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Abstract

The limitations of current state-of-the-art methods for
single-view depth estimation and semantic segmentations
are closely tied to the property of perspective geometry, that
the perceived size of the objects scales inversely with the
distance.

In this paper, we show that we can use this property
to reduce the learning of a pixel-wise depth classifier to
a much simpler classifier predicting only the likelihood of
a pixel being at an arbitrarily fixed canonical depth. The
likelihoods for any other depths can be obtained by apply-
ing the same classifier after appropriate image manipula-
tions. Such transformation of the problem to the canoni-
cal depth removes the training data bias towards certain
depths and the effect of perspective. The approach can be
straight-forwardly generalized to multiple semantic classes,
improving both depth estimation and semantic segmentation
performance by directly targeting the weaknesses of inde-
pendent approaches. Conditioning the semantic label on
the depth provides a way to align the data to their physi-
cal scale, allowing to learn a more discriminative classifier.
Conditioning depth on the semantic class helps the clas-
sifier to distinguish between ambiguities of the otherwise
ill-posed problem.

We tested our algorithm on the KITTI road scene dataset
and NYU2 indoor dataset and obtained obtained results
that significantly outperform current state-of-the-art inboth
single-view depth and semantic segmentation domain.

1. Introduction

Depth estimation from a single RGB image has not been
an exhaustively studied problem in computer vision, mainly
due to its difficulty, lack of data and apparent ill-posedness
of the problem in general. However, humans can still per-
form this task with ease, suggesting, that the pixel-wise
depth is encoded in the observed features and can be learnt
directly from the data [20, 1, 10, 16]. Such approaches typ-
ically predict the depth, the orientation, or fit the plane for
the super-pixels using standard object recognition pipeline,

Figure 1. Schematic description of the training of our semantic
depth classifier. Positive training samples for each semantic class,
projected to the canonical depthdc using the ground truth depth,
are trained against other semantic classes and against samples of
the same class projected to other than the canonical depth. Such
a classifier is able to predict a semantic class andany depth by
applying appropriate image transformations.

consisting of the calculation of dense or sparse features,
building rich feature representations, such as bag-of-words,
and application of a trained classifier or regressor on them.
The responses of a classifier or a regressor are combined
in a probabilistic framework, and under very strong geo-
metric priors the most probable scene layout is estimated.
This process is completely data-driven and does not exploit
known properties of the perspective geometry, most impor-
tantly, that the perceived size of the objects scales with an
inverse distance (depth) from the centre of projection. This
leads to severe biases towards the distributions of depths in
the training set; it is impossible to estimate the depth of an
object if a similar object has not been seen at the same depth
during the training stage. These short-comings of the algo-
rithm can be partially resolved by jittering or very careful
weighting of the data samples, however, the trained classi-
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fier would still not be intrinsically unbiased.

A typical argument against the data-driven depth esti-
mation is, that to successful perform this task, we need
to be able to recognize and understand the scene. Thus
one should wait, until sufficiently good recognition ap-
proaches are developed. For some recognition tasks this
is already the case. Recent progress in computer vision
and machine learning led to the development of algo-
rithms [15, 27, 29, 28], that are able to successfully catego-
rize images into hundreds [4] or even thousands [3] of dif-
ferent object classes. Further investigation reveals, that the
success of these methods lies in how the problem is con-
strained; the objects of interest are typically scaled to the
size of an image and under this setting carefully designed
feature representations become much more discriminative.
Based on this observation it is apparent, that the devil that
limits the performance of algorithms for computer vision
tasks, lies in the scale misalignment of the data due to the
perspective geometry.

Standard semantic classifiers are trained to be discrim-
inative between semantic classes, but robust to the change
of scale. Such dissonance between the desired properties
makes learning unnecessarily hard. For an object detec-
tion problem [2, 5, 27] the varying 2D scale of an object is
typically handled by scaling the content of bounding boxes
tightly surrounding the objects to the same size, and build-
ing a feature vector for each individual bounding box after
this transformation. Without this crucial step, the perfor-
mance of the detection methods decreases dramatically. In
case geometry of the scene is known, or it could be reli-
ably estimated, the location of bounding boxes can be con-
strained to be on the specific location, such as on the ground
plane [11]. However, these approaches can be used only for
foreground objects with specific spatial extent, shape and
size, "things". For semantic segmentation task with back-
ground classes, "stuff", such as a road, a building, grass or
a tree, such an approach is not suitable. Scaling bound-
ing boxes surrounding lawns of grass to the same size does
not make the feature representations more discriminative.
However, there still exists a concept of scale forstuffclasses
tied to their real-world physical size. The physical size of
a blade of grass, a window of a building or a leaf of a tree
varies much less than the size of a lawn, of a building or
of a tree. Consequently, the most suitable alignment, ap-
plicable to boththingsandstuff, is the normalization to the
same physical size. This has been recognized in the sce-
narios with the Kinect camera, where the depth is known.
The classifier using features normalized with respect to the
measured depth [22] typically perform significantly better.

The mutual dependencies of visual appearance of a se-
mantic class and its geometrical depth suggest that the prob-
lems of semantic segmentation and depth estimation should
be solved jointly. It has been shown in [16] that condition-

ing depth on the semantic segmentation in a two-stage al-
gorithm leads to a significant performance improvement.
For stereo and multi-view images, [14, 9] have demon-
strated that joint semantic segmentation and 3D reconstruc-
tion leads to a better result than performing each task in
isolation. In these approaches, the rather weak source of
mutual information utilized is the distribution of height [14]
or surface normals [9] of different semantic classes.

In this paper we show, that using the properties of the
perspective geometry we can reduce the learning of a pixel-
wise depth classifier to a much simpler classifier predicting
only the likelihood of a pixel being at an arbitrarily fixed
canonicaldepth. The likelihoods for any other depths can
be obtained by applying the same classifier after appropri-
ate image manipulations. Such transformation of the prob-
lem to the canonical depth removes the training data bias
towards certain depths and the effect of perspective. The
approach can be straight-forwardly generalized to multiple
semantic classes, improving both depth estimation and se-
mantic segmentation performance by directly targeting the
weaknesses of independent approaches. Conditioning the
semantic label on the depth provides the way to align the
data to their physical size, and conditioning depth on the
semantic class helps the classifier to distinguish between
ambiguities of the otherwise ill-posed problem.

We perform experiments on the very constrained street-
scene KITTI data set [6] and the very challenging NYU2
indoor dataset [25], where no assumptions about the layout
of the scene can be made. Our algorithm significantly out-
performs independent depth estimation and semantic seg-
mentation approaches, and obtains comparable results in
the semantic segmentation domain with methods, that use
full RGB-D data. Our pixel-wise classifier can be directly
placed into any competing recognition or depth estimation
frameworks to further improve the results; either as a unary
potential for CRF recognition approaches [13] or as predic-
tions for fitting the planes to the super-pixels [20].

2. An unbiased depth classifier

First, we define the notation. LetI be an image and
α ∗ I an imageI geometrically scaled by a factorα. Let
Ww,h(I, x) be the (sub-)window of an imageI of the size
w × h, centered at given pointx. Any translation-invariant
classifierHd(x), predicting the likelihood of pixelx being
at the depthd ∈ D has to be a function of the arbitrarily
large fixed sizew × h sub-window centered at the pointx:

Hd(x) := Hd(W
w,h(I, x)). (1)

The perspective geometry is characterized by the feature
that objects are scaled with their inverse distance from the
observer’s centre of projection. Thus, for any unbiased
depth classifierHd(x) the likelihood of the depthd of any



pixelx ∈ I should be the same as the likelihood of the depth
d/α of the corresponding pixel of the scaled imageα ∗ I:

Hd(W
w,h(I, x)) = Hd/α(W

w,h(α ∗ I, αx)). (2)

This property is crucial to keep the classifier robust to the
fluctuations in the training data, which are always present
for small and average-sized data sets. It seems straight-
forward, but it has not been used in any previous data-driven
depth estimation approach [20, 1, 16].

This property implies, that the depth classification can be
reduced to a much simpler prediction of whether the pixel
x ∈ I is at any arbitrarily fixedcanonicaldepthdc. The
response for any other depthd can be obtained by applying
the same classifierHdc

to the appropriately scaled image by
a factord/dc as:

Hd(W
w,h(I, x)) = Hdc

(Ww,h(
d

dc
∗ I,

d

dc
x)). (3)

Thus, the problem of depth estimation is converted into the
estimation of which transformation (scaling) would project
the pixel into the canonical depth. The special form of the
classifier directly implies how it should be learnt. In the
training stage, a classifier should learn to distinguish the
training samples transformed to the canonical depth from
the training samples transformed to the depths other than
the canonical depth. The details largely depend on the
framework chosen; e.g. in the classification framework the
problem is treated as a standard 2-label positives vs nega-
tives problem, in the ranking framework the response for a
training sample transformed to the canonical depth should
be larger (by a sufficient margin if appropriate) than the
response for a sample transformed to any other than the
canonical depth.

Our classifier has several advantages over the direct
learning of the depth from the feature representations of pix-
els. First, to predict a certain object (for example a car) ata
certain depthd does not require a similar object to be seen
at the same depth during the training stage. Second, our
classifier does not have a problem with unbalanced training
data, which is always present for a multi-class classifier or
regressor. Intuitively, closer objects consist of more points
and some object may have appeared at certain depth in the
training data more often just by chance. These problems
of a multi-class classifier or regressor could partially be re-
solved by jittering the data, using suitable sampling or re-
weighting of the training points; however, a direct enforce-
ment of the property (2) is bound to be a better and more
principled solution.

3. Semantic depth classifier

Single-view depth estimation is in general an ill-posed
problem. Several ambiguities could be potentially resolved
if the depth classifier was conditioned on the semantic label.

Training a classifier, which should be on one hand dis-
criminative between semantic classes, but on the other ro-
bust to the change of scale, is unnecessarily hard. The
problem would be much easier if the training samples were
scale-aligned. The most suitable alignment, applicable to
both thingsandstuff, is the normalization according to the
physical size, and that is exactly, what the projection to the
canonical depth (4) does.

The generalization of the depth classifier to multiple se-
mantic classes can be done straight-forwardly by learning
a joint classifierH(l,dc)(W

w,h(I, x)), predicting whether a
pixel x takes a semantic labell ∈ L and is at the canonical
depthdc. By applying (4), the response of the classifier for
any other depthd is:

H(l,d)(W
w,h(I, x)) = H(l,dc)(W

w,h(
d

dc
∗ I,

d

dc
x)). (4)

The advantage of our classifier being unbiased towards cer-
tain depths is now more apparent. An alternative approach
of learning a|D||L|-class classifier or a|L| depth regres-
sors would require a very large amount of training data,
sufficient to represent a distribution for each label in a cross
product of semantic and depth labels. In the training stage,
our classifier should learn to distinguish the training sam-
ples of each class transformed to the canonical depth from
the training samples of other classes and samples trans-
formed to the depths other than the canonical depth. The
transformation to the canonical depth is not applied for the
skyclass (for outdoor scenes) and the depth during test time
is automatically assigned to∞.

4. Implementation details

Transforming the window around each training sample
to the canonical distance independently with a consequent
calculation of features is computationally infeasible in prac-
tice. Thus, we discretize the problem of depth estimation
during test stage into a discrete set of labelsdi ∈ D. The er-
ror of a prediction based on the scale of objects is expected
to grow linearly with the distance, suggesting that the neigh-
bouring depthsdi anddi+1 should have a fixed ratiodi+1

di
,

chosen depending on the desired accuracy. This allows us to
transform the problem into a classification over a pyramid
of imagesαi ∗ I = di

dc
∗ I for each training or test imageI.

For pixels at the depthαidc, the scaling of an image by
αi corresponds to the transformation to the canonical depth.
Thus in the training stage, a point of the image pyramid
xi
j ∈ (αi ∗ I) is used as a positive or negative sample based

on how close is the ground truth depth of the corresponding
pixel in the original non-scaled imagedxi

j
= d(xj/αi) to the

depthαidc. If their ratio is close to1, e.g.

max(
dxi

j

αidc
,
αidc
dxi

j

) < δPOS , (5)



the pixelxj is used as a positive for a corresponding se-
mantic class and negative for all other classes. If they are
sufficiently different, e.g.

max(
dxi

j

αidc
,
αidc
dxi

j

) > δNEG, (6)

the scaling byαi does not transform the sample to the
canonical depthdc and thus is used as a negative for all
semantic classes.

In the training stage each object of the same real-world
size and shape should have the same influence on the learnt
classifier, no matter how far they are. Thus, the samples are
sampled fromαi ∗ I with the same subsampling for allαi,
and are used as positives or negatives if they satisfy corre-
sponding constraints (5) or (6) respectively.

Transforming the problem into the canonical depth
aligns the data based on their real-world physical size,
which could be significantly different for different semantic
classes. Thus, the most suitable classifiers are context-based
with an automatically learnt context size, such as [24, 23,
13]. Following the methodology of the multi-feature [13]
extension of TextonBoost [24], the dense features, namely
texton [18], SIFT [17], local quantized ternary patters [12]
and self-similarity features [21], are extracted for each pixel
in each image in a pyramidα ∗ I. Each feature is clus-
tered into512 visual words using k-means clustering and
for each pixel a soft weighting for8 nearest neighbours is
calculated using distance-based weighting [7] with an ex-
ponential kernel. The feature representation for a window
Ww,h(αi ∗ I, xi

j) consists of a concatenation of the soft-
weighted bag-of-words representations over its fixed ran-
dom set of200 sub-windows as in [24]. The multi-class
boosted classifier [26] is learnt as a sum of decision stumps,
comparing one dimension of the feature representation to a
thresholdθ ∈ T . Unlike in [24], the set of thresholdsT is
found independently for each particular dimension by uni-
formly splitting its range in the training set. Long feature
vectors (512× 200 for each feature) for each pixel can not
be kept in memory, but have to be calculatedon flyusing in-
tegral images [24] for each image in the pyramid and each
visual word of a feature. We implement several heuristics
to decrease the resulting memory requirements. The soft
weights from(0, 1) are approximated using 1-byte. The
integral images are built only for a sub-window of an im-
age, that covers all the features of given visual word, using
an integer type (1 − 8 bytes) based on the required range
for each individual visual word for each image. The mul-
tiple features are, unlike in [13], fused using late fusion,
e.g. the classifiers for each feature are trained independently
and eventually averaged. Thanks to these heuristics, the re-
quirements for memory dropped approximately40× for the
NYU2 dataset [25] to below32GB. An approximately10×
drop was due to the integral image updates and4× due to

the late fusion.

5. Experiments

We tested our algorithm on KITTI [6] and NYU2 [25]
datasets. The KITTI dataset was chosen to demonstrate the
ability of our classifier to learn depth for semantic classes
with a relatively small number of training samples. The
NYU2 dataset was used to show that depth can be predicted
for an unconstraint problem with no assumptions about the
layout of the scene. Furthermore, we show that for both
datasets learning of the problem jointly leads to an improve-
ment of the performance.

5.1. KITTI data set

The KITTI data set [6] consists of a large number of out-
door street scene images of the resolution1382×512, out of
which 194 images contain sparse disparity maps obtained
by Velodyne laser scanner. We labelled the semantic seg-
mentation ground truth for the60 images with ground truth
depth and split them into30 training and30 test images.
The label set consists of12 semantic class labels (see Ta-
ble 3). Three semantic classes (bicycle, person and sign)
with high variations were ignored in the evaluation due to
the insufficient training data (only2 instances in the training
set). We aimed to recognize depth in the range of2−50 me-
ters with a maximum relative errorδ = max(

dgt

dres
, dres

dgt
) <

1.25, wheredres is the estimated depth anddgt the ground
truth depth. Thus, we setδPOS = 1.25. Visual recog-
nition of depth with higher precision is very hard for hu-
man also. The canonical depth was set to20 meters. Train-
ing samples were taken as negatives if their error exceeded
δNEG = 2.5. Training samples with error betweenδPOS

and δNEG were ignored. Quantitative comparison to the
state-of-the-art class-only unary classifier [13] is given in
the table3. Quantitative comparison of the Make3D [20],
trained with the same data, with our depth-only and joint
depth semantic classifier is given in the table2. Our joint
classifier significantly outperformed competing algorithms
in both domains. Qualitative results are given in the figure3.
Qualitative comparison of depth-only and joint classifier is
given in figure4. The distribution of relative errors of esti-
mated depth is given in figure6.

5.2. NYU2 data set

The NYU2 data set [25] consist of1449 indoor images of
the resolution640×480, containing ground truth for seman-
tic segmentation with894 semantic classes and pixel-wise
depth obtained by a Kinect sensor. For the experiments we
used the subset of40 semantic classes as in [19, 25, 8]. The
images were split into725 training and724 test images.
We aimed to recognize depth in the range1.2 − 8.5 me-
ters with a maximum relative errorδ = max(

dgt

dres
, dres

dgt
) <



1.25. The canonical depth was set to6.9 meters. Train-
ing samples were taken as positives if their error was be-
low δPOS = 1.25, as negatives if their error exceeded
δNEG = 2.5. Quantitative comparison to the class-only
unary classifier [13] and state-of-the-art algorithms using
both RGB and depth during test time is given in the table1.
Our classifier performance was comparable to these meth-
ods even in these unfair conditions. Quantitative results in
the depth domain can be found in the table2. There was no
other classifier we could have compared to; all other meth-
ods are constrained only to very specific scenes with strong
layout constraints, such as road scenes. The performance
was higher than for the KITTI dataset mainly due to the
significantly more narrow range of depths.

6. Discussion and conclusions

In this paper we proposed a new pixel-wise classifier,
that can jointly predict a semantic class and a depth label
from a single image. In general, the obtained results look
very promising. In the depth domain the reduction of the
problem into classification of one depth only turned up to
be very powerful due to its intrinsic dealing with the dataset
biases. In the semantic segmentation domain we showed
the importance of proper alignment, leading to quantita-
tively better results. The main weaknesses of the method are
the inability to deal with low resolution images, very large
requirements in terms of hardware and apparent inability
to locate the objects more precisely for semantic classes
with high variance. Obtained results suggest future work
in three directions: further alignment of orientation using
estimated normals, estimation of depth as a latent variable
during training for the datasets with small amount of im-
ages (or none) with ground truth depth, and development of
different forms of regularizations suitable for the problem.
The naïve use of standard Potts model pairwise potentials
did not lead to an improvement, because this form of reg-
ularization typically removed all the small distant objects,
and thus we omitted these results in the paper. However,
our joint depth/semantic classifier has the potential to en-
able richer pairwise potentials representing expected spatial
relations between objects of different classes.
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