the base of the template in the im-

age space and the set of vectors {b1, . . . ,bnp} as their

DCT projection. As a result, the 2D DCT of the image

difference vectors is computed as:

δîi = WDCT δii ⇒ Ĥ = WDCTH. (8)

In order to integrate this into the original learning for-

mula in Eq. (3), we reformulate this by using the rela-

tion:

H = (WDCT )−1Ĥ. (9)

Thus, we subsitute H from Eq. (9) to Eq. (2) and solve

for the Linear Predictor matrix A as follows:

AW−1
DCT Ĥ = Y

AW−1
DCT = YĤ

> (
ĤĤ

>)−1
AW−1

DCTWDCT = YĤ
> (

ĤĤ
>)−1

WDCT

A = YĤ
> (

ĤĤ
>)−1

WDCT . (10)



6 Stefan Holzer et al.

Note that by integrating the DCT computation directly

into the Linear Predictor matrix A we do not have to

modify the tracking procedure.

We induce the dimensionality reduction by defining

an nr×np submatrix W
(nr)
DCT with nr < np. In this case,

the necessary matrix inversion is no longer applied to

an np × np matrix but rather to an nr × nr matrix.

Hence, the final Linear Predictor is computed as:

A(nr) = YĤ
(nr)>

(
Ĥ

(nr)
Ĥ

(nr)>
)−1

W
(nr)
DCT . (11)

where Ĥ
(nr)

= W
(nr)
DCTH.

The experiments in Sec. 8.1 show that keeping nr
significantly small reduces the learning time for large

templates. Moreover, depending on the size of nr, the

reduction in learning even increases tracking robust-

ness.

5 Reformulating the Learning Equations

Another way to increase the learning speed is to refor-

mulate the learning equations such that it is no longer

necessary to compute the pseudo-inverse of H. Start-

ing from Eq. (2), we first apply the pseudo-inverse of Y

from the right which leads to:

I8x8 = AHY>(YY>)−1 = AB, (12)

where

B = HY>(YY>)−1 (13)

is an np × 8 matrix. Hence, the Linear Predictor A is

computed as:

A = (B>B)−1B>. (14)

Note that the pseudo-inverse is applied differently in

Eqs. (12) and (14) because the rows are linearly inde-

pendent in Y while the columns are linearly indepen-

dent in B [3].

Now, the learning process involves the inversion of

the matrices YY> and B>B in Eqs. (12) and (14), re-

spectively. However, both are 8×8 matrices and can be

quickly calculated. Additionally, YY> can be precom-

puted which requires us to invert a single 8× 8 matrix

online.

To avoid encoding of fixed offsets in the linear map-

ping, Y is normalized such that each parameter has zero

mean and unit standard deviation. Accordingly, δµ is

de-normalized after using Eq. (1) in tracking. Unlike

the normalization in Sec. 3.2 where we aim to obtain

invariance on changes in lighting conditions, this nor-

malization does not generate a rank-deficient matrix

YY> because the normalization is applied on the rows

of Y.

If we compare the formulation of A, we can see that

in Eq. (12) from our approach, H is approximated by

orthogonally projecting it on Y; while in Eq. (3) from

the original approach of Jurie and Dhome [22], Y is ap-

proximated by orthogonally projecting it on H. Given

that we project H on Y, all noise outside the low-rank

space represented by Y has no effect; while in the case

of Jurie and Dhome [22], the noise has more effect.

Therefore, this learning process signigicantly improves

tracking robustness with respect to noise as validated

in Sec. 8.3.

6 Combining Dimensionality Reduction and

Reformulation of Learning

To combine the dimensionality reduction in Sec. 4

with the reformulation in Sec. 5, we replace H in

Eq. (13) by the dimensionality reduced version B̂ =

W−1
DCT ĤY>(YY>)−1; thus, similar to Eq. (14), we ob-

tain:

A =
(
B̂
>

B̂
)−1

B̂
>
. (15)

By assigning the nt × 8 matrix Z as:

Z = Y>
(
YY>

)−1
, (16)

we can write B̂
>

B̂ in the form of:

B̂
>

B̂ = Z>Ĥ
>

W−>
DCTW−1

DCT ĤZ (17)

and since WDCT is orthogonal (i.e. its inverse is equal

to its transpose), this can be simplified to:

B̂
>

B̂ = Z>Ĥ
>

ĤZ. (18)

Therefore, the final learning equation then becomes:

A =
(
Z>Ĥ

>
ĤZ

)−1
Z>Ĥ

>
. (19)

Again, this formulation only requires us to invert an

8×8 matrix Z>Ĥ
>

ĤZ which can be quickly calculated.

As we will show in the experiments, this leads to an

compromise between the strenghts and weaknesses of

both approaches.



Efficient Learning of Linear Predictors for Template Tracking 7

7 Online Updating

After learning a Linear Predictor, new training sam-

ples can be added using the Sherman-Morrison formula

as demonstrated in Hinterstoisser et al . [12]. However,

this relies on the original approach of computing Linear

Predictors by efficiently updating S = (HH>)−1. Since

in our reformulated learning approach the matrix S is

not computed as an intermediate result, we find a way

to derive it from an existing Linear Predictor A. Thus,

using Eq. (3),

A = YH>(HH>)−1 = YH>S = DS, (20)

where D = YH> is a 8× np matrix. This implies that

S can be directly computed using the pseudo-inverse of

D as:

S = D>(DD>)−1A. (21)

Here, DD> is again an 8× 8 matrix and therefore, can

be efficiently inverted. Therefore, we update S as:

Ŝ =
(
S−1 + δint+1δi

>
nt+1

)−1
(22)

= S−
Sδint+1δi

>
nt+1SI

1 + δi>nt+1Sδint+1

, (23)

where δint+1 is a vector of image intensity differences

obtained from a new random transformation applied to

the sample points.

Note that we also have to update the matrices H

and Y before computing the updated linear predictor in

Eq. (20). This is done by concatenating them with the

new training samples where the parameter differences

are normalized in the same way as in the initial learning.

8 Experiments

In this section, we evaluate our approaches for effi-

cient learning of Linear Predictors as proposed in Sec. 4

(DCT), Sec. 5 (HP) and Sec. 6 (DCTHP), and compare

them to the original approach of Jurie and Dhome [22]

(JD) as well as to Efficient Second-order Minimization

(ESM) introduced by Benhimane et al . [4]. Our com-

parison is based on two kinds of evaluation – timing

and tracking performance. The former is used to evalu-

ate the differences in tracking and learning time while

the latter reveals the impact gained from the learning

performance on the tracking robustness with respect to

different kinds of motions as well as its sensitivity to

noise.

We used C++ implementations for all algorithms.

The Efficient Second-order Minimization [4] is from the

publicly available binaries1 and the original approach

1 See version 0.4 available at
http://esm.gforge.inria.fr/ESM.html
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Fig. 5 Analysis of speed-ups for both DCT-based approaches
with respect to the original approach of Jurie and Dhome [22].
(a) Speed-up of the approach only based on dimensiontality
reduction (DCT). (b) Speed-up of the combined approach
(DCTHP).

of Jurie and Dhome [22] is from our own implemen-

tation where it is similarly optimized as the proposed

approaches. For the evaluations, we used a standard

notebook with a 2.26GHz Intel(R) Core(TM)2 Quad

CPU and 8GB of RAM with only a single core used for

computations.

All synthetic experiments are done using a template

size of 150× 150 pixels, the template is taken from the

center of an image and tracking is applied on its warped

versions. Fig. 3 shows the images used for the synthetic

experiments which were selected randomly from the

internet. The reason for focusing on synthetic experi-

ments is that these allow an accurate comparison using

ground truth. This also has the benefit that it is sim-

ple to estimate the influence of single parameters, com-

pared to other methods of testing, like using markers

on real scenes, which generate their own error and limit

the amount of available motion. It further makes it pos-



8 Stefan Holzer et al.

Fig. 3 A set of images selected from the internet, which is used for synthetic experiments.
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Fig. 4 Evaluation of learning and tracking times. (a) Learning times. (b) Speed-up obtained by the proposed methods, where
for the dimensionality reduction based approaches 81 DCT-coefficients are used. (c) Tracking times.
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Fig. 9 Evaluation of the influence of the number of training
samples on the necessary learning time.

sible to specify the exact amount of change. This allows

a fair evaluation between the different approaches.

The homographies for the various tests are compute

as follows:

– Translations. For a specified reference amount of

translation t pixels we compute a set of random

translations values in the range of t± 5 pixels. The

translation is applied in a random direction.

– Scale. For a specified scale s we compute a set of

random scale values in the range [t, t·1.2]. The scale-

ing is applied relative to the center of the template.

– Rotation. For a specified angle α in degree we com-

pute a set of random rotation values in the range of

α± 5 degree. The center of the rotation is equal to

the center of the template.

– In-plane rotation. For the in-plane rotation tests

we rotate the plane of the template around a ran-

dom axis which is lying in the template plane. For

a specified angle β in degree we compute a set of

random rotation values in the range of β±5 degree.

The axis of the rotation goes through the center of

the template.

In Sec. 8.6 we analyse our approaches on real

data and compare them to several state-of-the-art ap-

proaches [38,18,19,23,22,29,28,24].

8.1 Computational Complexity

In order to analyze the computational complexity, we

measure the time a specific phase of the approaches,

i.e. learning and tracking, needs to complete.
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Fig. 6 Evaluation of tracking success rate with respect to different types of motion.

Learning The necessary learning time reflects our main

contribution. In Fig. 4 (a), we compare the learning

times with respect to the template size in number of

sample points for the approach of Jurie and Dhome [22]

(JD), our dimensiontality reduction approach with 81

DCT-coefficients (DCT-81), our approach with refor-

mulated learning (HP), and our combined approach

with 81 DCT-coefficients (DCTHP-81). All our pro-

posed methods are significantly faster in learning than

the original approach. Fig. 4 (b) compares the speed-

up of the different proposed approaches with respect to

Jurie and Dhome [22]. This also shows that for larger

templates the difference between the learning times gets

even bigger. In detail, the reformulation approach (HP)

is the fastest if considering 81 DCT-coefficients for the

other approaches, while the combined approach (DC-

THP) is the second fastest, followed by the pure di-

mensionality reduction. Note that by using less DCT-

coefficients, the DCT-based approaches can achieve a

similar speed-up as the reformulation in Fig. 5. Consid-

ering template sizes with more than 800 sample points,

e.g . for a 30×30 template, our approaches reach learn-

ing times which are more than two orders of magnitude

faster than the approach of Jurie and Dhome [22].

Tracking When we compare the tracking times with

respect to the template size in Fig. 4 (c), all pro-

posed approaches need approximately the same amount

of time for tracking as the approach of Jurie and

Dhome [22] and can even track large templates at more

than 1000 fps. In contrast to this, the energy minimiza-

tion based approach of Benhimane et al . [4] needs ap-

proximately 10 ms to track the same template.

8.2 Robustness

We analyze the success rates in tracking, where all ap-

proaches are considered in Fig. 6 and the effect of the

number of DCT-coefficients nr used in dimensional-

ity reduction influences the tracking robustness of both

DCT-based approaches is evaluated in Fig. 7.

The success rate in tracking is measured by finding

the correct location of the template after the introduc-

tion of random transformations to several test images.



10 Stefan Holzer et al.

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

view point angle [°]

su
cc

es
s 

ra
te

 [%
]

 

 

DCT−25
DCT−49
DCT−81

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

scale
su

cc
es

s 
ra

te
 [%

]

 

 

DCT−25
DCT−49
DCT−81

0 10 20 30 40 50
0.4

0.5

0.6

0.7

0.8

0.9

1

translation [px]

su
cc

es
s 

ra
te

 [%
]

 

 

DCT−25
DCT−49
DCT−81

−100 −50 0 50 100
0

0.2

0.4

0.6

0.8

1

rotation angle [°]

su
cc

es
s 

ra
te

 [%
]

 

 

DCT−25
DCT−49
DCT−81

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

view point angle [°]

su
cc

es
s 

ra
te

 [%
]

 

 

DCTHP−25
DCTHP−49
DCTHP−81

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

scale

su
cc

es
s 

ra
te

 [%
]

 

 

DCTHP−25
DCTHP−49
DCTHP−81

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

translation [px]

su
cc

es
s 

ra
te

 [%
]

 

 

DCTHP−25
DCTHP−49
DCTHP−81

−100 −50 0 50 100
0

0.2

0.4

0.6

0.8

1

rotation angle [°]

su
cc

es
s 

ra
te

 [%
]

 

 

DCTHP−25
DCTHP−49
DCTHP−81

(a) Viewing Angle (b) Scale (c) Translation (d) In-plane Rotation

Fig. 7 Evaluation of tracking sucess rate for both DCT-based approaches in order to analyse the effect of the used number of
DCT-coefficients. The first row shows the approach which is only based on dimensionality reduction and the second row the
combined approach.
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Fig. 8 Evaluation of the influence of noise on tracking success. (a) All approaches, where for the DCT-based approaches 81
DCT-coefficients are used. The evaluation of the influence of different numbers of DCT-coefficients for (b) the approach only
based on dimensionality reduction and for (c) the combined approach. The shown results were compute from translation tests
where a random translation of 10± 5 pixels is applied.

The considered random transformations contain trans-

lation, rotation, scale, and viewpoint change. Tracking

is considered successfull by computing the mean pixel

distance between the reference template corner points

and the tracked template corner points, which are back-

projected into the reference view. If this mean difference

is less than 5 pixels then the tracking is considered to

be successful. The template size for the following exper-

iments is 150 × 150 pixels with 20 × 20 sample points,

if not otherwise mentioned. The initial learning of the

Linear Predictors is done using 3 ·18 ·18 = 972 training

samples. For the non-linear approach of Benhimane et

al . [4] the complete template without sub-sampling is

used.

Our experiments show that the approach of Benhi-

mane [4] gives the worst results, our approach based on

dimensionality reduction using the DCT gives the best

results, followed by the original approach of Jurie and

Dhome [22]. The approaches using the reformulation of

the learning process give slightly worse results than Ju-

rie and Dhome [22]. However, as we show in Sec. 8.5,

this can be compensated by adding new training sam-

ples to the Linear Predictors.

When evaluating the influence of the number of used

DCT-coefficients in Fig. 7, we see that the pure DCT-

based approach gives similar results when using 81, 49,

or 25 DCT-coefficients, while the combined approach

shows a significant drop in success rate when using only

25 DCT-coefficients.

8.3 Noise

Fig. 8 shows the influence of noise on the tracking pro-

cess. In order to measure the robustness of the consid-

ered approaches with respect to noise we corrupt the

test images with noise drawn from a Gaussian distribu-

tion. The evaluation is done by increasing the standard

deviation of the Gaussian distribution. This is similar to



Efficient Learning of Linear Predictors for Template Tracking 11

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

translation [px]

su
cc

es
s 

ra
te

 [
%

]

 

 

150
300
600
1200

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

translation [px]

su
cc

es
s 

ra
te

 [
%

]

 

 

150
300
600
1200

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

translation [px]

su
cc

es
s 

ra
te

 [
%

]

 

 

150
300
600
1200

(a) JD (b) HP (c) DCT-25

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

translation [px]

su
cc

es
s 

ra
te

 [
%

]

 

 

150
300
600
1200

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

translation [px]

su
cc

es
s 

ra
te

 [
%

]

 

 

150
300
600
1200

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

translation [px]

su
cc

es
s 

ra
te

 [
%

]

 

 

150
300
600
1200

(d) DCT-81 (e) DCTHP-25 (f) DCTHP-81

Fig. 10 Analysis of the influence of the number of training samples on the tracking success rate for (a) Jurie and Dhome [22],
(b) the reformulated learning, the dimensionality reduction based approach for (c) 25 DCT-coefficients and (d) 81 DCT-
ceofficients, and for the combined approach for (e) 25 DCT-coefficients and (f) 81 DCT-coefficients.

decreasing the signal-to-noise ratio. An example where

this is important is in low-light conditions. This noise

is added before we apply the random transformations.

While Fig. 8 (a) compares all considered learning ap-

proaches, Fig. 8 (b) and Fig. 8 (c) focus on DCT and

DCTHP, respectively, in order to show how the num-

ber of DCT-coefficients influences the robustness with

respect to noise. Here, JD gives the worst results and

HP clearly the best. The pure dimensionality reduction

approach gives results that are slightly better than the

approach of Jurie and Dhome [22] and the combined

approach gives results approximately in the middle be-

tween DCT and HP. In both DCT-based approaches,

using more DCT-coefficients helps to improve the ro-

bustness with respect to noise.

8.4 Number of Training Samples

In Fig. 9 we evaluate the necessary learning time with

respect to the number of random training samples used

for training. By reducing the number of training sam-

ples used for learning we can significantly reduce the

necessary learning time. However, this can produce Lin-

ear Predictors that result in less stable tracking. When

looking at Fig. 10, we see that reducing the number of

training samples has different effects for different ap-

proaches. While JD, DCT, and DCTHP show a certain

variance in the resulting tracking success rate, the pure

HP approach shows only a marginal difference between

using 150 training samples and 1200 training sample.

The variance in the JD approach seems not to be re-

lated to the number of the training samples, while DCT

and DCTHP show a clear relation between tracking ro-

bustness and the number of training samples.

8.5 Online Updating

In Fig. 11 we analyse the influence of updating Linear

Predictors after learning, as described in Sec. 7. While

the tracking robustness of JD and DCT is not influ-

enced by updating, the HP-based approaches both sig-

nificantly improve when being updated. However, this

can be done online while tracking and therefore, does

not influence the initial learning time. The reason for

the improvement for the HP-based approaches can be

seen in the fact that in the reformulated learning pro-

cess of HP the training data is first projected onto a low-

dimensional space, which makes the learning step less

dependent on the number of training samples. However,

the online updating is done in a different way where the

training data is not projected onto a low-dimensional

space and therefore, shows a more significant impact.
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Fig. 11 (a) Evaluation of the influence of online updating
on tracking robustness in case of random translations. The
shown values are computed as average success rate of trans-
lation tests for translations ranging from 0 to 45 pixels. These
average success rates are computed for different numbers of
training samples. (b) Necessary time for updating.

8.6 Real Data

In this section, we evaluate our proposed approaches on

real data and analyze their results in relation to other

state-of-the-art approaches. This includes quantitative

evaluations on the datasets of Zimmermann et al . [38]

and Lieberknecht et al . [27].

8.6.1 Zimmermann Dataset

In Table 1, we evaluate our approaches on the datasets

provided by Zimmermann et al . [38] and compare it to

the results of other approaches as reported in [38,18,

19]. Apart from our approaches, we include the results

from Zimmermann et al . [38] (NoSLLiP), Adaptive

Linear Predictors [18] (ALPs), Multi-Layered Adap-

tive Linear Predictors [19] (ML-ALPs), an extension of

the original Linear Predictor approach that is able to

handle occlusions [23] (LLiP LS, LLiP LS 1/2), Lukas-

Kanade template tracking [29] (LK), SIFT [28], as well

as the tracking approach of Kalal et al . [24] (TLD).

Figure 12 shows a representative image for each of the

Zimmermann et al . [38] datasets.

Speed is the most obvious difference between our

approaches and the other approaches. Similar to Jurie

and Dhome [22], we achieve processing frame rates of

about 1800 fps. While the ALPs approach still achieves

almost 100 fps, all the others show frame rates below 25

fps and are therefore significantly slower. Note, that all

three datasets (TOWEL, PHONE, MP) include frames

where the template partly leaves the visible image re-

gion or is partly occluded. Therefore, approaches that

are able to handle occlusions or out-of-image-scenarios

(NoSLLiP, ALPs, ML-ALPs, LLiP LS 1/2) show the

best loss-of-locks numbers.

For our algorithms, we see that the HP ap-

proach shows significant problems with the provided

datasets. Among the datasets, it performs best in the

MOUSEPAD sequence. The purely DCT-based ap-

proach performs well, compared to the original ap-

proach of Jurie and Dhome [22] (JD), in the TOWEL

and MOUSEPAD sequences, but shows problems in the

PHONE sequence.

As we confirm in Section 8.6.2, all presented ap-

proaches seem to have problems with repetitive tex-

tures. The DCTHP approach performs in a range be-

tween the HP and DCT approach, except for the phone

sequence, where it fails in most cases. Since both, HP

and DCT have problems with repetitive texture, this

seems to add up in the combined approach. Again, sim-

ilar observations can be made in Section 8.6.2.

In defense of TLD, we have to note that despite

the high loss-of-locks numbers it is able to track the

approximate location of the object of interest in the

PHONE and MOUSEPAD datasets. But, it fails to do

this most of the times in the TOWEL dataset. TLD

is able to redected the tracked object when they lose

tracking which poses a significant advantage. However,

if other tracking approaches are combined with a detec-

tor a re-detection is possible for them too. While TLD

is not able to track the full pose of the objects in the

sequences, it also shows a tendency to drift apart from

the initally selected template. Although it does not lose

track of the template, the center of the bounding box

can not be used to mark the center of the object in a

stable way. The same holds for the extent of the bound-

ing box which fluctuates over time. Its processing speed

ranges within approximately 5 − 15fps and therefore,

our proposed approaches are up to two orders of mag-

nitude faster in tracking than TLD. In general, TLD

might be well suited for tracking deformable or uncon-

strained objects that change their appearance online.
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Fig. 12 Representative images of the three datasets provided by Zimmermann et al . [38]. From left to right: the towel-,
phone-, and mouse-pad-dataset.

However, if the change in appearance can be described

via a model, e.g . a homography, other algorithms such

as the ones shown in Table 1 seem more suitable.

8.6.2 Lieberknecht Dataset

For the evaluation in Table 2, we applied the orig-

inal approach of Jurie and Dhome [22] as well as

our proposed approaches on the datasets provided by

Lieberknecht et al . [27]. For this evaluation, ground

truth data is given every 250th frame and therefore,

if tracking is lost, it can only be reinitialized at every

250th frame. The final evaluation results are obtained

by providing the tracking results to the authors of the

dataset. A frame is counted as successfully tracked if

the average error of its tracked corners is less than 10

pixels. These corners are at an artificial position outside

of the actual image data. Although this increases the

effect of small misalignments, it prohibits from track-

ing data close to these control points in order to falsely

improve results.

The Lieberknecht et al . [27] dataset considers four

different texture scenarios (low, repetitive, normal,

high) and five different motion and illumination scenar-

ios (angle, range, fast far, fast close, illumination). For

each texture scenario, two different scenes are provided

(see Figure 13). Exemplary changes for the motion and

illumination scenarios are shown in Figure 14. Before

going into details of the evaluation, we want to note

that a exact comparison between the success rates of

the different approaches has to be done with caution,

as the success percentage heavily depends on which of

the 250 frame window the tracking failure occurs.

In general, the presented methods show good re-

sults on the low and normal texture scenarios. The suc-

cess rate drops for DCT-based methods if the number

of DCT-coefficients is reduced. In the ‘Low-1’ dataset,

the original approach of Jurie and Dhome [22] (JD)

is actually outperformed by the presented methods. In

the case of ‘Low-2’, ‘Normal-1’, and ‘Normal-2’ simi-

lar results as achieved by JD are obtained. In the cases

where the refumulated learning approach (HP) works

well, it outperforms the other method in the illumina-

tion scenarios. This can be accounted to the increased

robustness with respect to low signal-to-noise ratios, as

shown in Section 8.3.

For the repetitive scenarios, we see that the refor-

mulated learning (HP) shows significant problems. The

purely DCT based methods still perform acceptable

and in a similar range as JD. However, the combination

of both approaches (DCTHP) also fails in these scenar-

ios. The most challenging sequences are the high texture

sequences. While DCT81 and DCT49 still achieve simi-

lar results as JD in ’High-2’ all proposed methods show

a significant drop in performance on ‘High-1’. This can

be explained by the fine details of the texture which

are necessary to be considered for successfull tracking.

Due to the compression applied in the DCT-based ap-

proaches, they tend to lose these details and therefore

fail.

9 Applications

Due to their high efficiency, our proposed approaches

are well-suited for applications using mobile devices.

Therefore, we implemented them on a standard mobile

phone with 1 GB of RAM and a 1.2 GHz dual core

processor where no optimization for processor specific

technology is implemented, and only a single core is

used for learning and tracking.

The learning process for a template with 16 × 16

sample points and 16 · 16 · 3 = 768 training samples

took approximately 18000 ms for the original approach

of Jurie and Dhome [22], about 600 ms for our proposed

approach using dimensiontality reduction, and roughly

350 ms for the approach using the reformulation of the

learning equation. Based on these results, the reformu-

lated approach is more than 50 times faster than the

approach of Jurie and Dhome [22] and allows interac-



14 Stefan Holzer et al.

Low-1 Repetitive-1 Normal-1 High-1

Low-2 Repetitive-2 Normal-2 High-2

Fig. 13 Representative images of the datasets provided by Lieberknecht et al . [27]. From left to right column: low, repetitive,
normal, and high texture.

Angle Range Fast Far Fast Close Illum.

Fig. 14 Representative images of the Low-2 dataset provided by Lieberknecht et al . [27] to illustrate the different motion and
illumination scenarios used in Table 2.

tive applications to start tracking almost immediately.

On the other hand, tracking takes about 2.5 ms for all

approaches.

10 Conclusions

Linear Predictors were first introduced by Jurie and

Dhome [22] and enable robust tracking at very high

frame rates. They are best suited for tracking the pose,

e.g . as defined by a homography, of a textured object.

The main goal of this paper is to overcome the long

learning time which was the main drawback of their ap-

proach. Thus, we presented three different methods to

speed-up this learning procedure for template tracking.

While they all significantly reduced learning time in two

orders of magnitude range, they individually have dif-

ferent properties that makes them suited for different

application schemes.

Our dimensionality reduction based approach in

Sec. 4 gives the highest tracking success rate. By choos-

ing appropriate number of DCT-coefficients in learn-

ing, it reaches similar learning speeds as the other ap-

proaches and even works with a very low number of

training samples. However, if a significant amount of

noise is present, the reformulation of the learning pro-

cess in Sec. 5 gives the best results. But this approach
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Low-1 Angle Range Fast Fast Illum.
Far Close

JD 71.2% 57.8% 25.5% 12.2% 61.8%
HP 98.1% 71.5% 49.8% 15.8% 86.9%
DCT81 90.6% 70.6% 51.8% 12.9% 82.2%
DCT49 62.3% 53.2% 19.0% 12.2% 57.3%
DCT25 62.5% 50.1% 16.2% 11.0% 69.3%
DCTHP81 90.6% 70.6% 51.8% 12.9% 82.2%
DCTHP49 90.3% 56.8% 21.9% 13.2% 77.4%
DCTHP25 74.0% 51.7% 21.1% 11.5% 75.1%

Low-2 Angle Range Fast Fast Illum.
Far Close

JD 100% 73.6% 33.5% 31.6% 79.2%
HP 98.6% 75.3% 21.2% 27.6% 79.6%
DCT81 96.0% 73.7% 28.4% 27.8% 76.2%
DCT49 92.8% 72.2% 26.9% 17.4% 74.2%
DCT25 28.0% 8.2% 2.7% 4.3% 19.2%
DCTHP81 99.6% 73.7% 21.1% 23.4% 75.7%
DCTHP49 89.3% 78.8% 20.3% 16.6% 73.8%
DCTHP25 6.8% 6.2% 4.8% 2.4% 7.5%

Repetitive-1 Angle Range Fast Fast Illum.
Far Close

JD 70.1% 69.1% 33.4% 20.6% 78.0%
HP 18.2% 9.4% 7.8% 4.2% 18.8%
DCT81 69.8% 62.8% 28.3% 15.2% 74.2%
DCT49 68.4% 54.2% 35.2% 14.0% 67.5%
DCT25 28.0% 8.2% 2.7% 4.3% 19.2%
DCTHP81 14.2% 5.0% 3.8% 2.5% 9.2%
DCTHP49 3.0% 1.6% 4.2% 0.1% 2.1%
DCTHP25 1.7% 6.6% 3.3% 1.8% 2.5%

Repetitive-2 Angle Range Fast Fast Illum.
Far Close

JD 84.1% 47.8% 9.4% 34.8% 92.5%
HP 6.1% 1.5% 2.3% 0.6% 10.2%
DCT81 76.9% 35.6% 10.1% 19.9% 79.6%
DCT49 76.6% 21.8% 7.8% 13.2% 71.8%
DCT25 18.7% 6.2% 1.2% 2.2% 22.5%
DCTHP81 2.4% 0.3% 0.2% 0.9% 0.4%
DCTHP49 0.4% 0.2% 0.2% 0.3% 0.8%
DCTHP25 0.3% 1.0% 0.6% 0.6% 0.3%

Normal-1 Angle Range Fast Fast Illum.
Far Close

JD 96.8% 60.4% 23.6% 13.7% 72.8%
HP 99.4% 51.2% 21.7% 15.8% 75.5%
DCT81 94.0% 46.2% 22.8% 12.4% 71.8%
DCT49 63.3% 15.8% 6.1% 11.6% 65.1%
DCT25 37.1% 4.8% 4.7% 6.9% 19.7%
DCTHP81 96.8% 54.2% 8.8% 12.8% 69.8%
DCTHP49 55.9% 33.1% 7.9% 12.2% 51.0%
DCTHP25 27.5% 5.0% 4.6% 7.0% 15.9%

Normal-2 Angle Range Fast Fast Illum.
Far Close

JD 97.8% 55.2% 17.2% 12.3% 82.2%
HP 75.3% 55.2% 15.5% 11.3% 96.9%
DCT81 96.5% 54.6% 20.4% 12.0% 77.7%
DCT49 54.1% 36.6% 12.7% 11.2% 72.2%
DCT25 32.2% 4.9% 4.0% 6.3% 18.8%
DCTHP81 88.5% 54.9% 15.0% 10.9% 74.0%
DCTHP49 75.9% 51.2% 14.5% 10.8% 82.0%
DCTHP25 9.8% 0.8% 0.4% 2.8% 2.5%

High-1 Angle Range Fast Fast Illum.
Far Close

JD 44.2% 8.2% 5.8% 5.1% 67.4%
HP 17.2% 4.0% 4.3% 3.3% 33.4%
DCT81 9.4% 4.7% 2.2% 3.2% 36.1%
DCT49 1.7% 1.8% 1.8% 2.3% 15.2%
DCT25 0.5% 0.4% 0.3% 0.7% 2.7%
DCTHP81 3.5% 4.5% 2.5% 2.4% 48.7%
DCTHP49 0.8% 1.8% 0.4% 0.7% 6.1%
DCTHP25 0.1% 0.2% 0.1% 0.5% 0.4%

High-2 Angle Range Fast Fast Illum.
Far Close

JD 29.6% 14.8% 8.1% 19.2% 50.8%
HP 6.8% 6.2% 4.8% 2.4% 7.5%
DCT81 26.8% 12.2% 7.8% 13.5% 50.9%
DCT49 29.5% 12.2% 7.2% 9.6% 49.1%
DCT25 10.4% 4.0% 6.0% 4.8% 22.7%
DCTHP81 20.3% 6.3% 6.0% 9.8% 21.1%
DCTHP49 13.4% 3.7% 4.3% 3.6% 0.5%
DCTHP25 1.8% 0.4% 0.9% 2.4% 1.8%

Table 2 Comparison of the approach of Jurie and Dhome [22] (JD) with our proposed approaches (HP, DCT, DCTHP)
on the datasets of Lieberknecht et al . [27]. The results show the tracking success rate under different texture, motion, and
illumination conditions. Results for other approaches can be found in [27].

leads to a slightly decreased success rate in tracking,

especially if the object of interest shows a repetitive

texture. Lastly, the combined approach in Sec. 6 is a

compromise between the two other approaches and has

the advantage of making a trade-off between learning

speed, robustness to noise and robustness to large mo-

tions.
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