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Abstract. In this paper, we present a new epipolar constraint for com-
puting the rotation between two images independently of the translation.
Against the common belief in the field of geometric vision that it is not
possible to find one independently of the other, we show how this can be
achieved by relatively simple two-view constraints. We use the fact that
translation and rotation cause fundamentally different flow fields on the
unit sphere centered around the camera. This allows to establish inde-
pendent constraints on translation and rotation, and the latter is solved
using the Gröbner basis method. The rotation computation is completed
by a solution to the cheiriality problem that depends neither on trans-
lation, nor on feature triangulations. Notably, we show for the first time
how the constraint on the rotation has the advantage of remaining ex-
act even in the case of translations converging to zero. We use this fact
in order to remove the error caused by model selection via a non-linear
optimization of rotation hypotheses. We show that our method operates
in real-time and compare it to a standard existing approach in terms of
both speed and accuracy.

1 Introduction

Numerous works over the past decade proved the feasibility of doing robust
structure-from-motion with a single camera only. Some important examples are
given by Nistér et al. [1], Davison et al. [2] and Klein and Murray [3]. The biggest
problem from a geometric point of view has been identified to be the robust
estimation of the rotation between successive camera frames. The effect of certain
small translations and rotations on the displacement of the features in the image
plane can be very similar and the problem of disambiguation is even amplified
if the distribution of the features in the image plane is too inhomogenous.

Klein and Murray [3] find the rotation between two frames by warping and
rotating small blurry images of the camera frames and then minimizing the
sum of squared differences in between them. Another approach has recently
been presented by Kneip et al. [4], who solve this problem by taking short-term
integrals of gyroscopic signals of an additional inertial measurement unit into
account. However, both approaches only deliver an approximate value for the
rotation between two frames. In this paper, we present an exact and robust
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geometric formulation for an independent computation of the rotation between
two camera frames.

The subject of this paper is clearly related to one of the most fundamental
and traditional problems in geometric vision, namely the determination of the
relative pose between two images. The input information is given in form of
point correspondences between the two images, or—in the calibrated case—unit
vectors pointing from each viewpoint to the jointly observed 3D points. The goal
is to find the translation and rotation between the two frames. Of high interest
are solutions that use a minimum number of points and can thus be employed
in robust hypothesize-and-test schemes such as the RANSAC approach [5]. The
most important minimal solutions are the 5-point solvers by Nistér [6], Stewénius
et al. [7], and Kukelova et al. [8] and the famous 8-point solver by Longuet-
Higgins [9]. The first solution was presented in 1913 by Kruppa [10]. The main
problem with all these approaches—apart from potentially degenerate structure
configurations and multiplicity of solutions—is that they mix the parameters for
translation and rotation and thus become numerically intractable in the case of
vanishing translation magnitudes. This issue notably applies to any parametriza-
tion that involves the fundamental or essential matrix between the two images.
The way this problem has been handled in the literature consists of applying a
model selection criterium that decides whether the displacement has too small
translation or not and then solving for pure rotation in case it does. This has
for instance been presented by Torr et al. [11]. While this approach achieves
robust behavior, it has the downside of not delivering exact rotations in the
case of sufficiently small translations. Moreoever, it is impossible to reduce this
error in a two-view batch optimization. Bundle adjustment depends on feature
triangulations, which are undefined if the parallax is neglected and simply set
to zero.

In 2009, Kalantari et al. [12] presented a new direct parametrization in terms
of translation and rotation. Their method results in a system of 6 equations in 6
unknowns and a Gröbner basis with 40 base monomials. They claim that their
approach stays robust in the case of zero translation, however without presenting
any quantitative results in this direction. They also solve the Gröbner basis
online, which is not the most efficient way regarding the fact that the path of
the algorithm actually remains constant for one specific problem. In 2010, Lim
et al. [13] present a solution for decoupled translation and rotation computation.
However, their method imposes constraints on the distribution of the features
on the unit sphere and hence does not work in the general case.

In this paper, we present new general epipolar constraints that allow the
independent computation of rotation and translation between two frames based
on the individual characteristics of the resulting optical flow on the unit sphere.
We obtain a system of equations that allows to compute the rotation between
two frames generally and independently of the translation using a minimum
number of points. Notably, we also show how the rotation constraint stays nu-
merically robust even in the case of vanishing translation magnitudes and hence
allows for an exact computation of the rotation in any case. Section 2 shows the
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(a) (b)

Fig. 1. Optical flow of features caused by camera translation (a) and rotation (b).

derivation of computationally independent constraints on translation and rota-
tion. Section 3 illustrates how the rotation can be solved using the Gröbner basis
method. Section 4 presents a non-linear refinement of the solutions and notably
how our constraint allows for an exact computation of the rotation for any given
translation. Section 5 then presents a concise evaluation and comparison of our
algorithm in terms of accuracy, noise resilience and execution time.

2 Translation independent rotation constraint

2.1 Independence of rotation and translation computation

A good illustration of why the rotation and translation of a camera displacement
can be separated is given by the optical flow on the unit sphere. As shown in
Figure 1, the optical flow caused by a translation consists of the shortest field
lines emerging from/ending at the intersection points between the sphere and
the translation direction. The rotational optical flow is fundamentally different
and consists of field lines contained in parallel planes of which the rotation vector
is a normal vector.

(a) (b)

Fig. 2. Geometric relationships of unit feature observation vectors in the case of pure
translation (a) and pure rotation (b).
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To the end of obtaining implicit constraints on rotation and translation, we
introduce the unit feature vectors fi and f ′i describing the feature observations
from viewpoint 1 and 2, respectively. Figure 2 shows the influence of a pure
translation or a pure rotation on the feature observations. In the case of a pure
translation, each correspondence (fi, f

′
i) spans a so-called epipolar plane. More-

over, all of the epipolar planes intersect in the line defined by the translation
vector. In other words, the normal vectors of the epipolar planes all need to be
contained in the normal plane of the translation vector. A normal vector of each
epipolar plane is in this special case easily given by ni = fi× f ′i. The constraint
for a purely translational optical flow thus translates to all cross-products fi×f ′i
being coplanar. In the case of a pure rotation, the situation is even easier. Since
the field lines are all contained in parallel planes, it immediately follows that the
constraint for a pure rotation translates to all optical flow vectors oi = fi − f ′i
being coplanar as well.

The idea for independent rotation and translation computation finally reads
as follows:

– rotation is correctly compensated if and only if the feature correspondences
(fi, cR(f ′i)) fullfill the properties of a purely translational optical flow, and

– translation is correctly compensated if and only if the feature correspon-
dences (fi, ct(f

′
i)) fullfill the properties of a purely rotational optical flow,

where cR(.) and ct(.) are the functions that compensate for rotation and transla-
tion, respectively. If R denotes the rotation from viewpoint 2 to viewpoint 1, the
rotation-compensated observations from viewpoint 2 become cR(f ′i) = Rf ′i. In
this case we need to have a purely translational optical flow and thus all vectors
fi ×Rf ′i need to be coplanar. The minimum number of vectors for expressing
coplanarity is three and a simple way to encode coplanarity/linear dependency
is given by the determinant of these three vectors being zero. A translation
independent constraint on the rotation is finally given by

|(f1 ×Rf ′1) (f2 ×Rf ′2) (f3 ×Rf ′3)| = 0. (1)

If t′ denotes the translation from viewpoint 2 to viewpoint 1 seen from view-
point 2, the translation compensated observations from viewpoint 2 become

ct′(f
′
i) =

η′if
′
i−t′

||η′if ′i−t′||
, with η′i denoting the depths of the features seen from view-

point 2. This time we need to have a purely rotational optical flow, meaning that

all vectors fi − η′if
′
i−t′

||η′if ′i−t′||
need to be coplanar. Following a similar argumenta-

tion to the one previously developped, a rotation independent constraint on the
translation is given by∣∣∣∣(f1 − η′1f

′
1 − t′

||η′1f ′1 − t′||
) (f2 −

η′2f
′
2 − t′

||η′2f ′2 − t′||
) (f3 −

η′3f
′
3 − t′

||η′3f ′3 − t′||
)

∣∣∣∣ = 0 (2)

It is interesting to see that the depths of the features only appear in the
translation constraint. The independent constraint on the rotation (1) appears
fairly compact. It is the main subject of the remaining of the paper and we name
it the epipolar plane normal coplanarity constraint.
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2.2 Constraining the rotation

A rotation encodes 3 degrees of freedom. We thus need at least three epipolar
plane normal coplanarity constraints in order to fully constrain the rotation. Us-
ing two additional features f4 and f5, we obtain the following system of equations
to calculate the rotation|(f1 ×Rf ′1) (f2 ×Rf ′2) (f3 ×Rf ′3)| = 0

|(f1 ×Rf ′1) (f2 ×Rf ′2) (f4 ×Rf ′4)| = 0
|(f1 ×Rf ′1) (f2 ×Rf ′2) (f5 ×Rf ′5)| = 0

. (3)

In addition to these equations, there might be—depending on the employed
parametrization—additional constraints enforcing the rotation matrix to actu-
ally be a rotation matrix. As illustrated in the following sections, the choice of
the parametrization has a huge impact on the complexity of the solution.

2.3 The case of zero translation

The constraints on the rotation (3) turn out to be still valid even if the translation
is zero. For a correct rotation compensation, the entities fi ×Rf ′i then ideally
become zero, which does however not change the fact that the determinant
constraint is zero in this case. Notably, since the mentioned entities deviate from
zero if a wrong rotation matrix is chosen—even in the case of pure rotation—,
the determinant is zero if and only if the rotation is correctly compensated. The
only exception is given with degenerate feature configurations. For instance, if all
the features are situated along the equator, we would have an optical flow that
could be explained by both our rotation-only and translation-only constraints.
A similar development than above can be done for the translation constraint.

3 5-point minimal solution

3.1 Finding a Gröbner basis

Despite the compact look, equation system (3) is arduous to solve. It is a mul-
tivariate polynomial equation system commonly solved via the Gröbner basis
method. A good introduction to the approach can be found in [14]. The method
consists of defining a monomial ordering over the polynomial terms and then it-
eratively generating and reducing new polynomials inside the ideal (the so-called
S-polynomials) until a set of polynomials with certain desired criteria w.r.t. solv-
ability is obtained. This method has been applied to numerous minimal problems
in geometric vision, among which the most well known approaches certainly are
represented by the classical 5-point essential matrix solutions of Nistér [6] and
Stewénius [7]. 3 As a matter of fact, the path followed by the algorithm remains

3 The solution of Nistér actually turns out to be equivalent to computing a lexico-
graphical Gröbner basis instead of a graded-reverse lexicographical Gröbner basis as
done by Stewénius. It results in a univariate 10th degree polynomial, which can be
solved substantially faster than a 10x10 action matrix.
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constant for one specific problem and needs to be resolved only once exactly,
which means outside the algebraic field of real numbers. Hence the way such
polynomial systems are solved is by chosing random coefficients in a prime field
and then doing the computation therein. The path of the solution can be traced
offline in the prime field and afterwards applied online to the effective feature-
depending coefficients. The final algorithm is fast since we do no longer need to
check for all polynomial reductions, but directly generate and reduce only the
necessary S-polynomials.

The computation of a Gröbner basis can be extremely long and the complex-
ity depends to a large extend on the initial parametrization of the problem. It is
influenced by the following factors: 1) the order of the equations; 2) the number
of equations; 3) the number of unknowns; and 4) the chosen monomial order-
ing. Using our custom-made Gröbner basis computation software (∼6000 lines
of code), we tried out many different rotation matrix parametrizations as for
instance Cayley [15], quaternion, and Thompson [16] rotations. However, due
to the increasing order of the equations, our conclusion is that this system is

best solved using the standard rotation matrix parametrization R =
r11 r12 r13

r21 r22 r23
r31 r32 r33

.

Moreover, it is best to increase the number of equations as much as possible and
thus take into account as many epipolar plane normal coplanarity constraints
as possible. Finally, it is also best to formalize the constraints on the rotation
matrix in terms of multiple quadratic constraints and leave out the third order
determinant constraint.



|(f1 ×Rf′1) (f2 ×Rf′2) (f3 ×Rf′3)| = 0

|(f1 ×Rf′1) (f2 ×Rf′2) (f4 ×Rf′4)| = 0

|(f1 ×Rf′1) (f2 ×Rf′2) (f5 ×Rf′5)| = 0

|(f1 ×Rf′1) (f3 ×Rf′3) (f4 ×Rf′4)| = 0

|(f1 ×Rf′1) (f3 ×Rf′3) (f5 ×Rf′5)| = 0

|(f1 ×Rf′1) (f4 ×Rf′4) (f5 ×Rf′5)| = 0

|(f2 ×Rf′2) (f3 ×Rf′3) (f4 ×Rf′4)| = 0

|(f2 ×Rf′2) (f3 ×Rf′3) (f5 ×Rf′5)| = 0

|(f2 ×Rf′2) (f4 ×Rf′4) (f5 ×Rf′5)| = 0

|(f3 ×Rf′3) (f4 ×Rf′4) (f5 ×Rf′5)| = 0

r211 + r212 + r213 = 1

r11r21 + r12r22 + r13r23 = 0
r11r31 + r12r32 + r13r33 = 0

r221 + r222 + r223 = 1

r21r31 + r22r32 + r23r33 = 0

r231 + r232 + r233 = 1

r21r32 − r22r31 − r13 = 0
r12r31 − r11r32 − r23 = 0
r11r22 − r12r21 − r33 = 0
r22r33 − r23r32 − r11 = 0
r13r32 − r12r33 − r21 = 0
r12r23 − r13r22 − r31 = 0

r211 + r221 + r231 = 1

r11r12 + r21r22 + r31r32 = 0
r11r13 + r21r23 + r31r33 = 0

r212 + r222 + r232 = 1

r12r13 + r22r23 + r32r33 = 0
r13r21 − r11r23 − r32 = 0
r23r31 − r21r33 − r12 = 0
r11r33 − r13r31 − r22 = 0

(4)

The final parametrization is given with
equation system (4). It consists of 10 cu-
bic coplanarity constraints and 20 quadratic
constraints on the rotation matrix and is
solvable—using the grevlex monomial order-
ing and r33 > r32 > r31 > r23 > r22 > r21 >
r13 > r12 > r11—via 36 S-polynomial re-
ductions only. We finally obtain a Gröbner
basis in the 20 base monomials r212, r11r33,
r11r32, r11r31, r11r23, r11r22, r11r21, r11r13,
r11r12, r211, r33, r32, r31, r23, r22, r21, r13, r12,
r11, 1. The SVD of the action matrix then
finally leads to 20 direct solutions for the ro-
tation matrix, which is reasonable since each
essential matrix actually represents two pos-
sible rotation matrices after decomposition.
Our Gröbner basis tool basically combines
the results of Buchberger [17], Gebauer and
Möller [18], and Giovini et al. [19].

The code we extract from the trace (∼8000 lines) operates on a large matrix
in a similar way to Faugère’s F4 [20] or the code extracted from Kukelova’s
framework [21], however substantially faster since operating on a much smaller
matrix. This is achieved by the following modifications:
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– The number of columns is reduced by only representing the monomials that
effectively appear along the computation.

– When creating new S-polynomials, no copies of the pair of generators mul-
tiplied by the subsidiary monomials to the LCM are instantiated.

– When creating new S-polynomials, the canceling leading term is left out
immediately.

– When reducing S-polynomials, no copies of the reductors multiplied by the
quotient term are instantiated.

– We recursively backtrace the S-polynomials that are effectively necessary for
the final basis and generate only those.

The operation is supported by vector-functions that access the right generator
and reductor coefficients for combining terms without actually multiplying the
polynomial by the subsidiary monomials to the LCM (Least Common Multiple).
Our matrix is 66× 197 and the Gröbner basis is computed in less than 0.3ms.

3.2 Selection of the right solution

Fig. 3. Ambiguity for translation
and rotation known as cheiriality.

The 20 solutions of the action matrix SVD
exist in the complex domain and only those
with a sufficiently low imaginary part are in-
teresting. Wrong solutions are easily rejected
by thresholding the magnitude of the imag-
inary parts of the singular values from the
SVD. The next consistency check then con-
sists in verifying if the determinants of the ro-
tation matrices equal to one, which again al-
lows to purge wrong solutions. Moreover, we
back-substitute the remaining rotation ma-
trices into the original constraints and put
a threshold on the resulting error. Another
way of identifying wrong solutions is given by
solving the cheiriality ambiguity, as we will
explain next.

From the essential matrix decomposition, we know that the obtained rotation
matrices may appear in pairs of reflected matrices. The same accounts for the
translations. Figure 3 illustrates how this finally leads to 4 possible (R, t)-pairs
for each feature triangulation. The classical way of solving this problem is to tri-
angulate features and then check whether they lie in front or behind the camera.
Since we only have rotation matrices, we focus on a constraint that allows us to
effectuate the disambiguation without actually deriving the translation or doing
feature-triangulation. First of all, it is important to notice that the criterium
whether a certain point lies in front or behind the camera plane is not very
accurate. For an omnidirectional camera for instance, the front and the back of
a camera does not tell anything about the visibility of the feature. We therefore
change this criterium to something more meaningful, namely check whether the
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3D point lying on a line defined by the feature vector also lies on the beam de-
fined by the feature vector. Secondly, looking at Figure 3, we notice that (a) and
(b) have the same rotation, and (c) and (d) as well. The difference between both
cases only consists in the sign of the translation. For (a) and (b), the 3D point
is lying either on both or none of the beams. For (c) and (d), the 3D point is
lying on one of the beams only. d represents a direction vector and therefore it
is equal to either plus or minus the translation vector. The direction vector can
be obtained by any cross-product of two epipolar plane normal vectors and thus
we have

d = ±t = n1 × n2 = (f1 ×Rf ′1)× (f2 ×Rf ′2). (5)

For the correct rotation matrix (cases (a) and (b)), we observe that the cross-
product between the direction vector d and f1 needs to point to the same di-
rection than the cross-product between the direction vector d and Rf ′1. In other
words, the dot-product of both cross-products must be positive. This translates
into the following inequality constraint on each rotation matrix

(d× f1) · (d×Rf ′1) > 0

⇒ {(f1 ×Rf ′1)× (f2 ×Rf ′2)× f1} · {(f1 ×Rf ′1)× (f2 ×Rf ′2)×Rf ′1} > 0 (6)

We finally found a constraint that allows the disambiguation of rotation matrices
without having to derive the translation or 3D point information. Note that any
pair of features can be used for the disambiguation.

3.3 The case of zero translation

Despite the fact that our original rotation constraint is still valid for zero trans-
lation, the computation still deteriorates when the translation converges to zero.
This phenomenon can be explained as follows. When the translation approaches
zero, the 20 solutions of the 5-point algorithm converge to a single solution, which
is natural since the rotation in the case of zero translation is uniquely defined by
two features already. The side-effect is that—when following the fixed trace of
the Gröbner basis computation—we obtain similar polynomials and hence the
reductions result in almost zero coefficients in the middle of the computation.
The solution parametrization having too high complexity for this specific case,
the path finally becomes numerically unstable.

We handle this problem similar to Torr et al. [11] and perform model selec-
tion. We try to find a suitable rotation using two features only and accept it in
case the unrotated features from view-point 2 turn out to be close enough to
the features from view-point 1. Accepting the origin as a third virtual point and
following the point-set alignment approach presented in [22], this can easily be
done via computing the SVD

U ·D ·V∗ = SV D(

3∑
i=1

(f ′i − f̄ ′) · (fi − f̄)t))⇒ R = U ·Vt, (7)
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and then checking the magnitude of the differences fi − Rf ′i. The drawback
of this approach is that there remains a small error in the computation of the
rotation for small translations. Besides, since the 20 local minima are very close
to each other, this error can not be corrected via a non-linear optimization with 5
features. Even a two-view batch optimization would be infeasible since depending
on feature triangulations, which are undefined if neglecting the parallax and
setting it to zero.

4 Non-linear refinement

The final approach to remove the error caused by model selection and find a
unique and exact rotation consists of taking more features into account and per-
forming non-linear optimization over all resulting epipolar plane normal copla-
narity constraints. In this paper, we will focus on the minimal variant of taking
only one additional feature into account, although the accuracy of the optimiza-
tion can obviously be improved by increasing this number. The minimization
can in principle be extended to any number of features. The number of result-

ing constraints for 6 points is given by the combination

(
6
3

)
= 6!

(6−3)!·3! = 20.

The minimization is carried out over the Cayley parameters of a rotation matrix
[15]. While this parametrization was unsuited for the Gröbner basis computa-
tion, it turns out to provide good properties for an iterative optimization scheme,
namely symmetric parametrization in function of only 3 parameters and absence
of additional constraints on the rotation matrix.

As illustrated in Figure 4(a), the norm of the errors of the constraints be-
haves non-linearly. Moreover, as shown in Figure 4(b)—a closeup of the region
around the global minimum—, the manifold is not free of local minima. How-
ever, it equals to zero for the correct rotation values only (in this case (0 0 0)t).
The figure only shows the error over pitch and yaw angle variations, but the be-
havior for roll angle variations is comparable. The reason for the displayed local
minimum is actually given by rotations that attempt to explain the translation
as well (in the illustrated example we have a translation along x and the effect
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Fig. 4. (a): Norm of the errors of all epipolar plane normal coplanarity constraints for
6 features and pitch and yaw deviations. (b): Closeup of the region around the global
minimum. (c): Norm of the error for zero translations. (d): Same closeup of the region
around the global minimum for zero translation.
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is close to the one of a pitch angle variation (rotation around y)). The main
advantage of our constraint is shown in Figure 4(c): the cost-function remains
robust for zero translation and thus paves the way for computing exact rotations
even in the case of translations down to zero. Moreover, Figure 4(d) shows that
in the event of a pure rotation, the mentioned local minimum even disappears.
On the other hand, this means that for very small translations, we have local
minima very close to the absolute minimum. A good minimization is therefore
only possible by taking additional measures not to end up in a local minimum.

Taking the remaining rotations from the 5-point algorithm (or the unique
rotation from two features in case of a small translation) as initial points for the
optimization, we can finally identify a unique and exact rotation between the
two view-points with only 6 points. The entire method can be summarized as
follows:

– Select 2 of the 6 features and try to compute the rotation as described in
Section 3.3
• If the translation is small enough, retain this unique hypothesis
• Else, compute the rotation hypotheses using the 5-point Gröbner basis

method and reject as many as possible as described in Section 3.2
– Finally, optimize all found hypotheses using nonlinear refinement over all 6

points and select the solution with least squares error.

5 Results

The algorithm we present is thoroughly tested by means of synthetic data and
compared to Stewénius’ [7] 5-point solution for computing the rotation and trans-
lation between two images. This is a clean, accurate and popular approach to
epipolar geometry computation. The synthetic data consist of 1’000 3D points
that are evenly distributed below the fixed downlooking camera at viewpoint
1, with depths varying uniformly between 4 and 8 in the vertical direction. For
each test, we then select a randomly displaced viewpoint 2. The magnitude of
the translation is uniformly distributed between 0 and 2 in order to ensure that
the position of viewpoint 2 stays within a reasonable distance of the structure.
For each experimental run, synthetic 2D-2D correspondences are then created by
randomly selecting 6 points from the entire point set and reprojecting them on
the unit sphere of our two viewpoints. Depending on the experiment, a different
level of white Gaussian noise ranging from 0 to 2 pixels is then added to the
measurements by assuming a pinhole camera model and an effective focal length
of f = 800 pixel.

5.1 Noise resilience

In our first experiment, we examine the influence of noise on the accuracy of
the solution. To this end, we add Gaussian noise varying from 0 to 2 pixels to
our measurements and execute 1000 runs for each level. Figure 5 indicates the
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Fig. 5. Mean and median errors of roll (a), pitch (b) and yaw (c) angles for our 5-point,
Stewénius’ 5-point and our non-linear 6-point solutions.

resilience of our new 5-point algorithm and the one by Stewénius, both with
model selection and 2-point rotation computation in case of small translations.
We also display the results after 6-point non-linear refinement of our solutions.
We can see that—due to the complexity of the computation—our 5-point al-
gorithm has lower resilience to noise in comparison to Stewénius’ solution. We
can also see that the results after our non-linear refinement show highest mean
absolute errors in all three rotational dimensions. The reason why the perfor-
mance is degrading is related to bad rotation hypotheses under noise and hence
convergence into wrong local minima. However, having a look at the median
values of the error, we note that the result of our 6-point non-linear refinement
still performs best. This is underlined by the fact that our 6-point non-linear
refinement is able to identify a unique rotation, whereas the correct solution for
the 5-point algorithms has been selected each time by hand. We also verified that
our non-linear 6-point refinement remains robust in the special case of planar
structure.

5.2 Behavior for small translations

We now proceed to analyzing the biggest advantage of our novel epipolar con-
straint. In order to investigate the influence of small translations on the accuracy
of the algorithm, we run specific tests where the magnitude of the translation
is varying from 0 to 3% of the average scene depth from viewpoint 1, namely
0.18. As mentioned in Section 3.3, we have to differentiate between cases of
small translation and cases where the parallax is sufficiently high for running
the 5-point algorithm. The same accounts for Stewénius’ 5-point algorithm and
notably every minimal solution that employs the essential matrix parametriza-
tion including the 8-point algorithm. Our proposed solution consists in taking
the hypothesized rotations as starting points for our non-linear optimization. As
shown in Figure 6, this yields very good results and even completely removes
the error for small translations commited around the model selection boundary.
The figure also displays the errors of pure 2-point and 5-point rotation compu-
tation without model selection. It proves that our novel epipolar constraint on
the rotation only is indeed able to compute an exact rotation for small or even
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Fig. 6. Mean and median roll(a), pitch (b) and yaw (c) errors for small translation
magnitudes.

zero translation magnitudes and does not suffer from numerical instability in
this situation.

5.3 Performance in terms of accuracy and execution time

We also analyse the numerical accuracy and execution times of our new 6-point
and Stewénius’ 5-point methods. Figure 7 shows that—in the noise-free case—
the numerical accuracy of our non-linear least squares solution is superior to
Stewénius’ least-squares solution by roughly one order of magnitude.

7(c) then finally shows the drawback of our method. The non-linear global
minimization is pretty expensive and consumes 86% of the execution time. The
overall execution time required by our method is currently still five times higher
than the average time consumed by Stewénius’ algorithm.

6 Conclusion

We have presented in this paper a new epipolar constraint for computing the ro-
tation between two images independently of the translation. While the minimal
5-point computation of the rotation still suffers from the same model selection
related inaccuracies as already existing approaches to epipolar geometry com-
putation, the subsequent non-linear refinement of the hypotheses reduces the
median error down to zero, even for vanishing translation magnitudes. The en-
tire method thus represents a solution for computing a unique exact rotation
and does not suffer from solution multiplicity or inaccuracies caused by the es-
sential matrix parametrization. We also verified that our method does not suffer
from planar degeneracies. The minimization is extendable to an arbitrary num-
ber of points, and can hence be used in any case where errors around the model
selection boundary occur.

Once the rotation problem is solved, the translation between two viewpoints
immediately follows as a simple two-point solution. Future work now consists
in improving the efficiency of the algorithm and integrating it into a RANSAC
scheme for continuous real-time frame-to-frame rotation estimation. The final
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Fig. 7. Probability distribution over numerical accuracy for our proposed (a) and
Stewénius’ method (b). (c) shows the probability distribution over execution time for
both methods. The pie chart shows the relative time consumption of the different parts
of the algorithm.

goal is to check the impact of robust and translation decoupled rotation compu-
tation on structure-from-motion algorithms.
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