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Abstract. Depthmap fusion is the problem of computing dense 3D
reconstructions from a set of depthmaps. Whereas this problem has
received a lot of attention for purely rigid scenes, there is remarkably
little prior work for dense reconstructions of scenes consisting of several
moving rigid bodies or parts. This paper therefore explores this multi-
body depthmap fusion problem. A first observation in the multi-body
setting is that when treated naively, ghosting artifacts will emerge, ie.
the same part will be reconstructed multiple times at different positions.
We therefore introduce non-intersection constraints which resolve these
issues: at any point in time, a point in space can only be occupied by at
most one part. Interestingly enough, these constraints can be expressed as
linear inequalities and as such define a convex set. We therefore propose
to phrase the multi-body depthmap fusion problem in a convex voxel
labeling framework. Experimental evaluation shows that our approach
succeeds in computing artifact-free dense reconstructions of the individual
parts with a minimal overhead due to the non-intersection constraints.

Keywords: Multi-view stereo, multi-body structure-from-motion, depthmap
fusion, convex optimization, Dynamic Scene Dense 3D Reconstruction

1 Introduction

While there exists a large body of work for rigid multi-view stereo and depth-map
fusion methods, there is remarkably little prior work for dense, entirely image-
based 3D reconstructions of multi-body scenes where multiple rigid parts move
with different transformations between two frames. However, this is a highly
relevant setting since many man-made scenes or objects actually contain multiple
moving rigid parts, for example pieces of furniture, adjustable screens, doors, etc.
A dense 3D reconstruction together with a dense segmentation of the scene into
functional parts is interesting for applications where a user can interact with the
reconstructed objects, eg. by opening a door or by pulling out a drawer. This
paper therefore addresses this multi-body depth-map fusion problem, and as
a byproduct also provides a dense segmentation into differently moving parts.
We note that sparse multi-body structure-from-motion (SfM) has received some
attention in previous work, see eg. [1]. Since our paper clearly focuses on the
dense reconstruction, which requires known camera poses, we assume that those
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Fig. 1: In multi-body depth-map fusion, we are trying to compute a dense reconstruction
from a set of input depth-maps of a scene containing multiple moving rigid objects or
parts (in the visualized example, the screen rotates w.r.t. the keyboard). A straight-
forward approach which treats the reconstruction of each rigid part independently
leads to severe artifacts, like a part being reconstructed multiple times at slightly
different poses (especially visible in the side view where features of the desk, keyboard,
and screen get reconstructed multiple times). The approach proposed in this paper
introduces non-intersection constraints which enable complex interactions between the
individual reconstruction problems thereby eliminating almost all those artifacts.

camera poses are provided by such a sparse multi-body SfM component. For
the sake of completeness, we will nonetheless highlight several particular issues
with the sparse multi-body setting in Sec. 4. Our multi-body depth-map fusion
algorithm only requires depth-maps and camera poses registered to a common
references frame. Recent depth-cameras could therefore be used as well, even
though in this paper we only consider depth-maps computed from RGB images.
As described in detail in Sec. 5, we are building on top of a convex voxel labeling
framework for dense rigid reconstructions. In a nutshell, those frameworks label
a voxel as either ’occupied’ or ’freespace’ based on a spatial regularization term
together with a data fidelity term derived from depth-maps. Those methods
provide accurate results for rigid scenes. As multi-body or articulated scenes are
assembled from multiple rigid parts, an intuitive idea is to instantiate a separate
voxel grid for each part and solve multiple labeling problems independently.

However, this leads to severe ghosting artifacts in the reconstructions: de-
scribed in more detail in Sec. 3, the same part will be reconstructed multiple
times, maybe even in a voxel grid associated to another part (see Fig. 1). In
order to prevent this from happening, the grids must be allowed to interact with
each other. Indeed, if we consider whether the reconstructions of all the parts
are intersection free, we see that ghosting artifacts actually lead to intersections
with other parts. Hence, our physically-motivated method is based on a remark-
ably simple, yet powerful idea: a moving rigid part can not occupy a point in
space which is already occupied by another rigid part. These non-intersection
constraints can be formulated as linear inequality constraints which link the
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previously independent labeling problems together. This results in complex inter-
actions of regularization and data terms between different grids and will resolve
the ghosting artifacts. It is important to note that despite rather weak data
terms due to noisy depth maps, the non-intersection constraints result in a strong
mutual exclusion principle which provides a clear part-based 3D segmentation.
Interestingly, those non-intersection constraint also enable to ’carve out’ regions
which have never been directly observed in the input images. For example, ob-
serving how a drawer moves in and out of the drawer casing together with the
non-intersection constraints immediately lead to the conclusion that the drawer
casing must be hollow, a fact which is reproduced by our algorithm.

In contrast to previous convex depth-map fusion formulations for rigid scenes,
our formulation contains two entirely different types of constraints: the non-
intersection constraints and the standard variational formulation of the total
variation regularizer. In order to efficiently handle this large optimization problem,
we propose to use a preconditioned primal-dual proximal method [2]. Moreover,
the set of non-intersection constraints can be quite large. Fortunately, only a
small fraction of those constraints will be active at the globally optimal solution,
lending itself to an efficient constraint generation procedure. An experimental
evaluation shows that our algorithm achieves its goals of a dense multi-body
reconstruction. In summary, the contributions of this paper are:

i) Introduction of the problem of dense consistent multi-body depth-map fusion
and presentation of a solution based on convex non-intersection constraints
which not only prevents ghosting artifacts but also carves out voxels in unseen
regions which are occupied by another part.

ii) Description of a convex voxel labeling algorithm which is solved with a
preconditioned primal-dual proximal method and with an efficient constraint
generation procedure.

2 Related Work

Image based 3D reconstruction methods have made large progress in recent years.
Structure-from-motion (SfM) [3] is nowadays a well-established technique to
accurately compute camera poses and sparse 3D point clouds. While originally
assuming an entirely rigid scene, sparse 3D reconstruction methods have been
extended to deal with multiple rigid bodies [1] or with articulated objects [4,5],
and even to more general non-rigidly deforming objects [6,7]. Each of those classes
of objects or scenes comes with its own challenges. For example, finding a globally
consistent scale for all the objects in a multi-body rigid scene is a non-trivial task,
for which no solution exists in the most general case of entirely independently
moving rigid objects [8]. Notably, parts of an articulated rigid objects are not
allowed to move freely, a fact which manifests itself for example in a rank-
constraint for a feature trajectory matrix which can be used to infer joint locations
and a global scale [9]. In order to constrain the solution space, reconstruction
methods for deformable objects require a prior for regularization, such as local
rigidity [10], physically-inspired models [11], or a low-dimensional subspace model
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[12]. Even though non-rigidly deformable objects certainly represent an important
class of objects, in this paper we focus on reconstructing multi-body rigid and
articulated scenes, mainly because these scenes can be broken down into multiple
moving rigid parts, whose interaction with each other can be captured in a
mathematically exact way, as will be described later.

For multi-body rigid scenes, recent efforts in multi-body structure-from-motion
led to the simultaneous computation of motion, segmentation and depth-maps
from images [13,14]. These approaches estimate the different incremental motions
from video with an iterative alternating scheme, and output a single [14] or
a sequence [13] of depth-maps, with a segmentation mask and the associated
motion for each object. One could feed those into a separate per-object depth-map
fusion. However, deferring a reasoning in 3D can lead to ghosting artifacts where
parts intersect or get reconstructed multiple times. This happens when a part
remains photoconsistent w.r.t. another part, eg. for object shadows on the ground
plane, as can be seen in [13,14]’s results. Our goal differs from theirs as we aim
at volumetric, non-intersecting and time-consistent 3D models from unordered
depth-maps. [13,14] can therefore be used to generate input depth-maps for our
method.

In the Computer Graphics community, Chang and Zwicker’s work [15] also
addresses the problem of registering data from an articulated object in different
configurations, mainly in order to infer the articulation chain and the assignment
of points to parts. However, their focus differs from ours: while we are interested
in a dense volumetric reconstruction from image data, their approach requires
high-quality outlier-free point clouds as input so that no optimization over the 3D
locations of the points is required. Unfortunately, image based methods require a
SfM stage and point clouds acquired by SfM techniques tend to be very noisy and
contaminated with many outliers, the same being true for RGBD-sensors. Those
outliers are not handled by their method. Moreover, non-intersection constraints
are not considered at all in [15].

Once camera poses are known from a sparse reconstruction method, dense
reconstruction algorithms can be used to compute and extract 3D surfaces. Also
known as multi-view stereo, this field contains a large amount of previous work.
We refer the reader to [16] and its excellent accompanying website for further
related work in this area. Carving out regions in 3D which project to non-occupied
areas in the images have lead to the well-understood concept of the visual-hull
[17]. Phrasing the multi-view stereo problem as a binary labeling problem of
a 3D voxel grid with labels ’occupied’ or ’freespace’ and adding regularization,
[18] has used graph-cuts to optimize the resulting energy minimization problem.
Shortly after that, this discrete graph-cut formulation has been rephrased in the
continuous setting as a convex optimization problem [19], where an efficient, highly
parallelizable algorithm has been introduced. More generally, convex relaxations
of binary or multi-label problems can be used to combine data evidence from
images with a regularization term, usually a total-variation term, in an efficient,
highly parallelizable framework [20]. Our multi-body depth-map fusion approach
builds on top of such convex relaxations. Recent approaches with RGBD cameras



Multi-Body Depth-Map Fusion with Non-Intersection Constraints 5

Input Images Motion Multi-Graph Depthmaps Dense Intersection-
Free Reconstruction 

Sparse Multi-
Body SfM 

Subgraph 
Extraction 

Convex 
Depthmap 

Fusion 

First Stage Second Stage 

Part 1 Part 2 

Fig. 2: The overall dense reconstruction pipeline takes an unordered set of images as
input. As a preliminary stage, a sparse multi-body SfM component extracts a motion
multigraph: a node represents an image and each edge represents a relative rigid
transformation (of the camera or a rigid part) between two images. After selecting the
appropriate subgraph for each part, depthmaps can be computed for that part. In the
main stage, those depthmaps are fused in a volumetric convex voxel labeling framework
where each part is reconstructed in a separate voxel grid. However, non-intersection
constraints between the parts enable a complex interaction between all those grids,
thereby carving out voxels in unseen areas which are occupied by another part and
avoiding reconstruction artifacts such as ’ghost parts’.

[21] only consider the unary data term and ignore any pairwise or higher-order
regularization term, thereby sacrificing accuracy in favour of speed. Such a fusion
approach has recently been extended for articulated model-based tracking [22].
Analogously to our approach, the model is represented by instantiating a separate
voxel grid for each rigid part. An iterative-closest point algorithm between a
new RGBD frame and the model is used to update the camera position, and
given this camera position the new data evidence is fused into the grids. Hence
in direct comparison to our approach, [22] is much faster but also less accurate,
ignores the physical non-intersection constraints, and requires a RGB-D camera
together with a continuous stream of images for incremental computation.

3 Problem Description and System Overview

The input to our algorithm consists of a set of depth-maps taken from a scene
with multiple moving rigid objects or parts. Furthermore, the camera is also
allowed to move. The number of parts G is assumed to be known.

Our reconstruction pipeline contains a preliminary depth-map generation
stage, and a main fusion stage, see Fig. 2. The depth-map fusion stage is based
on a volumetric fusion of depth-maps in a voxel grid. In contrast to previous
approaches which consider a single rigid object and thus only a single voxel
grid, we propose to use a separate voxel grid for each part in order to tackle the
dense multi-body depth-map fusion problem. This second stage will be described
in detail in Sec. 5. As we will see, in order to define a data term for a certain
image and part, the depth-maps must be registered to those voxel grids, each of
which is rigidly attached to a part. This registration step obviously requires the
camera position of this depth-map with respect to that part. The preliminary
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stage (outlined in Sec. 4) therefore performs a multi-body sparse reconstruction
in order to compute all the camera poses and the motions of the parts. Once
all the camera poses are known, depth-maps can be generated to be used in the
main fusion stage.

At this point it is important to highlight a problem particular to the multi-
body setting. Let us consider a simple setup with two parts and look at sets of
depth-maps generated in two different cases. In the first case, the two parts move
with respect to each other between any two images. The resulting depth-maps
for each part will contain highly confident measurements in regions where that
part is visible and contain random measurements with low confidence in regions
of the other part because the motions of the two parts are different and thus
inconsistent for computing a single depth-map. In the second case however, only
the camera moves and the two parts stay rigid with respect to each other. The
depth-maps for those images will be the same for both parts and contain highly
confident measurements for both parts. Fusing all those depth-maps from the
first and second case for each part independently will lead to ghost parts: the
highly confident measurements of the second case provide consistent evidence for
both parts in each one of the two voxel grids, whereas the inconsistent regions
with low confidence in depth-maps of the first case would be simply treated as
outlying measurements for example due to occlusions. In summary, the two parts
would get reconstructed in both voxel grids leading to ghost parts which would
occupy the same points in space once a voxel in one grid is mapped to the other
grid.

Therefore, our proposed fusion process allows the grids to interact with each
other in a complex way so that parts are guaranteed to not intersect with each
other at any point in time. This does not only avoid ghost parts, it also allows to
carve out regions in space which have never been observed directly in any of the
images.

4 Sparse Multi-Body Structure-from-Motion

As mentioned in the introduction, the main contribution of this paper is the dense
depth-map fusion formulation with non-intersection constraints. To compute
the required camera poses, iterative approaches similar to those used in [13,14]
could be used. We preferred a non-iterative one that we quickly outline in this
section explain, for the sake of completeness. This first stage mostly uses existing
building blocks for sparse multi-body SfM.

4.1 Extracting Relative Transformations

Since each part is allowed to move with respect to other parts and the camera,
we initially treat the reconstruction of each part as a separate rigid SfM problem.
Sparse feature point correspondences are therefore fed into a sequential RANSAC
which extracts all the essential matrices with sufficient inlier support. While
being a fairly simple and straight-forward approach, sequential RANSAC has
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proven to be sufficient for our purposes. As two-view epipolar geometry might
lead to many spurious inliers (eg. due to repetitive structure), a three-view
verification is performed to eliminate inaccurately detected essential matrices.
An additional benefit of three-view verification is that the scale for relative
transformations within a three-view verified cluster of images is fixed (two-view
relations only provide the translation up to scale) and a consisten reference
coordinate frame can be chosen for this cluster. It is important to note that
such a cluster can nonetheless contain relative transformations from multiple
different parts: Whenever two parts do not move with respect to each other
between two images (as visualized by the dashed arrow in Fig. 2), their three-
view verified relative transformations which link to those two images will be
assigned to the same cluster thereby fixing a consistent scale between the two
parts. If a part is never static with respect to another part, additional heuristics
such as a common ground plane or motion constraints can be used [8,23]. For
simplicity, we decided to take two pictures with a moving camera where no
part is moving. This provides a common reference frame and scale for all the
relative transformations. Conceptually, at this point, a multigraph with a node for
each image and an oriented edge for each extracted relative rigid transformation
captures the geometric relations between the images.

4.2 Motion Segmentation

In order to get the rigid motion of part g, the correct subset of edges needs to be
selected from the multigraph. Note that an edge can be selected multiple times:
this happens if two or more parts do not move with respect to each other between
two images. This is a special instance of the motion segmentation problem for
which a fair amount of previous work exists [1,24,5,8,13,14]. If a feature point on
a certain part can be tracked throughout all the images, the motion segmentation
becomes trivial for that part. If this is not the case, heuristics based on color
similarity, spatial proximity, etc. can be used to ’stitch’ partial feature trajectories
together and read off the correct segmentation from the result. Since motion
segmentation is not the focus of our work, we ask for user input to manually
correct erroneously stitched trajectories.

Interestingly, the dense reconstruction framework can handle some potential
errors in the motion segmentation. This robustness is mainly due to the following
observations. (i) Each subgraph is built from robust, three-view verified relations
because the original multigraph is built that way as well. The motion subgraph
for part g is further refined by running a rigid bundle adjustment on that sub-
graph. This further eliminates wrongly included or inaccuratly estimated relative
transformations. (ii) Remaining inaccurately registered views in a subgraph will
be handled by two components in our framework: Firstly, inaccurate views lead
to depthmaps with low confidence scores and hence they will contribute less to
the data term. Secondly, the depth map fusion algorithm uses a robust data cost
and a regularization term which inhibit outlying measurements to some extent.
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4.3 Generating Cost Volumes

Once the subgraph and thus relative transformations for each part is known,
depthmaps for that part can be generated for each node (ie. camera view) in the
subgraph. We are currently using a CUDA-implemented plane-sweep algorithm
similar to [25] for the computation of the depth maps. The depth maps of a specific
part g are all registered into a separate cost volume for that part. Specifically,
given the positions of the grid g and camera, each depth map is converted into a
truncated signed distance field and these values are aggregated in a voxel grid
dg. The contribution to the signed distance field of a depth measurement at a
certain pixel in a depthmap is weighted with a pixel confidence score based on
the disparity matching cost for that pixel. These voxel grids are then used as
data evidence in the dense reconstruction step. The orientation and extents of
the voxel grid for a part are given by a well-aligned and tightly fitted bounding
box around the sparse point cloud associated to that part. This bounding box is
robustly estimated by considering the distributions of the projection of this point
cloud onto normal directions of dominant scene planes contained in that point
cloud. Note that in this way, the grids are best aligned with respect to each part
and are not axis-aligned to each other.

5 Dense Multi-Body Depth-Map Fusion

5.1 Preconditioned Primal-Dual Proximal Method

Continuous Formulation Motivated by widely-used convex formulations for
binary segmentation problems [19,20], our formulation is based on a separate
’occupancy indicator function’ xg ∶ Vg → [0,1] for each grid g ∈ {1, . . . ,G}. Vg
denotes a spatial volume around part g and a value of xg(v) = 1 denotes that
this point v ∈ Vg is occupied by part g whereas xg(v) = 0 denotes unoccupied
freespace. The local data evidence dg(xg) from the depth maps is combined with a
regularization term rg(xg) in a continuous energy function. Specifically, we follow
a convex fusion framework with the widely-used total-variation regularization
rg(xg) = ∫Vg ∥∇xg(v)∥dv and a unary data term ⟨dg, xg⟩ = ∫Vg dg(v)xg(v)dv [19].

Hence, the continuous energy functional looks like

E(x) =∑
g

rg(xg) + µ⟨dg, xg⟩, (1)

where x = {x1, . . . , xG} denotes the set of occupancy densities and µ ∈ R is a
parameter balancing data fidelity with the regularization. For later reference,
we note the variational representation of the total-variation ∫Vg ∥∇xg(v)∥dv =
maxpg ∶∥pg(v)∥≤1 ∫Vg ⟨pg(v),∇xg(v)⟩dv, which makes use of a dual vector-valued

function pg ∶ Vg → R3.
Since each rigid part g is allowed to move in the scene, the volumes Vg actually

move rigidly with respect to each other and thus also with respect to a fixed
global coordinate system. The non-intersection constraints impose that at any
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point in time, no point in space can be occupied by more than one part. Formally,
let Tt,g0→g denote the rigid transformation which maps a point v ∈ Vg0 from grid
g0 at time t to the local coordinates of grid g. The transformations Tt,g0→g are
computed as described in Sec. 4. Hence, we have access to transformations at
points in time t for which we have image observations. The non-intersection
constraints then become

∀v ∈ Vg0 ∶ ∑
g∈{1,...,G}

xg(Tt,g0→g(v)) ≤ 1. (2)

Note that for known Tt,g0→g, the non-intersection constraints are linear inequal-
ity constraints with respect to the unknown functions xg. This observation is
important since this allows us to include those non-intersection constraints in a
convex optimization framework.

Discretization In the discrete setting, the volumes Vg are represented by
appropriately sized and aligned voxel grids around each part. The set of indices
for voxels in grid g is also denoted by Vg, and the number of voxels in grid g
equals ng = ∣Vg ∣. xvg ∈ [0,1] denotes the occupancy indicator of a voxel vg ∈ Vg,
whereas xg = (⇓vg∈Vg xvg) ∈ [0,1]ng is the vertical concatenation of labels for
voxel grid g. Similarly, the complete vector of occupancy indicator variables
is given by x = (⇓g∈G xg) ∈ [0,1]∑g ng . An analogous notation is used for dual
variables pv and the unary data costs dg. Using the variational form of the total
variation, the discrete version of Eq. (1) is

E(x) =∑
g
∑
vg∈Vg

max
pvg

⟨pvg ,∇xvg ⟩ − i(pvg ≤ 1) + µdvgxvg + i(xvg ∈ [0,1]), (3)

where i denotes the indicator function (0 if condition is met, ∞ if not) and
∇xvg is computed with finite forward differences. As we will see in Sec. 5.2, the
non-intersection constraints can be represented as a linear inequality Ax ≤ b.
After introducing Lagrange multipliers z in order to handle this linear constraint
set, the primal-dual formulation of the resulting optimization problem looks like

min
x

max
p,z

⟨(z
p
) ,Kx⟩ − F ∗(p,z) +G(x), (4)

where F ∗(p,z) = i(p ≤ 1) + ⟨z,b⟩ + i(z ≥ 0) (5)

G(x) = µ⟨d,x⟩ + i(x ∈ [0,1]) (6)

K = [AT ,∇T ]T . (7)

The function F ∗ (convex conjugate of F ) acts on the dual variables and G on the
primal variables and the linear operator K connects these two sets of variables.
Here, the sparse matrix ∇ ∈ R3∑g ng×∑g ng contains the finit forward difference
coefficients for gradients ∇xvg .
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Optimization This is a large-scale convex optimization problem and we need
to carefully select a suitable algorithm. We decided to use a first order primal-
dual proximal algorithm [20,26], mainly because the individual update steps
in this algorithm decouple and can be parallelized easily. Experimentally, we
have confirmed that a preconditioned proximal algorithm [2] converges much
faster than its non-preconditioned counterpart. This is due to the fact that
our linear operator K captures two different type of constraints, namely the
non-intersection constraints and the constraints due to the variational form of
the total variation. Not only contain the matrices A and ∇ a different number of
rows, these rows also contain an entirely different pattern of non-zero entries with
values on a different order of magnitude. Using a single step-length for all the
dual variables as done in a non-preconditioned proximal method can therefore
lead to slow convergence. However, as Chambolle and Pock have shown in [2], a
preconditioned primal-dual proximal algorithm with a diagonal preconditioner
can choose an adaptive step length per variable. For the sake of completeness and
since the derivations need some attention, the required prox-steps of F ∗ and G for
the preconditioned version will be derived in the following. The preconditioned
prox-step replaces the standard L2-norm ∥.∥2 with a Mahalanobis distance ∥.∥Σ,
in our case Σ is a diagonal positive-definite matrix. Even though F ∗ decouples
into separate prox-steps for p and z, the prox-step for the latter involves a sum
between a linear term ⟨z,b⟩ and the indicator function i(z ≥ 0) leading to the
following derivation

prox⟨⋅,b⟩+i(⋅≥0),Σ(z̃) = arg min
z

(⟨z,b⟩ + i(z ≥ 0) + ∥z − z̃∥2Σ) (8)

= Σ
1
2 arg min

z′=Σ−
1
2 z

(⟨Σ 1
2 z′,b⟩ + i(Σ 1

2 z′ ≥ 0) + ∥z′ −Σ− 1
2 z̃∥

2

I
)

= Σ
1
2 arg min

z′
(⟨z′,ΣT 1

2 b⟩ + i(z′ ≥ 0) + ∥z′ −Σ− 1
2 z̃∥

2

I
)

= Σ
1
2 proxi(⋅≥0),I(Σ− 1

2 z̃ −ΣT 1
2 b) =

⎧⎪⎪⎨⎪⎪⎩

z̃ −Σb if z̃ −Σb > 0

0 if z̃ −Σb ≤ 0
.

In the second last step, we have used the property that a non-preconditioned
prox-step involving a linear term ⟨z′,ΣT 1

2 b⟩ is equivalent to applying the prox-

step to the difference Σ− 1
2 z̃−ΣT 1

2 b (see also Table 1 iv in [26]). Since Σ is chosen
diagonal, the prox-steps for z still decouple. The derivation for the prox-step of
the primal variable follows exactly the same steps and gives

proxµ⟨d,⋅⟩+i(⋅∈[0,1]),T(x̃) = max(0,min(1, x̃ + µTf)). (9)

A similar derivation for the dual variable pvg with Σpvg = σ
2
vgI3 provides

proxi(∥⋅∥≤1),Σvg
(p̃) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

p̃ if ∥p̃∥2 ≤ 1
p̃

∥p̃∥2
if ∥p̃∥2 > 1

, (10)
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Algorithm 1: First-Order Primal-Dual Algorithm

parameters : Time step sizes
τj = 1

m

∑
i=1

∣Ki,j ∣2−α
,T = diag (τj), σi = 1

n

∑
j=1

∣Ki,j ∣α
,Σ = diag (σi),

primal-dual step trade-off α ∈ [0,2]
output : Minimizer x for the multi-body depth-map fusion problem.

1 while not converged do
2 // Primal Variable Update:

3 x̃ = xt −TKT (zt

pt
) ;

4 // Primal Variable Prox-Step:

5 xt+1 = proxµ⟨d,⋅⟩+i(⋅∈[0,1]),T(x̃) ;

6 // Reflection step:

7 x̂ = 2xt+1 − xt ;
8 // Dual Variable Update:

9 (z̃
p̃
) = (zt

pt
) +ΣKx̂ ;

10 zt+1 = proxi(⋅≥0),(z̃ −Σzb) ;

11 pt+1 = proxi(∥⋅∥≤1),Σp
(p̃) ;

12 t = t + 1 ;

ie. the preconditioning does not affect this prox-step. In summary, a first-order
primal-dual preconditioned proximal algorithm for our non-intersection con-
strained multi-body depth-map fusion problem looks like outlined in Alg. 11.
Note again that all the prox-steps decompose into elementwise prox-steps which
can be solved analytically and in parallel.

5.2 Non-Intersection Constraints as Linear Inequalities

This section derives the discretized linear inequality constraints which enforce
the non-intersection constraints. We recall that Tt,g→g′ denotes the rigid trans-
formation from grid (or rigid part) g to g′ at frame t. Let wt,vg∩vg′ denote the
intersection volume between voxels vg and vg′ at time t. This is computed by
applying the rigid transformation Tt,g→g′ to the voxel cube vg ∈ Vg which yields
the corresponding translated and rotated cube at time t expressed in coordi-
nates of grid g′. Even though there exist efficient and fast algorithms for exact
voxel cube intersections [27], we opted for a simple estimation procedure of the
intersection volume between two voxels. Inspired by Monte Carlo integration
and efficient collision detection procedures from computer graphics, a voxel vg is
subdivided into n regularly spaced sample points. Each sample point is trans-
formed into the other grid and a counter nvg′ is increased for the voxel vg′ which

1 The primal-dual trade-off was fixed to α = 1 for all our experiments.
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contains the transformed point. The final intersection volume is then estimated as

wt,vg∩vg′ ≈
nvg′

n
. In practice, we used n = 163 sampling points. With this notation

in place, the discrete version of the non-intersection constraint in Eq. (2) reads
like the following: For each frame t and each voxel v ∈ Vg0 in the grid g0, it must
hold that

∑
g
∑
vg∈Vg

wt,v∩vgxvg ≤ 1. (11)

Those constraints can be concisely captured in a linear matrix inequality Ax ≤ 1,
where the entries of the matrix A are equal to the weights wt,v∩vg . Obviously,
some of those constraints are redundant (due to symmetry reasons) and therefore
not required. Notably, most of the voxels are not intersecting, hence, most of the
weights wt,v∩vg will be zero resulting in a highly sparse matrix. In practice, there
are roughly 6.5 non-zero entries per grid in each row of the matrix A. Nevertheless,
the overall number of intersection constraints and thus rows in A can be very
large. Fortunately, only a very small fraction of those constraints will be active
at the globally optimal solution. Therefore, we follow a constraint generation
approach in our implementation: after a certain number of iterations, we search
for violated constraints and those constraints which are close to becoming violated
and add those as additional rows to the constraint matrix. Note that when adding
new rows to matrix A, σi and τj need to be updated.

The constraint generation procedure can be formulated with a complexity of
O(ntng0G) where nt denotes the number of images where parts have moved w.r.t.
each other. The outermost loop iterates over all time instances t ∈ {1, . . . , nt}. The
next loop iterates over all voxels v ∈ Vg0 in a reference grid g0

2. Again motivated
by collision detection procedures in computer graphics, a sequence of increasingly
more complex conservative checks are employed in order to determine early on
whether constraint [t, v] is not violated and can be skipped. For those checks,
potentially intersecting voxels in other grids g ≠ g0 are efficiently computed with
integer index arithmetic as neighbor of Tt,g0→g(v). This constraint generation
procedure incurs only a small overhead to the primal-dual method.

6 Results

We present an experimental evaluation on the following datasets and we also
refer to the supplemental material for further results:

– Laptop: This data set contains 18 images of a laptop where the screen is
rotating around its fixed axis w.r.t. the keyboard. The screen is not moving
w.r.t. the keyboard in all the frames, ie. in some frames only the camera
moved and the scene was perceived as being entirely rigid during those frames.

2 Here, we implicitly assume that grid g0 is sufficiently large so that by iterating over
its voxels, all the non-intersection constraints are considered. A better approach
would be to use a hierarchical space partitioning scheme to efficiently compute the
regions in which voxel grids intersect. However, we leave that for future work.
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Background and casing

Drawer

Input images Sample depth maps Intersection-free reconstruction

Fig. 3: When a drawer moves in and out of the casing, the intersection-constraints
automatically carve out a tight hole in the casing in order to avoid any intersections
between the drawer and the casing. Moreover, the drawer is reconstructed only once,
ie. no ghosting artifacts are present. The visualized depth maps correspond to the
input image on the top left. Note that this example only uses 6 input images from one
side of the drawer and hence, due to absence of data evidence, the reconstruction on
other sides can be inaccurate.

For this example, we have used a best-K (K = 6) depthmap matching cost
which is robust to occlusions and, more importantly for our setting, also to
changes in the rigid configuration of the two parts. This choice results in
depthmaps which are fairly consistent for both parts at the same time. Some
of those depthmaps are shown in Fig. 1. We can clearly see that the regions of
the screen and keyboard in those depthmaps will both provide consistent data
evidence in the keyboard and screen voxel grid. Without any non-intersection
constraints, the screen should therefore also be reconstructed in the keyboard
grid (and the other way around for the keyboard in the screen grid). As the
results show, the screen will indeed be reconstructed multiple times, in our
case 6 times since we observed 6 different configurations between the keyboard
and the screen. However, with activated non-intersection constraints, those
ghosting artifacts vanish and the screen and keyboard will be reconstructed
exactly once, each in its own grid.

– Drawer: The drawer dataset consists of 6 images. 4 different non-rigid
configurations have been observed while pushing the drawer into the drawer
casing. Hence, in three images, the scene was again perceived as entirely rigid.
In contrast to the laptop example where we have used a best-K depthmap
matching, all the views contribute to a depthmap estimate this time. Fig. 3
shows an example of the resulting depthmaps for one specific point of view.
Note that even though there is a bias towards either the casing or the drawer,
there is a fair amount of noise present in those depthmaps. Nevertheless, our
algorithm provides an artifact free reconstruction and thus segmentation into
the two parts. Moreover, the non-intersection constraints prevent intersections
even in unseen or weakly observed areas, resulting in a tight hole in the
casing of the drawer such that the drawer can slide in.
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The non-intersection constraints obviously increase the time and memory
requirements slightly compared to entirely independent reconstructions. It is
difficult to exactly quantify the time overhead due to those constraints, since the
additional complexity for the constraint generation largely depends on how many
occupied and intersecting voxels there are in a per-part independent reconstruction
(and hence on the proximity between the parts). In our experiments, the overall
time overhead for the primal-dual algorithm was usually within 25 − 50%. We
observed a similar overhead for the memory requirements. We currently do not
remove constraints which were added to the constraint matrix at some point and
got satisfied later on. Such a step could certainly be added if required.

7 Conclusion and Future Work

In this paper, we have introduced the multi-body depth-map fusion problem.
In order to prevent ghosting artifacts, we have considered the non-intersection
constraints which can be formalized as linear inequalities. These inequalities
have been integrated in a convex voxel labeling framework, leading to complex
interactions between separate voxel grids for each rigid part. As the experimental
evaluation shows, this approach eliminates ghosting artifacts. Moreover, regions
which have never been observed in the images, like the interior of a drawer case,
will be carved out if an intersection with another part would result otherwise.
Intuitively, a part can be used to carve out unseen regions in other parts. From
an optimization point of view, we verified that a preconditioned primal-dual
proximal method converges must faster than its non-preconditioned counterpart.
This can be attributed to the fact that our optimization problem contains two
entirely different types of dual variables, a setting in which preconditioning is
known to be beneficial. Since only a small fraction of the intersection constraints
will be active at the globally optimal solution, a constraint generation approach
has been introduced to handle the large set of non-intersection constraints without
incurring a large overhead to the primal-dual method.
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